1
|
Kumar V, Dhanjal JK, Sari AN, Khurana M, Kaul SC, Wadhwa R, Sundar D. Effect of Withaferin-A, Withanone, and Caffeic Acid Phenethyl Ester on DNA Methyltransferases: Potential in Epigenetic Cancer Therapy. Curr Top Med Chem 2024; 24:379-391. [PMID: 37496252 DOI: 10.2174/1568026623666230726105017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND DNA methyltransferases (DNMTs) have been reported to be potential drug targets in various cancers. The major hurdle in inhibiting DNMTs is the lack of knowledge about different DNMTs and their role in the hypermethylation of gene promoters in cancer cells. Lack of information on specificity, stability, and higher toxicity of previously reported DNMT inhibitors is the major reason for inadequate epigenetic cancer therapy. DNMT1 and DNMT3A are the two DNMTs that are majorly overexpressed in cancers. OBJECTIVE In this study, we have presented computational and experimental analyses of the potential of some natural compounds, withaferin A (Wi-A), withanone (Wi-N), and caffeic acid phenethyl ester (CAPE), as DNMT inhibitors, in comparison to sinefungin (SFG), a known dual inhibitor of DNMT1 and DNMT3A. METHODS We used classical simulation methods, such as molecular docking and molecular dynamics simulations, to investigate the binding potential and properties of the test compounds with DNMT1 and DNMT3A. Cell culture-based assays were used to investigate the inactivation of DNMTs and the resulting hypomethylation of the p16INK4A promoter, a key tumour suppressor that is inactivated by hypermethylation in cancer cells, resulting in upregulation of its expression. RESULTS Among the three test compounds (Wi-A, Wi-N, and CAPE), Wi-A showed the highest binding affinity to both DNMT1 and DNMT3A; CAPE showed the highest affinity to DNMT3A, and Wi-N showed a moderate affinity interaction with both. The binding energies of Wi-A and CAPE were further compared with SFG. Expression analysis of DNMTs showed no difference between control and treated cells. Cell viability and p16INK4A expression analysis showed a dose-dependent decrease in viability, an increase in p16INK4A, and a stronger effect of Wi-A compared to Wi-N and CAPE. CONCLUSION The study demonstrated the differential binding ability of Wi-A, Wi-N, and CAPE to DNMT1 and DNMT3A, which was associated with their inactivation, leading to hypomethylation and desilencing of the p16INK4A tumour suppressor in cancer cells. The test compounds, particularly Wi-A, have the potential for cancer therapy.
Collapse
Affiliation(s)
- Vipul Kumar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110016, India
| | - Jaspreet Kaur Dhanjal
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi, Okhla Industrial Estate, Phase III, New Delhi, 110020, India
- Department of Cellular and Molecular Biotechnology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 3058565, Japan
| | - Anissa Nofita Sari
- Department of Cellular and Molecular Biotechnology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 3058565, Japan
| | - Mallika Khurana
- Department of Cellular and Molecular Biotechnology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 3058565, Japan
| | - Sunil C Kaul
- Department of Cellular and Molecular Biotechnology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 3058565, Japan
| | - Renu Wadhwa
- Department of Cellular and Molecular Biotechnology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 3058565, Japan
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
2
|
Cen Y, Fang Y, Ren Y, Hong S, Lu W, Xu J. Global characterization of extrachromosomal circular DNAs in advanced high grade serous ovarian cancer. Cell Death Dis 2022; 13:342. [PMID: 35418185 PMCID: PMC9007969 DOI: 10.1038/s41419-022-04807-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 01/02/2023]
Abstract
High grade serous ovarian cancer (HGSOC) is the most aggressive subtype of ovarian cancer and HGSOC patients often appear with metastasis, leading to the poor prognosis. Up to date, the extrachromosomal circular DNAs (eccDNAs) have been shown to be involved in cancer genome remodeling but the roles of eccDNAs in metastatic HGSOC are still not clear. Here we explored eccDNA profiles in HGSOC by Circle-Sequencing analysis using four pairs of primary and metastatic tissues of HGSOC patients. Within the differentially expressed eccDNAs screened out by our analysis, eight candidates were validated by outward PCR and qRT-PCR analysis. Among them, DNMT1circle10302690-10302961 was further confirmed by FISH assay and BaseScope assay, as the most significantly down-regulated eccDNA in metastatic tumors of HGSOC. Lower expression of DNMT1circle10302690-10302961 in both primary and metastatic tumors was associated with worse prognosis of HGSOC. Taken together, our finding firstly demonstrated the eccDNAs landscape of primary and metastatic tissues of HGSOC. The eccDNA DNMT1circle10302690-10302961 can be considered as a potential biomarker or a therapeutically clinical target of HGSOC metastasis and prognosis.
Collapse
Affiliation(s)
- Yixuan Cen
- Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Yifeng Fang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Yan Ren
- Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Shiyuan Hong
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Weiguo Lu
- Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China. .,Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| | - Junfen Xu
- Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China. .,Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
3
|
Shi J, Song S, Li S, Zhang K, Lan Y, Li Y. TNF-α/NF-κB signaling epigenetically represses PSD4 transcription to promote alcohol-related hepatocellular carcinoma progression. Cancer Med 2021; 10:3346-3357. [PMID: 33932127 PMCID: PMC8124102 DOI: 10.1002/cam4.3832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Chronic alcohol consumption is more frequently associated with advanced, aggressive hepatocellular carcinoma (HCC) tumors. Alcohol adversely impacts ER/Golgi membrane trafficking and Golgi protein N-glycosylation in hepatocytes; these effects have been attributed (in part) to dysregulated adenosine diphosphate-ribosylation factor (ARF) GTPase signaling. Here, we investigated the role of the ARF GTPase guanine exchange factor PSD4 in HCC progression. METHODS R-based bioinformatics analysis was performed on publicly available array data. Modulating gene expression was accomplished via lentiviral vectors. Gene expression was analyzed using quantitative real-time PCR and immunoblotting. PSD4 promoter methylation was assessed using quantitative methylation-specific PCR. Phospho-p65(S276)/DNMT1 binding to the PSD4 promoter was analyzed via chromatin immunoprecipitation. We constructed ethanol/DEN-induced and DEN only-induced transgenic murine models of HCC. RESULTS We identified PSD4 as a hypermethylated, suppressed gene in alcohol-related HCC tumors; however, PSD4 was not dysregulated in all-cause HCC tumors. Certain HCC cell lines also displayed varying degrees of PSD4 downregulation. PSD4 overexpression or knockdown decreased and increased cell migration and invasiveness, respectively. Mechanistically, PSD4 transcription was repressed by TNF-α-induced phospho-p65(S276)'s recruitment of DNA methyltransferase 1 (DNMT1), resulting in PSD4 promoter methylation. PSD4 inhibited pro-EMT CDC42 activity, resulting in downregulation of E-cadherin and upregulation of N-cadherin and vimentin. Hepatocyte-specific PSD4 overexpression reduced ethanol/DEN-induced HCC tumor progression and EMT marker expression in vivo. CONCLUSIONS PSD4 is a hypermethylated, suppressed gene in alcohol-related HCC tumors that negatively modulated pro-EMT CDC42 activity. Furthermore, we present a novel phospho-NF-κB p65(S276)/DNMT1-mediated promoter methylation mechanism by which TNF-α/NF-κB signaling represses PSD4 transcription in HCC cells.
Collapse
Affiliation(s)
- Jia'ning Shi
- Department of Infectious Disease, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shupeng Song
- Department of Infectious Disease, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuangxing Li
- Department of Infectious Disease, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Kaili Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yinghua Lan
- Department of Infectious Disease, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yongguo Li
- Department of Infectious Disease, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
4
|
Wang J, Yang J, Li D, Li J. Technologies for targeting DNA methylation modifications: Basic mechanism and potential application in cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188454. [PMID: 33075468 DOI: 10.1016/j.bbcan.2020.188454] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/14/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
DNA methylation abnormalities are regarded as critical event for cancer initiation and development. Tumor-associated genes encompassing aberrant DNA methylation alterations at specific locus are correlated with chromatin remodeling and dysregulation of gene expression in various malignancies. Thus, technologies designed to manipulate DNA methylation at specific loci of genome are necessary for the functional study and therapeutic application in the context of cancer management. Traditionally, the method for DNA methylation modifications demonstrates an unspecific feature, adversely causing global-genome epigenetic alterations and confusing the function of desired gene. Novel approaches for targeted DNA methylation regulation have a great advantage of manipulating gene epigenetic alterations in a more specific and efficient method. In this review, we described different targeting DNA methylation techniques, including both their advantages and limitations. Through a comprehensive understanding of these targeting tools, we hope to open a new perspective for cancer treatment.
Collapse
Affiliation(s)
- Jie Wang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Jing Yang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Dandan Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China.
| |
Collapse
|
5
|
Chromatin remodeling factor ARID2 suppresses hepatocellular carcinoma metastasis via DNMT1-Snail axis. Proc Natl Acad Sci U S A 2020; 117:4770-4780. [PMID: 32071245 DOI: 10.1073/pnas.1914937117] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Recurrence and metastasis remain the major obstacles to successful treatment of hepatocellular carcinoma (HCC). Chromatin remodeling factor ARID2 is commonly mutated in HCC, indicating its important role in cancer development. However, its role in HCC metastasis is largely elusive. In this study, we find that ARID2 expression is significantly decreased in metastatic HCC tissues, showing negative correlation with pathological grade, organ metastasis and positive association with survival of HCC patients. ARID2 inhibits migration and invasion of HCC cells in vitro and metastasis in vivo. Moreover, ARID2 knockout promotes pulmonary metastasis in different HCC mouse models. Mechanistic study reveals that ARID2 represses epithelial-mesenchymal transition (EMT) of HCC cells by recruiting DNMT1 to Snail promoter, which increases promoter methylation and inhibits Snail transcription. In addition, we discover that ARID2 mutants with disrupted C2H2 domain lose the metastasis suppressor function, exhibiting a positive association with HCC metastasis and poor prognosis. In conclusion, our study reveals the metastasis suppressor role as well as the underlying mechanism of ARID2 in HCC and provides a potential therapeutic target for ARID2-deficient HCC.
Collapse
|
6
|
Lee E, Wang J, Yumoto K, Jung Y, Cackowski FC, Decker AM, Li Y, Franceschi RT, Pienta KJ, Taichman RS. DNMT1 Regulates Epithelial-Mesenchymal Transition and Cancer Stem Cells, Which Promotes Prostate Cancer Metastasis. Neoplasia 2017; 18:553-66. [PMID: 27659015 PMCID: PMC5031902 DOI: 10.1016/j.neo.2016.07.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 12/30/2022] Open
Abstract
Cancer metastasis is a multistep process associated with the induction of an epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs). Although significant progress has been made in understanding the molecular mechanisms regulating EMT and the CSC phenotype, little is known of how these processes are regulated by epigenetics. Here we demonstrate that reduced expression of DNA methyltransferase 1 (DNMT1) plays an important role in the induction of EMT and the CSC phenotype by prostate cancer (PCa) cells, with enhanced tumorigenesis and metastasis. First, we observed that reduction of DNMT1 by 5-azacitidine (5-Aza) promotes EMT induction as well as CSCs and sphere formation in vitro. Reduced expression of DNMT1 significantly increased PCa migratory potential. We showed that the increase of EMT and CSC activities by reduction of DNMT1 is associated with the increase of protein kinase C. Furthermore, we confirmed that silencing DNMT1 is correlated with enhancement of the induction of EMT and the CSC phenotype in PCa cells. Additionally, chromatin immunoprecipitation assay reveals that reduction of DNMT1 promotes the suppression of H3K9me3 and H3K27me3 on the Zeb2 and KLF4 promoter region in PCa cells. Critically, we found in an animal model that significant tumor growth and more disseminated tumor cells in most osseous tissues were observed following injection of 5-Aza pretreated-PCa cells compared with vehicle-pretreated PCa cells. Our results suggest that epigenetic alteration of histone demethylation regulated by reduction of DNMT1 may control induction of EMT and the CSC phenotype, which facilitates tumorigenesis in PCa cells and has important therapeutic implications in targeting epigenetic regulation.
Collapse
Affiliation(s)
- Eunsohl Lee
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Jingcheng Wang
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Kenji Yumoto
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Younghun Jung
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Frank C Cackowski
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Ann M Decker
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Yan Li
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Renny T Franceschi
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Kenneth J Pienta
- Department of Urology, The James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Russell S Taichman
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA.
| |
Collapse
|
7
|
Qi D, Li J, Que B, Su J, Li M, Zhang C, Yang M, Zhou G, Ji W. Long non-coding RNA DBCCR1-003 regulate the expression of DBCCR1 via DNMT1 in bladder cancer. Cancer Cell Int 2016; 16:81. [PMID: 27777512 PMCID: PMC5069854 DOI: 10.1186/s12935-016-0356-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 10/03/2016] [Indexed: 01/17/2023] Open
Abstract
Background Many long non coding RNAs have been identified as key modulators in cancer development. A lncRNA, DBCCR1-003, derived from the locus of tumor suppressor gene DBCCR1 (deleted in bladder cancer chromosome region 1), has unknown function. In the present study, we explored function and molecular mechanism of DBCCR1-003 in bladder cancer (BC) development. Methods We evaluated the expression levels of DBCCR1-003 in tissues and cells with western blot and quantitative real-time polymerase chain reaction. Multiple approaches including chromatin immunoprecipitation assay and RNA immunoprecipitation were used to confirm the direct binding of DBCCR1-003 to DNMT1. The recombinant vector overexpressing DBCCR1-003 was constructed. Cell proliferation assay, colony formation assay and flow cytometric analysis were employed to measure the role of DBCCR1-003 in regulation of cell proliferation, cycle and apoptosis. Results Firstly we detected the expression of DBCCR1-003, DBCCR1, DNMT1 (DNA methyltransferase 1) and DNA methylation in the promoter of DBCCR1. We found low expression of DBCCR1-003, same as DBCCR1, while high expression of DNMT1 and hypermethylation of DBCCR1 gene promoter in BC tissues and T24 cells line. Further studies revealed that treatment of DNMT inhibitor, 5-aza-2-deoxycytidine(DAC), or overexpression of DBCCR1-003 led to increased DBCCR1 expression by reversion of promoter hypermethylation and DNMT1 binding to DBCCR1 promoter in T24 cells. Importantly, RNA immunoprecipitation (RIP) showed that DBCCR1-003 physically associates with DNMT1. The binding of them was increased with the inhibition of DBCCR1 promoter methylation, indicating that DBCCR1-003 may bind to DNMT1 and prevent DNMT1-mediated the methylation of DBCCR1. Furthermore, overexpression of DBCCR1-003 resulted in significant inhibition of T24 cells growth through the inducing G0/G1 arrest and apoptosis. Conclusions Taken together, these findings demonstrated that a novel tumor suppressor DBCCR1-003 regulates the expression of DBCCR1 via binding to DNMT1 and preventing DNMT1-mediated the methylation of DBCCR1 in BC. LncRNA DBCCR1-003 may serve as a novel biomarker and therapeutic target for BC in future cancer clinic. Electronic supplementary material The online version of this article (doi:10.1186/s12935-016-0356-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Defeng Qi
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Jinhui Li
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China.,The Affiliated Hospital of School of Medicine of Ningbo University, Zhejiang, 315000 China
| | - Biao Que
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Jialin Su
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China.,The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Mengxi Li
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Chaofeng Zhang
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Mei Yang
- Breast Disease Center, Guangdong Women and Children Hospital of Guangzhou Medical University, Guangzhou, 510010 Guangdong China.,Department of General Surgery, General Hospital of Guangzhou Military Command of PLA, Guangzhou, 510010 Guangdong China
| | - Guoren Zhou
- Department of Medical Oncology, Jiangsu Cancer Hospital, Nanjing, 210009 Jiangsu China
| | - Weidong Ji
- The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| |
Collapse
|
8
|
Peres R, Furuya H, Pagano I, Shimizu Y, Hokutan K, Rosser CJ. Angiogenin contributes to bladder cancer tumorigenesis by DNMT3b-mediated MMP2 activation. Oncotarget 2016; 7:43109-43123. [PMID: 27317771 PMCID: PMC5190012 DOI: 10.18632/oncotarget.10097] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/14/2016] [Indexed: 12/31/2022] Open
Abstract
Epigenetic-mediated gene activation/silencing plays a crucial role in human tumorigenesis. Eliciting the underlying mechanism behind certain epigenetic changes is essential for understanding tumor biology. Previous studies in human cancers revealed an unrecognized interplay between Angiogenin (ANG) and matrix metalloproteinase-2 (MMP2) leading to pronounced tumorigenesis. Here we provide multiple lines of evidence further indicating ANG oncogenic potential. ANG expression resulted in the hypomethylated state of the MMP2 gene, which led to increased gene expression of MMP2. More than that, our global DNA methylation microarray analysis showed that gene manipulation of ANG affected a variety of pathways, such as cell migration, angiogenesis and specifically, tumor suppressor genes. Mechanistically, ANG negatively regulated DNA methyltransferase 3b (DNMT3b) enzymatic activity by down-regulating its expression and inhibiting its recruitment to the MMP2 promoter. Consistent with this, ANG-MMP2 overexpression and DNMT3b underexpression correlated with reduction in disease free survival of human bladder cancer patients. Together, the results continue to establish ANG as an oncoprotein and further reveal that ANG contributes to oncogenesis by the activation of MMP2 through modulation of DNMT3b functions.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinogenesis/genetics
- Cell Line, Tumor
- Cell Movement
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Methylation
- Disease-Free Survival
- Down-Regulation
- Enzyme-Linked Immunosorbent Assay
- Epigenesis, Genetic
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Humans
- Kaplan-Meier Estimate
- Matrix Metalloproteinase 2/metabolism
- Neovascularization, Pathologic/metabolism
- Oncogene Proteins/genetics
- Oncogene Proteins/metabolism
- Promoter Regions, Genetic
- RNA Interference
- RNA, Small Interfering/metabolism
- Ribonuclease, Pancreatic/genetics
- Ribonuclease, Pancreatic/metabolism
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/mortality
- Urinary Bladder Neoplasms/pathology
- DNA Methyltransferase 3B
Collapse
Affiliation(s)
- Rafael Peres
- University of Hawaii Cancer Center, Clinical & Translational Research Program, Honolulu, HI, USA
| | - Hideki Furuya
- University of Hawaii Cancer Center, Clinical & Translational Research Program, Honolulu, HI, USA
| | - Ian Pagano
- University of Hawaii Cancer Center, Cancer Prevention and Control Program, Honolulu, HI, USA
| | - Yoshiko Shimizu
- University of Hawaii Cancer Center, Clinical & Translational Research Program, Honolulu, HI, USA
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Kanani Hokutan
- University of Hawaii Cancer Center, Clinical & Translational Research Program, Honolulu, HI, USA
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Charles J. Rosser
- University of Hawaii Cancer Center, Clinical & Translational Research Program, Honolulu, HI, USA
| |
Collapse
|
9
|
Subramaniam D, Thombre R, Dhar A, Anant S. DNA methyltransferases: a novel target for prevention and therapy. Front Oncol 2014; 4:80. [PMID: 24822169 PMCID: PMC4013461 DOI: 10.3389/fonc.2014.00080] [Citation(s) in RCA: 331] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 03/31/2014] [Indexed: 12/14/2022] Open
Abstract
Cancer is the second leading cause of death in US. Despite the emergence of new, targeted agents, and the use of various therapeutic combinations, none of the available treatment options are curative in patients with advanced cancer. Epigenetic alterations are increasingly recognized as valuable targets for the development of cancer therapies. DNA methylation at the 5-position of cytosine, catalyzed by DNA methyltransferases (DNMTs), is the predominant epigenetic modification in mammals. DNMT1, the major enzyme responsible for maintenance of the DNA methylation pattern is located at the replication fork and methylates newly biosynthesized DNA. DNMT2 or TRDMT1, the smallest mammalian DNMT is believed to participate in the recognition of DNA damage, DNA recombination, and mutation repair. It is composed solely of the C-terminal domain, and does not possess the regulatory N-terminal region. The levels of DNMTs, especially those of DNMT3B, DNMT3A, and DNMT3L, are often increased in various cancer tissues and cell lines, which may partially account for the hypermethylation of promoter CpG-rich regions of tumor suppressor genes in a variety of malignancies. Moreover, it has been shown to function in self-renewal and maintenance of colon cancer stem cells and need to be studied in several cancers. Inhibition of DNMTs has demonstrated reduction in tumor formation in part through the increased expression of tumor suppressor genes. Hence, DNMTs can potentially be used as anti-cancer targets. Dietary phytochemicals also inhibit DNMTs and cancer stem cells; this represents a promising approach for the prevention and treatment of many cancers.
Collapse
Affiliation(s)
- Dharmalingam Subramaniam
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center , Kansas City, KS , USA ; The University of Kansas Cancer Center , Kansas City, KS , USA
| | - Ravi Thombre
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center , Kansas City, KS , USA
| | - Animesh Dhar
- The University of Kansas Cancer Center , Kansas City, KS , USA ; Department of Cancer Biology, The University of Kansas Medical Center , Kansas City, KS , USA
| | - Shrikant Anant
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center , Kansas City, KS , USA ; The University of Kansas Cancer Center , Kansas City, KS , USA ; Department of Cancer Biology, The University of Kansas Medical Center , Kansas City, KS , USA
| |
Collapse
|
10
|
Ji W, Yang L, Yuan J, Yang L, Zhang M, Qi D, Duan X, Xuan A, Zhang W, Lu J, Zhuang Z, Zeng G. MicroRNA-152 targets DNA methyltransferase 1 in NiS-transformed cells via a feedback mechanism. Carcinogenesis 2012; 34:446-53. [DOI: 10.1093/carcin/bgs343] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
11
|
Pogribny IP, Beland FA. DNA methylome alterations in chemical carcinogenesis. Cancer Lett 2012; 334:39-45. [PMID: 23010082 DOI: 10.1016/j.canlet.2012.09.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/28/2012] [Accepted: 09/14/2012] [Indexed: 01/30/2023]
Abstract
Carcinogenesis, a complex multifactorial process of the transformation of normal cells into malignant cells, is characterized by many biologically significant and interdependent alterations triggered by the mutational and/or non-mutational (i.e., epigenetic) events. One of these events, specific to all types of cancer, is alterations in DNA methylation. This review summarizes the current knowledge of the role of DNA methylation changes induced by various genotoxic chemicals (carcinogenic agents that interact with DNA) and non-genotoxic carcinogens (chemicals causing tumor by mechanisms other than directly damaging DNA) in the lung, colorectal, liver, and hematologic carcinogenesis. It also emphasizes the potential role for epigenetic changes to serve as markers for carcinogen exposure and carcinogen risk assessment.
Collapse
Affiliation(s)
- Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA.
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA.
| |
Collapse
|
12
|
Barrera LN, Johnson IT, Bao Y, Cassidy A, Belshaw NJ. Colorectal cancer cells Caco-2 and HCT116 resist epigenetic effects of isothiocyanates and selenium in vitro. Eur J Nutr 2012; 52:1327-41. [PMID: 22923034 DOI: 10.1007/s00394-012-0442-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 08/10/2012] [Indexed: 12/27/2022]
Abstract
PURPOSE It is relatively unknown how different dietary components, in partnership, regulate gene expression linked to colon pathology. It has been suggested that the combination of various bioactive components present in a plant-based diet is crucial for their potential anticancer activities. This study employed a combinatorial chemopreventive strategy to investigate the impact of selenium and/or isothiocyanates on DNA methylation processes in colorectal carcinoma cell lines. METHODS To gain insights into the epigenetic-mediated changes in gene expression in response to these dietary constituents cultured Caco-2 and HCT116 cells were exposed for up to 12 days to different concentrations of selenium methylselenocysteine and selenite (ranging from 0.2 to 5 μM) either alone or in combination with sulforaphane and iberin (ranging from 6 to 8 μM), and changes to gene-specific (p16(INK4A) and ESR1), global (LINE-1) methylation and DNMT expression were quantified using real-time PCR-based assays. RESULTS No effects on the methylation of CpG islands in ESR1, p16(INK4A) or of LINE-1, a marker of global genomic methylation, were observed after exposure of Caco-2 and HCT116 cells to selenium or isothiocyanates. Only transient changes in DNMT mRNA expression, which occurred mostly in the treatment groups containing isothiocyanates, were observed, and these occurred only for specific DNMT transcripts and did not lead to the modification of the aberrant methylation status present in these cells. CONCLUSION These data suggest that treatment for colon cancer cells with selenium and/or isothiocyanates, either individually or in combination does not impact abnormal methylation patterns of key genes involved in the complex multistep process of colon carcinogenesis in vitro.
Collapse
Affiliation(s)
- Lawrence N Barrera
- Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, UK
| | | | | | | | | |
Collapse
|
13
|
Anisman H, Merali Z, Poulter M. Gamma-Aminobutyric Acid Involvement in Depressive Illness. THE NEUROBIOLOGICAL BASIS OF SUICIDE 2012. [DOI: 10.1201/b12215-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
14
|
The lytic phase of epstein-barr virus requires a viral genome with 5-methylcytosine residues in CpG sites. J Virol 2011; 86:447-58. [PMID: 22031942 DOI: 10.1128/jvi.06314-11] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Epstein-Barr virus (EBV) is a human herpesvirus which has been studied intensively for its role in certain human tumors. It also serves as a model of herpesviral latency because it establishes an immediate, latent infection in human B cells. When EBV infects quiescent, primary B cells it induces their continuous proliferation to yield growth-transformed B-cell lines in vitro. The lytic or productive phase of EBV's life cycle is induced by the expression of the viral BZLF1 gene in latently infected cells. The BZLF1 protein is a transactivator, which selectively binds to two classes of distinct DNA sequence motifs. One class is similar to the motifs that are bound by members of the AP-1 transcription factor family to which BZLF1 belongs. The second class, which contains CpG motifs, is predominant in viral promoters of early lytic genes and is BZLF1's preferred or exclusive target sequence when methylated. The BZLF1 gene is transiently expressed in newly infected B cells but fails to induce EBV's lytic cycle, potentially because the virion DNA is unmethylated. Here we report that the lack of 5-methylcytosine residues in CpG sites of virion DNA prevents the expression of essential lytic genes indispensable for viral DNA amplification during productive infection. This finding indicates that BZLF1 transactivates these promoters in a methylation-dependent fashion and explains how progeny virus synthesis is abrogated in newly infected B cells. Our data also reveal that viral lytic DNA synthesis precludes CpG methylation of virion DNA during EBV's lytic, productive cycle, which can be overcome by the ectopic expression of a prokaryotic cytosine methyltransferase to yield CpG-methylated virion DNA. Upon infection of B cells, randomly CpG-methylated virion DNA induces high expression of essential lytic genes in contrast to virion DNA free of 5-methylcytosine residues. Our data suggest that unmethylated virion DNA is part of EBV's strategy to prevent the viral lytic phase in newly infected B cells, allowing it to establish its characteristic latent infection in them.
Collapse
|
15
|
Alva AS, Hahn NM, Aparicio AM, Singal R, Yellapragada S, Sonpavde G. Hypomethylating agents for urologic cancers. Future Oncol 2011; 7:447-63. [PMID: 21417907 DOI: 10.2217/fon.11.9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Silencing of tumor suppressor genes by promoter-region methylation as an epigenetic mechanism of gene regulation is increasingly recognized as beneficial in cancer. Initially developed as cytotoxic high-dose therapies, azacitidine and decitabine are now being reinvestigated in lower-dose cancer treatment regimens with a different paradigm - hypomethylation. Recent evidence for benefit in myelodysplastic syndromes and acute myeloid leukemias has renewed interest in hypomethylation as a therapeutic option in epithelial cancers. In this article, we describe the mechanistic aspects of DNA methylation, which alters gene expression, and review the evidence for hypomethylation as a therapeutic option in urologic cancers. Potential correlative studies that may assist in developing tailored therapy with hypomethylating agents are reviewed. Given that the population with urologic cancers is typically elderly with multiple comorbidities, the excellent tolerability of lower-dose hypomethylating agents provides a high therapeutic index and rational development is warranted, bearing in mind that the cytostatic and delayed activity present challenges in the choice of appropriate trial end points.
Collapse
Affiliation(s)
- Ajjai S Alva
- Baylor College of Medicine & Michael E DeBakey VA Medical Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
16
|
Qiu QA, Lv YF, Chen YM, Lin YG, Wu HY, Liu N. Transfection of methylated oligonucleotides inactivates the CHFR gene in human colon cancer cell line SW480. Shijie Huaren Xiaohua Zazhi 2010; 18:3565-3568. [DOI: 10.11569/wcjd.v18.i33.3565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether transfection of methylated oligonucleotides that are complementary to the CHFR (checkpoint with forkhead and ring finger domains) gene promoter inactivates the CHFR gene in human colon cancer cell line SW480 and to analyze the effect of CHFR inactivation on the biological behavior of SW480 cells.
METHODS: After methylated oligonucleotides that are complementary to the CHFR gene promoter were transfected into SW480 cells, MSP and RT-PCR were employed to detect the promoter methylation status and mRNA expression of the CHFR gene, respectively. MTT assay was used to detect the proliferation of SW480 cells before and after transfection.
RESULTS: In control SW480 cells, the promoter region of the CHFR gene was unmethylated and CHFR mRNA expression could be detected. After transfection of methylated oligonucleotides, CHFR gene promoter methylation was induced and CHFR mRNA expression was suppressed. The proliferation of SW480 cells transfected with methylated oligonucleotides was significantly higher than that of control cells.
CONCLUSION: Methylated oligonucleotides that are complementary to the CHFR gene promoter can induce CHFR gene promoter methylation, suppress CHFR mRNA expression, and promote cell proliferation in human colon cancer cell line SW480.
Collapse
|
17
|
Zhai RL, Wang GB, Cai KL, Tao KX, Xu F, Zhang WL, Wang ZY. Transcriptional inactivation of ERbeta gene is mediated by the induction of promoter hypermethylation in a rat colonic epithelial cell model. J Surg Res 2009; 155:306-310. [PMID: 19520385 DOI: 10.1016/j.jss.2008.09.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 09/22/2008] [Accepted: 09/30/2008] [Indexed: 11/25/2022]
Abstract
BACKGROUND To construct a primary rat colonic epithelial cell model for treatment with specific methylated oligonucleotides (MOs) and to determine whether the transcriptional inactivation of ERbeta mRNA is mediated by the induction of hypermethylation of the ERbeta gene promoter. METHODS Suckling rat colonic epithelial cells were cultured in DMEM. Two methylated oligonucleotides complementary to the promoter regions of ERbeta were synthesized and applied to the cultured cells to induce promoter hypermethylation of the ERbeta gene. Methylation-specific PCR (MSP) was used to determine the methylation status of the ERbeta promoter in the cultured cells. Reverse transcription-polymerase chain reaction (RT-PCR) was used to quantify the expression of ERbeta mRNA after treatment with MOs. RESULTS Suckling rat colonic epithelial cells were successfully cultured in vitro. The MOs and unmethylated oligonucleotides (UMOs) we designed, synthesized, successfully transfected into the colonic epithelial cells, and assembled in the nuclei of the cells, which had extremely elevated proliferative activity. RT-PCR demonstrated that the expression of ERbeta mRNA was significantly suppressed in the cells treated with MOs, whereas its expression in the control cells treated with UMOs was not. MSP analysis showed that the promoter of ERbeta in the cells treated with MOs was hypermethylated compared with that of the control cells. CONCLUSION The transcriptional inactivation of ERbeta mRNA in rat colonic epithelial cells may be mediated by the hypermethylation of the ERbeta gene promoter. Our model markedly simulates the epigenetic modification of the ERbeta gene in colonic cancer cells.
Collapse
Affiliation(s)
- Rong Lin Zhai
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Zhang S, Zeng F, Peng S, Zhu C, Li H, Wang L. Effects on biological behavior of bladder carcinoma T24 cells via silencing DNMT1 and/or DNMT3b with shRNA in vitro. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2009; 29:215-9. [PMID: 19399408 DOI: 10.1007/s11596-009-0216-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Indexed: 12/24/2022]
Abstract
In this study, RNA interference technique was employed to silence the expression of DNMT1 and/or DNMT3b in human bladder cancer T24 cells. The expression levels of their mRNA and protein were greatly decreased by up to 75% and 65% respectively after T24 cells were transfected with lipofectamine2000 for 72 h, indicating RNA interference is an effective tool in gene knockdown. Proliferation and apoptosis of T24 cells were detected by MTT, and annexin-V-FITC and propidium iodide staining flow cytometry, respectively. It was found that loss of the DNMT1 or DNMT3b expression could inhibit the cell growth and promote the cell apoptosis to some extent. However, combined treatment with shRNA targeting both DNMT1 and DNMT3b mRNA could obviously enhance the above effects. It was concluded that simultaneously silencing both genes could result in strong suppressing effect on tumor proliferation and promoting cell apoptosis than separate use, suggesting combined use of DNMT1 and DNMT3b can achieve a synergistic effect in the CpG island methylation in human bladder tumorigenesis.
Collapse
Affiliation(s)
- Shilong Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | | | | | | | | | | |
Collapse
|
19
|
Tanurdzic M, Vaughn MW, Jiang H, Lee TJ, Slotkin RK, Sosinski B, Thompson WF, Doerge RW, Martienssen RA. Epigenomic consequences of immortalized plant cell suspension culture. PLoS Biol 2009; 6:2880-95. [PMID: 19071958 PMCID: PMC2596858 DOI: 10.1371/journal.pbio.0060302] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 10/23/2008] [Indexed: 11/19/2022] Open
Abstract
Plant cells grown in culture exhibit genetic and epigenetic instability. Using a combination of chromatin immunoprecipitation and DNA methylation profiling on tiling microarrays, we have mapped the location and abundance of histone and DNA modifications in a continuously proliferating, dedifferentiated cell suspension culture of Arabidopsis. We have found that euchromatin becomes hypermethylated in culture and that a small percentage of the hypermethylated genes become associated with heterochromatic marks. In contrast, the heterochromatin undergoes dramatic and very precise DNA hypomethylation with transcriptional activation of specific transposable elements (TEs) in culture. High throughput sequencing of small interfering RNA (siRNA) revealed that TEs activated in culture have increased levels of 21-nucleotide (nt) siRNA, sometimes at the expense of the 24-nt siRNA class. In contrast, TEs that remain silent, which match the predominant 24-nt siRNA class, do not change significantly in their siRNA profiles. These results implicate RNA interference and chromatin modification in epigenetic restructuring of the genome following the activation of TEs in immortalized cell culture.
Collapse
Affiliation(s)
- Milos Tanurdzic
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Fan H, Cheng J, Zhao ZJ. Inhibition of de novo Methyltransferase 3B is a Potential Therapy for Hepatocellular Carcinoma. Gastroenterology Res 2008; 1:33-39. [PMID: 27994704 PMCID: PMC5154213 DOI: 10.4021/gr2008.10.1240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 11/06/2008] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Aberrant epigenetic patterns, including inactivation of tumor suppressor genes due to DNA methylation, have been described in many human cancers. Epigenetic therapeutic is a new and rapidly developing area of tumor treatment because DNA methyltransferase (DNMT) inhibitors can reverse its changes. We attempted to identify potential approach for epigenetic therapy of hepatocellular carcinoma. METHODS We knocked down the expression of DNMT 1 or DNMT 3B by siRNA, and inhibited DNA methyltranferases by 5-Aza-2'-deoxycytidine. We used high-density oligonucleotide gene expression microarrays to examine the induced genes in human hepatocellular carcinoma cell line SMMC-7721 after suppressing DNA methyltranferases. The 5' ends of up-regulated genes were analyzed by BLAST database to determine whether they have promoter CpG islands, and then the identical induced genes were compared among different inhibition of DNA methyltranferases. RESULTS Our results show that 9 genes were found to be over expressed by more than two-fold induced by DNMT1 siRNA and 5-Aza-CdR, and 30 genes were found to be over expressed by more than two-fold induced by DNMT3B siRNA and 5-Aza-CdR in SMMC-7721. Among them, 76.6% up-regulated genes conjectural contained 5' CpG islands. The DNMT3B siRNA could induce more genes identical to demethylation agent in SMMC-7721. CONCLUSIONS DNMT3B might be a new potential target for therapy of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hong Fan
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University; Department of Genetics and Development, Southeast University Medical School. 87 Dingjiaqiao, Nanjing 210009, Jiangsu Province, China
| | - Jian Cheng
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University; Department of Genetics and Development, Southeast University Medical School. 87 Dingjiaqiao, Nanjing 210009, Jiangsu Province, China
| | - Zhu Jiang Zhao
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University; Department of Genetics and Development, Southeast University Medical School. 87 Dingjiaqiao, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
21
|
D'Alessio AC, Szyf M. Epigenetic tête-à-tête: the bilateral relationship between chromatin modifications and DNA methylation. Biochem Cell Biol 2007; 84:463-76. [PMID: 16936820 DOI: 10.1139/o06-090] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The epigenome, which comprises chromatin, associated proteins, and the pattern of covalent modification of DNA by methylation, sets up and maintains gene expression programs. It was originally believed that DNA methylation was the dominant reaction in determining the chromatin structure. However, emerging data suggest that chromatin can affect DNA methylation in both directions, triggering either de novo DNA methylation or demethylation. These events are particularly important for the understanding of cellular transformation, which requires a coordinated change in gene expression profiles. While genetic alterations can explain some of the changes, the important role of epigenetic reprogramming is becoming more and more evident. Cancer cells exhibit a paradoxical coexistence of global loss of DNA methylation with regional hypermethylation.
Collapse
Affiliation(s)
- Ana C D'Alessio
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | | |
Collapse
|
22
|
Abstract
The DNA methylation level in patients with chronic lymphocytic leukemia is generally lower than healthy individuals. Although DNA methylation is globally decreased, regional hypermethylation of gene promoters leads to gene silencing. Many of these genes have tumor suppressor phenotypes. Unlike mutations or deletions, hypermethylation is potentially reversible after inhibition with DNA methylation modulators. Myelodysplastic syndrome has been a model disease in which treatment of patients results in demethylation of specific genes. The story in patients with chronic lymphocytic leukemia is slowly unraveling as epigenetic modifications likely also play an important role. Ongoing clinical trials correlating clinical response to gene expression after treatment with DNA methylation inhibitors will ultimately allow us to better risk stratify and predict the subgroup of patients who will benefit from treatment with this class of drugs.
Collapse
Affiliation(s)
- Margaret K Yu
- Division of Hematology, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
23
|
Wang J, Thompson B, Ren C, Ittmann M, Kwabi-Addo B. Sprouty4, a suppressor of tumor cell motility, is down regulated by DNA methylation in human prostate cancer. Prostate 2006; 66:613-24. [PMID: 16388505 DOI: 10.1002/pros.20353] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
PURPOSE Alterations of fibroblast growth factors (FGFs) and their receptors contribute to prostate cancer progression by enhancing cellular proliferation, survival, and motility. The Sprouty gene family negatively regulates FGF signaling and may limit the ability of FGFs to enhance tumor progression. Sprouty1 is down regulated in human prostate cancers and Sprouty1 expression can markedly inhibit prostate cancer proliferation in vitro. Sprouty4 has been shown to negatively regulate both proliferation and cell migration in other systems. We therefore examined whether Sprouty4 expression was altered in prostate cancer. EXPERIMENTAL DESIGN Expression of Sprouty4 was examined by in situ hybridization and quantitative RT-PCR. Methylation of the Sprouty4 gene promoter was assessed using bisulfite modification and sequencing. The effect of Sprouty4 expression on cell migration was determined using an in vitro wounding assay. RESULTS By in situ hybridization Sprouty4 is expressed in normal prostatic epithelial cells and is decreased in a subset of prostate cancers. Quantitative RT-PCR confirms that Sprouty4 expression is decreased in approximately one half of prostate cancers. Analysis of the 5'-regulatory region revealed a CpG island approximately 1 kb upstream of the transcription initiation site, the proximal portion of which was preferentially methylated in prostate cancer tissues. More than one half of all prostate cancer DNAs were methylated in this region and methylation was significantly correlated with decreased Sprouty4 expression as determined by quantitative RT-PCR. When overexpressed in prostate cancer cell lines, Sprouty4 did not inhibit cell proliferation but did inhibit cell migration. CONCLUSIONS Sprouty4 expression is down regulated in human prostate cancer by DNA methylation and this decreased expression may contribute to increased cell migration.
Collapse
Affiliation(s)
- Jianghua Wang
- Department of Pathology, Baylor College of Medicine and Michael E. DeBakey, Department of Veterans Affairs Medical Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
24
|
Bassal S, El-Osta A. DNA damage detection and repair, and the involvement of epigenetic states. Hum Mutat 2006; 25:101-9. [PMID: 15643607 DOI: 10.1002/humu.20130] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chromatin is a highly dynamic structure that acts alternately as a substrate and a template in a number of critical biological processes. Modification of chromatin is pertinent and is responsible for a number of nuclear processes, including DNA repair, replication, transcription, and recombination. The purpose of this review is to discuss specific interactions between chromatin remodeling, DNA repair, and transcription. These areas are demonstrated to share commonality, particularly with a number of key molecules that appear to have roles in a number of pathways. The implications of pathway cross-over and communication form a seamless continuation of genomic integrity and stability.
Collapse
Affiliation(s)
- Sahar Bassal
- Alfred Medical Research and Education Precinct, Baker Medical Research Institute, Epigenetics in Human Health and Disease Laboratory, Prahran, Australia
| | | |
Collapse
|
25
|
Ehrich M, Nelson MR, Stanssens P, Zabeau M, Liloglou T, Xinarianos G, Cantor CR, Field JK, van den Boom D. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc Natl Acad Sci U S A 2005; 102:15785-90. [PMID: 16243968 PMCID: PMC1276092 DOI: 10.1073/pnas.0507816102] [Citation(s) in RCA: 657] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Methylation is one of the major epigenetic processes pivotal to our understanding of carcinogenesis. It is now widely accepted that there is a relationship between DNA methylation, chromatin structure, and human malignancies. DNA methylation is potentially an important clinical marker in cancer molecular diagnostics. Understanding epigenetic modifications in their biological context involves several aspects of DNA methylation analysis. These aspects include the de novo discovery of differentially methylated genes, the analysis of methylation patterns, and the determination of differences in the degree of methylation. Here we present a previously uncharacterized method for high-throughput DNA methylation analysis that utilizes MALDI-TOF mass spectrometry (MS) analysis of base-specifically cleaved amplification products. We use the IGF2/H19 region to show that a single base-specific cleavage reaction is sufficient to discover methylation sites and to determine methylation ratios within a selected target region. A combination of cleavage reactions enables the complete evaluation of all relevant aspects of DNA methylation, with most CpGs represented in multiple reactions. We successfully applied this technology under high-throughput conditions to quantitatively assess methylation differences between normal and neoplastic lung cancer tissue samples from 48 patients in 47 genes and demonstrate that the quantitative methylation results allow accurate classification of samples according to their histopathology.
Collapse
Affiliation(s)
- Mathias Ehrich
- SEQUENOM, Inc., 3595 John Hopkins Court, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mitchell CP, Chen Y, Kundakovic M, Costa E, Grayson DR. Histone deacetylase inhibitors decreasereelinpromoter methylationin vitro. J Neurochem 2005; 93:483-92. [PMID: 15816871 DOI: 10.1111/j.1471-4159.2005.03040.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We investigated the effects of agents that induce reelin mRNA expression in vitro on the methylation status of the human reelin promoter in neural progenitor cells (NT2). NT2 cells were treated with the histone deacetylase inhibitors, trichostatin A (TSA) and valproic acid (VPA), and the methylation inhibitor aza-2'-deoxycytidine (AZA) for various times. All three drugs reduced the methylation profile of the reelin promoter relative to untreated cells. The acetylation status of histones H3 and H4 increased following treatment with VPA and TSA at times as short as 15 min following treatment; a result consistent with the reported mode of action of these drugs. Chromatin immunoprecipitation experiments showed that these changes were accompanied by changes occurring at the level of the reelin promoter as well. Interestingly, AZA decreased reelin promoter methylation without concomittantly increasing histone acetylation. In fact, after prolonged treatments with AZA, the acetylation status of histones H3 and H4 decreased relative to untreated cells. We also observed a trend towards reduced methylated H3 after 18 h treatment with TSA and VPA. Our data indicate that while TSA and VPA act to increase histone acetylation and reduce promoter methylation, AZA acts only to decrease the amount of reelin promoter methylation.
Collapse
Affiliation(s)
- Colin P Mitchell
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
27
|
Mitchell CP, Grayson DR, Goldman MB. Neonatal lesions of the ventral hippocampal formation alter GABA-A receptor subunit mRNA expression in adult rat frontal pole. Biol Psychiatry 2005; 57:49-55. [PMID: 15607300 DOI: 10.1016/j.biopsych.2004.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 08/04/2004] [Accepted: 09/24/2004] [Indexed: 12/15/2022]
Abstract
BACKGROUND Gamma-aminobutyric acid (GABA)-ergic function is altered in schizophrenia. Of particular interest is the altered central nervous system expression of GABA-A receptor subunits, as changes in subunit expression account for recognized differences in mammalian brain function making them inviting targets for novel psychotropic agents. Excitotoxic neonatal lesions of the ventral hippocampal formation (NVHL) in rats reproduce numerous aspects of schizophrenia, including decreased mRNA expression of the GABA synthesizing enzyme glutamic acid decarboxylase-67, though their impact on subunit expression is unknown. METHODS We utilized quantitative reverse transcription polymerase chain reaction to investigate mRNA expression of the alpha1, alpha5, and gamma2s GABA-A receptor subunits in the frontal pole of water-deprived adult NVHL and SHAM-lesioned animals. RESULTS Messenger RNA expression for all three GABA-A subunits (alpha1-NVHL: 18.5 +/- 1.6 pg/mug total pooled RNA, SHAM: 11.3 +/- .4; alpha5-NVHL: 5.1 +/- .6; SHAM: 3.5 +/- .7; and gamma2s-NVHL: 10.8 +/- 1.7; SHAM: 7.2 +/- 1.5) was higher in NVHL, though only levels of alpha1 differed significantly after correction for multiple comparisons. Levels of a control mRNA, neuronal specific enolase, were similar in the two groups. CONCLUSIONS These data indicate that NVHL reproduce changes in cortical GABA-A receptor subunit expression seen in schizophrenia, suggesting this animal model may facilitate efforts to clarify the physiologic significance of altered GABA function and to develop novel targets for therapeutic interventions.
Collapse
Affiliation(s)
- Colin P Mitchell
- Psychiatric Institute, University of Illinois at Chicago in affiliation with University of Chicago, 1601 W. Taylor, Chicago, IL 60612, USA
| | | | | |
Collapse
|
28
|
Tsou AP, Chuang YC, Su JY, Yang CW, Liao YL, Liu WK, Chiu JH, Chou CK. Overexpression of a novel imprinted gene, PEG10, in human hepatocellular carcinoma and in regenerating mouse livers. J Biomed Sci 2004. [PMID: 14576465 DOI: 10.1007/bf02256313] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Many of the promising applications of the microarray technology are pertinent to identifying abnormalities in gene expression that contribute to malignant progression. We developed a bioinformatics tool to identify differentially expressed genes in human hepatocellular carcinoma (HCC). This involved the construction of a liver EST database (http://lestdb.nhri.org.tw) and in silico verification of differentially expressed genes with a human hepatoma microarray database. The stringency of the search was reinforced with a statistical analysis. A novel imprinted gene, paternally expressed 10(PEG10) was identified as having an elevated level of expression in the majority of the HCC samples and was also induced to express during G2/M phase of regenerating mouse liver. Ectopic expression of PEG10 in 293T cells affects cell cycle progression. PEG10 is distributed in the cytosol and associates with the nuclear membrane. This is the first time that an imprinted gene has been found to reexpress in both human HCC and in the regenerating mouse liver. This result indicates that the induction of the paternally imprinted gene may play an important role during liver regeneration or carcinogenesis of the human hepatocyte. Understanding the molecular basis of the abnormal imprinting of PEG10 will shed new light on the process that leads to liver disease.
Collapse
Affiliation(s)
- Ann-Ping Tsou
- Institute of Biotechnology in Medicine, National Yang-Ming University, Nankang, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ren C, Li L, Yang G, Timme TL, Goltsov A, Ren C, Ji X, Addai J, Luo H, Ittmann MM, Thompson TC. RTVP-1, a tumor suppressor inactivated by methylation in prostate cancer. Cancer Res 2004; 64:969-76. [PMID: 14871827 DOI: 10.1158/0008-5472.can-03-2592] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We previously identified and characterized a novel p53-regulated gene in mouse prostate cancer cells that was homologous to a human gene that had been identified in brain cancers and termed RTVP-1 or GLIPR. In this report, we document that the human RTVP-1 gene is also regulated by p53 and induces apoptosis in human prostate cancer cell lines. We show that the expression of the human RTVP-1 gene is down-regulated in human prostate cancer specimens compared with normal human prostate tissue at the mRNA and protein levels. We further document epigenetic changes consistent with RTVP-1 being a tumor suppressor in human prostate cancer.
Collapse
Affiliation(s)
- Chengzhen Ren
- Scott Department of Urology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Pakneshan P, Xing RH, Rabbani SA. Methylation status of uPA promoter as a molecular mechanism regulating prostate cancer invasion and growth in vitro and in vivo. FASEB J 2003; 17:1081-8. [PMID: 12773490 DOI: 10.1096/fj.02-0973com] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Urokinase plasminogen activator (uPA) promotes tumor invasion and metastasis in several malignancies including prostate cancer, one of the most commonly detected male cancers that result in a high incidence of mortality. In the present study we have examined the differential regulation of uPA gene expression in different stages of prostate cancer by DNA methylation. We determined levels of uPA expression in normal prostate epithelial cells (PrEC) and in hormone-responsive (LNCaP) and -insensitive (PC-3) prostate cancer cell lines. We found that uPA is expressed only in the highly invasive PC-3 cells where the uPA promoter is unmethylated. The lack of uPA expression in PrEC and LNCaP cells, where uPA promoter is highly methylated, is due to suppression of uPA gene transcription by DNA methylation. Treatment of LNCaP cells with 5'-azacytidine, a potent demethylating agent, resulted in induction of uPA mRNA expression, uPA activity, and higher invasive capacity in vitro. Additionally, a marked increase in tumor volume was observed after inoculation of these cells into the flank of male BALB/c (nu/nu) mice. Collectively these studies have demonstrated that DNA methylation is the underlying molecular mechanism responsible for uPA gene silencing in normal and early stages of prostate cancer, which has a direct effect on tumor cell invasion and growth in vitro and in vivo.
Collapse
Affiliation(s)
- Pouya Pakneshan
- Department of Medicine, McGill University Health Centre, Montreal, Canada
| | | | | |
Collapse
|
31
|
Yao X, Hu JF, Daniels M, Shiran H, Zhou X, Yan H, Lu H, Zeng Z, Wang Q, Li T, Hoffman AR. A methylated oligonucleotide inhibits IGF2 expression and enhances survival in a model of hepatocellular carcinoma. J Clin Invest 2003. [PMID: 12531883 DOI: 10.1172/jci200315109] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IGF-II is a mitogenic peptide that has been implicated in hepatocellular oncogenesis. Since the silencing of gene expression is frequently associated with cytosine methylation at cytosine-guanine (CpG) dinucleotides, we designed a methylated oligonucleotide (MON1) complementary to a region encompassing IGF2 promoter P4 in an attempt to induce DNA methylation at that locus and diminish IGF2 mRNA levels. MON1 specifically inhibited IGF2 mRNA accumulation in vitro, whereas an oligonucleotide (ON1) with the same sequence but with nonmethylated cytosines had no effect on IGF2 mRNA abundance. MON1 treatment led to the specific induction of de novo DNA methylation in the region of IGF2 promoter hP4. Cells from a human hepatocellular carcinoma (HCC) cell line, Hep 3B, were implanted into the livers of nude mice, resulting in the growth of large tumors. Animals treated with MON1 had markedly prolonged survival as compared with those animals treated with saline or a truncated methylated oligonucleotide that did not alter IGF2 mRNA levels in vitro. This study demonstrates that a methylated sense oligonucleotide can be used to induce epigenetic changes in the IGF2 gene and that inhibition of IGF2 mRNA accumulation may lead to enhanced survival in a model of HCC.
Collapse
Affiliation(s)
- Xiaoming Yao
- Medical Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yao X, Hu JF, Daniels M, Shiran H, Zhou X, Yan H, Lu H, Zeng Z, Wang Q, Li T, Hoffman AR. A methylated oligonucleotide inhibits IGF2 expression and enhances survival in a model of hepatocellular carcinoma. J Clin Invest 2003; 111:265-73. [PMID: 12531883 PMCID: PMC151856 DOI: 10.1172/jci15109] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IGF-II is a mitogenic peptide that has been implicated in hepatocellular oncogenesis. Since the silencing of gene expression is frequently associated with cytosine methylation at cytosine-guanine (CpG) dinucleotides, we designed a methylated oligonucleotide (MON1) complementary to a region encompassing IGF2 promoter P4 in an attempt to induce DNA methylation at that locus and diminish IGF2 mRNA levels. MON1 specifically inhibited IGF2 mRNA accumulation in vitro, whereas an oligonucleotide (ON1) with the same sequence but with nonmethylated cytosines had no effect on IGF2 mRNA abundance. MON1 treatment led to the specific induction of de novo DNA methylation in the region of IGF2 promoter hP4. Cells from a human hepatocellular carcinoma (HCC) cell line, Hep 3B, were implanted into the livers of nude mice, resulting in the growth of large tumors. Animals treated with MON1 had markedly prolonged survival as compared with those animals treated with saline or a truncated methylated oligonucleotide that did not alter IGF2 mRNA levels in vitro. This study demonstrates that a methylated sense oligonucleotide can be used to induce epigenetic changes in the IGF2 gene and that inhibition of IGF2 mRNA accumulation may lead to enhanced survival in a model of HCC.
Collapse
Affiliation(s)
- Xiaoming Yao
- Medical Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Detich N, Theberge J, Szyf M. Promoter-specific activation and demethylation by MBD2/demethylase. J Biol Chem 2002; 277:35791-4. [PMID: 12177048 DOI: 10.1074/jbc.c200408200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MBD2 is the only member of a family of methyl-CpG-binding proteins that has been reported to be both a transcriptional repressor and a DNA demethylase (dMTase). To understand the apparently contradictory function of MBD2/dMTase, we studied the effects of dMTase overexpression on the activity of various in vitro methylated promoters transiently transfected into HEK293 cells. We found that forced expression of a MBD2/dMTase expression vector (His-dMTase) differentially activated two methylated reporters, pSV40-CAT (the SV40 enhancerless promoter adjacent to the chloramphenicol acetyltransferase (CAT) reporter gene) and pGL2T+I4xTBRE (a region of the p21 promoter next to the luciferase reporter gene), in a time- and dose-dependent manner. His-dMTase increased pSV40-CAT expression by 3-10-fold after 96 h, while pGL2T+I4xTBRE expression was increased by 2-3-fold after only 48 h and did not further increase at 96 h. Gene activation was not universal because no effect was seen with the p19-ARF promoter. We then assessed whether activation might be due to demethylation within the promoter region. Using bisulfite mapping, we found that exogenous expression of His-dMTase induced demethylation at 8 of the 10 CpG sites within the SV40 promoter. The observation that His-dMTase increases the demethylase activity in the cells was also confirmed using an in vitro CpG demethylase assay with a mC32pG oligonucleotide substrate and purified Q-Sepharose fractions from HEK293 cells transfected with His-dMTase or empty pcDNA3.1His vector. We propose that a single protein possessing both repressor and demethylase functions has evolved to coordinate a program that requires suppression of some methylated genes and activation of others.
Collapse
Affiliation(s)
- Nancy Detich
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | |
Collapse
|
34
|
Milutinovic S, Zhuang Q, Szyf M. Proliferating cell nuclear antigen associates with histone deacetylase activity, integrating DNA replication and chromatin modification. J Biol Chem 2002; 277:20974-8. [PMID: 11929879 DOI: 10.1074/jbc.m202504200] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Faithful inheritance of the chromatin structure is essential for maintaining the gene expression integrity of a cell. Histone modification by acetylation and deacetylation is a critical control of chromatin structure. In this study, we test the hypothesis that histone deacetylase 1 (HDAC1) is physically associated with a basic component of the DNA replication machinery as a mechanism of coordinating histone deacetylation and DNA synthesis. Proliferating cell nuclear antigen (PCNA) is a sliding clamp that serves as a loading platform for many proteins involved in DNA replication and DNA repair. We show that PCNA interacts with HDAC1 in human cells and in vitro and that a considerable fraction of PCNA and HDAC1 colocalize in the cell nucleus. PCNA associates with histone deacetylase activity that is completely abolished in the presence of the HDAC inhibitor trichostatin A. Trichostatin A treatment arrests cells at the G(2)-M phase of the cell cycle, which is consistent with the hypothesis that the proper formation of the chromatin after DNA replication may be important in signaling the progression through the cell cycle. Our results strengthen the role of PCNA as a factor coordinating DNA replication and epigenetic inheritance.
Collapse
Affiliation(s)
- Snezana Milutinovic
- Department of Pharmacology and Therapeutics, McGill University, 3655 Drummond Street, Montreal, Quebec H3G 1Y6, Canada
| | | | | |
Collapse
|
35
|
Detich N, Ramchandani S, Szyf M. A conserved 3'-untranslated element mediates growth regulation of DNA methyltransferase 1 and inhibits its transforming activity. J Biol Chem 2001; 276:24881-90. [PMID: 11335728 DOI: 10.1074/jbc.m103056200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ectopic expression of DNA methyltransferase 1 (DNMT1) has been proposed to play an important role in cancer. dnmt1 mRNA is undetectable in growth-arrested cells but is induced upon entrance into the S phase of the cell cycle, and until now, the mechanisms responsible for this regulation were unknown. In this report, we demonstrate that the 3'-untranslated region (3'-UTR) of the dnmt1 mRNA can confer a growth-dependent regulation on its own message as well as a heterologous beta-globin mRNA. Our results indicate that a 54-nucleotide highly conserved element within the 3'-UTR is necessary and sufficient to mediate this regulation. Cell-free mRNA decay experiments demonstrate that this element increases mRNA turnover rates and does so to a greater extent in the presence of extracts prepared from arrested cells. A specific RNA-protein complex is formed with the 3'-UTR only in growth-arrested cells, and a UV cross-linking analysis revealed a 40-kDa protein (p40), the binding of which is dramatically increased in growth-arrested cells and is inversely correlated with dnmt1 mRNA levels as cells are induced into the cell cycle. Although ectopic expression of human DNMT1 lacking the 3'-UTR can transform NIH-3T3 cells, inclusion of the 3'-UTR prevents transformation. These results support the hypothesis that deregulated expression of DNMT1 with the cell cycle is important for cellular transformation.
Collapse
Affiliation(s)
- N Detich
- Department of Pharmacology and Therapeutics, McGill University, 3655 Sir William Osler Promenade, Montreal, Quebec H3G 1Y6, Canada
| | | | | |
Collapse
|