1
|
Goleij P, Pourali G, Raisi A, Ravaei F, Golestan S, Abed A, Razavi ZS, Zarepour F, Taghavi SP, Ahmadi Asouri S, Rafiei M, Mousavi SM, Hamblin MR, Talei S, Sheida A, Mirzaei H. Role of Non-coding RNAs in the Response of Glioblastoma to Temozolomide. Mol Neurobiol 2025; 62:1726-1755. [PMID: 39023794 DOI: 10.1007/s12035-024-04316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/16/2024] [Indexed: 07/20/2024]
Abstract
Chemotherapy and radiotherapy are widely used in clinical practice across the globe as cancer treatments. Intrinsic or acquired chemoresistance poses a significant problem for medical practitioners and researchers, causing tumor recurrence and metastasis. The most dangerous kind of malignant brain tumor is called glioblastoma multiforme (GBM) that often recurs following surgery. The most often used medication for treating GBM is temozolomide chemotherapy; however, most patients eventually become resistant. Researchers are studying preclinical models that accurately reflect human disease and can be used to speed up drug development to overcome chemoresistance in GBM. Non-coding RNAs (ncRNAs) have been shown to be substantial in regulating tumor development and facilitating treatment resistance in several cancers, such as GBM. In this work, we mentioned the mechanisms of how different ncRNAs (microRNAs, long non-coding RNAs, circular RNAs) can regulate temozolomide chemosensitivity in GBM. We also address the role of these ncRNAs encapsulated inside secreted exosomes.
Collapse
Affiliation(s)
- Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Shahin Golestan
- Department of Ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atena Abed
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Sadat Razavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mojtaba Mousavi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Sahand Talei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirzaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Deng C, Yang S, Pu C, Bai X, Tian C, Feng M. Temozolomide Treatment in Refractory Pituitary Adenomas and Pituitary Carcinomas. Neuroendocrinology 2025; 115:335-350. [PMID: 39778549 PMCID: PMC11991747 DOI: 10.1159/000543427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
BACKGROUND Temozolomide (TMZ), a nonclassical alkylating agent, possesses lipophilic properties that allow it to cross the blood-brain barrier, making it active within the central nervous system. Furthermore, the adverse reactions of the TMZ are relatively mild, which is why it is currently recommended as a first-line chemotherapy drug for refractory pituitary adenomas (RPAs) and pituitary carcinomas (PCs). SUMMARY Systematic evaluations indicate a radiological response rate of 41% and a hormonal response rate of 53%, underscoring TMZ clinical efficacy, particularly when combined with radiotherapy. Functional tumors demonstrate a higher response rate compared to nonfunctional tumors. While the optimal duration of TMZ treatment remains undetermined, studies suggest that longer therapy durations may lead to better prognoses. Additionally, prior to TMZ administration, it is advisable to conduct immunohistochemical analysis of O6-methylguanine-DNA methyltransferase, MSH2, MSH6, MLH1, PMS2, and N-methylpurine DNA glycosylase to assess the potential impact of repair mechanisms such as direct repair, mismatch repair pathway, and base excision repair on TMZ treatment. The efficacy of TMZ analogs, combined TMZ therapies, and TMZ with nanomaterials following TMZ treatment failure remains uncertain. KEY MESSAGES The involvement of experienced multidisciplinary pituitary teams in all management decisions for RPAs/PCs patients is essential.
Collapse
Affiliation(s)
- Congcong Deng
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuangjian Yang
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Changqin Pu
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuexue Bai
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chenxin Tian
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Feng
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Karu N, Kindt A, van Gammeren AJ, Ermens AAM, Harms AC, Portengen L, Vermeulen RCH, Dik WA, Langerak AW, van der Velden VHJ, Hankemeier T. Severe COVID-19 Is Characterised by Perturbations in Plasma Amines Correlated with Immune Response Markers, and Linked to Inflammation and Oxidative Stress. Metabolites 2022; 12:618. [PMID: 35888742 PMCID: PMC9321395 DOI: 10.3390/metabo12070618] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 02/01/2023] Open
Abstract
The COVID-19 pandemic raised a need to characterise the biochemical response to SARS-CoV-2 infection and find biological markers to identify therapeutic targets. In support of these aims, we applied a range of LC-MS platforms to analyse over 100 plasma samples from patients with varying COVID-19 severity and with detailed clinical information on inflammatory responses (>30 immune markers). The first publication in a series reports the results of quantitative LC-MS/MS profiling of 56 amino acids and derivatives. A comparison between samples taken from ICU and ward patients revealed a notable increase in ten post-translationally modified amino acids that correlated with markers indicative of an excessive immune response: TNF-alpha, neutrophils, markers for macrophage, and leukocyte activation. Severe patients also had increased kynurenine, positively correlated with CRP and cytokines that induce its production. ICU and ward patients with high IL-6 showed decreased levels of 22 immune-supporting and anti-oxidative amino acids and derivatives (e.g., glutathione, GABA). These negatively correlated with CRP and IL-6 and positively correlated with markers indicative of adaptive immune activation. Including corresponding alterations in convalescing ward patients, the overall metabolic picture of severe COVID-19 reflected enhanced metabolic demands to maintain cell proliferation and redox balance, alongside increased inflammation and oxidative stress.
Collapse
Affiliation(s)
- Naama Karu
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands; (A.K.); (A.C.H.)
| | - Alida Kindt
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands; (A.K.); (A.C.H.)
| | - Adriaan J. van Gammeren
- Department of Clinical Chemistry and Hematology, Amphia Hospital, 4818 CK Breda, The Netherlands; (A.J.v.G.); (A.A.M.E.)
| | - Anton A. M. Ermens
- Department of Clinical Chemistry and Hematology, Amphia Hospital, 4818 CK Breda, The Netherlands; (A.J.v.G.); (A.A.M.E.)
| | - Amy C. Harms
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands; (A.K.); (A.C.H.)
| | - Lutzen Portengen
- Department of Population Health Sciences, Institute for Risk Assessment Sciences, University Utrecht, 3584 CK Utrecht, The Netherlands; (L.P.); (R.C.H.V.)
| | - Roel C. H. Vermeulen
- Department of Population Health Sciences, Institute for Risk Assessment Sciences, University Utrecht, 3584 CK Utrecht, The Netherlands; (L.P.); (R.C.H.V.)
| | - Willem A. Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (W.A.D.); (A.W.L.); (V.H.J.v.d.V.)
| | - Anton W. Langerak
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (W.A.D.); (A.W.L.); (V.H.J.v.d.V.)
| | - Vincent H. J. van der Velden
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (W.A.D.); (A.W.L.); (V.H.J.v.d.V.)
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands; (A.K.); (A.C.H.)
| |
Collapse
|
4
|
Resolving the subtle details of human DNA alkyltransferase lesion search and repair mechanism by single-molecule studies. Proc Natl Acad Sci U S A 2022; 119:e2116218119. [PMID: 35259021 PMCID: PMC8931253 DOI: 10.1073/pnas.2116218119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
We directly visualize DNA translocation and lesion recognition by the O6-alkylguanine DNA alkyltransferase (AGT). Our data show bidirectional movement of AGT monomers and clusters on undamaged DNA that depended on Zn2+ occupancy of AGT. A role of cooperative AGT clusters in enhancing lesion search efficiencies by AGT has previously been proposed. Surprisingly, our data show no enhancement of DNA translocation speed by AGT cluster formation, suggesting that AGT clusters may serve a different role in AGT function. Our data support preferential cluster formation by AGT at alkyl lesions, suggesting a role of these clusters in stabilizing lesion-bound complexes. From our data, we derive a new model for the lesion search and repair mechanism of AGT. The O6-alkylguanine DNA alkyltransferase (AGT) is an important DNA repair protein. AGT repairs highly mutagenic and cytotoxic alkylguanine lesions that result from metabolic products but are also deliberately introduced during chemotherapy, making a better understanding of the working mechanism of AGT essential. To investigate lesion interactions by AGT, we present a protocol to insert a single alkylguanine lesion at a well-defined position in long DNA substrates for single-molecule fluorescence microscopy coupled with dual-trap optical tweezers. Our studies address the longstanding enigma in the field of how monomeric AGT complexes at alkyl lesions seen in crystal structures can be reconciled with AGT clusters on DNA at high protein concentrations that have been observed from atomic force microscopy (AFM) and biochemical studies. A role of AGT clusters in enhancing lesion search efficiencies by AGT has previously been proposed. Surprisingly, our data show no enhancement of DNA translocation speed by AGT cluster formation, suggesting that AGT clusters may serve a different role in AGT function. Interestingly, a possible role of these clusters is indicated by preferential cluster formation at alkyl lesions in our studies. From our data, we derive a model for the lesion search and repair mechanism of AGT.
Collapse
|
5
|
Karati D, Mahadik KR, Trivedi P, Kumar D. Alkylating Agents, the Road Less Traversed, Changing Anticancer Therapy. Anticancer Agents Med Chem 2021; 22:1478-1495. [PMID: 34382529 DOI: 10.2174/1871520621666210811105344] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 11/22/2022]
Abstract
Cancer is considered one of the gruelling challenges and poses a grave health hazard across the globe. According to the International Agency for Research on Cancer (IARC), new cancer diagnoses increased to 18.1 million in 2018, with 9.6 million deaths, bringing the global cancer rate to 23.6 million by 2030. In 1942, the discovery of nitrogen mustard as an alkylating agent was a tremendous breakthrough in cancer chemotherapy. It acts by binding to the DNA, and creating cross linkages between the two strands, leading to arrest of DNA replication and eventual cell death. Nitrogen lone pairs of 'nitrogen mustard' produce an intermediate 'aziridinium ion' at molecular level, which is very reactive towards DNA of tumour cells, resulting in multiple side effects with therapeutic consequences. Owing to its high reactivity and peripheral cytotoxicity, several improvements have been made with structural modifications for the past 75 years to enhance its efficacy and improve the direct transport of drugs to the tumour cells. Alkylating agents were among the first non-hormonal substances proven to be active against malignant cells and also, the most valuable cytotoxic therapies available for the treatment of leukaemia and lymphoma patients. This review focus on the versatile use of alkylating agents and the structure activity relationship (SAR) of each class of these compounds. This could provide an understanding for design and synthesis of new alkylating agents having enhanced target specificity and adequate bioavailability.
Collapse
Affiliation(s)
- Dipanjan Karati
- Poona college of Pharmacy, Bharati Vidyapeeth (Deemed to be University) Erandwane, Pune- 411038, Maharashtra. India
| | - Kakasaheb Ramoo Mahadik
- Poona college of Pharmacy, Bharati Vidyapeeth (Deemed to be University) Erandwane, Pune- 411038, Maharashtra. India
| | - Piyush Trivedi
- Poona college of Pharmacy, Bharati Vidyapeeth (Deemed to be University) Erandwane, Pune- 411038, Maharashtra. India
| | - Dileep Kumar
- Poona college of Pharmacy, Bharati Vidyapeeth (Deemed to be University) Erandwane, Pune- 411038, Maharashtra. India
| |
Collapse
|
6
|
Raina A, Sahu PK, Laskar RA, Rajora N, Sao R, Khan S, Ganai RA. Mechanisms of Genome Maintenance in Plants: Playing It Safe With Breaks and Bumps. Front Genet 2021; 12:675686. [PMID: 34239541 PMCID: PMC8258418 DOI: 10.3389/fgene.2021.675686] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/04/2021] [Indexed: 01/14/2023] Open
Abstract
Maintenance of genomic integrity is critical for the perpetuation of all forms of life including humans. Living organisms are constantly exposed to stress from internal metabolic processes and external environmental sources causing damage to the DNA, thereby promoting genomic instability. To counter the deleterious effects of genomic instability, organisms have evolved general and specific DNA damage repair (DDR) pathways that act either independently or mutually to repair the DNA damage. The mechanisms by which various DNA repair pathways are activated have been fairly investigated in model organisms including bacteria, fungi, and mammals; however, very little is known regarding how plants sense and repair DNA damage. Plants being sessile are innately exposed to a wide range of DNA-damaging agents both from biotic and abiotic sources such as ultraviolet rays or metabolic by-products. To escape their harmful effects, plants also harbor highly conserved DDR pathways that share several components with the DDR machinery of other organisms. Maintenance of genomic integrity is key for plant survival due to lack of reserve germline as the derivation of the new plant occurs from the meristem. Untowardly, the accumulation of mutations in the meristem will result in a wide range of genetic abnormalities in new plants affecting plant growth development and crop yield. In this review, we will discuss various DNA repair pathways in plants and describe how the deficiency of each repair pathway affects plant growth and development.
Collapse
Affiliation(s)
- Aamir Raina
- Mutation Breeding Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
- Botany Section, Women’s College, Aligarh Muslim University, Aligarh, India
| | - Parmeshwar K. Sahu
- Department of Genetics and Plant Breeding, Indira Gandhi Agriculture University, Raipur, India
| | | | - Nitika Rajora
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Richa Sao
- Department of Genetics and Plant Breeding, Indira Gandhi Agriculture University, Raipur, India
| | - Samiullah Khan
- Mutation Breeding Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Rais A. Ganai
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, India
| |
Collapse
|
7
|
Genomic Space of MGMT in Human Glioma Revisited: Novel Motifs, Regulatory RNAs, NRF1, 2, and CTCF Involvement in Gene Expression. Int J Mol Sci 2021; 22:ijms22052492. [PMID: 33801310 PMCID: PMC7958331 DOI: 10.3390/ijms22052492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 01/08/2023] Open
Abstract
Background: The molecular regulation of increased MGMT expression in human brain tumors, the associated regulatory elements, and linkages of these to its epigenetic silencing are not understood. Because the heightened expression or non-expression of MGMT plays a pivotal role in glioma therapeutics, we applied bioinformatics and experimental tools to identify the regulatory elements in the MGMT and neighboring EBF3 gene loci. Results: Extensive genome database analyses showed that the MGMT genomic space was rich in and harbored many undescribed RNA regulatory sequences and recognition motifs. We extended the MGMT’s exon-1 promoter to 2019 bp to include five overlapping alternate promoters. Consensus sequences in the revised promoter for (a) the transcriptional factors CTCF, NRF1/NRF2, GAF, (b) the genetic switch MYC/MAX/MAD, and (c) two well-defined p53 response elements in MGMT intron-1, were identified. A putative protein-coding or non-coding RNA sequence was located in the extended 3′ UTR of the MGMT transcript. Eleven non-coding RNA loci coding for miRNAs, antisense RNA, and lncRNAs were identified in the MGMT-EBF3 region and six of these showed validated potential for curtailing the expression of both MGMT and EBF3 genes. ChIP analysis verified the binding site in MGMT promoter for CTCF which regulates the genomic methylation and chromatin looping. CTCF depletion by a pool of specific siRNA and shRNAs led to a significant attenuation of MGMT expression in human GBM cell lines. Computational analysis of the ChIP sequence data in ENCODE showed the presence of NRF1 in the MGMT promoter and this occurred only in MGMT-proficient cell lines. Further, an enforced NRF2 expression markedly augmented the MGMT mRNA and protein levels in glioma cells. Conclusions: We provide the first evidence for several new regulatory components in the MGMT gene locus which predict complex transcriptional and posttranscriptional controls with potential for new therapeutic avenues.
Collapse
|
8
|
Copp W, Wilds CJ. O 6 -Alkylguanine DNA Alkyltransferase Mediated Disassembly of a DNA Tetrahedron. Chemistry 2020; 26:14802-14806. [PMID: 32543755 DOI: 10.1002/chem.202002565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 11/05/2022]
Abstract
Tetrahedron DNA structures were formed by the assembly of three-way junction (TWJ) oligonucleotides containing O6 -2'-deoxyguanosine-alkylene-O6 -2'-deoxyguanosine (butylene and heptylene linked) intrastrand cross-links (IaCLs) lacking a phosphodiester group between the 2'-deoxyribose residues. The DNA tetrahedra containing TWJs were shown to undergo an unhooking reaction by the human DNA repair protein O6 -alkylguanine DNA alkyltransferase (hAGT) resulting in structure disassembly. The unhooking reaction of hAGT towards the DNA tetrahedra was observed to be moderate to virtually complete depending on the protein equivalents. DNA tetrahedron structures have been explored as drug delivery platforms that release their payload in response to triggers, such as light, chemical agents or hybridization of release strands. The dismantling of DNA tetrahedron structures by a DNA repair protein contributes to the armamentarium of approaches for drug release employing DNA nanostructures.
Collapse
Affiliation(s)
- William Copp
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, H4B 1R6, Canada
| |
Collapse
|
9
|
Mostofa A, Punganuru SR, Madala HR, Srivenugopal KS. S-phase Specific Downregulation of Human O 6-Methylguanine DNA Methyltransferase (MGMT) and its Serendipitous Interactions with PCNA and p21 cip1 Proteins in Glioma Cells. Neoplasia 2018; 20:305-323. [PMID: 29510343 PMCID: PMC5909491 DOI: 10.1016/j.neo.2018.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 01/28/2023] Open
Abstract
Whether the antimutagenic DNA repair protein MGMT works solo in human cells and if it has other cellular functions is not known. Here, we show that human MGMT associates with PCNA and in turn, with the cell cycle inhibitor, p21cip1 in glioblastoma and other cancer cell lines. MGMT protein was shown to harbor a nearly perfect PCNA-Interacting Protein (PIP box) motif. Isogenic p53-null H1299 cells were engineered to express the p21 protein by two different procedures. Reciprocal immunoprecipitation/western blotting, Far-western blotting, and confocal microscopy confirmed the specific association of MGMT with PCNA and the ability of p21 to strongly disrupt the MGMT-PCNA complexes in tumor cells. Alkylation DNA damage resulted in a greater colocalization of MGMT and PCNA proteins, particularly in HCT116 cells deficient in p21 expression. p21 expression in isogenic cell lines directly correlated with markedly higher levels of MGMT mRNA, protein, activity and greater resistance to alkylating agents. In other experiments, four glioblastoma cell lines synchronized at the G1/S phase using either double thymidine or thymidine-mimosine blocks and subsequent cycling consistently showed a loss of MGMT protein at mid- to late S-phase, irrespective of the cell line, suggesting such a downregulation is fundamental to cell cycle control. MGMT protein was also specifically degraded in extracts from S-phase cells and evidence strongly suggested the involvement of PCNA-dependent CRL4Cdt2 ubiquitin-ligase in the reaction. Overall, these data provide the first evidence for non-repair functions of MGMT in cell cycle and highlight the involvement of PCNA in MGMT downregulation, with p21 attenuating the process.
Collapse
Affiliation(s)
- Agm Mostofa
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1406 S. Coulter Drive, Amarillo, TX 79106, USA
| | - Surendra R Punganuru
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1406 S. Coulter Drive, Amarillo, TX 79106, USA
| | - Hanumantha Rao Madala
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1406 S. Coulter Drive, Amarillo, TX 79106, USA
| | - Kalkunte S Srivenugopal
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1406 S. Coulter Drive, Amarillo, TX 79106, USA.
| |
Collapse
|
10
|
Syro LV, Rotondo F, Camargo M, Ortiz LD, Serna CA, Kovacs K. Temozolomide and Pituitary Tumors: Current Understanding, Unresolved Issues, and Future Directions. Front Endocrinol (Lausanne) 2018; 9:318. [PMID: 29963012 PMCID: PMC6013558 DOI: 10.3389/fendo.2018.00318] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/28/2018] [Indexed: 01/26/2023] Open
Abstract
Temozolomide, an alkylating agent, initially used in the treatment of gliomas was expanded to include pituitary tumors in 2006. After 12 years of use, temozolomide has shown a notable advancement in pituitary tumor treatment with a remarkable improvement rate in the 5-year overall survival and 5-year progression-free survival in both aggressive pituitary adenomas and pituitary carcinomas. In this paper, we review the mechanism of action of temozolomide as alkylating agent, its interaction with deoxyribonucleic acid repair systems, therapeutic effects in pituitary tumors, unresolved issues, and future directions relating to new possibilities of targeted therapy.
Collapse
Affiliation(s)
- Luis V. Syro
- Department of Neurosurgery, Hospital Pablo Tobon Uribe and Clinica Medellin, Medellin, Colombia
- *Correspondence: Luis V. Syro,
| | - Fabio Rotondo
- Department of Laboratory Medicine, Division of Pathology, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Mauricio Camargo
- Genetics, Regeneration and Cancer Laboratory, Universidad de Antioquia, Medellin, Colombia
| | - Leon D. Ortiz
- Division of Neuro-oncology, Instituto de Cancerología, Clinica Las Americas, Pharmacogenomics, Universidad CES, Medellin, Colombia
| | - Carlos A. Serna
- Laboratorio de Patologia y Citologia Rodrigo Restrepo, Department of Pathology, Clinica Las Américas, Universidad CES, Medellin, Colombia
| | - Kalman Kovacs
- Department of Laboratory Medicine, Division of Pathology, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Mechanisms of Drug Resistance in Veterinary Oncology- A Review with an Emphasis on Canine Lymphoma. Vet Sci 2015; 2:150-184. [PMID: 29061939 PMCID: PMC5644636 DOI: 10.3390/vetsci2030150] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/22/2015] [Accepted: 08/04/2015] [Indexed: 01/09/2023] Open
Abstract
Drug resistance (DR) is the major limiting factor in the successful treatment of systemic neoplasia with cytotoxic chemotherapy. DR can be either intrinsic or acquired, and although the development and clinical implications are different, the underlying mechanisms are likely to be similar. Most causes for DR are pharmacodynamic in nature, result from adaptations within the tumor cell and include reduced drug uptake, increased drug efflux, changes in drug metabolism or drug target, increased capacity to repair drug-induced DNA damage or increased resistance to apoptosis. The role of active drug efflux transporters, and those of the ABC-transporter family in particular, have been studied extensively in human oncology and to a lesser extent in veterinary medicine. Methods reported to assess ABC-transporter status include detection of the actual protein (Western blot, immunohistochemistry), mRNA or ABC-transporter function. The three major ABC-transporters associated with DR in human oncology are ABCB1 or P-gp, ABCC1 or MRP1, and ABCG2 or BCRP, and have been demonstrated in canine cell lines, healthy dogs and dogs with cancer. Although this supports a causative role for these ABC-transporters in DR cytotoxic agents in the dog, the relative contribution to the clinical phenotype of DR in canine cancer remains an area of debate and requires further prospective studies.
Collapse
|
12
|
Chapman KE, Doak SH, Jenkins GJS. Acute dosing and p53-deficiency promote cellular sensitivity to DNA methylating agents. Toxicol Sci 2015; 144:357-65. [PMID: 25595616 DOI: 10.1093/toxsci/kfv004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Risk assessment of human exposure to chemicals is crucial for understanding whether such agents can cause cancer. The current emphasis on avoidance of animal testing has placed greater importance on in vitro tests for the identification of genotoxicants. Selection of an appropriate in vitro dosing regime is imperative in determining the genotoxic effects of test chemicals. Here, the issue of dosing approaches was addressed by comparing acute and chronic dosing, uniquely using low-dose experiments. Acute 24 h exposures were compared with equivalent dosing every 24 h over 5-day, fractionated treatment periods. The in vitro micronucleus assay was used to measure clastogenicity induced by methyl methanesulfonate (MMS) and N-methyl-N-nitrosourea (MNU) in human lymphoblastoid cell line, TK6. Quantitative real-time (qRT) PCR was used to measure mRNA level induction of DNA repair enzymes. Lowest observed genotoxic effect levels (LOGELs) for MMS were obtained at 0.7 µg/ml for the acute study and 1.0 µg/ml for the chronic study. For acute MNU dosing, a LOGEL was observed at 0.46 µg/ml, yet genotoxicity was completely removed following the chronic study. Interestingly, acute MNU dosing demonstrated a statistically significant decrease at 0.009 µg/ml. Levels of selected DNA repair enzymes did not change significantly following doses tested. However, p53 deficiency (using the TK6-isogenic cell line, NH32) increased sensitivity to MMS during chronic dosing, causing this LOGEL to equate to the acute treatment LOGEL. In the context of the present data for 2 alkylating agents, chronic dosing could be a valuable in vitro supplement to acute dosing and could contribute to reduction of unnecessary in vivo follow-up tests.
Collapse
Affiliation(s)
- Katherine E Chapman
- In vitro Toxicology Group, Institute of Life Science, College of Medicine, Swansea University, Swansea, West Glamorgan SA2 8PP, UK
| | - Shareen H Doak
- In vitro Toxicology Group, Institute of Life Science, College of Medicine, Swansea University, Swansea, West Glamorgan SA2 8PP, UK
| | - Gareth J S Jenkins
- In vitro Toxicology Group, Institute of Life Science, College of Medicine, Swansea University, Swansea, West Glamorgan SA2 8PP, UK
| |
Collapse
|
13
|
Target-mediated consecutive endonuclease reactions for specific and sensitive homogeneous fluorescence assay of O6-methylguanine-DNA methyltransferase. Anal Chim Acta 2013; 804:252-7. [PMID: 24267090 DOI: 10.1016/j.aca.2013.10.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 10/11/2013] [Accepted: 10/16/2013] [Indexed: 11/23/2022]
Abstract
O(6)-Methylguanine-DNA methyltransferase (MGMT) is one of the most important DNA-repair enzymes. Herein, a simple, sensitive and selective homogeneous fluorescence assay strategy is developed for the detection of MGMT on the basis of target-mediated two consecutive endonuclease reactions. The activity assay of MGMT is firstly accomplished using a hairpin-structured DNA substrate to offer a specific recognition site on the substrate DNA for restriction endonuclease PvuII, and thus to initiate the first endonuclease reaction. The product which activates the second endonuclease reaction allows an efficient amplification approach to create an abundance of fluorescence signal reporters. The first endonuclease reaction offers the method high specificity and the second one furnishes the assay improved sensitivity. The results reveal that the MGMT assay strategy shows dynamic responses in the concentration range from 1 to 120 ng mL(-1) with a detection limit of 0.5 ng mL(-1). By simply altering the alkylated bases, this strategy can also be extended for the detection of other alkyltransferases. Therefore, the developed strategy might provide an intrinsically convenient, sensitive and specific platform for alkyltransferase activate assay and related biochemical studies due to its label-free, homogeneous, and fluorescence-based detection format.
Collapse
|
14
|
Lee SS, Tsai CH, Yu CC, Ho YC, Hsu HI, Chang YC. The expression of O(6) -methylguanine-DNA methyltransferase in human oral keratinocytes stimulated with arecoline. J Oral Pathol Med 2012; 42:600-5. [PMID: 23278137 DOI: 10.1111/jop.12037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND O(6) -methylguanine-DNA methyltransferase (MGMT) is a DNA repair enzyme that can protect cells from carcinogenic effects of alkylating agents by removing adducts from the O(6) position of guanine. Evidences indicated that areca quid chewing may increase the risk of oral squamous cell carcinoma (OSCC). This study was to investigate the role of MGMT expression in OSCCs and the normal oral tissues. METHODS Thirty-two OSCCs from areca quid chewers and ten normal oral tissue biopsy samples without areca quid chewing were analyzed by the immunohistochemistry for MGMT. Primary human oral keratinocytes (HOKs) were challenged with arecoline, the major alkaloid of areca nut, by Western blot. Nicotine, an important component of cigarette smoke, was added to find the possible regulatory mechanisms. RESULTS Significant association was observed between low MGMT expression and advanced clinical stage of OSCCs and lymph node metastasis (P = 0.03). MGMT expression was significantly higher in patients only chewing areca quid than patients both chewing areca quid and smoking (P = 0.028). Arecoline was found to elevate MGMT expression in a dose- and time-dependent manner. The addition of nicotine was found to enhance arecoline-induced MGMT expression. CONCLUSION Our results indicate that MGMT could be used clinically as a predictive marker for tumor processing, the potential for lymph node metastasis as well as advanced clinical stage. MGMT expression was significantly upregulated by arecoline in HOKs. Nicotine has a synergistic effect of arecoline-induced MGMT expression. The cigarette smoking may act synergistically in the pathogenesis of OSCC in areca quid chewers via the upregulation of MGMT.
Collapse
Affiliation(s)
- Shiuan-Shinn Lee
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
15
|
Guo YW, Zhang Y, Huang X, Gao KS, Wang KJ, Ke CH, Huang HQ. Proteomic analysis of dimethoate-responsive proteins in the oyster (Saccostrea cucullata) gonad. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:2248-2258. [PMID: 22237506 DOI: 10.1007/s11356-011-0729-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 12/27/2011] [Indexed: 05/31/2023]
Abstract
INTRODUCTION The organophosphorus pesticide dimethoate (DM) has been widely used in agriculture, and its extensive use could still have left many environmental problems. METHODS In the present study, the oyster (Saccostrea cucullata) was subjected to acute DM toxicity (2 mg/L), and gas chromatographic analysis revealed and quantified residues of DM in the oyster gonad. RESULTS Two-dimensional gel electrophoresis showed 12 differentially expressed proteins in the DM-exposed oyster gonad in comparison to the control. Among these 12 protein spots, nine were down-regulated, and three were up-regulated. Both matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry and database searching were utilized to identify these differential proteins, and revealed five proteins previously described as being related to DM toxicity. In addition, the levels of mRNA expression corresponding to these differential proteins were further proved in part by real-time PCR. The functions of these proteins were summarized as: carrying out energy metabolism, DNA repair, DNA transcriptional regulation, and oxidative protection. The remaining seven protein spots were of particular interest in terms of their responses to DM, which have seldom been reported. CONCLUSION These data might point to a number of novel and significant biomarkers for evaluating the contamination levels of DM and provide useful insight into the mechanisms of DM toxicity in vivo.
Collapse
Affiliation(s)
- Yan-Wei Guo
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Synthesis of some novel amino and thiotetrazole purine derivatives and investigation of their antimicrobial activity and DNA interactions. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0140-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Dilek Çelik G, Dişli A, Öner Y, Açık L. Synthesis of some novel thiocyanotopurine derivatives and investigation of their antimicrobial activity and DNA interactions. Chem Pharm Bull (Tokyo) 2012; 60:578-82. [PMID: 22689394 DOI: 10.1248/cpb.60.578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A series of 6-thiocyanatopurine derivatives introduced with different alkyl groups in position 9 was synthesized. The structures of the synthesized compounds were evaluated via spectroscopic methods and elemental methods of analyses. All the synthesized compounds were screened for their antibacterial activities against Gram-positive and Gram-negative bacteria and for their antifungal activities against yeast strains. All the synthesized compounds showed better antibacterial activities against Gram-positive bacteria compared to Gram-negative bacteria. DNA interactions with pBR322 DNA were determined. Most of the compounds caused conformational changes in DNA.
Collapse
Affiliation(s)
- Gülay Dilek Çelik
- Department of Chemistry, Gazi University, Teknikokullar, Ankara, Turkey
| | | | | | | |
Collapse
|
18
|
Zaïr ZM, Jenkins GJ, Doak SH, Singh R, Brown K, Johnson GE. N-Methylpurine DNA Glycosylase Plays a Pivotal Role in the Threshold Response of Ethyl Methanesulfonate–Induced Chromosome Damage. Toxicol Sci 2010; 119:346-58. [DOI: 10.1093/toxsci/kfq341] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
19
|
Hegde ML, Hazra TK, Mitra S. Functions of disordered regions in mammalian early base excision repair proteins. Cell Mol Life Sci 2010; 67:3573-87. [PMID: 20714778 DOI: 10.1007/s00018-010-0485-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 11/30/2022]
Abstract
Reactive oxygen species, generated endogenously and induced as a toxic response, produce several dozen oxidized or modified bases and/or single-strand breaks in mammalian and other genomes. These lesions are predominantly repaired via the conserved base excision repair (BER) pathway. BER is initiated with excision of oxidized or modified bases by DNA glycosylases leading to formation of abasic (AP) site or strand break at the lesion site. Structural analysis by experimental and modeling approaches shows the presence of a disordered segment commonly localized at the N- or C-terminus as a characteristic signature of mammalian DNA glycosylases which is absent in their bacterial prototypes. Recent studies on unstructured regions in DNA metabolizing proteins have indicated their essential role in interaction with other proteins and target DNA recognition. In this review, we have discussed the unique presence of disordered segments in human DNA glycosylases, and AP endonuclease involved in the processing of glycosylase products, and their critical role in regulating repair functions. These disordered segments also include sites for posttranslational modifications and nuclear localization signal. The teleological basis for their structural flexibility is discussed.
Collapse
Affiliation(s)
- Muralidhar L Hegde
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-1079, USA
| | | | | |
Collapse
|
20
|
Alkyltransferase-like proteins: molecular switches between DNA repair pathways. Cell Mol Life Sci 2010; 67:3749-62. [PMID: 20502938 DOI: 10.1007/s00018-010-0405-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 05/04/2010] [Accepted: 05/10/2010] [Indexed: 01/08/2023]
Abstract
Alkyltransferase-like proteins (ATLs) play a role in the protection of cells from the biological effects of DNA alkylation damage. Although ATLs share functional motifs with the DNA repair protein and cancer chemotherapy target O⁶-alkylguanine-DNA alkyltransferase, they lack the reactive cysteine residue required for alkyltransferase activity, so its mechanism for cell protection was previously unknown. Here we review recent advances in unraveling the enigmatic cellular protection provided by ATLs against the deleterious effects of DNA alkylation damage. We discuss exciting new evidence that ATLs aid in the repair of DNA O⁶-alkylguanine lesions through a novel repair cross-talk between DNA-alkylation base damage responses and the DNA nucleotide excision repair pathway.
Collapse
|
21
|
Flipping of alkylated DNA damage bridges base and nucleotide excision repair. Nature 2009; 459:808-13. [PMID: 19516334 PMCID: PMC2729916 DOI: 10.1038/nature08076] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 04/17/2009] [Indexed: 01/01/2023]
Abstract
Alkyltransferase-like proteins (ATLs) share functional motifs with the cancer chemotherapy target O(6)-alkylguanine-DNA alkyltransferase (AGT) and paradoxically protect cells from the biological effects of DNA alkylation damage, despite lacking the reactive cysteine and alkyltransferase activity of AGT. Here we determine Schizosaccharomyces pombe ATL structures without and with damaged DNA containing the endogenous lesion O(6)-methylguanine or cigarette-smoke-derived O(6)-4-(3-pyridyl)-4-oxobutylguanine. These results reveal non-enzymatic DNA nucleotide flipping plus increased DNA distortion and binding pocket size compared to AGT. Our analysis of lesion-binding site conservation identifies new ATLs in sea anemone and ancestral archaea, indicating that ATL interactions are ancestral to present-day repair pathways in all domains of life. Genetic connections to mammalian XPG (also known as ERCC5) and ERCC1 in S. pombe homologues Rad13 and Swi10 and biochemical interactions with Escherichia coli UvrA and UvrC combined with structural results reveal that ATLs sculpt alkylated DNA to create a genetic and structural intersection of base damage processing with nucleotide excision repair.
Collapse
|
22
|
Tiwari S, Mishra PC. A quantum chemical study of repair of O6-methylguanine to guanine by tyrosine: evaluation of the winged helix-turn-helix model. J Mol Model 2009; 15:1407-15. [PMID: 19421793 DOI: 10.1007/s00894-009-0499-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 04/16/2009] [Indexed: 11/24/2022]
Abstract
The winged helix-turn-helix model for the repair of O6-MeG to guanine involving the reaction of O6-MeG with a tyrosine residue of the protein O6-alkylguanine-DNA alkyltransferase (AGT) was examined by studying the reaction mechanism and barrier energies. Molecular geometries of the species and complexes involved in the reaction, i.e. the reactant, intermediate and product complexes as well as transition states, were optimized employing density functional theory in gas phase. It was followed by single point energy calculations using density functional theory along with a higher basis set and second order M(phi)ller-Plesset perturbation theory (MP2) along with two different basis sets in gas phase and aqueous media. For the solvation calculations in aqueous media, the integral equation formalism of the polarizable continuum model (IEF-PCM) was employed. Vibrational frequency analysis was performed for each optimized structure and genuineness of transition states was ensured by visualizing the vibrational modes. It is found that tyrosine can repair O6-MeG to guanine by a two-step reaction. The present results have been compared with those obtained considering the helix-turn-helix model where the repair reaction primarily involves cysteine and occurs in a single-step. It is concluded that the repair through tyrosine envisaged in the winged helix-turn-helix model would be less efficient than that through cysteine envisaged in the helix-turn-helix model.
Collapse
Affiliation(s)
- Saumya Tiwari
- Department of Physics, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
23
|
Abstract
The genome of all organisms is constantly attacked by a variety of environmental and endogenous mutagens that cause cell death, apoptosis, senescence, genetic diseases and cancer. To mitigate these deleterious endpoints of genotoxic reactions, living organisms have evolved one or more mechanisms for repairing every type of naturally occurring DNA lesion. For example, double-strand breaks are rapidly religated by non-homologous end-joining. Homologous recombination is used for the high-fidelity repair of interstrand cross-links, double-strand breaks and other DNA injuries that disrupt the replication fork. Some genotoxic lesions inflicted by alkylating agents can be repaired by direct reversal of DNA damage. The base excision repair pathway takes advantage of multiple DNA glycosylases to remove modified or incorrect bases. Finally, the nucleotide excision repair machinery provides a versatile strategy to monitor DNA quality and eliminate all forms of helix-distorting DNA lesions, including a wide diversity of carcinogen adducts. The efficiency of DNA repair responses is enhanced by their coupling to transcription and coordination with the cell cycle circuit.
Collapse
|
24
|
Wang D, Worsham DN, Pan D. Co-expression of MGMT(P140K) and alpha-L-iduronidase in primary hepatocytes from mucopolysaccharidosis type I mice enables efficient selection with metabolic correction. J Gene Med 2008; 10:249-59. [PMID: 18076130 DOI: 10.1002/jgm.1141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Systemic in vivo gene therapy has resulted in widespread correction in animal models when treated at birth. However, limited improvement was observed in postnatally treated animals with mainly targeting to the liver and bone marrow. It has been shown that an O(6)-methylguanine-DNA-methyltransferase variant (MGMT(P140K)) mediated in vivo selection of transduced hematopoietic stem cells (HSC) in animals. METHODS We investigated the feasibility of MGMT(P140K)-mediated selection in primary hepatocytes from a mouse model of mucopolysaccharidosis type I (MPS I) in vitro using lentiviral vectors. RESULTS We found that multiple cycles of O(6)-benzylguanine (BG)/1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) treatment at a dosage effective for ex vivo HSC selection led to a two-fold increase of MGMT-expressing primary hepatocytes under culture conditions with minimum cell expansion. This enrichment level was comparable to that obtained after selection at a hepatic maximal tolerated dose of BCNU. Similar levels of increase were observed regardless of initial transduction frequency, or the position of MGMT (upstream or downstream of internal ribosome entry site) in the vector constructs. In addition, we found that elongation factor 1alpha promoter was superior to the long-terminal repeat promoter from spleen focus-forming virus with regard to transgene expression in primary hepatocytes. Moreover, the levels of therapeutic transgene expression in transduced, enzyme-deficient hepatocytes directly correlated with the doses of BCNU, leading to metabolic correction in transduced hepatocytes and metabolic cross-correction in neighbouring non-transduced MPS I cells. CONCLUSIONS These results demonstrate that MGMT(P140K) expression confers successful protection/selection in primary hepatocytes, and provide 'proof of concept' to the prospect of MGMT(P140K)-mediated co-selection for hepatocytes and HSC using BG/BCNU treatment.
Collapse
Affiliation(s)
- Daren Wang
- Cell and Molecular Therapy Program, and Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | |
Collapse
|
25
|
Meador JA, Zhao M, Su Y, Narayan G, Geard CR, Balajee AS. Histone H2AX is a critical factor for cellular protection against DNA alkylating agents. Oncogene 2008; 27:5662-71. [PMID: 18542054 DOI: 10.1038/onc.2008.187] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Histone H2A variant H2AX is a dose-dependent suppressor of oncogenic chromosome translocations. H2AX participates in DNA double-strand break repair, but its role in other DNA repair pathways is not known. In this study, role of H2AX in cellular response to alkylation DNA damage was investigated. Cellular sensitivity to two monofunctional alkylating agents (methyl methane sulfonate and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)) was dependent on H2AX dosage, and H2AX null cells were more sensitive than heterozygous cells. In contrast to wild-type cells, H2AX-deficient cells displayed extensive apoptotic death due to a lack of cell-cycle arrest at G(2)/M phase. Lack of G(2)/M checkpoint in H2AX null cells correlated well with increased mitotic irregularities involving anaphase bridges and gross chromosomal instability. Observation of elevated poly(ADP) ribose polymerase 1 (PARP-1) cleavage suggests that MNNG-induced apoptosis occurs by PARP-1-dependent manner in H2AX-deficient cells. Consistent with this, increased activities of PARP and poly(ADP) ribose (PAR) polymer synthesis were detected in both H2AX heterozygous and null cells. Further, we demonstrate that the increased PAR synthesis and apoptotic death induced by MNNG in H2AX-deficient cells are due to impaired activation of mitogen-activated protein kinase pathway. Collectively, our novel study demonstrates that H2AX, similar to PARP-1, confers cellular protection against alkylation-induced DNA damage. Therefore, targeting either PARP-1 or histone H2AX may provide an effective way of maximizing the chemotherapeutic value of alkylating agents for cancer treatment.
Collapse
Affiliation(s)
- J A Meador
- Department of Radiation Oncology, College of Physicians and Surgeons, Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
26
|
Morita R, Nakagawa N, Kuramitsu S, Masui R. An O6-methylguanine-DNA methyltransferase-like protein from Thermus thermophilus interacts with a nucleotide excision repair protein. J Biochem 2008; 144:267-77. [PMID: 18483064 DOI: 10.1093/jb/mvn065] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The major damage to DNA caused by alkylating agents involves the formation of O6-methylguanine (O6-meG). Almost all species possess O6-methylguanine-DNA-methyltransferase (Ogt) to repair such damage. Ogt repairs O6-meG lesions in DNA by stoichiometric transfer of the methyl group to a cysteine residue in its active site (PCHR). Thermus thermophilus HB8 has an Ogt homologue, TTHA1564, but in this case an alanine residue replaces cysteine in the putative active site. To reveal the possible function of TTHA1564 in processing O6-meG-containing DNA, we characterized the biochemical properties of TTHA1564. No methyltransferase activity for synthetic O6-meG-containing DNA could be detected, indicating TTHA1564 is an alkyltransferase-like protein. Nevertheless, gel shift assays showed that TTHA1564 can bind to DNA containing O6-meG with higher affinity (9-fold) than normal (unmethylated) DNA. Experiments using a fluorescent oligonucleotide suggested that TTHA1564 recognizes O6-meG in DNA using the same mechanism as other Ogts. We then investigated whether TTHA1564 functions as a damage sensor. Pull-down assays identified 20 proteins, including a nucleotide excision repair protein UvrA, which interacts with TTHA1564. Interaction of TTHA1564 with UvrA was confirmed using a surface plasmon resonance assay. These results suggest the possible involvement of TTHA1564 in DNA repair pathways.
Collapse
Affiliation(s)
- Rihito Morita
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | | | | | | |
Collapse
|
27
|
Hegde ML, Hazra TK, Mitra S. Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res 2008; 18:27-47. [PMID: 18166975 DOI: 10.1038/cr.2008.8] [Citation(s) in RCA: 480] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Base excision repair (BER) is an evolutionarily conserved process for maintaining genomic integrity by eliminating several dozen damaged (oxidized or alkylated) or inappropriate bases that are generated endogenously or induced by genotoxicants, predominantly, reactive oxygen species (ROS). BER involves 4-5 steps starting with base excision by a DNA glycosylase, followed by a common pathway usually involving an AP-endonuclease (APE) to generate 3' OH terminus at the damage site, followed by repair synthesis with a DNA polymerase and nick sealing by a DNA ligase. This pathway is also responsible for repairing DNA single-strand breaks with blocked termini directly generated by ROS. Nearly all glycosylases, far fewer than their substrate lesions particularly for oxidized bases, have broad and overlapping substrate range, and could serve as back-up enzymes in vivo. In contrast, mammalian cells encode only one APE, APE1, unlike two APEs in lower organisms. In spite of overall similarity, BER with distinct subpathways in the mammals is more complex than in E. coli. The glycosylases form complexes with downstream proteins to carry out efficient repair via distinct subpathways one of which, responsible for repair of strand breaks with 3' phosphate termini generated by the NEIL family glycosylases or by ROS, requires the phosphatase activity of polynucleotide kinase instead of APE1. Different complexes may utilize distinct DNA polymerases and ligases. Mammalian glycosylases have nonconserved extensions at one of the termini, dispensable for enzymatic activity but needed for interaction with other BER and non-BER proteins for complex formation and organelle targeting. The mammalian enzymes are sometimes covalently modified which may affect activity and complex formation. The focus of this review is on the early steps in mammalian BER for oxidized damage.
Collapse
Affiliation(s)
- Muralidhar L Hegde
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1079, USA
| | | | | |
Collapse
|
28
|
Mellor HR, Callaghan R. Resistance to chemotherapy in cancer: a complex and integrated cellular response. Pharmacology 2008; 81:275-300. [PMID: 18259091 DOI: 10.1159/000115967] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 09/10/2007] [Indexed: 12/30/2022]
Abstract
Inherent and acquired resistance pathways account for the high rate of failure in cancer chemotherapy. The mechanisms or pathways mediating resistance may be classified as pharmacokinetic (i.e. alter intratumour drug exposue) or pharmacodynamic (i.e. failure to elicit cytotoxicity). More often than not, the resistant phenotype is characterised by alterations in multiple pathways. Consequently, the pathways may act synergistically or generate a broad spectrum of resistance to anticancer drugs. There has been a great deal of systematic characterisation of drug resistance in vitro. However, translating this greater understanding into clinical efficacy has rarely been achieved. This review explores the phenomenon of drug resistance in cancer and highlights the gap between in vitro and in vivo observations. This gap presents a major obstacle in overcoming drug resistance and restoring sensitivity to chemotherapy.
Collapse
Affiliation(s)
- Howard R Mellor
- Growth Factor Group, Weatherall Institute of Molecular Medicine, Oxford, UK
| | | |
Collapse
|
29
|
Abstract
This review describes the history of studies on alkylation damage of mammalian genomes and its carcinogenic consequences that led to the discovery of a unique DNA repair protein, named MGMT. MGMT repairs O(6)-alkylguanine, a critical mutagenic lesion induced by alkylating agents. The follow-up studies in mammalian cells following the discovery of the ubiquitous repair protein in E. coli are summarized.
Collapse
Affiliation(s)
- Sankar Mitra
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
30
|
Rabik CA, Njoku MC, Dolan ME. Inactivation of O6-alkylguanine DNA alkyltransferase as a means to enhance chemotherapy. Cancer Treat Rev 2006; 32:261-76. [PMID: 16698182 DOI: 10.1016/j.ctrv.2006.03.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 03/14/2006] [Accepted: 03/15/2006] [Indexed: 10/24/2022]
Abstract
DNA adducts at the O6-position of guanine are a result of the carcinogenic, mutagenic and cytotoxic actions of methylating and chloroethylating agents. The presence of the DNA repair protein O6-alkylguanine-DNA alkyltransferase (AGT) renders cells resistant to the biological effects induced by agents that attack at this position. O6-Benzylguanine (O6-BG) is a low molecular weight substrate of AGT and therefore, results in sensitizing cells and tumors to alkylating agent-induced cytotoxicity and antitumor activity. Presently, chemotherapy regimens of O6-BG in combination with BCNU, temozolomide and Gliadel are in clinical development. Other ongoing clinical trials include expression of mutant AGT proteins that confer resistance to O6-BG in bone marrow stem cells, in an effort to reduce the potential enhanced toxicity and mutagenicity of alkylating agents in the bone marrow. O6-BG has also been found to enhance the cytotoxicity of agents that do not form adducts at the O6-position of DNA, including platinating agents. O6-BG's mechanism of action with these agents is not fully understood; however, it is independent of AGT activity or AGT inactivation. A better understanding of the effects of this agent will contribute to its clinical usefulness and the design of better analogs to further improve cancer chemotherapy.
Collapse
Affiliation(s)
- Cara A Rabik
- Department of Medicine, Committee on Cancer Biology, Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
31
|
Affiliation(s)
- Yukiko Mishina
- Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637
| | - Erica M. Duguid
- Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637
| | - Chuan He
- Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637
| |
Collapse
|
32
|
Abstract
The same doses of medication cause considerable heterogeneity in efficacy and toxicity across human populations. Genetic factors are thought to represent important determinants of drug efficacy and toxicity. Pharmacogenetics focuses on the prediction of the response of tumor and normal tissue to standard therapy by genetic profiling and, thereby, to select the most appropriate medication at optimal doses for each individual patient. In the present review, we discuss the relevance of single nucleotide polymorphisms (SNP) in genes, whose gene products act upstream of the actual drug target sites, that is, drug transporters and drug metabolizing phase I and II enzymes, or downstream of them, that is, apoptosis-regulating genes and chemokines. SNPs in relevant genes, which encode for proteins that interact with anticancer drugs, were also considered, that is, enzymes of DNA biosynthesis and metabolism, DNA repair enzymes, and proteins of the mitotic spindle. A significant body of evidence supports the concept of predicting drug efficacy and toxicity by SNP genotyping. As the efficacy of cancer chemotherapy, as well as the drug-related toxicity in normal tissues is multifactorial in nature, sophisticated approaches such as genome-wide linkage analyses and integrate drug pathway profiling may improve the predictive power compared with genotyping of single genes. The implementation of pharmacogenetics into clinical routine diagnostics including genotype-based recommendations for treatment decisions and risk assessment for practitioners represents a challenge for the future.
Collapse
Affiliation(s)
- Thomas Efferth
- German Cancer Research Center, M070, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| | | |
Collapse
|
33
|
Niture SK, Doneanu CE, Velu CS, Bailey NI, Srivenugopal KS. Proteomic analysis of human O6-methylguanine-DNA methyltransferase by affinity chromatography and tandem mass spectrometry. Biochem Biophys Res Commun 2005; 337:1176-84. [PMID: 16226712 DOI: 10.1016/j.bbrc.2005.09.177] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Accepted: 09/29/2005] [Indexed: 11/15/2022]
Abstract
Recent evidence suggests that human O(6)-methylguanine-DNA methyltransferase (MGMT), a DNA repair protein that protects the genome against mutagens and accords tumor resistance to many anticancer alkylating agents, may have other roles besides repair. Therefore, we isolated MGMT-interacting proteins from extracts of HT29 human colon cancer cells using affinity chromatography on MGMT-Sepharose. Specific proteins bound to this column were identified by electrospray ionization tandem mass spectrometry and/or Western blotting. These procedures identified >60 MGMT-interacting proteins with diverse functions including those involved in DNA replication and repair (MCM2, PCNA, ORC1, DNA polymerase delta, MSH-2, and DNA-dependent protein kinase), cell cycle progression (CDK1, cyclin B, CDK2, CDC7, CDC10, 14-3-3 protein, and p21(waf1/cip1)), RNA processing and translation (poly(A)-binding protein, nucleolin, heterogeneous nuclear ribonucleoproteins, A2/B1, and elongation factor-1alpha), several histones (H4, H3.4, and H2A.1), and topoisomerase I. The heat shock proteins, HSP-90alpha and beta, also bound strongly with MGMT. The DNA repair activity of MGMT was greatly enhanced in the presence of interacting proteins or histones. These data, for the first time, suggest that human MGMT is likely to have additional functions, possibly, in sensing and integrating the DNA damage/repair-related signals with replication, cell cycle progression, and genomic stability.
Collapse
Affiliation(s)
- Suryakant K Niture
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | | | | | | | | |
Collapse
|
34
|
Duguid EM, Rice PA, He C. The structure of the human AGT protein bound to DNA and its implications for damage detection. J Mol Biol 2005; 350:657-66. [PMID: 15964013 DOI: 10.1016/j.jmb.2005.05.028] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 05/04/2005] [Accepted: 05/14/2005] [Indexed: 11/23/2022]
Abstract
O6-Alklyguanine-DNA alkyltransferase (AGT) is an important DNA repair protein that protects cells from mutagenesis and toxicity arising from alkylating agents. We present an X-ray crystal structure of the wild-type human protein (hAGT) bound to double-stranded DNA with a chemically modified cytosine base. The protein binds at two different sites: one at the modified base, and the other across a sticky-ended DNA junction. The protein molecule that binds the modified cytosine base flips the base and recognizes it in its active site. The one that binds ends of neighboring DNA molecules partially flips an overhanging thymine base. This base is not inserted into the active-site pocket of the protein. These two different hAGT/DNA interactions observed in the structure suggest that hAGT may not detect DNA lesions by searching for the adduct itself, but rather for weakened and/or distorted base-pairs caused by base damage in the duplex DNA. We propose that hAGT imposes a strain on the DNA duplex and searches for DNA regions where the native structure is destabilized. The structure provides implications for pyrimidine recognition, improved inhibitor design, and a possible protein/protein interaction patch on hAGT.
Collapse
Affiliation(s)
- Erica M Duguid
- Department of Chemistry, 5735 South Ellis Avenue, The University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
35
|
Szczesny B, Bhakat KK, Mitra S, Boldogh I. Age-dependent modulation of DNA repair enzymes by covalent modification and subcellular distribution. Mech Ageing Dev 2005; 125:755-65. [PMID: 15541770 DOI: 10.1016/j.mad.2004.07.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic oxidative stress is generally believed to be a major etiologic factor in the aging process. In addition to modulation of signaling processes and oxidation of cellular proteins and lipids, reactive oxygen species (ROS) induce multiple damages in both nuclear and mitochondrial genomes, most of which are repaired via the DNA base excision repair pathway. 8-Oxoguanine (8-oxoG), a major ROS product in the genome, is excised by 8-oxoG-DNA glycosylase (OGG1) and the resulting abasic (AP) site is cleaved by AP-endonuclease (APE1) in the initial steps of repair. Here, we provide data showing that differences between young and aged cells' efficiency in import of OGG1 and APE1 may be responsible for age-associated increase in DNA damage in both nuclear and mitochondrial compartments. It is also evident that age-dependent changes in covalent modifications of APE1 by acetylation regulate its action as a transcriptional repressor of many Ca(2+)-responsive genes by binding to nCaRE, in addition to its endonuclease activity. Thus, ROS-induced altered signaling is responsible for age-dependent changes in post-translational modifications and import of DNA repair enzymes into nuclei and mitochondria (mt), which in turn affect repair of their genomes.
Collapse
Affiliation(s)
- Bartosz Szczesny
- Sealy Center for Molecular Science, University of Texas Medical Branch, 6.136 Medical Research Building, Route 1079, Galveston, TX 77555, USA
| | | | | | | |
Collapse
|
36
|
Youn CK, Cho HJ, Kim SH, Kim HB, Kim MH, Chang IY, Lee JS, Chung MH, Hahm KS, You HJ. Bcl-2 expression suppresses mismatch repair activity through inhibition of E2F transcriptional activity. Nat Cell Biol 2004; 7:137-47. [PMID: 15619620 DOI: 10.1038/ncb1215] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Accepted: 12/06/2004] [Indexed: 11/08/2022]
Abstract
Bcl-2 stimulates mutagenesis after the exposure of cells to DNA-damaging agents. However, the biological mechanisms of Bcl-2-mediated mutagenesis have remained largely obscure. Here we demonstrate that the Bcl-2-mediated suppression of hMSH2 expression results in a reduced cellular capacity to repair mismatches. The pathway linking Bcl-2 expression to the suppression of mismatch repair (MMR) activity involves the hypophosphorylation of pRb, and then the enhancement of the E2F-pRb complex. This is followed by a decrease in hMSH2 expression. MMR has a key role in protection against deleterious mutation accumulation and in maintaining genomic stability. Therefore, the decreased MMR activity by Bcl-2 may be an underlying mechanism for Bcl-2-promoted oncogenesis.
Collapse
Affiliation(s)
- Cha-Kyung Youn
- Department of Pharmacology, School of medicine, Chosun University, 375 Seusuk-dong, Gwangju 501-759, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wiederhold L, Leppard JB, Kedar P, Karimi-Busheri F, Rasouli-Nia A, Weinfeld M, Tomkinson AE, Izumi T, Prasad R, Wilson SH, Mitra S, Hazra TK. AP Endonuclease-Independent DNA Base Excision Repair in Human Cells. Mol Cell 2004; 15:209-20. [PMID: 15260972 DOI: 10.1016/j.molcel.2004.06.003] [Citation(s) in RCA: 373] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 05/12/2004] [Accepted: 05/12/2004] [Indexed: 11/19/2022]
Abstract
The paradigm for repair of oxidized base lesions in genomes via the base excision repair (BER) pathway is based on studies in Escherichia coli, in which AP endonuclease (APE) removes all 3' blocking groups (including 3' phosphate) generated by DNA glycosylase/AP lyases after base excision. The recently discovered mammalian DNA glycosylase/AP lyases, NEIL1 and NEIL2, unlike the previously characterized OGG1 and NTH1, generate DNA strand breaks with 3' phosphate termini. Here we show that in mammalian cells, removal of the 3' phosphate is dependent on polynucleotide kinase (PNK), and not APE. NEIL1 stably interacts with other BER proteins, DNA polymerase beta (pol beta) and DNA ligase IIIalpha. The complex of NEIL1, pol beta, and DNA ligase IIIalpha together with PNK suggests coordination of NEIL1-initiated repair. That NEIL1/PNK could also repair the products of other DNA glycosylases suggests a broad role for this APE-independent BER pathway in mammals.
Collapse
Affiliation(s)
- Lee Wiederhold
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77555, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Daniels DS, Woo TT, Luu KX, Noll DM, Clarke ND, Pegg AE, Tainer JA. DNA binding and nucleotide flipping by the human DNA repair protein AGT. Nat Struct Mol Biol 2004; 11:714-20. [PMID: 15221026 DOI: 10.1038/nsmb791] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Accepted: 05/19/2004] [Indexed: 01/09/2023]
Abstract
O(6)-alkylguanine-DNA alkyltransferase (AGT), or O(6)-methylguanine-DNA methyltransferase (MGMT), prevents mutations and apoptosis resulting from alkylation damage to guanines. AGT irreversibly transfers the alkyl lesion to an active site cysteine in a stoichiometric, direct damage reversal pathway. AGT expression therefore elicits tumor resistance to alkylating chemotherapies, and AGT inhibitors are in clinical trials. We report here structures of human AGT in complex with double-stranded DNA containing the biological substrate O(6)-methylguanine or crosslinked to the mechanistic inhibitor N(1),O(6)-ethanoxanthosine. The prototypical DNA major groove-binding helix-turn-helix (HTH) motif mediates unprecedented minor groove DNA binding. This binding architecture has advantages for DNA repair and nucleotide flipping, and provides a paradigm for HTH interactions in sequence-independent DNA-binding proteins like RecQ and BRCA2. Structural and biochemical results further support an unpredicted role for Tyr114 in nucleotide flipping through phosphate rotation and an efficient kinetic mechanism for locating alkylated bases.
Collapse
Affiliation(s)
- Douglas S Daniels
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, MB-4, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Zhang Q, Ohannesian DW, Erickson LC. Hammerhead ribozyme-mediated sensitization of human tumor cells after treatment with 1,3-bis(2-chloroethyl)-1-nitrosourea. J Pharmacol Exp Ther 2004; 309:506-14. [PMID: 14742745 DOI: 10.1124/jpet.103.061507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
O(6)-Methylguanine DNA methyltransferase (MGMT) protects tumor cells from the cytotoxic effects of DNA-alkylating agents such as 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU). To improve the therapeutic index of BCNU, biochemical strategies to inhibit MGMT temporarily by systemic administration of small molecules, such as O(6)-benzylguanine, have been developed and are showing promise in clinical trials. In this study, an alternative molecular strategy for modulating BCNU resistance was explored using hammerhead ribozymes (Rz) designed to degrade the long-lived MGMT mRNA. We had previously identified several ribozymes capable of decreasing MGMT levels in HeLa cells. Using colony formation assays, the BCNU-induced cell kill was shown to be increased by 1 to 3 logs in the HeLa/Rz clones compared with wild-type HeLa cells at a BCNU dose of 100 microM. In the current study, 10 randomly selected clones of Rz161, 212, and a reconstructed Rz178/212 were assayed for MGMT activity, MGMT mRNA, and sensitivity to BCNU. The 30 clones exhibited almost identical results in the three assays, i.e., nearly undetectable MGMT activity, greatly diminished MGMT mRNA, and comparable sensitivity to BCNU using the 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate (WST-1) viability assay. The effects of catalytically inactive ribozymes carrying a single point mutation were compared with their active counterparts in vitro and in stably transfected clones to determine whether antisense inhibition was a contributor to the inhibition of MGMT activity we observed. Collectively, these results suggest that the hammerhead ribozymes characterized in this study will be excellent candidates for future gene therapy approaches targeting MGMT.
Collapse
Affiliation(s)
- Qiwei Zhang
- Indiana University Cancer Center, Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
40
|
Kim HJ, Lotan R. Identification of retinoid-modulated proteins in squamous carcinoma cells using high-throughput immunoblotting. Cancer Res 2004; 64:2439-48. [PMID: 15059897 DOI: 10.1158/0008-5472.can-03-2643] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Retinoids have shown clinical efficacy in cancer chemoprevention and therapy presumably by modulating the growth, differentiation, and apoptosis of normal, premalignant, and malignant cells. To better understand the mechanisms by which retinoids exert their effects, we used a high-throughput Western blotting method (Becton-Dickinson PowerBlot) to evaluate changes in the levels of cellular signaling proteins in head and neck squamous cell carcinoma cells treated with the cytostatic all-trans-retinoic acid or with the proapoptotic retinoids 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid or N-(4-hydroxyphenyl)retinamide. Treatments of the head and neck squamous cell carcinoma cells with these retinoids for 24 h resulted in increased levels of 14, 22, and 22 proteins and decreased levels of 5, 10, and 7 proteins, respectively. The changes in the levels of the following proteins were confirmed by conventional western immunoblotting: all-trans-retinoic acid increased ELF3, topoisomerase II alpha, RB2/p130, RIG-G, and EMAPII and decreased MEF2D and cathepsin L. N-(4-Hydroxyphenyl)retinamide up-regulated ELF3, c-Jun, Rb2/p130, JAK1, p67phox, Grb2, O(6)-methylguanine-DNA methyltransferase, and Ercc-1. 6-[3-(1-Adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid increased Rb2/p130, c-Jun, Sp1, Sin, and tomosyn and decreased cathepsin L, Mre11, and topoisomerase II alpha. Some of these proteins were also modulated by these retinoids in other human cancer cell lines. A subset of the proteins were modulated similarly by the different retinoids, whereas changes in other proteins were unique for each retinoid. These results suggest that the mechanisms by which these retinoids modulate proteins are distinct but may overlap. Some of the retinoid-modulated proteins identified in this study may be novel candidates for mediating different responses to retinoids.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas, M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
41
|
Boldogh I, Roy G, Lee MS, Bacsi A, Hazra TK, Bhakat KK, Das GC, Mitra S. Reduced DNA double strand breaks in chlorambucil resistant cells are related to high DNA-PKcs activity and low oxidative stress. Toxicology 2003; 193:137-52. [PMID: 14599773 DOI: 10.1016/j.tox.2003.08.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Modulation of DNA repair represents a strategy to overcome acquired drug resistance of cells to genotoxic chemotherapeutic agents, including nitrogen mustards (NM). These agents induce DNA inter-strand cross-links, which in turn produce double strand breaks (dsbs). These breaks are primarily repaired via the nonhomologous end-joining (NHEJ) pathway. A DNA-dependent protein kinase (DNA-PK) complex plays an important role in NHEJ, and its increased level/activity is associated with acquired drug resistance of human tumors. We show in this report that the DNA-PK complex has comparable levels and kinase activity of DNA-PK catalytic subunit (DNA-PKcs) in a nearly isogenic pair of drug-sensitive (A2780) and resistant (A2780/100) cells; however, treatment with chlorambucil (Cbl), a NM-type of drug, induced differential effects in these cells. The kinase activity of DNA-PKcs was increased up to 2h after Cbl treatment in both cell types; however, it subsequently decreased only in sensitive cells, which is consistent with increased levels of DNA dsbs. The decreased kinase activity of DNA-PKcs was not due to a change in its amount or the levels of Ku70 and Ku86, their subcellular distribution, cell cycle progression or caspase-mediated degradation of DNA-PK. In addition to DNA cross-links, Cbl treatment of cells causes a 2.2-fold increase in the level of reactive oxygen species (ROS) in both cell types. However, the ROS in A2780/100 cells were reduced to the basal level after 3-4h, while sensitive cells continued to produce ROS and undergo apoptosis. Pre-treatment of A2780 cells with the glutathione (GSH) precursor, N-acetyl-L-cysteine prevented Cbl-induced increase in ROS, augmented the kinase activity of DNA-PKcs, decreased the levels of DNA dsbs and increased cell survival. Depletion in GSH from A2780/100 cells by L-buthionine sulfoximine (BSO) resulted in sustained production of ROS, lowered DNA-PKcs kinase activity, enhanced levels of DNA dsbs, and increased cell killing by Cbl. We propose that oxidative stress decreases repair of DNA dsbs via lowering kinase activity of DNA-PKcs and that induction of ROS could be the basis for adjuvant therapies for sensitizing tumor cells to nitrogen mustards and other DNA cross-linking drugs.
Collapse
Affiliation(s)
- Istvan Boldogh
- Department of Microbiology and Immunology, Sealy Center for Molecular Sciences, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Duguid EM, Mishina Y, He C. How Do DNA Repair Proteins Locate Potential Base Lesions? A Chemical Crosslinking Method to Investigate O6-Alkylguanine-DNA Alkyltransferases. ACTA ACUST UNITED AC 2003; 10:827-35. [PMID: 14522053 DOI: 10.1016/j.chembiol.2003.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
O(6)-alkylguanine-DNA alkyltransferases directly reverse the alkylation on the O(6) position of guanine in DNA. This group of proteins has been proposed to repair the damaged base in an extrahelical manner; however, the detailed mechanism is not understood. Here we applied a chemical disulfide crosslinking method to probe the damage-searching mechanism of two O(6)-alkylguanine-DNA alkyltransferases, the Escherichia coli C-Ada and the human AGT. Crosslinking reactions with different efficiency occur between the reactive Cys residues of both proteins and a modified cytosine bearing a thiol tether in various DNA probes. Our results indicate that it is not necessary for these proteins to actively flip out every base to find damage. Instead they can locate potential lesions by simply capturing a lesioned base that is transiently extrahelical or sensing the unstable nature of a damaged base pair.
Collapse
Affiliation(s)
- Erica M Duguid
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA
| | | | | |
Collapse
|
43
|
Bhakat KK, Mitra S. CpG methylation-dependent repression of the human O6-methylguanine-DNA methyltransferase gene linked to chromatin structure alteration. Carcinogenesis 2003; 24:1337-45. [PMID: 12807730 DOI: 10.1093/carcin/bgg086] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The mechanism of inactivation of the O6-methylguanine-DNA methyltransferase (MGMT), responsible for repair of mutagenic and cytotoxic O6-alkylguanine, in Mex- tumor cells, is not completely understood. We have examined the role of CpG methylation in the human MGMT promoter in a luciferase (luc) reporter plasmid and associated alteration in chromatin structure. Methylation of 16% CpG sequences in promoter and flanking sequences in the plasmid with HpaII methylase reduced luciferase activity by 10-12-fold, while methylation of all CpG sites, including those in the luc coding sequence, as well as the promoter sequence blocked expression completely. Repression of luc expression due to partial but not complete CpG methylation could be reversed by histone deacetylase inhibitor trichostatin A (TSA). However, 5-azacytidine, which reverses CpG methylation, but not TSA, could reactivate silent MGMT gene in Mex- HeLa MR cells. Furthermore, chromatin immunoprecipitation (ChIP) assay showed reduced level of acetylation of H4 histone bound to the methylated promoter compared with the non-methylated promoter. These results suggest that complete repression of the MGMT gene in Mex- cells requires methylation of CpG sequences in both promoter and neighboring regions of the gene, resulting in inactive, condensed chromatin state of the gene.
Collapse
Affiliation(s)
- Kishor K Bhakat
- Sealy Center for Molecular Science and Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, 6.136 Medical Research Building, Route 1079, Galveston, TX 77555, USA
| | | |
Collapse
|
44
|
Srivenugopal KS, Ali-Osman F. The DNA repair protein, O(6)-methylguanine-DNA methyltransferase is a proteolytic target for the E6 human papillomavirus oncoprotein. Oncogene 2002; 21:5940-5. [PMID: 12185595 DOI: 10.1038/sj.onc.1205762] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2002] [Revised: 06/05/2002] [Accepted: 06/14/2002] [Indexed: 01/01/2023]
Abstract
We have previously shown that O(6)-methylguanine-DNA methyltransferase (MGMT), a DNA repair protein that protects tissues against toxic and carcinogenic effects of alkylating agents, is degraded through ubiquitination-dependent proteolysis. Here, we investigated the role of the human papillomavirus (HPV) E6 protein in MGMT degradation. In three pairs of isogenic human tumor cell lines in which a member of each pair expressed the E6 protein through stable transfection (HCT116/HCT116-E6, MCF7/MCF7-E6, and RKO/RKO-E6), we found a consistent 40-55% reduction in the MGMT protein level and its activity in all E6-expressing cells compared with the parent cells (P=<0.05). E6 expression did not, however, alter the levels of MGMT mRNA. Addition of the recombinant MGMT (rMGMT) protein to extracts of HCT116/E6 cells resulted in the binding of E6 to MGMT. Further, the purified E6 protein promoted the degradation of rMGMT in rabbit reticulocyte lysates. Immunoprecipitation assays showed the presence of a ternary protein complex between MGMT, E6, and the cellular ubiquitin-ligase E6-associated protein (E6-AP). Transient transfection of the p53-null H1299 lung tumor cells with an E6 construct also down-regulated the MGMT. The MGMT protein also showed structural features that are compatible for interaction with the E6, and E6-AP components. Collectively, these data suggest that the oncogenic E6 proteins enhance the ubiquitin-dependent proteolysis of MGMT.
Collapse
Affiliation(s)
- Kalkunte S Srivenugopal
- Section of Molecular Therapeutics, Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston 77030-4009, USA.
| | | |
Collapse
|
45
|
Srivenugopal KS, Mullapudi SRS, Ali-Osman F. Phosphorylation of O6-alkylguanine-DNA alkyltransferase: experience with a GST-fusion protein and a new pull-down assay. Cancer Lett 2002; 181:87-93. [PMID: 12430183 DOI: 10.1016/s0304-3835(01)00823-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We showed recently that human O6-alkylguanine-DNA alkyltransferase (AGT), a key target for enhancing the efficacy of anticancer alkylating agents, is regulated by phosphorylation in brain tumor cells. This report describes the problems we encountered in using a glutathione S-transferase (GST)-tagged AGT as the substrate in our search for cellular AGT kinases, validation of a new pull-down assay for AGT phosphorylation, and its wide applicability for quantitating protein kinases in crude extracts and purified fractions. The GST-tag present in the fusion protein, by itself, was found to undergo significant phosphorylation by tumor cell extracts and contribute to spurious results. Instead, we used a histidine-tagged AGT protein, and its micro-scale purification with Talon resin as the basis for a quantitative pull-down assay, and applied it for measuring AGT phosphorylation by protein kinase C (PKC) and other cellular kinases. The pull-down procedure can be easily adopted for quantitating protein kinases in a variety of settings, as it overcomes the need for substrate immunoprecipitation when whole cell extracts are used, and eliminates the autophosphorylated kinase proteins, when purified kinases are used. Our observations call for caution in interpreting the results with GST-fusion proteins in phosphorylation studies.
Collapse
Affiliation(s)
- Kalkunte S Srivenugopal
- Department of Neurosurgery, Box 64, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | | | | |
Collapse
|
46
|
Quinn JA, Pluda J, Dolan ME, Delaney S, Kaplan R, Rich JN, Friedman AH, Reardon DA, Sampson JH, Colvin OM, Haglund MM, Pegg AE, Moschel RC, McLendon RE, Provenzale JM, Gururangan S, Tourt-Uhlig S, Herndon JE, Bigner DD, Friedman HS. Phase II trial of carmustine plus O(6)-benzylguanine for patients with nitrosourea-resistant recurrent or progressive malignant glioma. J Clin Oncol 2002; 20:2277-83. [PMID: 11980998 DOI: 10.1200/jco.2002.09.084] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE We conducted a phase II trial of carmustine (BCNU) plus the O(6)-alkylguanine-DNA alkyltransferase inhibitor O(6)-benzylguanine (O(6)-BG) to define the activity and toxicity of this regimen in the treatment of adults with progressive or recurrent malignant glioma resistant to nitrosoureas. PATIENTS AND METHODS Patients were treated with O(6)-BG at an intravenous dose of 120 mg/m(2) followed 1 hour later by 40 mg/m(2) of BCNU, with cycles repeated at 6-week intervals. RESULTS Eighteen patients were treated (15 with glioblastoma multiforme, two with anaplastic astrocytoma, and one with malignant glioma). None of the 18 patients demonstrated a partial or complete response. Two patients exhibited stable disease for 12 weeks before their tumors progressed. Three patients demonstrated stable disease for 6, 12, and 18 weeks before discontinuing therapy because of hematopoietic toxicity. Twelve patients experienced reversible > or = grade 3 hematopoietic toxicity. There was no difference in half-lives (0.56 +/- 0.21 hour v 0.54 +/- 0.20 hour) or area under the curve values (4.8 +/- 1.7 microg/mL/h v 5.0 +/- 1.3 microg/mL/h) of O(6)-BG for patients receiving phenytoin and those not treated with this drug. CONCLUSION These results indicate that O(6)-BG plus BCNU at the dose schedule used in this trial is unsuccessful in producing tumor regression in patients with nitrosourea-resistant malignant glioma, although stable disease was seen in five patients for 6, 12, 12, 12, and 18 weeks. Future use of this approach will require strategies to minimize dose-limiting toxicity of BCNU such as regional delivery or hematopoietic stem-cell protection.
Collapse
Affiliation(s)
- Jennifer A Quinn
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Loktionova NA, Pegg AE. Interaction of mammalian O(6)-alkylguanine-DNA alkyltransferases with O(6)-benzylguanine. Biochem Pharmacol 2002; 63:1431-42. [PMID: 11996884 DOI: 10.1016/s0006-2952(02)00906-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human O(6)-alkylguanine-DNA alkyltransferase (hAGT) activity is a major factor in providing resistance to cancer chemotherapeutic alkylating agents. Inactivation of hAGT by O(6)-benzylguanine (BG) is a promising strategy for overcoming this resistance. Previous studies, which have focused on the region encompassed by residues Pro138 to Gly173, have identified more than 100 individual mutations located at 23 discrete sites at which alterations can render AGT less sensitive to BG. We have now extended the examination of possible sites in hAGT at which alterations might lead to BG resistance to include the residues from Val130 to Asn137, which also make up part of the binding pocket into which BG is postulated to fit. A further 21 mutations located at positions Gly132, Met134, Arg135, and Gly136 were found to lower sensitivity to BG. Mutants R135L, R135Y, and G136P were the most strikingly resistant, with a 50-fold increase in the amount of BG needed to obtain 50% inactivation. These results therefore increase the number of sites at which BG resistance can occur in response to a single amino acid change to 27. Although mammalian AGTs are very similar in amino acid sequence, mouse AGT (mAGT) is significantly less sensitive to BG than rat AGT (rAGT) or hAGT. Construction of chimeric proteins in which portions came from the rAGT and the mAGT indicated that the difference in inactivation resided solely in the amino acids located in the sequence from residues 150 to 188. Individual mutations of the three residues where rAGT and mAGT differ in this region showed that the principal reason for the reduced ability of the mAGT to react with BG was the presence of a histidine residue at position 161, which is occupied by asparagine in rAGT and hAGT. These experiments indicate that many minor changes in amino acids forming all parts of the nucleoside binding pocket of AGT can alter its ability to react with BG and that the possibility that polymorphisms or variants may occur reducing the effectiveness of combination therapy with BG and alkylating agents must be considered.
Collapse
Affiliation(s)
- Natalia A Loktionova
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, P.O. Box 850, 500 University Drive, Hershey, PA 17033, USA
| | | |
Collapse
|
48
|
Lips J, Kaina B. Repair of O(6)-methylguanine is not affected by thymine base pairing and the presence of MMR proteins. Mutat Res 2001; 487:59-66. [PMID: 11595409 DOI: 10.1016/s0921-8777(01)00105-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Methylation at the O(6)-position of guanine (O(6)-MeG) by alkylating agents is efficiently removed by O(6)-methylguanine-DNA methyltransferase (MGMT), preventing from cytotoxic, mutagenic, clastogenic and carcinogenic effects of O(6)-MeG-inducing agents. If O(6)-MeG is not removed from DNA prior to replication, thymine will be incorporated instead of cytosine opposite the O(6)-MeG lesion. This mismatch is recognized and processed by mismatch repair (MMR) proteins which are known to be involved in triggering the cytotoxic and genotoxic response of cells upon methylation. In this work we addressed three open questions. (1) Is MGMT able to repair O(6)-MeG mispaired with thymine (O(6)-MeG/T)? (2) Do MMR proteins interfere with the repair of O(6)-MeG/T by MGMT? (3) Does MGMT show a protective effect if it is expressed after replication of DNA containing O(6)-MeG? Using an in vitro assay we show that oligonucleotides containing O(6)-MeG/T mismatches are as efficient as oligonucleotides containing O(6)-MeG/C in competing for MGMT repair activity, indicating that O(6)-MeG mispaired with thymine is still subject to repair by MGMT. The addition of MMR proteins from nuclear extracts, or of recombinant MutSalpha, to the in vitro repair assay did not affect the repair of O(6)-MeG/T lesions by MGMT. This indicates that the presence of MutSalpha still allows access of MGMT to O(6)-MeG/T lesions. To elucidate the protective effect of MGMT in the first and second replication cycle after N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) treatment, MGMT transfected CHO cells were synchronized and MGMT was inactivated by pulse-treatment with O(6)-benzylguanine (O(6)-BG). Thereafter, the recovered cells were treated with MNNG and subjected to clonogenic survival assays. Cells which expressed MGMT in the first and second cell cycle were more resistant than cells which expressed MGMT only in the second (post-treatment) cell cycle. Cells which did not express MGMT in both cell cycles were most sensitive. This indicates that repair of O(6)-MeG can occur both in the first and second cell cycle after alkylation protecting cells from the killing effect of the lesion.
Collapse
Affiliation(s)
- J Lips
- Division of Applied Toxicology, Institute of Toxicology, University of Mainz, Obere Zahlbacher Street 67, D-55131, Mainz, Germany
| | | |
Collapse
|
49
|
Sierra LM, Tosal L, Nivard MJ, Comendador MA, Vogel EW. The importance of distinct metabolites of N-nitrosodiethylamine for its in vivo mutagenic specificity. Mutat Res 2001; 483:95-104. [PMID: 11600138 DOI: 10.1016/s0027-5107(01)00233-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Although N-nitrosodiethylamine (NDEA) is a potent carcinogen in rodents and a probable human carcinogen, little attempts were made to characterize its mutation spectrum in higher eukaryotes. We have compared forward mutation frequencies at multiple (700) loci with the mutational spectrum induced at the vermilion gene of Drosophila, after exposure of post- and pre-meiotic male germ cells to NDEA. Among 30 vermilion mutants collected from post-meiotic stages were 12 G:C-->A:T transitions (40%), 8 A:T-->T:A transversions (27%), and 4 structural rearrangements (13%). The remainder were three A:T-->G:C transitions, two G:C-->C:G transversions and one G:C-->T:A transversion. The results show that although NDEA induces predominantly transitions (40% G:C-->A:T and 10% A:T-->G:C), the frequencies of transversions (37%, of which 27% of A:T-->T:A transversions) and especially of rearrangements (13%) are remarkably high. This mutation spectrum differs significantly from that produced by the direct-ethylating agent N-ethylnitrosourea (ENU), although the relative distribution of ethylated DNA adducts is similar for both carcinogens. These differences, in particular the occurrence of rearrangements, are most likely the result of the requirement of NDEA for bioactivation. Since all four rearrangements were collected from non-metabolizing spermatozoa (or late spermatids), it is hypothesized that they derived from acetaldehyde, a stable metabolite of NDEA. Due to its cytotoxicity, attempts to isolate vermilion mutants from NDEA-exposed pre-meiotic cells were largely unsuccessful, because only two mutants (one A:T-->G:C transition and one 1bp insertion) were collected from those stages. Our results show that NDEA is capable of generating carcinogenic lesions other than base pair substitutions.
Collapse
Affiliation(s)
- L M Sierra
- Departamento Biología Funcional e Instituto Universitario de Oncología, Area de Genética, University of Oviedo, 33006, Oviedo, Spain.
| | | | | | | | | |
Collapse
|
50
|
Noll DM, Clarke ND. Covalent capture of a human O(6)-alkylguanine alkyltransferase-DNA complex using N(1),O(6)-ethanoxanthosine, a mechanism-based crosslinker. Nucleic Acids Res 2001; 29:4025-34. [PMID: 11574685 PMCID: PMC60232 DOI: 10.1093/nar/29.19.4025] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The DNA repair protein O(6)-alkylguanine alkyltransferase (AGT) is responsible for removing promutagenic alkyl lesions from exocyclic oxygens located in the major groove of DNA, i.e. the O(6) and O(4) positions of guanine and thymine. The protein carries out this repair reaction by transferring the alkyl group to an active site cysteine and in doing so directly repairs the premutagenic lesion in a reaction that inactivates the protein. In order to trap a covalent AGT-DNA complex, oligodeoxyribonucleotides containing the novel nucleoside N(1),O(6)-ethanoxanthosine ((e)X) have been prepared. The (e)X nucleoside was prepared by deamination of 3',5'-protected O(6)-hydroxyethyl-2'-deoxyguanosine followed by cyclization to produce 3',5'-protected N(1),O(6)-ethano-2'-deoxyxanthosine, which was converted to the nucleoside phosphoramidite and used in the preparation of oligodeoxyribonucleotides. Incubation of human AGT with a DNA duplex containing (e)X resulted in the formation of a covalent protein-DNA complex. Formation of this complex was dependent on both active human AGT and (e)X and could be prevented by chemical inactivation of the AGT with O(6)-benzylguanine. The crosslinking of AGT to DNA using (e)X occurs with high yield and the resulting complex appears to be well suited for further biochemical and biophysical characterization.
Collapse
Affiliation(s)
- D M Noll
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| | | |
Collapse
|