1
|
Davidsen N, Ramhøj L, Ballegaard ASR, Rosenmai AK, Henriksen CS, Svingen T. Perfluorooctanesulfonic acid (PFOS) disrupts cadherin-16 in the developing rat thyroid gland. Curr Res Toxicol 2024; 6:100154. [PMID: 38352163 PMCID: PMC10861841 DOI: 10.1016/j.crtox.2024.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024] Open
Abstract
Perfluorooctanesulfonic acid (PFOS) can disrupt the thyroid hormone (TH) system in rodents, potentially affecting perinatal growth and neurodevelopment. Some studies also suggest that gestational exposure to PFOS can lead to lower TH levels throughout life, indicating that PFOS may compromise thyroid gland development. To address this question, we utilized a rat thyroid gland ex vivo culture system to study direct effects of PFOS on the developing thyroid. No significant changes to follicular structure or size were observed with 1 µM or 10 µM PFOS exposure. However, the transcription factor Foxe1, together with Tpo and Lrp2, were upregulated, whereas the key transcription factor Pax8 and its downstream target gene Cdh16 were significantly downregulated at the transcript level, observed with both RT-qPCR and RNAscope. Notably, Cdh16 expression was not uniformly downregulated across Cdh16-postive cells, but instead displayed a patchy expression pattern across the thyroid gland. This is a significant change in expression pattern compared to control thyroids where Cdh16 is expressed relatively uniformly. The disrupted expression pattern was also seen at the protein level. This suggests that PFOS exposure can impact follicular growth and structure. Compromised follicle integrity, if irreversible, could help explain reduced TH synthesis postnatally. This view is supported by observed changes to Tpo and Lrp2 expression, two factors that play a role in TH synthesis.
Collapse
Affiliation(s)
- Nichlas Davidsen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Louise Ramhøj
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | | | | | | | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
2
|
Haroush N, Levo M, Wieschaus EF, Gregor T. Functional analysis of the Drosophila eve locus in response to non-canonical combinations of gap gene expression levels. Dev Cell 2023; 58:2789-2801.e5. [PMID: 37890488 PMCID: PMC10872916 DOI: 10.1016/j.devcel.2023.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 08/10/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Transcription factor combinations play a key role in shaping cellular identity. However, the precise relationship between specific combinations and downstream effects remains elusive. Here, we investigate this relationship within the context of the Drosophila eve locus, which is controlled by gap genes. We measure spatiotemporal levels of four gap genes in heterozygous and homozygous gap mutant embryos and correlate them with the striped eve activity pattern. Although changes in gap gene expression extend beyond the manipulated gene, the spatial patterns of Eve expression closely mirror canonical activation levels in wild type. Interestingly, some combinations deviate from the wild-type repertoire but still drive eve activation. Although in homozygous mutants some Eve stripes exhibit partial penetrance, stripes consistently emerge at reproducible positions, even with varying gap gene levels. Our findings suggest a robust molecular canalization of cell fates in gap mutants and provide insights into the regulatory constraints governing multi-enhancer gene loci.
Collapse
Affiliation(s)
- Netta Haroush
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Michal Levo
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Eric F Wieschaus
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology and Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA
| | - Thomas Gregor
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544, USA; Department of Stem Cell and Developmental Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
3
|
Zhuo Y, Yu H, Zhou X, Zhang D. Ectopic intrapulmonary thyroid masquerading as metastatic carcinoma of the lung: a rare case scenario. BMC Pediatr 2023; 23:178. [PMID: 37072721 PMCID: PMC10110484 DOI: 10.1186/s12887-023-04003-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/11/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND The intrapulmonary ectopic thyroid gland is exceedingly rare since the ectopic thyroid was discovered. Only eight cases have been reported in the worldwide literature. We present a case of multiple intrapulmonary ectopic thyroid glands with nodular goiter in a 10-year-old girl. CASE PRESENTATION The girl was found with multiple intrapulmonary nodules in bilateral lungs during the treatment of nodular goiter. The intrapulmonary lesions were initially thought to be a high possibility of metastatic cancer. A computed tomography-guided percutaneous lung biopsy was performed, and the pathological examination confirmed that the diagnosis was ectopic intrapulmonary thyroid. CONCLUSION The ectopic intrapulmonary thyroid should be considered when children with nodular goiter presenting with suspected metastases in the lung.
Collapse
Affiliation(s)
- Yuejian Zhuo
- Department of Oncology, People's Hospital, Hubei University of Medicine, Xiangyang No. 1, Jiefang Road No.15, Xiangyang, Hubei, 441000, China
| | - Han Yu
- Department of Pathology, People's Hospital, Hubei University of Medicine, Xiangyang No.1, Xiangyang, 441000, China
| | - Xingjian Zhou
- Department of endocrinology, People's Hospital, Hubei University of Medicine, Xiangyang No. 1, Xiangyang, 441000, China
| | - Dongdong Zhang
- Department of Oncology, People's Hospital, Hubei University of Medicine, Xiangyang No. 1, Jiefang Road No.15, Xiangyang, Hubei, 441000, China.
| |
Collapse
|
4
|
Zamboni M, Strimpakos G, Poggiogalle E, Donini LM, Civitareale D. Adipocyte signaling affects thyroid-specific gene expression via down-regulation of TTF-2/FOXE1. J Mol Endocrinol 2023; 70:e220129. [PMID: 36347053 DOI: 10.1530/jme-22-0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/08/2022] [Indexed: 11/09/2022]
Abstract
Obesity affects thyroid gland function. Hypothyroidism, thyroid nodules, goiter, and thyroid cancer are more frequent in patients with higher BMI values. Although these data are supported by many clinical and epidemiological studies, our knowledge is very scarce at the molecular level. In this study, we present the first experimental evidence that adipocyte signaling downregulates the expression of thyroid-specific transcription factor 2 (TTF-2/FoxE1). It plays a crucial role in thyroid development and thyroid homeostasis and it is strictly connected to thyroid cancer as well. We provide in vivo and in vitro evidence that inhibition of TTF-2/FoxE1 gene expression is mediated by adipocyte signaling.
Collapse
Affiliation(s)
- Michela Zamboni
- Institute of Biochemistry and Cell Biology, National Council of Research, Monterotondo, Rome, Italy
| | - Georgios Strimpakos
- Institute of Biochemistry and Cell Biology, National Council of Research, Monterotondo, Rome, Italy
| | - Eleonora Poggiogalle
- Department of Experimental Medicine - Medical Pathophysiology, Food Science and Endocrinology Section, Sapienza University of Rome, Rome, Italy
| | - Lorenzo M Donini
- Department of Experimental Medicine - Medical Pathophysiology, Food Science and Endocrinology Section, Sapienza University of Rome, Rome, Italy
| | - Donato Civitareale
- Institute of Biochemistry and Cell Biology, National Council of Research, Monterotondo, Rome, Italy
| |
Collapse
|
5
|
Xu Q, Zhou L, Ri H, Li X, Zhang X, Qi W, Ye L. Role of estrogen receptors in thyroid toxicity induced by mono (2-ethylhexyl) phthalate via endoplasmic reticulum stress: An in vitro mechanistic investigation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:104007. [PMID: 36341965 DOI: 10.1016/j.etap.2022.104007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Mono(2-ethylhexyl) phthalate (MEHP) can influence the expression of estrogen receptors (ERs) and induce thyroid injury. The expression of ERs can be related to thyroid disease and abnormal expression of ERs has been associated with activation of endoplasmic reticulum stress. This study aimed to clarify the role of ERs in MEHP-induced thyroid damage via endoplasmic reticulum stress. We exposed Nthy-ori 3-1 cells to different doses of MEHP. We found that after the exposure, the cell viability and the expression levels of thyroid hormone metabolism-related proteins decreased, while the apoptosis level and the expression levels of ERs (ERα and GPR30) increased. Three endoplasmic reticulum stress-related signaling pathways were activated by MEHP. After ERα and GPR30 were knocked down, these three pathways were inhibited and the thyroid toxicity was alleviated. Taken together, our results indicate that MEHP can induce thyroid toxicity by upregulating the expression of ERs, further activating endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Qi Xu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Hyonju Ri
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China; Faculty of Public Health, Pyongyang Medical University, Pyongyang, Democratic People's Republic of Korea
| | - Xu Li
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xueting Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
6
|
Fernández-Méndez C, Santisteban P. A Critical Balance Between PAX8 and the Hippo Mediator TAZ Determines Sodium/Iodide Symporter Expression and Function. Thyroid 2022; 32:315-325. [PMID: 34726504 DOI: 10.1089/thy.2021.0191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background: The Hippo pathway has a fundamental role in tissue homeostasis, but little is known about how this signaling cascade is controlled in the thyroid. PAX8 is an essential driver of thyroid differentiation and is involved in the control of genes crucial for thyroid hormone biosynthesis, including the sodium/iodide symporter (NIS; SLC5A5). A role for the Hippo mediator transcriptional coactivator with PDZ-binding motif (TAZ) as a coactivator of PAX8 to promote thyroglobulin expression has been previously described. Here, we studied the role of TAZ on thyroid differentiation focusing on PAX8-mediated Slc5a5 transcription. Methods: Gene silencing and overexpression assays were performed in rat PCCl3 thyroid follicular cells (TFCs) to determine the role of TAZ in the regulation of Slc5a5. Transcriptional activity of the Hippo mediators was investigated by chromatin immunoprecipitation and promoter-reporter gene activity. Hippo component levels and location were analyzed in PCCl3 cells and in mouse thyroid under different treatment conditions. Results: By suppressing the expression of PAX8 and its binding to the Slc5a5 upstream enhancer, TAZ inhibits Slc5a5 expression, impairing NIS membrane location and activity. Other Hippo effectors such as YAP1 and TEAD1 were not required for the repressor effect of TAZ. We also found an interplay between the Hippo, thyrotropin (TSH), and transforming growth factor β1 (TGFβ) pathways in TFCs. TSH via cyclic adenosine monophosphate activated Hippo signaling pathway and, consequently, TAZ was excluded from the nucleus. We confirmed this in hypothyroid mice, characterized by elevated TSH serum levels, which showed downregulated activation of Hippo signaling in thyroid. Conversely, TAZ nuclear retention was promoted by TGFβ, a potent NIS repressor, and TAZ silencing markedly relieved the TGFβ-induced inhibition of the symporter. Conclusions: We demonstrate that the effects of TAZ are promoter specific, as it functions as a corepressor of PAX8 to modulate Slc5a5 expression in TFCs. Overall, our data place TAZ as an integrator of the different signaling pathways that control NIS expression, pointing to a role for TAZ in thyroid differentiation and identifying the Hippo pathway as a relevant target to recover NIS levels in thyroid cancer cells.
Collapse
Affiliation(s)
- Celia Fernández-Méndez
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
7
|
Wen G, Eder K, Ringseis R. Resveratrol Alleviates the Inhibitory Effect of Tunicamycin-Induced Endoplasmic Reticulum Stress on Expression of Genes Involved in Thyroid Hormone Synthesis in FRTL-5 Thyrocytes. Int J Mol Sci 2021; 22:ijms22094373. [PMID: 33922129 PMCID: PMC8122728 DOI: 10.3390/ijms22094373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 11/19/2022] Open
Abstract
Recently, ER stress induced by tunicamycin (TM) was reported to inhibit the expression of key genes involved in thyroid hormone synthesis, such as sodium/iodide symporter (NIS), thyroid peroxidase (TPO) and thyroglobulin (TG), and their regulators such as thyrotropin receptor (TSHR), thyroid transcription factor-1 (TTF-1), thyroid transcription factor-2 (TTF-2) and paired box gene 8 (PAX-8), in FRTL-5 thyrocytes. The present study tested the hypothesis that resveratrol (RSV) alleviates this effect of TM in FRTL-5 cells. While treatment of FRTL-5 cells with TM alone (0.1 µg/mL) for 48 h strongly induced the ER stress-sensitive genes heat shock protein family A member 5 (HSPA5) and DNA damage inducible transcript 3 (DDIT3) and repressed NIS, TPO, TG, TSHR, TTF-1, TTF-2 and PAX-8, combined treatment with TM (0.1 µg/mL) and RSV (10 µM) for 48 h attenuated this effect of TM. In conclusion, RSV alleviates TM-induced ER stress and attenuates the strong impairment of expression of genes involved in thyroid hormone synthesis and their regulators in FRTL-5 thyrocytes exposed to TM-induced ER stress. Thus, RSV may be useful for the treatment of specific thyroid disorders, provided that strategies with improved oral bioavailability of RSV are applied.
Collapse
|
8
|
Abstract
Hemichordates, along with echinoderms and chordates, belong to the lineage of bilaterians called the deuterostomes. Their phylogenetic position as an outgroup to chordates provides an opportunity to investigate the evolutionary origins of the chordate body plan and reconstruct ancestral deuterostome characters. The body plans of the hemichordates and chordates are organizationally divergent making anatomical comparisons very challenging. The developmental underpinnings of animal body plans are often more conservative than the body plans they regulate, and offer a novel data set for making comparisons between morphologically divergent body architectures. Here I review the hemichordate developmental data generated over the past 20 years that further test hypotheses of proposed morphological affinities between the two taxa, but also compare the conserved anteroposterior, dorsoventral axial patterning programs and germ layer specification programs. These data provide an opportunity to determine which developmental programs are ancestral deuterostome or bilaterian innovations, and which ones occurred in stem chordates or vertebrates representing developmental novelties of the chordate body plan.
Collapse
|
9
|
Gokulnath P, Soriano AA, de Cristofaro T, Di Palma T, Zannini M. PAX8, an Emerging Player in Ovarian Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1330:95-112. [PMID: 34339032 DOI: 10.1007/978-3-030-73359-9_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ovarian Cancer is one of the most lethal and widespread gynecological malignancies. It is the seventh leading cause of all cancer deaths worldwide. High-Grade Serous Cancer (HGSC), the most commonly occurring subtype, alone contributes to 70% of all ovarian cancer deaths. This is mainly attributed to the complete lack of symptoms during the early stages of the disease and absence of an early diagnostic marker.PAX8 is emerging as an important histological marker for most of the epithelial ovarian cancers, as it is expressed in about 90% of malignant ovarian cancers, specifically in HGSC. PAX8 is a member of the Paired-Box gene family (PAX1-9) of transcription factors whose expression is tightly controlled temporally and spatially. The PAX genes are well known for their role in embryonic development and their expression continues to persist in some adult tissues. PAX8 is required for the normal development of Müllerian duct that includes Fallopian tube, uterus, cervix, and upper part of vagina. In adults, it is expressed in the Fallopian tube and uterine epithelium and not in the ovarian epithelium. Considering the recent studies that predict the events preceding the tumorigenesis of HGSC from the Fallopian tube, PAX8 appears to have an important role in the development of ovarian cancer.In this chapter, we review some of the published findings to highlight the significance of PAX8 as an important marker and an emerging player in the pathogenesis of ovarian cancer. We also discuss regarding the future perspectives of PAX8 wherein it could contribute to the betterment of ovarian cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Priyanka Gokulnath
- Institute of Experimental Endocrinology and Oncology 'G. Salvatore' (IEOS) - CNR, National Research Council, Naples, Italy
| | - Amata Amy Soriano
- Institute of Experimental Endocrinology and Oncology 'G. Salvatore' (IEOS) - CNR, National Research Council, Naples, Italy
| | - Tiziana de Cristofaro
- Institute of Experimental Endocrinology and Oncology 'G. Salvatore' (IEOS) - CNR, National Research Council, Naples, Italy
| | - Tina Di Palma
- Institute of Experimental Endocrinology and Oncology 'G. Salvatore' (IEOS) - CNR, National Research Council, Naples, Italy
| | - Mariastella Zannini
- Institute of Experimental Endocrinology and Oncology 'G. Salvatore' (IEOS) - CNR, National Research Council, Naples, Italy.
| |
Collapse
|
10
|
Camats N, Baz-Redón N, Fernández-Cancio M, Clemente M, Campos-Martorell A, Jaimes N, Antolín M, Garcia-Arumí E, Blasco-Pérez L, Paramonov I, Mogas E, Soler-Colomer L, Yeste D. Phenotypic Variability of Patients With PAX8 Variants Presenting With Congenital Hypothyroidism and Eutopic Thyroid. J Clin Endocrinol Metab 2021; 106:e152-e170. [PMID: 33029631 DOI: 10.1210/clinem/dgaa711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/05/2020] [Indexed: 11/19/2022]
Abstract
PURPOSE Thyroid dyshormonogenesis is a heterogeneous group of hereditary diseases produced by a total/partial blockage of the biochemical processes of thyroid-hormone synthesis and secretion. Paired box 8 (PAX8) is essential for thyroid morphogenesis and thyroid hormone synthesis. We aimed to identify PAX8 variants in patients with thyroid dyshormonogenesis and to analyze them with in vitro functional studies. PATIENTS AND METHODS Nine pediatric patients with a eutopic thyroid gland were analyzed by the Catalan screening program for congenital hypothyroidism. Scintigraphies showed absent, low, or normal uptake. Only one patient had a hypoplastic gland. On reevaluation, perchlorate discharge test was negative or compatible with partial iodine-organization deficit. After evaluation, 8 patients showed permanent mild or severe hypothyroidism. Massive-sequencing techniques were used to detect variants in congenital hypothyroidism-related genes. In vitro functional studies were based on transactivating activity of mutant PAX8 on a TG-gene promoter and analyzed by a dual-luciferase assays. RESULTS We identified 7 heterozygous PAX8 exonic variants and 1 homozygous PAX8 splicing variant in 9 patients with variable phenotypes of thyroid dyshormonogenesis. Five were novel and 5 variants showed a statistically significant impaired transcriptional activity of TG promoter: 51% to 78% vs the wild type. CONCLUSIONS Nine patients presented with PAX8 candidate variants. All presented with a eutopic thyroid gland and 7 had deleterious variants. The phenotype of affected patients varies considerably, even within the same family; but, all except the homozygous patient presented with a normal eutopic thyroid gland and thyroid dyshormonogenesis. PAX8 functional studies have shown that 6 PAX8 variants are deleterious. Our studies have proven effective in evaluating these variants.
Collapse
Affiliation(s)
- Núria Camats
- Growth and Development group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, Barcelona, Spain
- CIBERER, ISCIII, Madrid, Spain
| | - Noelia Baz-Redón
- Growth and Development group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Pediatrics, Obstetrics and Gynecology and Preventive Medicine Department, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mónica Fernández-Cancio
- Growth and Development group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, Barcelona, Spain
- CIBERER, ISCIII, Madrid, Spain
| | - María Clemente
- Growth and Development group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, Barcelona, Spain
- CIBERER, ISCIII, Madrid, Spain
- Pediatrics, Obstetrics and Gynecology and Preventive Medicine Department, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Pediatric Endocrinology Section, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Ariadna Campos-Martorell
- Growth and Development group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Pediatrics, Obstetrics and Gynecology and Preventive Medicine Department, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Pediatric Endocrinology Section, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Nadya Jaimes
- Department of Pediatric Endocrinology, Hospital Fundación la Misericordia HOMI, Bogotá, Colombia
| | - María Antolín
- Department of Clinical and Molecular Genetics and Rare Disease, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Medicine Genetics Group, VHIR, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Elena Garcia-Arumí
- Department of Clinical and Molecular Genetics and Rare Disease, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Medicine Genetics Group, VHIR, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Research Group on Neuromuscular and Mitochondrial Disorders, VHIR, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Laura Blasco-Pérez
- Department of Clinical and Molecular Genetics and Rare Disease, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Medicine Genetics Group, VHIR, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Ida Paramonov
- Department of Clinical and Molecular Genetics and Rare Disease, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Eduard Mogas
- Pediatric Endocrinology Section, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Laura Soler-Colomer
- Pediatric Endocrinology Section, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Diego Yeste
- Growth and Development group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, Barcelona, Spain
- CIBERER, ISCIII, Madrid, Spain
- Pediatrics, Obstetrics and Gynecology and Preventive Medicine Department, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Pediatric Endocrinology Section, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
11
|
Serrano-Nascimento C, Morillo-Bernal J, Rosa-Ribeiro R, Nunes MT, Santisteban P. Impaired Gene Expression Due to Iodine Excess in the Development and Differentiation of Endoderm and Thyroid Is Associated with Epigenetic Changes. Thyroid 2020; 30:609-620. [PMID: 31801416 DOI: 10.1089/thy.2018.0658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Thyroid hormone (TH) synthesis is essential for the control of development, growth, and metabolism in vertebrates and depends on a sufficient dietary iodine intake. Importantly, both iodine deficiency and iodine excess (IE) impair TH synthesis, causing serious health problems especially during fetal/neonatal development. While it is known that IE disrupts thyroid function by inhibiting thyroid gene expression, its effects on thyroid development are less clear. Accordingly, this study sought to investigate the effects of IE during the embryonic development/differentiation of endoderm and the thyroid gland. Methods: We used the murine embryonic stem (ES) cell model of in vitro directed differentiation to assess the impact of IE on the generation of endoderm and thyroid cells. Additionally, we subjected endoderm and thyroid explants obtained during early gestation to IE and evaluated gene and protein expression of endodermal markers in both models. Results: ES cells were successfully differentiated into endoderm cells and, subsequently, into thyrocytes expressing the specific thyroid markers Tshr, Slc5a5, Tpo, and Tg. IE exposure decreased the messenger RNA (mRNA) levels of the main endoderm markers Afp, Crcx4, Foxa1, Foxa2, and Sox17 in both ES cell-derived endoderm cells and embryonic explants. Interestingly, IE also decreased the expression of the main thyroid markers in ES cell-derived thyrocytes and thyroid explants. Finally, we demonstrate that DNA methyltransferase expression was increased by exposure to IE, and this was accompanied by hypermethylation and hypoacetylation of histone H3, pointing to an association between the gene repression triggered by IE and the observed epigenetic changes. Conclusions: These data establish that IE treatment is deleterious for embryonic endoderm and thyroid gene expression.
Collapse
Affiliation(s)
- Caroline Serrano-Nascimento
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Instituto de Investigaciones Biomédicas "Alberto Sols," CSIC-UAM, Madrid, Spain
- CIBERONC Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Jesús Morillo-Bernal
- Instituto de Investigaciones Biomédicas "Alberto Sols," CSIC-UAM, Madrid, Spain
- CIBERONC Instituto de Salud Carlos III, Madrid, Spain
| | - Rafaela Rosa-Ribeiro
- Instituto de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Maria Tereza Nunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas "Alberto Sols," CSIC-UAM, Madrid, Spain
- CIBERONC Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Ulianich L, Mirra P, Garbi C, Calì G, Conza D, Treglia AS, Miraglia A, Punzi D, Miele C, Raciti GA, Beguinot F, Consiglio E, Di Jeso B. The Pervasive Effects of ER Stress on a Typical Endocrine Cell: Dedifferentiation, Mesenchymal Shift and Antioxidant Response in the Thyrocyte. Front Endocrinol (Lausanne) 2020; 11:588685. [PMID: 33240221 PMCID: PMC7680880 DOI: 10.3389/fendo.2020.588685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/09/2020] [Indexed: 01/01/2023] Open
Abstract
The endoplasmic reticulum stress and the unfolded protein response are triggered following an imbalance between protein load and protein folding. Until recently, two possible outcomes of the unfolded protein response have been considered: life or death. We sought to substantiate a third alternative, dedifferentiation, mesenchymal shift, and activation of the antioxidant response by using typical endocrine cells, i.e. thyroid cells. The thyroid is a unique system both of endoplasmic reticulum stress (a single protein, thyroglobulin represents the majority of proteins synthesized in the endoplasmic reticulum by the thyrocyte) and of polarized epithelium (the single layer of thyrocytes delimiting the follicle). Following endoplasmic reticulum stress, in thyroid cells the folding of thyroglobulin was disrupted. The mRNAs of unfolded protein response were induced or spliced (X-box binding protein-1). Differentiation was inhibited: mRNA levels of thyroid specific genes, and of thyroid transcription factors were dramatically downregulated, at least in part, transcriptionally. The dedifferentiating response was accompanied by an upregulation of mRNAs of antioxidant genes. Moreover, cadherin-1, and the thyroid (and kidney)-specific cadherin-16 mRNAs were downregulated, vimentin, and SNAI1 mRNAs were upregulated. In addition, loss of cortical actin and stress fibers formation were observed. Together, these data indicate that ER stress in thyroid cells induces dedifferentiation, loss of epithelial organization, shift towards a mesenchymal phenotype, and activation of the antioxidant response, highlighting, at the same time, a new and wide strategy to achieve survival following ER stress, and, as a sort of the other side of the coin, a possible new molecular mechanism of decline/loss of function leading to a deficit of thyroid hormones formation.
Collapse
Affiliation(s)
- Luca Ulianich
- Dipartimento di Scienze Mediche e Traslazionali Universita’ “Federico II” & URT dell’Istituto di Endocrinologia e Oncologia Sperimentale “Gaetano Salvatore,” Consiglio Nazionale delle Ricerche (CNR), Napoli, Italy
| | - Paola Mirra
- Dipartimento di Scienze Mediche e Traslazionali Universita’ “Federico II” & URT dell’Istituto di Endocrinologia e Oncologia Sperimentale “Gaetano Salvatore,” Consiglio Nazionale delle Ricerche (CNR), Napoli, Italy
| | - Corrado Garbi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Napoli, Italy
| | - Gaetano Calì
- Istituto di Endocrinologia ed Oncologia Sperimentale “G. Salvatore,” CNR, Napoli, Italy
| | - Domenico Conza
- Dipartimento di Scienze Mediche e Traslazionali Universita’ “Federico II” & URT dell’Istituto di Endocrinologia e Oncologia Sperimentale “Gaetano Salvatore,” Consiglio Nazionale delle Ricerche (CNR), Napoli, Italy
| | - Antonella Sonia Treglia
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce, Italy
| | - Alessandro Miraglia
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce, Italy
| | - Dario Punzi
- Dipartimento di Scienze Mediche e Traslazionali Universita’ “Federico II” & URT dell’Istituto di Endocrinologia e Oncologia Sperimentale “Gaetano Salvatore,” Consiglio Nazionale delle Ricerche (CNR), Napoli, Italy
| | - Claudia Miele
- Dipartimento di Scienze Mediche e Traslazionali Universita’ “Federico II” & URT dell’Istituto di Endocrinologia e Oncologia Sperimentale “Gaetano Salvatore,” Consiglio Nazionale delle Ricerche (CNR), Napoli, Italy
| | - Gregory Alexander Raciti
- Dipartimento di Scienze Mediche e Traslazionali Universita’ “Federico II” & URT dell’Istituto di Endocrinologia e Oncologia Sperimentale “Gaetano Salvatore,” Consiglio Nazionale delle Ricerche (CNR), Napoli, Italy
| | - Francesco Beguinot
- Dipartimento di Scienze Mediche e Traslazionali Universita’ “Federico II” & URT dell’Istituto di Endocrinologia e Oncologia Sperimentale “Gaetano Salvatore,” Consiglio Nazionale delle Ricerche (CNR), Napoli, Italy
| | - Eduardo Consiglio
- Dipartimento di Scienze Mediche e Traslazionali Universita’ “Federico II” & URT dell’Istituto di Endocrinologia e Oncologia Sperimentale “Gaetano Salvatore,” Consiglio Nazionale delle Ricerche (CNR), Napoli, Italy
| | - Bruno Di Jeso
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce, Italy
- *Correspondence: Bruno Di Jeso, , orcid.org/0000-0001-8713-5984
| |
Collapse
|
13
|
Mio C, Grani G, Durante C, Damante G. Molecular defects in thyroid dysgenesis. Clin Genet 2019; 97:222-231. [PMID: 31432505 DOI: 10.1111/cge.13627] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022]
Abstract
Congenital hypothyroidism (CH) is a neonatal endocrine disorder that might occur as itself or be associated to congenital extra-thyroidal defects. About 85% of affected subjects experience thyroid dysgenesis (TD), characterized by defect in thyroid gland development. In vivo experiments on null mice paved the way for the identification of genes involved thyroid morphogenesis and development, whose mutation has been strongly associated to TD. Most of them are thyroid-specific transcription factors expressed during early thyroid development. Despite the arduous effort in unraveling the genetics of TD in animal models, up to now these data have been discontinuously confirmed in humans and only 5% of TD have associated with known null mice-related mutations (mainly PAX8 and TSHR). Notwithstanding, the advance in genetic testing represented by the next-generation sequencing (NGS) approach is steadily increasing the list of genes whose highly penetrant mutation predisposes to TD. In this review we intend to outline the molecular bases of TD, summarizing the current knowledge on thyroid development in both mice and humans and delineating the genetic features of its monogenetic forms. We will also highlight current strategies to enhance the insight into the non-Mendelian mechanisms of abnormal thyroid development.
Collapse
Affiliation(s)
- Catia Mio
- Department of Medicine, University of Udine, Udine, Italy
| | - Giorgio Grani
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Cosimo Durante
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Damante
- Department of Medicine, University of Udine, Udine, Italy.,Institute of Medical Genetics, Academic Hospital "Azienda Sanitaria Universitaria Integrata di Udine", Udine, Italy
| |
Collapse
|
14
|
López-Márquez A, Fernández-Méndez C, Recacha P, Santisteban P. Regulation of Foxe1 by Thyrotropin and Transforming Growth Factor Beta Depends on the Interplay Between Thyroid-Specific, CREB and SMAD Transcription Factors. Thyroid 2019; 29:714-725. [PMID: 30652527 DOI: 10.1089/thy.2018.0136] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Thyroid follicular cells are characterized by the expression of a specific set of genes necessary for the synthesis and secretion of thyroid hormones, which are in turn regulated by the transcription factors Nkx2-1, Pax8, and Foxe1. Thyroid differentiation is finely tuned by the balance between positive regulatory signals, including thyrotropin (TSH), and by negative regulatory signals, such as transforming growth factor beta (TGF-β), which counteracts the action of TSH. A role for Foxe1 as a mediator of hormonal and growth-factor control of thyroid differentiation has been previously suggested. Therefore, the aim of this work was to study the mechanisms governing Foxe1 expression to define the ligands and signals that regulate one of the important factors in thyroid differentiation. Methods: Expression of Foxe1 was evaluated in rat PCCl3 thyroid follicular cells under different treatments. The mouse Foxe1 promoter was cloned, and site-directed mutagenesis was undertaken to study its transcriptional regulation and to identify response elements. Protein/DNA binding assays were performed to evaluate the binding of different transcription factors, and gene-silencing approaches were used to elucidate their functional roles. Results:In silico analysis of the Foxe1 promoter identified binding sites for Nkx2-1, Pax8, Foxe1, and Smad proteins, as well as cAMP-response element (CRE) sites. It was found that both CRE-binding protein and CRE modulator were necessary for the TSH-mediated induction of Foxe1 expression via the cAMP/PKA signaling pathway. Moreover, transcription of Foxe1 was regulated by Nkx2-1 and Pax8 and by itself, suggesting an autoregulatory mechanism of activation and an important role for thyroid transcription factors. Finally, TGF-β, through Smad proteins, inhibited the TSH-induced Foxe1 expression. Conclusions: This study shows that Foxe1 is the final target of TSH/cAMP and TGF-β regulation that mediates expression of thyroid differentiation genes, and provides evidence of an interplay between CRE-binding proteins, thyroid transcription factors, and Smad proteins in its regulation. Thus, Foxe1 plays an important role in the complex transcriptional network that regulates thyroid follicular cell differentiation.
Collapse
Affiliation(s)
- Arístides López-Márquez
- 1 Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Celia Fernández-Méndez
- 1 Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Pablo Recacha
- 1 Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Pilar Santisteban
- 1 Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
- 2 CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
15
|
Godlewska M, Banga PJ. Thyroid peroxidase as a dual active site enzyme: Focus on biosynthesis, hormonogenesis and thyroid disorders of autoimmunity and cancer. Biochimie 2019; 160:34-45. [DOI: 10.1016/j.biochi.2019.02.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/05/2019] [Indexed: 01/02/2023]
|
16
|
Calabrese G, Dolcimascolo A, Torrisi F, Zappalà A, Gulino R, Parenti R. MiR-19a Overexpression in FTC-133 Cell Line Induces a More De-Differentiated and Aggressive Phenotype. Int J Mol Sci 2018; 19:ijms19123944. [PMID: 30544640 PMCID: PMC6320980 DOI: 10.3390/ijms19123944] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/29/2018] [Accepted: 12/06/2018] [Indexed: 02/07/2023] Open
Abstract
In recent years, microRNAs (miRNAs) have received increasing attention for their important role in tumor initiation and progression. MiRNAs are a class of endogenous small non-coding RNAs that negatively regulate the expression of several oncogenes or tumor suppressor genes. MiR-19a, a component of the oncogenic miR-17-92 cluster, has been reported to be highly expressed only in anaplastic thyroid cancer, the most undifferentiated, aggressive and lethal form of thyroid neoplasia. In this work, we evaluated the putative contribution of miR-19a in de-differentiation and aggressiveness of thyroid tumors. To this aim, we induced miR-19a expression in the well-differentiated follicular thyroid cancer cell line and evaluated proliferation, apoptosis and gene expression profile of cancer cells. Our results showed that miR-19a overexpression stimulates cell proliferation and alters the expression profile of genes related to thyroid cell differentiation and aggressiveness. These findings not only suggest that miR-19a has a possible involvement in de-differentiation and malignancy, but also that it could represent an important prognostic indicator and a good therapeutic target for the most aggressive thyroid cancer.
Collapse
Affiliation(s)
- Giovanna Calabrese
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania 95123, Italy.
| | - Anna Dolcimascolo
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania 95123, Italy.
| | - Filippo Torrisi
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania 95123, Italy.
| | - Agata Zappalà
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania 95123, Italy.
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania 95123, Italy.
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania 95123, Italy.
| |
Collapse
|
17
|
TTF-1/Nkx2.1 functional connection with mutated EGFR relies on LRIG1 and β-catenin pathways in lung cancer cells. Biochem Biophys Res Commun 2018; 505:1027-1031. [PMID: 30314701 DOI: 10.1016/j.bbrc.2018.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 11/22/2022]
Abstract
In non-small lung cancer, the expression of the transcription factor TTF-1/Nkx2.1 correlates with the presence of EGFR mutations, therefore TTF-1/Nkx2.1 expression is used to optimize an EGFR testing strategy and to guide clinical treatment. We investigate the molecular mechanisms underlying the functional connection between EGFR and TTF-1/Nkx2.1 gene expression in lung adenocarcinoma. Using the H1975 cell line as a non-small cell lung cancer model system and short hairpin RNA, we have selected clones with TTF-1/Nkx2.1 silenced expression. We have found that Leucine-rich immunoglobulin repeats-1 (LRIG1) gene is a direct target of TTF-1/Nkx2.1 and the transcription factor binding to the LRIG1 genomic sequence inhibits its gene expression. In TTF-1/Nkx2.1 depleted clones, we have found high levels of LRIG1 and decreased presence of EGFR protein. Furthermore, in TTF-1/Nkx2.1 depleted clones we detected a reduced β-catenin level and we provide experimental evidence indicating that TTF-1/Nkx2.1 gene expression is regulated by β-catenin. Published studies indicate that LRIG1 triggers EGFR degradation and that mutated EGFR induces β-catenin activity. Hence, with the present study we show that mutated EGFR, enhancing β-catenin, stimulates TTF-1/Nkx2.1 gene expression and, at the same time, TTF-1/Nkx2.1, down-regulating LRIG1, sustains EGFR pathway. Therefore, LRIG1 and β-catenin mediate the functional connection between TTF-1/Nkx2.1 and mutated EGFR.
Collapse
|
18
|
Neurocristopathies: New insights 150 years after the neural crest discovery. Dev Biol 2018; 444 Suppl 1:S110-S143. [PMID: 29802835 DOI: 10.1016/j.ydbio.2018.05.013] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022]
Abstract
The neural crest (NC) is a transient, multipotent and migratory cell population that generates an astonishingly diverse array of cell types during vertebrate development. These cells, which originate from the ectoderm in a region lateral to the neural plate in the neural fold, give rise to neurons, glia, melanocytes, chondrocytes, smooth muscle cells, odontoblasts and neuroendocrine cells, among others. Neurocristopathies (NCP) are a class of pathologies occurring in vertebrates, especially in humans that result from the abnormal specification, migration, differentiation or death of neural crest cells during embryonic development. Various pigment, skin, thyroid and hearing disorders, craniofacial and heart abnormalities, malfunctions of the digestive tract and tumors can also be considered as neurocristopathies. In this review we revisit the current classification and propose a new way to classify NCP based on the embryonic origin of the affected tissues, on recent findings regarding the molecular mechanisms that drive NC formation, and on the increased complexity of current molecular embryology techniques.
Collapse
|
19
|
Moraes L, Galrão ALR, Rubió I, Cerutti JM. Transcriptional regulation of the potential tumor suppressor ABI3 gene in thyroid carcinomas: interplay between methylation and NKX2-1 availability. Oncotarget 2018; 7:25960-70. [PMID: 27036019 PMCID: PMC5041957 DOI: 10.18632/oncotarget.8416] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 03/12/2016] [Indexed: 12/05/2022] Open
Abstract
We previously reported that ABI3 expression was decreased in thyroid cancer tissues and that ectopic expression of ABI3 in a follicular thyroid carcinoma cell line delayed cell cycle progression and inhibited cell proliferation, invasion, migration and tumor formation in athymic mice. These data indicated that ABI3 is a tumor suppressor gene; however the mechanism through which ABI3 is silenced in thyroid carcinomas is unknown. We here show that treatment of four follicular thyroid carcinoma cell lines with 5-aza-dC induced demethylation of a specific region of the ABI3 promoter and restored ABI3 expression. In contrast, 5-aza-dC treatment did not restore ABI3 expression in a non-thyroid cell line, suggesting a tissue-specific regulation. We additionally show that 8 CpG sites located within the ABI3 promoter are hypermethylated in most thyroid carcinoma samples and the degree of methylation correlated with ABI3 expression. Narrowing the region to specific CpG sites, the CpG4-6 sites showed the largest difference between benign and malignant lesions. In silico analysis revealed that these CpG sites flank a canonical binding site for NKX2-1, a thyroid specific transcriptional factor. Analysis of thyroid samples shows a correlation between NKX2-1 and ABI3 expression. In vitro assays demonstrate that NKX2-1 was required for ABI3 expression. Luciferase assay further confirmed the promoter activity of this region, which was increased when the cells were co-transfected with NKX2-1. Our study shows that the transcriptional silencing of ABI3 in cancer cells occurs via methylation and uncovered a previously unrecognized role for NKX2-1 in the regulation of ABI3.
Collapse
Affiliation(s)
- Lais Moraes
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil
| | - Ana Luiza R Galrão
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil
| | - Ileana Rubió
- Department of Biological Sciences, Universidade Federal de São Paulo, SP, Brazil
| | - Janete M Cerutti
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil
| |
Collapse
|
20
|
Wen G, Ringseis R, Eder K. Endoplasmic reticulum stress inhibits expression of genes involved in thyroid hormone synthesis and their key transcriptional regulators in FRTL-5 thyrocytes. PLoS One 2017; 12:e0187561. [PMID: 29095946 PMCID: PMC5667865 DOI: 10.1371/journal.pone.0187561] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/08/2017] [Indexed: 01/01/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is characterized by the accumulation of misfolded proteins due to an impairment of ER quality control pathways leading to the activation of a defense system, called unfolded protein response (UPR). While thyrocytes are supposed to be highly susceptible to environmental conditions that cause ER stress due to the synthesis of large amounts of secretory proteins required for thyroid hormone synthesis, systematic investigations on the effect of ER stress on expression of key genes of thyroid hormone synthesis and their transcriptional regulators are lacking. Since the aim of the ER stress-induced UPR is to restore ER homeostasis and to facilitate cell survival through transient shutdown of ribosomal protein translation, we hypothesized that the expression of genes involved in thyroid hormone synthesis and their transcriptional regulators, all of which are not essential for cell survival, are down-regulated in thyrocytes during ER stress, while sterol regulatory element-binding proteins (SREBPs) are activated during ER stress in thyrocytes. Treatment of FRTL-5 thyrocytes with the ER stress inducer tunicamycin (TM) dose-dependently increased the mRNA and/or protein levels of known UPR target genes, stimulated phosphorylation of the ER stress sensor protein kinase RNA-like ER kinase (PERK) and of the PERK target protein eukaryotic initiation factor 2α (eIF2α) and caused splicing of the ER stress-sensitive transcription factor X-box binding protein (XBP-1) (P < 0.05). The mRNA levels and/or protein levels of genes involved in thyroid hormone synthesis, sodium/iodide symporter (NIS), thyroid peroxidase (TPO) and thyroglobulin (TG), their transcriptional regulators and thyrotropin (TSH) receptor and the uptake of Na125I were reduced at the highest concentration of TM tested (0.1 μg/mL; P < 0.05). Proteolytic activation of the SREBP-1c pathway was not observed in FRTL-5 cells treated with TM, whereas TM reduced proteolytic activation of the SREBP-2 pathway at 0.1 μg TM/mL (P < 0.05). In conclusion, the expression of key genes involved in thyroid hormone synthesis and their critical regulators and of the TSH receptor as well as the uptake of iodide is attenuated in thyrocytes during mild ER stress. Down-regulation of NIS, TPO and TG during ER stress is likely the consequence of impaired TSH/TSHR signaling in concert with reduced expression of critical transcriptional regulators of these genes.
Collapse
Affiliation(s)
- Gaiping Wen
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Gießen, Gießen, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Gießen, Gießen, Germany
- * E-mail:
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Gießen, Gießen, Germany
| |
Collapse
|
21
|
Carré A, Stoupa A, Kariyawasam D, Gueriouz M, Ramond C, Monus T, Léger J, Gaujoux S, Sebag F, Glaser N, Zenaty D, Nitschke P, Bole-Feysot C, Hubert L, Lyonnet S, Scharfmann R, Munnich A, Besmond C, Taylor W, Polak M. Mutations in BOREALIN cause thyroid dysgenesis. Hum Mol Genet 2017; 26:599-610. [PMID: 28025328 DOI: 10.1093/hmg/ddw419] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/02/2016] [Indexed: 12/31/2022] Open
Abstract
Congenital hypothyroidism is the most common neonatal endocrine disorder and is primarily caused by developmental abnormalities otherwise known as thyroid dysgenesis (TD). We performed whole exome sequencing (WES) in a consanguineous family with TD and subsequently sequenced a cohort of 134 probands with TD to identify genetic factors predisposing to the disease. We identified the novel missense mutations p.S148F, p.R114Q and p.L177W in the BOREALIN gene in TD-affected families. Borealin is a major component of the Chromosomal Passenger Complex (CPC) with well-known functions in mitosis. Further analysis of the missense mutations showed no apparent effects on mitosis. In contrast, expression of the mutants in human thyrocytes resulted in defects in adhesion and migration with corresponding changes in gene expression suggesting others functions for this mitotic protein. These results were well correlated with the same gene expression pattern analysed in the thyroid tissue of the patient with BOREALIN-p.R114W. These studies open new avenues in the genetics of TD in humans.
Collapse
Affiliation(s)
- Aurore Carré
- INSERM U1016, Cochin Institute, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,IMAGINE Institute affiliate, Paris, France
| | - Athanasia Stoupa
- IMAGINE Institute affiliate, Paris, France.,Pediatric Endocrinology, Gynecology and Diabetology Unit, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
| | - Dulanjalee Kariyawasam
- INSERM U1016, Cochin Institute, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Pediatric Endocrinology, Gynecology and Diabetology Unit, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
| | | | - Cyrille Ramond
- INSERM U1016, Cochin Institute, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Taylor Monus
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Juliane Léger
- Pediatric Endocrinology Unit, Hôpital Universitaire Robert Debré, AP-HP, Paris, France.,RARE Disorder Center: Centre des Maladies Endocriniennes Rares de la Croissance
| | - Sébastien Gaujoux
- Department of Digestive and Endocrine Surgery, Cochin Hospital, AP-HP, Université Paris Descartes, Paris, France
| | - Frédéric Sebag
- Department of General, Endocrine and Metabolic Surgery, Hopital de la Conception, Marseille, France
| | - Nicolas Glaser
- INSERM U1016, Cochin Institute, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Delphine Zenaty
- Pediatric Endocrinology Unit, Hôpital Universitaire Robert Debré, AP-HP, Paris, France.,RARE Disorder Center: Centre des Maladies Endocriniennes Rares de la Croissance
| | - Patrick Nitschke
- Bioinformatics Platform, Paris Descartes University, IMAGINE Institute, Paris, France
| | - Christine Bole-Feysot
- Genomic Platform, INSERM UMR 1163, Paris Descartes Sorbonne Paris Cite University, Imagine Institute, Paris, France
| | - Laurence Hubert
- INSERM U1163, IMAGINE Institute, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Stanislas Lyonnet
- INSERM U1163, IMAGINE Institute, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Department of Genetics, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
| | - Raphaël Scharfmann
- INSERM U1016, Cochin Institute, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Arnold Munnich
- INSERM U1163, IMAGINE Institute, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Department of Genetics, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
| | - Claude Besmond
- INSERM U1163, IMAGINE Institute, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - William Taylor
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Michel Polak
- INSERM U1016, Cochin Institute, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,IMAGINE Institute affiliate, Paris, France.,Pediatric Endocrinology, Gynecology and Diabetology Unit, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France.,RARE Disorder Center: Centre des Maladies Endocriniennes Rares de la Croissance
| |
Collapse
|
22
|
Little AC, Sulovari A, Danyal K, Heppner DE, Seward DJ, van der Vliet A. Paradoxical roles of dual oxidases in cancer biology. Free Radic Biol Med 2017; 110:117-132. [PMID: 28578013 PMCID: PMC5535817 DOI: 10.1016/j.freeradbiomed.2017.05.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023]
Abstract
Dysregulated oxidative metabolism is a well-recognized aspect of cancer biology, and many therapeutic strategies are based on targeting cancers by altering cellular redox pathways. The NADPH oxidases (NOXes) present an important enzymatic source of biological oxidants, and the expression and activation of several NOX isoforms are frequently dysregulated in many cancers. Cell-based studies have demonstrated a role for several NOX isozymes in controlling cell proliferation and/or cell migration, further supporting a potential contributing role for NOX in promoting cancer. While various NOX isoforms are often upregulated in cancers, paradoxical recent findings indicate that dual oxidases (DUOXes), normally prominently expressed in epithelial lineages, are frequently suppressed in epithelial-derived cancers by epigenetic mechanisms, although the functional relevance of such DUOX silencing has remained unclear. This review will briefly summarize our current understanding regarding the importance of reactive oxygen species (ROS) and NOXes in cancer biology, and focus on recent observations indicating the unique and seemingly opposing roles of DUOX enzymes in cancer biology. We will discuss current knowledge regarding the functional properties of DUOX, and recent studies highlighting mechanistic consequences of DUOX1 loss in lung cancer, and its consequences for tumor invasiveness and current anticancer therapy. Finally, we will also discuss potentially unique roles for the DUOX maturation factors. Overall, a better understanding of mechanisms that regulate DUOX and the functional consequences of DUOX silencing in cancer may offer valuable new diagnostic insights and novel therapeutic opportunities.
Collapse
Affiliation(s)
- Andrew C Little
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States
| | - Arvis Sulovari
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States; Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - Karamatullah Danyal
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - David E Heppner
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - David J Seward
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States.
| |
Collapse
|
23
|
Kugler J, Postnikov YV, Furusawa T, Kimura S, Bustin M. Elevated HMGN4 expression potentiates thyroid tumorigenesis. Carcinogenesis 2017; 38:391-401. [PMID: 28186538 DOI: 10.1093/carcin/bgx015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 02/07/2017] [Indexed: 12/19/2022] Open
Abstract
Thyroid cancer originates from genetic and epigenetic changes that alter gene expression and cellular signaling pathways. Here, we report that altered expression of the nucleosome-binding protein HMGN4 potentiates thyroid tumorigenesis. Bioinformatics analyses reveal increased HMGN4 expression in thyroid cancer. We find that upregulation of HMGN4 expression in mouse and human cells, and in the thyroid of transgenic mice, alters the cellular transcription profile, downregulates the expression of the tumor suppressors Atm, Atrx and Brca2, and elevates the levels of the DNA damage marker γH2AX. Mouse and human cells overexpressing HMGN4 show increased tumorigenicity as measured by colony formation, by tumor generation in nude mice, and by the formation of preneoplastic lesions in the thyroid of transgenic mice. Our study identifies a novel epigenetic factor that potentiates thyroid oncogenesis and raises the possibility that HMGN4 may serve as an additional diagnostic marker, or therapeutic target in certain thyroid cancers.
Collapse
Affiliation(s)
- Jamie Kugler
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda MD 20892, USA
| | - Yuri V Postnikov
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda MD 20892, USA
| | - Takashi Furusawa
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda MD 20892, USA
| | - Shioko Kimura
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda MD 20892, USA
| | | |
Collapse
|
24
|
Hollenberg AN, Choi J, Serra M, Kotton DN. Regenerative therapy for hypothyroidism: Mechanisms and possibilities. Mol Cell Endocrinol 2017; 445:35-41. [PMID: 27876515 PMCID: PMC5373653 DOI: 10.1016/j.mce.2016.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/09/2016] [Accepted: 11/14/2016] [Indexed: 01/13/2023]
Abstract
The ability to derive functional thyroid follicular cells from embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) would provide potential therapeutic benefit for patients with congenital or post-surgical hypothyroidism. Furthermore, understanding the process by which thyroid follicular cells develop will also provide great insight into the key steps that regulate the development of other tissues derived from endoderm. Here we review the advances in our understanding of the process of thyroid follicular cell development including the creation of two models that have allowed for the rescue of hypothyroid mouse recipients through the transplantation of thyroid follicular cells derived from mouse ESCs. Rapid progress in the field suggests that the same success should be achievable with human ESCs or iPSCs in the near future. Additionally, the availability of ESC or iPSC-derived thyroid follicular cell models will provide ideal systems to explore how genetic mutations, drugs or illness impact thyroid function in a cell-autonomous fashion.
Collapse
Affiliation(s)
- Anthony N Hollenberg
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, United States.
| | - Jinyoung Choi
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, United States
| | - Maria Serra
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, United States
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, United States
| |
Collapse
|
25
|
Yu Y, Liu C, Zhang J, Zhang M, Wen W, Ruan X, Li D, Zhang S, Gao M, Chen L. Rtfc (4931414P19Rik) Regulates in vitro Thyroid Differentiation and in vivo Thyroid Function. Sci Rep 2017; 7:43396. [PMID: 28230092 PMCID: PMC5322522 DOI: 10.1038/srep43396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/20/2017] [Indexed: 11/20/2022] Open
Abstract
Thyroid is a one of the most important endocrine organs. Understanding the molecular mechanism underlying thyroid development and function, as well as thyroid diseases, is beneficial for the clinical treatment of thyroid diseases and tumors. Through genetic linkage analysis and exome sequencing, we previously identified an uncharacterized gene C14orf93 (RTFC, mouse homolog: 4931414P19Rik) as a novel susceptibility gene for familial non-medullary thyroid carcinoma, and demonstrated its function in promoting thyroid tumor. However, the role of RTFC in thyroid development and function remains unexplored. In this study, we found that knockout of Rtfc compromises the in vitro thyroid differentiation of mouse embryonic stem cells. In contrast, Rtfc−/− mice are viable and fertile, and the size and the morphology of thyroid are not affected by Rtfc knockout. However, female Rtfc−/− mice, but not male Rtfc−/− mice, display mild hypothyroidism. In summary, our data suggest the roles of Rtfc in in vitro thyroid differentiation of embryonic stem cells, and in vivo thyroid function.
Collapse
Affiliation(s)
- Yang Yu
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Ti-Yuan-Bei, Hexi District, Tianjin 300060, China
| | - Chang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Tianjin Key Laboratory of Protein Sciences and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Junxia Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Tianjin Key Laboratory of Protein Sciences and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mimi Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Tianjin Key Laboratory of Protein Sciences and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wei Wen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Tianjin Key Laboratory of Protein Sciences and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xianhui Ruan
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Ti-Yuan-Bei, Hexi District, Tianjin 300060, China
| | - Dapeng Li
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Ti-Yuan-Bei, Hexi District, Tianjin 300060, China
| | - Shuang Zhang
- Tianjin Women's and Children's Health Center, Tianjin 300070, China
| | - Ming Gao
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Ti-Yuan-Bei, Hexi District, Tianjin 300060, China
| | - Lingyi Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Tianjin Key Laboratory of Protein Sciences and College of Life Sciences, Nankai University, Tianjin 300071, China.,State Key Laboratory of Molecular Oncology, Cancer Institute/Hospital, Chinese Academy of Medical Sciences, Beijing 100021, China
| |
Collapse
|
26
|
Niwa O, Barcellos-Hoff MH, Globus RK, Harrison JD, Hendry JH, Jacob P, Martin MT, Seed TM, Shay JW, Story MD, Suzuki K, Yamashita S. ICRP Publication 131: Stem Cell Biology with Respect to Carcinogenesis Aspects of Radiological Protection. Ann ICRP 2016; 44:7-357. [PMID: 26637346 DOI: 10.1177/0146645315595585] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This report provides a review of stem cells/progenitor cells and their responses to ionising radiation in relation to issues relevant to stochastic effects of radiation that form a major part of the International Commission on Radiological Protection's system of radiological protection. Current information on stem cell characteristics, maintenance and renewal, evolution with age, location in stem cell 'niches', and radiosensitivity to acute and protracted exposures is presented in a series of substantial reviews as annexes concerning haematopoietic tissue, mammary gland, thyroid, digestive tract, lung, skin, and bone. This foundation of knowledge of stem cells is used in the main text of the report to provide a biological insight into issues such as the linear-no-threshold (LNT) model, cancer risk among tissues, dose-rate effects, and changes in the risk of radiation carcinogenesis by age at exposure and attained age. Knowledge of the biology and associated radiation biology of stem cells and progenitor cells is more developed in tissues that renew fairly rapidly, such as haematopoietic tissue, intestinal mucosa, and epidermis, although all the tissues considered here possess stem cell populations. Important features of stem cell maintenance, renewal, and response are the microenvironmental signals operating in the niche residence, for which a well-defined spatial location has been identified in some tissues. The identity of the target cell for carcinogenesis continues to point to the more primitive stem cell population that is mostly quiescent, and hence able to accumulate the protracted sequence of mutations necessary to result in malignancy. In addition, there is some potential for daughter progenitor cells to be target cells in particular cases, such as in haematopoietic tissue and in skin. Several biological processes could contribute to protecting stem cells from mutation accumulation: (a) accurate DNA repair; (b) rapidly induced death of injured stem cells; (c) retention of the DNA parental template strand during divisions in some tissue systems, so that mutations are passed to the daughter differentiating cells and not retained in the parental cell; and (d) stem cell competition, whereby undamaged stem cells outcompete damaged stem cells for residence in the niche. DNA repair mainly occurs within a few days of irradiation, while stem cell competition requires weeks or many months depending on the tissue type. The aforementioned processes may contribute to the differences in carcinogenic radiation risk values between tissues, and may help to explain why a rapidly replicating tissue such as small intestine is less prone to such risk. The processes also provide a mechanistic insight relevant to the LNT model, and the relative and absolute risk models. The radiobiological knowledge also provides a scientific insight into discussions of the dose and dose-rate effectiveness factor currently used in radiological protection guidelines. In addition, the biological information contributes potential reasons for the age-dependent sensitivity to radiation carcinogenesis, including the effects of in-utero exposure.
Collapse
|
27
|
Wen G, Eder K, Ringseis R. Sterol regulatory element-binding proteins are transcriptional regulators of the thyroglobulin gene in thyroid cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:994-1003. [PMID: 27321819 DOI: 10.1016/j.bbagrm.2016.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/24/2016] [Accepted: 06/15/2016] [Indexed: 01/13/2023]
Abstract
The genes encoding sodium/iodide symporter (NIS) and thyroid peroxidase (TPO), both of which are essential for thyroid hormone (TH) synthesis, were shown to be regulated by sterol regulatory element-binding proteins (SREBP)-1c and -2. In the present study we tested the hypothesis that transcription of a further gene essential for TH synthesis, the thyroglobulin (TG) gene, is under the control of SREBP. To test this hypothesis, we studied the influence of inhibition of SREBP maturation and SREBP knockdown on TG expression in FRTL-5 thyrocytes and explored transcriptional regulation of the TG promoter by reporter gene experiments in FRTL-5 and HepG2 cells, gel shift assays and chromatin immunoprecipitation. Inhibition of SREBP maturation by 25-hydroxycholesterol and siRNA-mediated knockdown of either SREBP-1c or SREBP-2 decreased mRNA and protein levels of TG in FRTL-5 thyrocytes. Reporter gene assays with wild-type and mutated TG promoter reporter truncation constructs revealed that the rat TG promoter is transcriptionally activated by nSREBP-1c and nSREBP-2. DNA-binding assays and chromatin immunoprecipitation assays showed that both nSREBP-1c and nSREBP-2 bind to a SREBP binding motif with characteristics of an E-box SRE at position -63 in the rat TG promoter. In connection with recent findings that NIS and TPO are regulated by SREBP in thyrocytes the present findings support the view that SREBP are regulators of essential steps of TH synthesis in the thyroid gland such as iodide uptake, iodide oxidation and iodination of tyrosyl residues of TG. This moreover suggests that SREBP may be molecular targets for pharmacological modulation of TH synthesis.
Collapse
Affiliation(s)
- Gaiping Wen
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Gießen, 35392 Gießen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Gießen, 35392 Gießen, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Gießen, 35392 Gießen, Germany.
| |
Collapse
|
28
|
Expression of PAX8 Target Genes in Papillary Thyroid Carcinoma. PLoS One 2016; 11:e0156658. [PMID: 27249794 PMCID: PMC4889154 DOI: 10.1371/journal.pone.0156658] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/17/2016] [Indexed: 11/29/2022] Open
Abstract
PAX8 is a thyroid-specific transcription factor whose expression is dysregulated in thyroid cancer. A recent study using a conditional knock-out mouse model identified 58 putative PAX8 target genes. In the present study, we evaluated the expression of 11 of these genes in normal and tumoral thyroid tissues from patients with papillary thyroid cancer (PTC). ATP1B1, GPC3, KCNIP3, and PRLR transcript levels in tumor tissues were significantly lower in PTCs than in NT, whereas LCN2, LGALS1 and SCD1 expression was upregulated in PTC compared with NT. Principal component analysis of the expression of the most markedly dysregulated PAX8 target genes was able to discriminate between PTC and NT. Immunohistochemistry was used to assess levels of proteins encoded by the two most dyregulated PAX8 target genes, LCN2 and GPC3. Interestingly, GPC3 was detectable in all of the NT samples but none of the PTC samples. Collectively, these findings point to significant PTC-associated dysregulation of several PAX8 target genes, supporting the notion that PAX8-regulated molecular cascades play important roles during thyroid tumorigenesis.
Collapse
|
29
|
Malt EA, Juhasz K, Malt UF, Naumann T. A Role for the Transcription Factor Nk2 Homeobox 1 in Schizophrenia: Convergent Evidence from Animal and Human Studies. Front Behav Neurosci 2016; 10:59. [PMID: 27064909 PMCID: PMC4811959 DOI: 10.3389/fnbeh.2016.00059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/11/2016] [Indexed: 12/22/2022] Open
Abstract
Schizophrenia is a highly heritable disorder with diverse mental and somatic symptoms. The molecular mechanisms leading from genes to disease pathology in schizophrenia remain largely unknown. Genome-wide association studies (GWASs) have shown that common single-nucleotide polymorphisms associated with specific diseases are enriched in the recognition sequences of transcription factors that regulate physiological processes relevant to the disease. We have used a “bottom-up” approach and tracked a developmental trajectory from embryology to physiological processes and behavior and recognized that the transcription factor NK2 homeobox 1 (NKX2-1) possesses properties of particular interest for schizophrenia. NKX2-1 is selectively expressed from prenatal development to adulthood in the brain, thyroid gland, parathyroid gland, lungs, skin, and enteric ganglia, and has key functions at the interface of the brain, the endocrine-, and the immune system. In the developing brain, NKX2-1-expressing progenitor cells differentiate into distinct subclasses of forebrain GABAergic and cholinergic neurons, astrocytes, and oligodendrocytes. The transcription factor is highly expressed in mature limbic circuits related to context-dependent goal-directed patterns of behavior, social interaction and reproduction, fear responses, responses to light, and other homeostatic processes. It is essential for development and mature function of the thyroid gland and the respiratory system, and is involved in calcium metabolism and immune responses. NKX2-1 interacts with a number of genes identified as susceptibility genes for schizophrenia. We suggest that NKX2-1 may lie at the core of several dose dependent pathways that are dysregulated in schizophrenia. We correlate the symptoms seen in schizophrenia with the temporal and spatial activities of NKX2-1 in order to highlight promising future research areas.
Collapse
Affiliation(s)
- Eva A Malt
- Department of Adult Habilitation, Akershus University HospitalLørenskog, Norway; Institute of Clinical Medicine, Ahus Campus University of OsloOslo, Norway
| | - Katalin Juhasz
- Department of Adult Habilitation, Akershus University Hospital Lørenskog, Norway
| | - Ulrik F Malt
- Institute of Clinical Medicine, University of OsloOslo, Norway; Department of Research and Education, Institution of Oslo University HospitalOslo, Norway
| | - Thomas Naumann
- Centre of Anatomy, Institute of Cell Biology and Neurobiology, Charite Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
30
|
Provenzano C, Zamboni M, Veneziano L, Mantuano E, Garavaglia B, Zorzi G, Pagonabarraga J, Giunti P, Civitareale D. Functional characterization of two novel mutations in TTF-1/NKX2.1 homeodomain in patients with benign hereditary chorea. J Neurol Sci 2015; 360:78-83. [PMID: 26723978 DOI: 10.1016/j.jns.2015.11.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/11/2015] [Accepted: 11/26/2015] [Indexed: 10/22/2022]
Abstract
The thyroid transcription factor 1 (TTF-1) is encoded, on chromosome 14q13, by the gene termed TITF-1/NKX2.1. Mutations in this gene have been associated with chorea, hypothyroidism, and lung disease, all included in the "brain-thyroid-lung syndrome." We here describe two cases of novel missense mutations [NM_003317.3:c.516G>T and c.623G>C resulting in p.(Gln172His) and p.(Trp208Ser), respectively] in TITF-1/NKX2-1 in non-consanguineous patients. We provide a functional study of the role of the two mutations on the TTF-1 ability to bind DNA and to trans-activate both thyroid and lung specific gene promoters. Our results confirm the difficulty to correlate the TTF-1 activity with the clinical phenotype of affected patients and highlight the need to increase the limited knowledge we have on the activity of TTF-1 in neuronal cells.
Collapse
Affiliation(s)
- Claudia Provenzano
- Institute of Cell Biology and Neurobiology, National Council of Research, 00015 Monterotondo, Italy
| | - Michela Zamboni
- Institute of Cell Biology and Neurobiology, National Council of Research, 00015 Monterotondo, Italy
| | - Liana Veneziano
- Institute of Translational Pharmacology, National Council of Research, 00100 Rome, Italy
| | - Elide Mantuano
- Institute of Translational Pharmacology, National Council of Research, 00100 Rome, Italy
| | - Barbara Garavaglia
- Molecular Neurogenetics Unit, IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Giovanna Zorzi
- Child Neurology Dept, IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital and Biomedical Research Institute, Barcelona, Spain
| | - Paola Giunti
- Laboratory of Neurogenetics, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Donato Civitareale
- Institute of Cell Biology and Neurobiology, National Council of Research, 00015 Monterotondo, Italy.
| |
Collapse
|
31
|
Pappalardo A, Porreca I, Caputi L, De Felice E, Schulte-Merker S, Zannini M, Sordino P. Thyroid development in zebrafish lacking Taz. Mech Dev 2015; 138 Pt 3:268-78. [PMID: 26478012 DOI: 10.1016/j.mod.2015.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 10/22/2022]
Abstract
Taz is a signal-responsive transcriptional coregulator implicated in several biological functions, from chondrogenesis to regulation of organ size. Less well studied, however, is its role in thyroid formation. Here, we explored the in vivo effects on thyroid development of morpholino (MO)-mediated knockdown of wwtr1, the gene encoding zebrafish Taz. The wwtr1 gene is expressed in the thyroid primordium and pharyngeal tissue of developing zebrafish. Compared to mammalian cells, in which Taz promotes expression of thyroid transcription factors and thyroid differentiation genes, wwtr1 MO injection in zebrafish had little or no effect on the expression of thyroid transcription factors, and differentially altered the expression of thyroid differentiation genes. Analysis of wwtr1 morphants at later stages of development revealed that the number and the lumen of thyroid follicles, and the number of thyroid follicle cells, were significantly smaller. In addition, Taz-depleted larvae displayed patterning defects in ventral cranial vessels that correlate with lateral displacement of thyroid follicles. These findings indicate that the zebrafish Taz protein is needed for the normal differentiation of the thyroid and are the first to suggest that Taz confers growth advantage to the endocrine gland.
Collapse
Affiliation(s)
- Andrea Pappalardo
- Institute of Experimental Endocrinology and Oncology 'G. Salvatore' - CNR, 80131 Naples, Italy; IRCCS Fondazione Stella Maris, 56018 Calambrone, Pisa, Italy
| | - Immacolata Porreca
- Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; IRGS, Biogem, 83031 Ariano Irpino, Avellino, Italy
| | - Luigi Caputi
- Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | | | | | - Mariastella Zannini
- Institute of Experimental Endocrinology and Oncology 'G. Salvatore' - CNR, 80131 Naples, Italy
| | - Paolo Sordino
- Stazione Zoologica Anton Dohrn, 80121 Naples, Italy.
| |
Collapse
|
32
|
Neuropilin-2 Is a Newly Identified Target of PAX8 in Thyroid Cells. PLoS One 2015; 10:e0128315. [PMID: 26030152 PMCID: PMC4451263 DOI: 10.1371/journal.pone.0128315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/25/2015] [Indexed: 01/04/2023] Open
Abstract
PAX8 is a transcription factor essential for thyroid gland development, as well as for the maintenance of the thyroid differentiated state in the adult. In particular, PAX8 has been comprehensively shown to regulate genes that are considered markers of thyroid differentiation. However, a better knowledge of genes transcriptionally regulated by PAX8 is desirable to clarify its role in endocrine syndromes and cancer susceptibility. In order to further investigate PAX8 downstream targets, we recently performed a genome-wide expression analysis following PAX8 knockdown in FRTL-5 thyroid cells and Neuropilin-2 was identified as a potential transcriptional target of PAX8. In this study, we determined the role of the transcription factor PAX8 in the regulation of Neuropilin-2 expression. Indeed, in thyroid cells PAX8 directly binds the Neuropilin-2 promoter leading to its transcriptional repression. Interestingly, we observed an inverse correlation between the expression of PAX8 and Neuropilin-2 in thyroid carcinoma tissues and cell lines compared to non-tumor counterparts, suggesting a critical role of PAX8 in regulating Neuropilin-2 expression in vivo. Notably, ectopic overexpression of PAX8 in FB-2 thyroid cancer cells promotes Neuropilin-2 downregulation producing a significant reduction in cell proliferation, migration ability, and invasion activity and reverting the cell phenotype from mesenchymal to a more epithelial one. These findings uncover the novel interplay between PAX8 and Neuropilin-2, which is likely to be important in the pathogenesis of thyroid diseases.
Collapse
|
33
|
Multiple functional variants in long-range enhancer elements contribute to the risk of SNP rs965513 in thyroid cancer. Proc Natl Acad Sci U S A 2015; 112:6128-33. [PMID: 25918370 DOI: 10.1073/pnas.1506255112] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The [A] allele of SNP rs965513 in 9q22 has been consistently shown to be highly associated with increased papillary thyroid cancer (PTC) risk with an odds ratio of ∼1.8 as determined by genome-wide association studies, yet the molecular mechanisms remain poorly understood. Previously, we noted that the expression of two genes in the region, forkhead box E1 (FOXE1) and PTC susceptibility candidate 2 (PTCSC2), is regulated by rs965513 in unaffected thyroid tissue, but the underlying mechanisms were not elucidated. Here, we fine-mapped the 9q22 region in PTC and controls and detected an ∼33-kb linkage disequilibrium block (containing the lead SNP rs965513) that significantly associates with PTC risk. Chromatin characteristics and regulatory element signatures in this block disclosed at least three regulatory elements functioning as enhancers. These enhancers harbor at least four SNPs (rs7864322, rs12352658, rs7847449, and rs10759944) that serve as functional variants. The variant genotypes are associated with differential enhancer activities and/or transcription factor binding activities. Using the chromosome conformation capture methodology, long-range looping interactions of these elements with the promoter region shared by FOXE1 and PTCSC2 in a human papillary thyroid carcinoma cell line (KTC-1) and unaffected thyroid tissue were found. Our results suggest that multiple variants coinherited with the lead SNP and located in long-range enhancers are involved in the transcriptional regulation of FOXE1 and PTCSC2 expression. These results explain the mechanism by which the risk allele of rs965513 predisposes to thyroid cancer.
Collapse
|
34
|
Cardoso-Weide L, Cardoso-Penha R, Costa M, Ferreira A, Carvalho D, Santisteban P. DuOx2 Promoter Regulation by Hormones, Transcriptional Factors and the Coactivator TAZ. Eur Thyroid J 2015; 4:6-13. [PMID: 25960956 PMCID: PMC4404926 DOI: 10.1159/000379749] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 02/06/2015] [Indexed: 01/13/2023] Open
Abstract
The production of H2O2, which is essential to thyroid hormone synthesis, involves two NADPH oxidases: dual oxidases 1 and 2 (DuOx1 and DuOx2). A functional study with human DuOx genes and their 5'-flanking regions showed that DuOx1 and -2 promoters are different from thyroid-specific gene promoters. Furthermore, their transcriptional activities are not restricted to thyroid cells. While regulation of Tg (thyroglobulin) and TPO (thyroperoxidase) expression have been extensively studied, DuOx2 promoter regulation by hormones and transcriptional factors need to be more explored. Herein we investigated the role of TSH, insulin and insulin-like growth factor 1 (IGF-1), as well as the cAMP effect on DuOx2 promoter (ptx41) activity in transfected rat thyroid cell lines (PCCL3). We also assessed DuOx2 promoter activity in the presence of transcriptional factors crucial to thyroid development such as TTF-1 (thyroid transcription factor 1), PAX8, CREB, DREAM, Nkx2.5 and the coactivator TAZ in HeLa and HEK 293T-transfected cells. Our results show that TSH and forskolin, which increase cAMP in thyroid cells, stimulated DuOx2 promoter activity. IGF-1 led to pronounced stimulation, while insulin induction was not statistically different from DuOx2 promoter basal activity. All transcriptional factors selected for this work and coactivator TAZ, except DREAM, stimulated DuOx2 promoter activity. Moreover, Nkx2.5 and TAZ synergistically increased DuOx2 promoter activity. In conclusion, we show that DuOx2 expression is regulated by hormones and transcription factors involved in thyroid organogenesis and carcinogenesis, reinforcing the importance of the control of H2O2 generation in the thyroid.
Collapse
Affiliation(s)
- L.C. Cardoso-Weide
- Departamento de Patologia, Faculdade de Medicina, Universidade Federal Fluminense (UFF), Niterói, Brazil
- *L.C. Cardoso-Weide, Departamento de Patologia, 4° andar, sala 4, Faculdade de Medicina, Hospital Universitário Antônio Pedro, Universidade Federal Fluminense (UFF), Rua Marques do Paraná, 303, Niterói, RJ 24033-900 (Brazil), E-Mail
| | - R.C. Cardoso-Penha
- Laboratório de Fisiologia Endócrina Doris Rosenthal, IBCCF, Rio de Janeiro, Brazil
| | - M.W. Costa
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Vic., Australia
| | - A.C.F. Ferreira
- NUMPEX, Polo de Xerém, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - D.P. Carvalho
- Laboratório de Fisiologia Endócrina Doris Rosenthal, IBCCF, Rio de Janeiro, Brazil
| | - P.S. Santisteban
- Instituto de Investigaciones Biomédicas Alberto Sols, Spanish Council of Research-Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
35
|
Fernández LP, López-Márquez A, Santisteban P. Thyroid transcription factors in development, differentiation and disease. Nat Rev Endocrinol 2015; 11:29-42. [PMID: 25350068 DOI: 10.1038/nrendo.2014.186] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Identification of the thyroid transcription factors (TTFs), NKX2-1, FOXE1, PAX8 and HHEX, has considerably advanced our understanding of thyroid development, congenital thyroid disorders and thyroid cancer. The TTFs are fundamental to proper formation of the thyroid gland and for maintaining the functional differentiated state of the adult thyroid; however, they are not individually required for precursor cell commitment to a thyroid fate. Although knowledge of the mechanisms involved in thyroid development has increased, the full complement of genes involved in thyroid gland specification and the signals that trigger expression of the genes that encode the TTFs remain unknown. The mechanisms involved in thyroid organogenesis and differentiation have provided clues to identifying the genes that are involved in human congenital thyroid disorders and thyroid cancer. Mutations in the genes that encode the TTFs, as well as polymorphisms and epigenetic modifications, have been associated with thyroid pathologies. Here, we summarize the roles of the TTFs in thyroid development and the mechanisms by which they regulate expression of the genes involved in thyroid differentiation. We also address the implications of mutations in TTFs in thyroid diseases and in diseases not related to the thyroid gland.
Collapse
Affiliation(s)
- Lara P Fernández
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid, Arturo Duperier 4, Madrid 28029, Spain
| | - Arístides López-Márquez
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid, Arturo Duperier 4, Madrid 28029, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid, Arturo Duperier 4, Madrid 28029, Spain
| |
Collapse
|
36
|
Ma R, Morshed SA, Latif R, Davies TF. Thyroid cell differentiation from murine induced pluripotent stem cells. Front Endocrinol (Lausanne) 2015; 6:56. [PMID: 25954249 PMCID: PMC4406093 DOI: 10.3389/fendo.2015.00056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/06/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Here, we demonstrate the successful differentiation of induced pluripotent stem (iPS) cells into functional thyroid cells indicating the therapeutic potential of this approach when applied to individuals with thyroid deficiency. RESEARCH DESIGN AND METHODS Using embryonic murine fibroblasts, we generated iPS cells with a single lentiviral "stem cell cassette" vector and then differentiated these iPS cells into thyroid cells after transfection with PAX8 and NKX2-1 by Activin A and TSH stimulation. RESULTS The generated iPS cells expressed pluripotent stem cell markers as assessed using both reverse transcription quantitative PCRs and immunofluorescence staining with ~0.5% reprograming efficiency. Compared to control cells, the expression of thyroid-specific genes NIS, TSHR, Tg, and TPO were greatly enhanced in PAX8(+)NKX2-1(+) iPS cells after differentiation. On stimulation with TSH, these differentiated iPS cells were also capable of dose-dependent cAMP generation and radioiodine uptake indicative of functional thyroid epithelial cells. Furthermore, the cells formed three-dimensional follicles in culture, and "thyroid organoids" formed after PAX8(+)NKX2-1(+) iPS cells transplanted into nude mice, and all expressed Tg protein as judged immunohistochemically. Taken together, thyroid epithelial cells differentiated from iPS cells, which were themselves derived from murine fibroblasts, exhibited very similar properties to thyroid cells previously developed from traditional murine embryonic stem cells. CONCLUSION Thyroid cells differentiated from iPS cells offer the opportunity to examine the detailed transcriptional regulation of thyroid cell differentiation and may provide a useful future source for individualized regenerative cell therapy.
Collapse
Affiliation(s)
- Risheng Ma
- Thyroid Research Unit, Department of Medicine, James J. Peters Veterans Affairs Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- *Correspondence: Risheng Ma, Thyroid Research Unit, Department of Medicine, James J. Peters Veterans Affairs Medical Center, Icahn School of Medicine at Mount Sinai, Room 2F-28, 130 West Kingsbridge Road, New York, NY 10468, USA
| | - Syed A. Morshed
- Thyroid Research Unit, Department of Medicine, James J. Peters Veterans Affairs Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rauf Latif
- Thyroid Research Unit, Department of Medicine, James J. Peters Veterans Affairs Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Terry F. Davies
- Thyroid Research Unit, Department of Medicine, James J. Peters Veterans Affairs Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
37
|
Baldan F, Mio C, Allegri L, Puppin C, Russo D, Filetti S, Damante G. Synergy between HDAC and PARP Inhibitors on Proliferation of a Human Anaplastic Thyroid Cancer-Derived Cell Line. Int J Endocrinol 2015; 2015:978371. [PMID: 25705225 PMCID: PMC4326215 DOI: 10.1155/2015/978371] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/09/2014] [Indexed: 12/19/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is a very aggressive human malignancy, having a marked degree of invasiveness and no features of thyroid differentiation. It is known that either HDAC inhibitors or PARP inhibitors have antiproliferative effects on thyroid cancer cells. Therefore, in this study the possible synergy between the two types of compounds has been investigated. The ATC-derived cell line SW1736 has been treated with the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) and the PARP inhibitor PJ34, alone or in combination. In terms of cell viability, the combination index value was always lower than 1 at various tested dosages, indicating, therefore, synergy in a wide range of doses for both compounds. Synergy was also observed in induction of apoptosis. In terms of thyroid-specific gene expression, synergy was observed for TSHR mRNA levels but not for NIS, TTF1, TTF2, and PAX8 mRNA levels. Altogether, these data suggest that the combined use of HDAC and PARP inhibitors may be a useful strategy for treatment of ATC.
Collapse
Affiliation(s)
- Federica Baldan
- Department of Medical and Biological Sciences, University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy
| | - Catia Mio
- Department of Medical and Biological Sciences, University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy
| | - Lorenzo Allegri
- Department of Medical and Biological Sciences, University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy
| | - Cinzia Puppin
- Department of Medical and Biological Sciences, University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy
| | - Diego Russo
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Sebastiano Filetti
- Department of Internal Medicine and Medical Specialties, University of Roma “La Sapienza”, 00198 Rome, Italy
| | - Giuseppe Damante
- Department of Medical and Biological Sciences, University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy
- Institute of Medical Genetics, University Hospital “S. Maria della Misericordia”, 33100 Udine, Italy
- *Giuseppe Damante:
| |
Collapse
|
38
|
He H, Li W, Liyanarachchi S, Jendrzejewski J, Srinivas M, Davuluri RV, Nagy R, de la Chapelle A. Genetic predisposition to papillary thyroid carcinoma: involvement of FOXE1, TSHR, and a novel lincRNA gene, PTCSC2. J Clin Endocrinol Metab 2015; 100:E164-72. [PMID: 25303483 PMCID: PMC4283026 DOI: 10.1210/jc.2014-2147] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
CONTEXT By genome-wide association studies, the risk allele [A] of SNP rs965513 predisposes strongly to papillary thyroid carcinoma (PTC). It is located in a gene-poor region of 9q22, some 60 kb from the FOXE1 gene. The underlying mechanisms remain to be discovered. OBJECTIVE Our objective was to identify novel transcripts in the 9q22 locus and correlate gene expression levels with the genotypes of rs965513. DESIGN We performed 3' and 5' rapid amplification of cDNA ends and RT-PCR to detect novel transcripts. One novel transcript was forcibly expressed in a cell line followed by gene expression array analysis. We genotyped rs965513 from PTC patients and measured gene expression levels by real-time RT-PCR in unaffected thyroid tissue and matched tumor. SETTING This was a laboratory-based study using cells from clinical tissue samples and a cancer cell line. MAIN OUTCOME MEASURES We detected previously uncharacterized transcripts and evaluated the gene expression levels and the correlation with the risk allele of rs965513, age, gender, chronic lymphocyte thyroiditis (CLT), and TSH levels. RESULTS We found a novel long intergenic noncoding RNA gene and named it papillary thyroid cancer susceptibility candidate 2 (PTCSC2). Transcripts of PTCSC2 are down-regulated in PTC tumors. The risk allele [A] of rs965513 was significantly associated with low expression of unspliced PTCSC2, FOXE1, and TSHR in unaffected thyroid tissue. We also observed a significant association of age and CLT with PTCSC2 unspliced transcript levels. The correlation between the rs965513 genotype and the PTCSC2 unspliced transcript levels remained significant after adjusting for age, gender, and CLT. Forced expression of PTCSC2 in the BCPAP cell line affected the expression of a subset of noncoding and coding transcripts with enrichment of genes functionally involved in cell cycle and cancer. CONCLUSIONS Our data suggest a role for PTCSC2, FOXE1, and TSHR in the predisposition to PTC.
Collapse
Affiliation(s)
- Huiling He
- Human Cancer Genetics Program and Department of Molecular Virology, Immunology, and Medical Genetics (H.H., W.L., S.L., J.J., M.S., R.N., A.d.l.C), and Department of Internal Medicine (R.N.), Ohio State University Comprehensive Cancer Center, the Ohio State University, Columbus, Ohio 43210; and Division of Health and Biomedical Informatics, Department of Preventive Medicine, Robert H. Lurie Comprehensive Cancer Center (R.V.D.), Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Satoh N, Tagawa K, Lowe CJ, Yu JK, Kawashima T, Takahashi H, Ogasawara M, Kirschner M, Hisata K, Su YH, Gerhart J. On a possible evolutionary link of the stomochord of hemichordates to pharyngeal organs of chordates. Genesis 2014; 52:925-34. [PMID: 25303744 PMCID: PMC5673098 DOI: 10.1002/dvg.22831] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/02/2014] [Accepted: 10/07/2014] [Indexed: 01/24/2023]
Abstract
As a group closely related to chordates, hemichordate acorn worms are in a key phylogenic position for addressing hypotheses of chordate origins. The stomochord of acorn worms is an anterior outgrowth of the pharynx endoderm into the proboscis. In 1886 Bateson proposed homology of this organ to the chordate notochord, crowning this animal group "hemichordates." Although this proposal has been debated for over a century, the question still remains unresolved. Here we review recent progress related to this question. First, the developmental mode of the stomochord completely differs from that of the notochord. Second, comparison of expression profiles of genes including Brachyury, a key regulator of notochord formation in chordates, does not support the stomochord/notochord homology. Third, FoxE that is expressed in the stomochord-forming region in acorn worm juveniles is expressed in the club-shaped gland and in the endostyle of amphioxus, in the endostyle of ascidians, and in the thyroid gland of vertebrates. Based on these findings, together with the anterior endodermal location of the stomochord, we propose that the stomochord has evolutionary relatedness to chordate organs deriving from the anterior pharynx rather than to the notochord.
Collapse
Affiliation(s)
- Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Kunifumi Tagawa
- Marine Biological Laboratory, Graduate School of Science, Hiroshima University, Onomichi, Hiroshima, Japan
| | - Christopher J. Lowe
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Takeshi Kawashima
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Hiroki Takahashi
- Division of Developmental Biology, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Michio Ogasawara
- Department of Nanobiology, Graduate School of Advanced Integration Science, Chiba University, Chiba, Japan
| | - Marc Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - John Gerhart
- Department of Molecular and Cell Biology, University of California, Berkeley, California
| |
Collapse
|
40
|
Dietary high-fat lard intake induces thyroid dysfunction and abnormal morphology in rats. Acta Pharmacol Sin 2014; 35:1411-20. [PMID: 25263336 DOI: 10.1038/aps.2014.82] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 07/05/2014] [Indexed: 12/11/2022]
Abstract
AIM Excess dietary fat intake can induce lipotoxicity in non-adipose tissues. The aim of this study was to observe the effects of dietary high-fat lard intake on thyroid in rats. METHODS Male Sprague-Dawley rats were fed a high-fat lard diet for 24 weeks, and then the rats were fed a normal control diet (acute dietary modification) or the high-fat lard diet for another 6 weeks. The serum lipid profile, total thyroxine (TT4), free thyroxine (FT4) and thyrotropin (TSH) levels were determined at the 12, 18, 24 and 30 weeks. High-frequency ultrasound scanning of the thyroid glands was performed at the 24 or 30 weeks. After the rats were sacrificed, the thyroid glands were collected for histological and immunohistochemical analyses. RESULTS The high-fat lard diet significantly increased triglyceride levels in both the serum and thyroid, and decreased serum TT4 and FT4 levels in parallel with elevated serum TSH levels. Ultrasonic imaging revealed enlarged thyroid glands with lowered echotexture and relatively heterogeneous features in the high-fat lard fed rats. The thyroid glands from the high-fat lard fed rats exhibited enlarged follicle cavities and flattened follicular epithelial cells under light microscopy, and dilated endoplasmic reticulum cisternae, twisted nuclei, fewer microvilli and secretory vesicles under transmission electron microscopy. Furthermore, the thyroid glands from the high-fat lard fed rats showed markedly low levels of thyroid hormone synthesis-related proteins TTF-1 and NIS. Acute dietary modification by withdrawal of the high-fat lard diet for 6 weeks failed to ameliorate the high-fat lard diet-induced thyroid changes. CONCLUSION Dietary high-fat lard intake induces significant thyroid dysfunction and abnormal morphology in rats, which can not be corrected by short-term dietary modification.
Collapse
|
41
|
Filippone MG, Di Palma T, Lucci V, Zannini M. Pax8 modulates the expression of Wnt4 that is necessary for the maintenance of the epithelial phenotype of thyroid cells. BMC Mol Biol 2014; 15:21. [PMID: 25270402 PMCID: PMC4200477 DOI: 10.1186/1471-2199-15-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/23/2014] [Indexed: 11/10/2022] Open
Abstract
Background The transcription factor Pax8 is expressed during thyroid development and is involved in the morphogenesis of the thyroid gland and maintenance of the differentiated phenotype. In particular, Pax8 has been shown to regulate genes that are considered markers of thyroid differentiation. Recently, the analysis of the gene expression profile of FRTL-5 differentiated thyroid cells after the silencing of Pax8 identified Wnt4 as a novel target. Like the other members of the Wnt family, Wnt4 has been implicated in several developmental processes including regulation of cell fate and patterning during embryogenesis. To date, the only evidence on Wnt4 in thyroid concerns its down-regulation necessary for the progression of thyroid epithelial tumors. Results Here we demonstrate that Pax8 is involved in the transcriptional modulation of Wnt4 gene expression directly binding to its 5’-flanking region, and that Wnt4 expression in FRTL-5 cells is TSH-dependent. Interestingly, we also show that in thyroid cells a reduced expression of Wnt4 correlates with the alteration of the epithelial phenotype and that the overexpression of Wnt4 in thyroid cancer cells is able to inhibit cellular migration. Conclusions We have identified and characterized a functional Pax8 binding site in the 5’-flanking region of the Wnt4 gene and we show that Pax8 modulates the expression of Wnt4 in thyroid cells. Taken together, our results suggest that in thyroid cells Wnt4 expression correlates with the integrity of the epithelial phenotype and is reduced when this integrity is perturbed. In the end, we would like to suggest that the overexpression of Wnt4 in thyroid cancer cells is able to revert the mesenchymal phenotype.
Collapse
Affiliation(s)
| | | | | | - Mariastella Zannini
- IEOS - Institute of Experimental Endocrinology and Oncology CNR - National Research Council, via S, Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
42
|
Uemae Y, Sakamoto J, Hidaka Y, Hiratsuka A, Susa T, Kato Y, Suzuki M. Gene expression, function, and diversity of Nkx2-4 in the rainbow trout, Oncorhynchus mykiss. Gen Comp Endocrinol 2014; 206:193-202. [PMID: 25051213 DOI: 10.1016/j.ygcen.2014.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 06/25/2014] [Accepted: 07/13/2014] [Indexed: 11/27/2022]
Abstract
Nkx2 homeodomain transcription factors are involved in various developmental processes and cell specification: e.g. in mammals, NKX2-1 is essential for thyroid-specific gene expression and thyroid morphogenesis. Among Nkx2 proteins, information is still very limited for Nkx2-4. In the present study, we have identified three distinct cDNAs encoding Nkx2-4 isoforms (Nkx2-4a, -b, and -c) from the rainbow trout thyroid tissue, and characterized their transcriptional properties. The trout Nkx2-4 proteins were all predicted to conserve three characteristic domains: the tinman-like amino terminal decapeptide, the NK2 homeodomain, and the NK2-specific domain, and also share 75-89% amino acid similarity. It was shown by dual luciferase assay that Nkx2-4a and Nkx2-4b, but not Nkx2-4c, significantly activated transcription from a cotransfected rat thyroglobulin (TG) promoter. An electrophoretic mobility shift assay indicated that all the Nkx2-4 isoforms could bind to the TG promoter, implying that the faint transcriptional activity of Nkx2-4c might result from some critical amino acid substitution(s) outside the homeodomain. RT-PCR analysis revealed similar tissue distribution patterns for Nkx2-4a and Nkx2-4b mRNAs. Both mRNAs were expressed abundantly in the thyroid, and weakly in the testis. On the other hand, Nkx2-4c mRNA was detected in the ovary as well as in the thyroid. The expression sites of Nkx2-4c mRNA were localized, by in situ hybridization histochemistry, to the ovarian granulosa cells and to the thyroid follicular cells. The results suggest that in the rainbow trout, Nkx2-4a and Nkx2-4b might play a major role in TG gene transcription whereas Nkx2-4c might have some functions in the ovary as well as the thyroid.
Collapse
Affiliation(s)
- Youji Uemae
- Department of Biological Science, Graduate School of Science, Shizuoka University, Ohya 836, Shizuoka City, Shizuoka 422-8529, Japan
| | - Joe Sakamoto
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Ohya 836, Shizuoka City, Shizuoka 422-8529, Japan
| | - Yoshie Hidaka
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Ohya 836, Shizuoka City, Shizuoka 422-8529, Japan
| | - Ai Hiratsuka
- Department of Biology, Faculty of Science, Shizuoka University, Ohya 836, Shizuoka City, Shizuoka 422-8529, Japan
| | - Takao Susa
- Department of Life Science, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Kawasaki, Kanagawa 214-8571, Japan
| | - Yukio Kato
- Department of Life Science, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Kawasaki, Kanagawa 214-8571, Japan
| | - Masakazu Suzuki
- Department of Biological Science, Graduate School of Science, Shizuoka University, Ohya 836, Shizuoka City, Shizuoka 422-8529, Japan; Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Ohya 836, Shizuoka City, Shizuoka 422-8529, Japan; Department of Biology, Faculty of Science, Shizuoka University, Ohya 836, Shizuoka City, Shizuoka 422-8529, Japan.
| |
Collapse
|
43
|
Vincenzi M, Camilot M, Ferrarini E, Teofoli F, Venturi G, Gaudino R, Cavarzere P, De Marco G, Agretti P, Dimida A, Tonacchera M, Boner A, Antoniazzi F. Identification of a novel pax8 gene sequence variant in four members of the same family: from congenital hypothyroidism with thyroid hypoplasia to mild subclinical hypothyroidism. BMC Endocr Disord 2014; 14:69. [PMID: 25146893 PMCID: PMC4142740 DOI: 10.1186/1472-6823-14-69] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 07/25/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Congenital hypothyroidism is often secondary to thyroid dysgenesis, including thyroid agenesis, hypoplasia, ectopic thyroid tissue or cysts. Loss of function mutations in TSHR, PAX8, NKX2.1, NKX2.5 and FOXE1 genes are responsible for some forms of inherited congenital hypothyroidism, with or without hypoplastic thyroid. The aim of this study was to analyse the PAX8 gene sequence in several members of the same family in order to understand whether the variable phenotypic expression, ranging from congenital hypothyroidism with thyroid hypoplasia to mild subclinical hypothyroidism, could be associated to the genetic variant in the PAX8 gene, detected in the proband. METHODS We screened a hypothyroid child with thyroid hypoplasia for mutations in PAX8, TSHR, NKX2.1, NKX2.5 and FOXE1 genes. We studied the inheritance of the new variant R133W detected in the PAX8 gene in the proband's family, and we looked for the same substitution in 115 Caucasian European subjects and in 26 hypothyroid children. Functional studies were performed to assess the in vitro effect of the newly identified PAX8 gene variant. RESULTS A new heterozygous nucleotide substitution was detected in the PAX8 DNA-binding motif (c.397C/T, R133W) in the proband, affected by congenital hypothyroidism with thyroid hypoplasia, in his older sister, displaying a subclinical hypothyroidism associated with thyroid hypoplasia and thyroid nodules, in his father, affected by hypothyroidism with thyroid hypoplasia and thyroid nodules, and his first cousin as well, who revealed only a subclinical hypothyroidism. Functional studies of R133W-PAX8 in the HEK293 cells showed activation of the TG promoter comparable to the wild-type PAX8. CONCLUSIONS In vitro data do not prove that R133W-PAX8 is directly involved in the development of the thyroid phenotypes reported for family members carrying the substitution. However, it is reasonable to conceive that, in the cases of transcriptions factors, such as Pax8, which establish several interactions in different protein complexes, genetic variants could have an impact in vivo.
Collapse
Affiliation(s)
- Monica Vincenzi
- Department of Life and Reproduction Sciences, University of Verona, Piazzale Scuro 10, 37126 Verona, Italy
| | - Marta Camilot
- Department of Life and Reproduction Sciences, University of Verona, Piazzale Scuro 10, 37126 Verona, Italy
- Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Eleonora Ferrarini
- Department of Endocrinology, Centro di Eccellenza AmbiSEN, University of Pisa, Pisa, Italy
| | - Francesca Teofoli
- Department of Life and Reproduction Sciences, University of Verona, Piazzale Scuro 10, 37126 Verona, Italy
- Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Giacomo Venturi
- Department of Life and Reproduction Sciences, University of Verona, Piazzale Scuro 10, 37126 Verona, Italy
| | - Rossella Gaudino
- Department of Life and Reproduction Sciences, University of Verona, Piazzale Scuro 10, 37126 Verona, Italy
- Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Paolo Cavarzere
- Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Giuseppina De Marco
- Department of Endocrinology, Centro di Eccellenza AmbiSEN, University of Pisa, Pisa, Italy
| | - Patrizia Agretti
- Department of Endocrinology, Centro di Eccellenza AmbiSEN, University of Pisa, Pisa, Italy
| | - Antonio Dimida
- Department of Endocrinology, Centro di Eccellenza AmbiSEN, University of Pisa, Pisa, Italy
| | - Massimo Tonacchera
- Department of Endocrinology, Centro di Eccellenza AmbiSEN, University of Pisa, Pisa, Italy
| | - Attilio Boner
- Department of Life and Reproduction Sciences, University of Verona, Piazzale Scuro 10, 37126 Verona, Italy
- Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Franco Antoniazzi
- Department of Life and Reproduction Sciences, University of Verona, Piazzale Scuro 10, 37126 Verona, Italy
- Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| |
Collapse
|
44
|
Kanteti R, El-Hashani E, Dhanasingh I, Tretiakova M, Husain AN, Sharma S, Sharma J, Vokes EE, Salgia R. Role of PAX8 in the regulation of MET and RON receptor tyrosine kinases in non-small cell lung cancer. BMC Cancer 2014; 14:185. [PMID: 24628993 PMCID: PMC3995599 DOI: 10.1186/1471-2407-14-185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 02/28/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-small cell lung cancers (NSCLC) are highly heterogeneous at the molecular level and comprise 75% of all lung tumors. We have previously shown that the receptor tyrosine kinase (RTK) MET frequently suffers gain-of-function mutations that significantly promote lung tumorigenesis. Subsequent studies from our lab also revealed that PAX5 transcription factor is preferentially expressed in small cell lung cancer (SCLC) and promotes MET transcription. PAX8, however, is also expressed in NSCLC cell lines. We therefore investigated the role of PAX8 in NSCLC. METHODS Using IHC analysis, PAX8 protein expression was determined in archival NSCLC tumor tissues (n = 254). In order to study the effects of PAX8 knockdown on NSCLC cellular functions such as apoptosis and motility, siRNA against PAX8 was used. Confocal fluorescence microscopy was used to monitor the localization of MET, RON and PAX8. The combinatorial effect of PAX8 knockdown and MET inhibition using SU11274 was investigated in NSCLC cell viability assay. RESULTS Relative levels of PAX8 protein were elevated (≥ + 2 on a scale of 0-3) in adenocarcinoma (58/94), large cell carcinoma (50/85), squamous cell carcinoma (28/47), and metastatic NSCLC (17/28; lymph node). Utilizing early progenitors isolated from NSCLC cell lines and fresh tumor tissues, we observed robust overexpression of PAX8, MET, and RON. PAX8 knockdown A549 cells revealed abrogated PAX8 expression with a concomitant loss in MET and the related RON kinase expression. A dramatic colocalization between the active form of MET (also RON) and PAX8 upon challenging A549 cells with HGF was visualized. A similar colocalization of MET and EGL5 (PAX8 ortholog) proteins was found in embryos of C. elegans. Most importantly, knockdown of PAX8 in A549 cells resulted in enhanced apoptosis (~6 fold) and decreased cell motility (~45%), thereby making PAX8 a potential therapeutic target. However, the combinatorial approach of PAX8 knockdown and treatment with MET inhibitor, SU11274, had marginal additive effect on loss of NSCLC cell viability. CONCLUSION PAX8 provides signals for growth and motility of NSCLC cells and is necessary for MET and RON expression. Further investigations are necessary to investigate the therapeutic potential of PA8 in NSCLC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ravi Salgia
- Department of Hematology/Oncology, University of Chicago Medical Center, Chicago, IL, USA.
| |
Collapse
|
45
|
Katagiri N, Uemae Y, Sakamoto J, Hidaka Y, Susa T, Kato Y, Kimura S, Suzuki M. Molecular cloning and functional characterization of two forms of Pax8 in the rainbow trout, Oncorhynchus mykiss. Gen Comp Endocrinol 2014; 198:22-31. [PMID: 24380675 PMCID: PMC3991817 DOI: 10.1016/j.ygcen.2013.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/27/2013] [Accepted: 12/15/2013] [Indexed: 11/22/2022]
Abstract
We have identified two distinct Pax8 (a and b) mRNAs from the thyroid gland of the rainbow trout (Oncorhynchus mykiss), which seemed to be generated by alternative splicing. Both Pax8a and Pax8b proteins were predicted to possess the paired domain, octapeptide, and partial homeodomain, while Pax8b lacked the carboxy-terminal portion due to an insertion in the coding region of the mRNA. RT-PCR analysis showed each of Pax8a and Pax8b mRNAs to be abundantly expressed in the thyroid and kidney. In situ hybridization histochemistry further detected the expression of Pax8 mRNA in the epithelial cells of the thyroid follicles of the adult trout and in the thyroid primordial cells of the embryo. The functional properties of Pax8a and Pax8b were investigated by dual luciferase assay. The transcriptional regulation by the rat thyroid peroxidase (TPO) promoter was found to be increased by Pax8a, but not by Pax8b. Pax8a further showed synergistic transcriptional activity with rat Nkx2-1 for the human TPO upstream region including the enhancer and promoter. On the other hand, Pax8b decreased the synergistic activity of Pax8a and Nkx2-1. Electrophoretic mobility shift assay additionally indicated that not only Pax8a but also Pax8b can bind to the TPO promoter and enhancer, implying that the inhibitory effect of Pax8b might result from the lack of the functional carboxy-terminal portion. Collectively, the results suggest that for the trout thyroid gland, Pax8a may directly increase TPO gene expression in cooperation with Nkx2-1 while Pax8b may work as a non-activating competitor for the TPO transcription.
Collapse
Affiliation(s)
- Nobuto Katagiri
- Department of Biological Science, Graduate School of Science, Shizuoka University, Ohya 836, Shizuoka City, Shizuoka 422-8529, Japan
| | - Youji Uemae
- Department of Biological Science, Graduate School of Science, Shizuoka University, Ohya 836, Shizuoka City, Shizuoka 422-8529, Japan
| | - Joe Sakamoto
- Department of Biological Science, Graduate School of Science, Shizuoka University, Ohya 836, Shizuoka City, Shizuoka 422-8529, Japan
| | - Yoshie Hidaka
- Department of Biological Science, Graduate School of Science, Shizuoka University, Ohya 836, Shizuoka City, Shizuoka 422-8529, Japan
| | - Takao Susa
- Department of Life Science, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Kawasaki, Kanagawa 214-8571, Japan
| | - Yukio Kato
- Department of Life Science, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Kawasaki, Kanagawa 214-8571, Japan
| | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Masakazu Suzuki
- Department of Biological Science, Graduate School of Science, Shizuoka University, Ohya 836, Shizuoka City, Shizuoka 422-8529, Japan.
| |
Collapse
|
46
|
Mussazhanova Z, Miura S, Stanojevic B, Rougounovitch T, Saenko V, Shiraishi T, Kurashige T, Shichijo K, Kaneko K, Takahashi H, Ito M, Nakashima M. Radiation-associated small cell neuroendocrine carcinoma of the thyroid: a case report with molecular analyses. Thyroid 2014; 24:593-8. [PMID: 23844610 DOI: 10.1089/thy.2013.0214] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Neuroendocrine tumor (NET) of the thyroid other than medullary carcinoma is extremely rare. We describe here a case of calcitonin-negative small cell neuroendocrine carcinoma (SCNEC), which occurred in a thyroid gland that had previously been irradiated at high dose (60 Gy) for pharyngeal cancer, with molecular analyses for follicular cell origin. PATIENT FINDINGS The tumor cells were small with fine chromatin, inconspicuous nucleoli, and inapparent cytoplasm, and showed neuroendocrine architectures such as palisading, rosettes, and trabeculae. Mitotic figures were numerous exceeding 10 mitoses per 10 high-power fields. The tumor cells invaded into several vessels and metastasized to regional lymph nodes. Immunohistochemically, the tumor cells were strongly positive for neuroendocrine markers and thyroglobulin (Tg), a marker of thyroid follicular cells but negative for calcitonin and carcinoembryonic antigen (CEA). Expression of Tg and thyrotropin receptor (TSHR) were confirmed by quantitative real-time polymerase chain reaction (RT-PCR). Ki-67 labeling index was more than 70% in the tumor cells. Taken together, the tumor was diagnosed as SCNEC of the thyroid. Genetic analyses also revealed microsatellite abnormalities of the phosphatase and tensin homolog (PTEN) gene, suggesting that functional loss of PTEN contributes to carcinogenesis. CONCLUSIONS This is the first report describing a SCNEC of the thyroid with molecular analyses that provide evidence for a follicular epithelial origin.
Collapse
Affiliation(s)
- Zhanna Mussazhanova
- 1 Department of Tumor and Diagnostic Pathology, Nagasaki University , Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Damante G, Scaloni A, Tell G. Thyroid tumors: novel insights from proteomic studies. Expert Rev Proteomics 2014; 6:363-76. [DOI: 10.1586/epr.09.51] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Abstract
Many tissues if not all are thought to contain stem cells that are responsible for regeneration and repair of the tissue after injury. Dysregulation of tissue regeneration may result in various pathological conditions, among which cancer is the most extensively studied. Notably, the so-called cancer stem cells or tumor-initiating cells, have been studied in order to understand the mechanisms of carcinogenesis and/or metastasis. However, the nature of cancer stem cells, let alone normal stem/progenitor cells, particularly those of the thyroid remains elusive. There remains a gap in knowledge between adult thyroid stem/progenitor cells and cancer stem cells of the thyroid, and if and/or how they are related to each other. Understanding of the mechanism for thyroid regeneration and mode of participation of normal adult thyroid stem/progenitor cells in this process will hopefully yield a more complete understanding of the nature of thyroid cancer stem cells, and/or help understand the pathogenesis of other thyroid diseases. This review summarizes the current understanding of adult thyroid stem/progenitor cells, with particular emphasis on how they contribute to thyroid regeneration.
Collapse
Affiliation(s)
- Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- *Correspondence: Shioko Kimura, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Building 37, Room 3106, Bethesda, MD 20892, USA e-mail:
| |
Collapse
|
49
|
Sewell W, Lin RY. Generation of thyroid follicular cells from pluripotent stem cells: potential for regenerative medicine. Front Endocrinol (Lausanne) 2014; 5:96. [PMID: 24995001 PMCID: PMC4062909 DOI: 10.3389/fendo.2014.00096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/05/2014] [Indexed: 01/08/2023] Open
Abstract
Nearly 12% of the population in the United States will be afflicted with a thyroid related disorder during their lifetime. Common treatment approaches are tailored to the specific disorder and include surgery, radioactive iodine ablation, antithyroid drugs, thyroid hormone replacement, external beam radiation, and chemotherapy. Regenerative medicine endeavors to combat disease by replacing or regenerating damaged, diseased, or dysfunctional body parts. A series of achievements in pluripotent stem cell research have transformed regenerative medicine in many ways by demonstrating "repair" of a number of body parts in mice, of which, the thyroid has now been inducted into this special group. Seminal work in pluripotent cells, namely embryonic stem cells and induced pluripotent stem cells, have made possible their path to becoming key tools and biological building blocks for cell-based regenerative medicine to combat the gamut of human diseases, including those affecting the thyroid.
Collapse
Affiliation(s)
- Will Sewell
- Department of Otolaryngology – Head and Neck Surgery, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Reigh-Yi Lin
- Department of Otolaryngology – Head and Neck Surgery, Saint Louis University School of Medicine, St. Louis, MO, USA
- *Correspondence: Reigh-Yi Lin, Department of Otolaryngology – Head and Neck Surgery, Saint Louis University School of Medicine, 1100 South Grand Blvd, St. Louis, MO 63104, USA e-mail:
| |
Collapse
|
50
|
Wei W, Wang Y, Dong J, Wang Y, Min H, Song B, Shan Z, Teng W, Xi Q, Chen J. Hypothyroxinemia induced by mild iodine deficiency deregulats thyroid proteins during gestation and lactation in dams. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:3233-45. [PMID: 23917811 PMCID: PMC3774435 DOI: 10.3390/ijerph10083233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 11/17/2022]
Abstract
The main object of the present study was to explore the effect on thyroidal proteins following mild iodine deficiency (ID)-induced maternal hypothyroxinemia during pregnancy and lactation. In the present study, we established a maternal hypothyroxinemia model in female Wistar rats by using a mild ID diet. Maternal thyroid iodine content and thyroid weight were measured. Expressions of thyroid-associated proteins were analyzed. The results showed that the mild ID diet increased thyroid weight, decreased thyroid iodine content and increased expressions of thyroid transcription factor 1, paired box gene 8 and Na+/I- symporter on gestational day (GD) 19 and postpartum days (PN) 21 in the maternal thyroid. Moreover, the up-regulated expressions of type 1 iodothyronine deiodinase (DIO1) and type 2 iodothyronine deiodinase (DIO2) were detected in the mild ID group on GD19 and PN21. Taken together, our data indicates that during pregnancy and lactation, a maternal mild ID could induce hypothyroxinemia and increase the thyroidal DIO1 and DIO2 levels.
Collapse
Affiliation(s)
- Wei Wei
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, 92 North 2nd Road, Shenyang 110001, China; E-Mails: (W.W.); (Y.W.); (J.D.); (Y.W.); (H.M.); (B.S.); (Q.X.)
- Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Hospital of China Medical University, Shenyang 110001, China; E-Mails: (Z.S.); (W.T.)
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, 92 North 2nd Road, Shenyang 110001, China; E-Mails: (W.W.); (Y.W.); (J.D.); (Y.W.); (H.M.); (B.S.); (Q.X.)
- Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Hospital of China Medical University, Shenyang 110001, China; E-Mails: (Z.S.); (W.T.)
| | - Jing Dong
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, 92 North 2nd Road, Shenyang 110001, China; E-Mails: (W.W.); (Y.W.); (J.D.); (Y.W.); (H.M.); (B.S.); (Q.X.)
- Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Hospital of China Medical University, Shenyang 110001, China; E-Mails: (Z.S.); (W.T.)
| | - Yuan Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, 92 North 2nd Road, Shenyang 110001, China; E-Mails: (W.W.); (Y.W.); (J.D.); (Y.W.); (H.M.); (B.S.); (Q.X.)
| | - Hui Min
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, 92 North 2nd Road, Shenyang 110001, China; E-Mails: (W.W.); (Y.W.); (J.D.); (Y.W.); (H.M.); (B.S.); (Q.X.)
| | - Binbin Song
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, 92 North 2nd Road, Shenyang 110001, China; E-Mails: (W.W.); (Y.W.); (J.D.); (Y.W.); (H.M.); (B.S.); (Q.X.)
| | - Zhongyan Shan
- Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Hospital of China Medical University, Shenyang 110001, China; E-Mails: (Z.S.); (W.T.)
| | - Weiping Teng
- Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Hospital of China Medical University, Shenyang 110001, China; E-Mails: (Z.S.); (W.T.)
| | - Qi Xi
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, 92 North 2nd Road, Shenyang 110001, China; E-Mails: (W.W.); (Y.W.); (J.D.); (Y.W.); (H.M.); (B.S.); (Q.X.)
- Department of Physiology, the University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jie Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, 92 North 2nd Road, Shenyang 110001, China; E-Mails: (W.W.); (Y.W.); (J.D.); (Y.W.); (H.M.); (B.S.); (Q.X.)
- Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Hospital of China Medical University, Shenyang 110001, China; E-Mails: (Z.S.); (W.T.)
| |
Collapse
|