1
|
Fernandez R, Colás-Ruiz NR, Martínez-Rodríguez G, Lara-Martín PA, Mancera JM, Trombini C, Blasco J, Hampel M. The antibacterials ciprofloxacin, trimethoprim and sulfadiazine modulate gene expression, biomarkers and metabolites associated with stress and growth in gilthead sea bream (Sparus aurata). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106243. [PMID: 35872527 DOI: 10.1016/j.aquatox.2022.106243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/07/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The high consumption and subsequent input of antibacterial compounds in marine ecosystems has become a worldwide problem. Their continuous presence in these ecosystems allows a direct interaction with aquatic organisms and can cause negative effects over time. The objective of the present study was to evaluate the effects of exposure to three antibacterial compounds of high consumption and presence in marine ecosystems (Ciprofloxacin CIP, Sulfadiazine SULF and Trimethoprim TRIM) on the physiology of the gilthead sea bream, Sparus aurata. Plasma parameters, enzymatic biomarkers of oxidative stress and damage and expression of genes related to stress and growth were assessed in exposed S. aurata specimens. For this purpose, sea bream specimens were exposed to individual compounds at concentrations of 5.2 ± 2.1 μg L-1 for CIP, 3.8 ± 2.7 μg L-1 for SULF and 25.7 ± 10.8 μg L-1 for TRIM during 21 days. Exposure to CIP up-regulated transcription of genes associated with the hypothalamic-pituitary-thyroid (HPT) (thyrotropin-releasing hormone, trh) and hypothalamic-pituitary-interrenal (HPI) axes (corticotropin-releasing hormone-binding protein, crhbp) in the brain, as well as altering several hepatic stress biomarkers (catalase, CAT; glutathione reductase, GR; and lipid peroxidation, LPO). Similar alterations at the hepatic level were observed after exposure to TRIM. Overall, our study indicates that S. aurata is vulnerable to environmentally relevant concentrations of CIP and TRIM and that their exposure could lead to a stress situation, altering the activity of antioxidant defense mechanisms as well as the activity of HPT and HPI axes.
Collapse
Affiliation(s)
- Ronield Fernandez
- Microbiology Research Laboratory, University Simon Bolivar, Carrera 59 No. 59-65 Barranquilla, Colombia.
| | - Nieves R Colás-Ruiz
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, University Institute for Marine Research (INMAR), 11510 Puerto Real, Spain
| | - Gonzalo Martínez-Rodríguez
- Institute of Marine Sciences of Andalusia (ICMAN), Department of Marine Biology and Aquaculture, Spanish National Research Council (CSIC), Puerto Real, 11519, Spain
| | - Pablo A Lara-Martín
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, University Institute for Marine Research (INMAR), 11510 Puerto Real, Spain
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, University Institute for Marine Research (INMAR), International Excellence Campus of the Sea (CEI-MAR), University of Cádiz, 11510 Puerto Real, Spain
| | - Chiara Trombini
- Institute of Marine Sciences of Andalusia (ICMAN), Department of Marine Biology and Aquaculture, Spanish National Research Council (CSIC), Puerto Real, 11519, Spain
| | - Julián Blasco
- Institute of Marine Sciences of Andalusia (ICMAN), Department of Marine Biology and Aquaculture, Spanish National Research Council (CSIC), Puerto Real, 11519, Spain
| | - Miriam Hampel
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, University Institute for Marine Research (INMAR), 11510 Puerto Real, Spain
| |
Collapse
|
2
|
ROSS ACATHARINE, RUSSELL ROBERTM, MILLER SANFORDA, MUNRO IANC, RODRICKS JOSEPHV, YETLEY ELIZABETHA, JULIEN ELIZABETH. Application of a key events dose-response analysis to nutrients: a case study with vitamin A (retinol). Crit Rev Food Sci Nutr 2009; 49:708-17. [PMID: 19690996 PMCID: PMC2840874 DOI: 10.1080/10408390903098749] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The methodology used to establish tolerable upper intake levels (UL) for nutrients borrows heavily from risk assessment methods used by toxicologists. Empirical data are used to identify intake levels associated with adverse effects, and Uncertainty Factors (UF) are applied to establish ULs, which in turn inform public health decisions and standards. Use of UFs reflects lack of knowledge regarding the biological events that underlie response to the intake of a given nutrient, and also regarding the sources of variability in that response. In this paper, the Key Events Dose-Response Framework (KEDRF) is used to systematically consider the major biological steps that lead from the intake of the preformed vitamin A to excess systemic levels, and subsequently to increased risk of adverse effects. Each step is examined with regard to factors that influence whether there is progression toward the adverse effect of concern. The role of homeostatic mechanisms is discussed, along with the types of research needed to improve understanding of dose-response for vitamin A. This initial analysis illustrates the potential of the KEDRF as a useful analytical tool for integrating current knowledge regarding dose-response, generating questions that will focus future research efforts, and clarifying how improved knowledge and data could be used to reduce reliance on UFs.
Collapse
Affiliation(s)
- A. CATHARINE ROSS
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA
| | | | - SANFORD A. MILLER
- Central for Food, Nutrition, and Agriculture Policy, University of Maryland, College Park, MD, USA
| | - IAN C. MUNRO
- CANTOX Health Sciences International, ON, Canada
| | | | - ELIZABETH A. YETLEY
- Office of Dietary Supplements, National Institute of Health, Bethesda, MD, USA
| | - ELIZABETH JULIEN
- International Life Sciences Institute Research Foundation, Washington, DC, USA
| |
Collapse
|
3
|
Snyder JM, Jenkins-Moore M, Jackson SK, Goss KL, Dai HH, Bangsund PJ, Giguere V, McGowan SE. Alveolarization in retinoic acid receptor-beta-deficient mice. Pediatr Res 2005; 57:384-91. [PMID: 15635054 DOI: 10.1203/01.pdr.0000151315.81106.d3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Retinoids bind to nuclear receptors [retinoic acid receptors (RARs) and retinoid X receptors]. RARbeta, one of three isoforms of RARs (alpha, beta, and gamma), is expressed in the fetal and adult lung. We hypothesized that RARbeta plays a role in alveolarization. Using morphometric analysis, we determined that there was a significant increase in the volume density of airspace in the alveolar region of the lung at 28, 42, and 56 d postnatal age in RARbeta null mice when compared with wild-type controls. The mean cord length of the respiratory airspaces was increased in RARbeta null animals at 42 d postnatal age. Respiratory gas-exchange surface area per unit lung volume was significantly decreased in RARbeta null animals at 28, 42, and 56 d postnatal age. In addition, alveolar ducts tended to comprise a greater proportion of the lung airspaces in the RARbeta null mice. The RARbeta null mice also had impaired respiratory function when compared with wild-type control mice. There was no effect of RARbeta gene deletion on lung platelet-derived growth factor (PDGF) receptor alpha mRNA levels in postnatal lung tissue at several postnatal ages. However PDGF-A protein levels were significantly lower in the RARbeta null mice than in wild-type controls. Thus, deletion of the RARbeta gene impairs the formation of the distal airspaces during the postnatal phase of lung maturation in mice via a pathway that may involve PDGF-A.
Collapse
Affiliation(s)
- Jeanne M Snyder
- Department of Anatomy, University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Weston AD, Blumberg B, Underhill TM. Active repression by unliganded retinoid receptors in development: less is sometimes more. J Cell Biol 2003; 161:223-8. [PMID: 12719467 PMCID: PMC2172895 DOI: 10.1083/jcb.200211117] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The retinoid receptors have major roles throughout development, even in the absence of ligand. Here, we summarize an emerging theme whereby gene repression, mediated by unliganded retinoid receptors, can dictate cell fate. In addition to activating transcription, retinoid receptors actively repress gene transcription by recruiting cofactors that promote chromatin compaction. Two developmental processes for which gene silencing by the retinoid receptors is essential are head formation in Xenopus and skeletal development in the mouse. Inappropriate repression, by oncogenic retinoic acid (RA)**Abbreviations used in this paper: APL, acute promyelocytic leukemia; dnRARalpha, dominant-negative version of the RARalpha; E, embryonic age; HDAC, histone deacetylase; LCoR, ligand-dependent corepressor; NCoR, nuclear receptor corepressor; RA, retinoic acid; RAR, RA receptor; RARE, RXR homodimer bound to bipartite response element; RXR, retinoid X receptor; TSA, trichostatin A; CYP26, cytochrome p450, 26; TR, thyroid hormone receptor. receptor (RAR) fusion proteins, blocks myeloid differentiation leading to a rare form of leukemia. Our current understanding of the developmental role of retinoid repression and future perspectives in this field are discussed.
Collapse
Affiliation(s)
- Andrea D Weston
- Institute for Systems Biology, 1441 N. 34th St., Seattle, WA 98103, USA.
| | | | | |
Collapse
|
5
|
Perz-Edwards A, Hardison NL, Linney E. Retinoic acid-mediated gene expression in transgenic reporter zebrafish. Dev Biol 2001; 229:89-101. [PMID: 11133156 DOI: 10.1006/dbio.2000.9979] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retinoic acid-mediated gene activation is important for normal vertebrate development. The size and nature of retinoic acid make it difficult to identify the precise cellular location of this signaling molecule throughout an embryo. Additionally, retinoic acid (RA) signaling is regulated by a complex combination of receptors, coactivators, and antagonizing proteins. Thus, in order to integrate these signals and identify regions within a whole developing embryo where cells can respond transcriptionally to retinoic acid, we have used a reporter transgenic approach. We have generated several stable lines of transgenic zebrafish which use retinoic acid response elements to drive fluorescent protein expression. In these zebrafish lines, transgene expression is localized to regions of the neural tube, retina, notochord, somites, heart, pronephric ducts, branchial arches, and jaw muscles in embryos and larvae. Transgene expression can be induced in additional regions of the neural tube and retina as well as the immature notochord, hatching gland, enveloping cell layer, and fin by exposing embryos to retinoic acid. Treatment with retinoic acid synthase inhibitors, citral and diethylaminobenzaldehyde (DEAB), during neurulation, greatly reduces transgene expression. DEAB treatment of embryos at gastrulation phenocopies the embryonic effects of vitamin A deprivation or targeted disruption of the RA synthase retinaldehyde dehydrogenase-2 in other vertebrates. Together these data suggest that the reporter expression we see in zebrafish is dependent upon conserved vertebrate pathways of RA synthesis.
Collapse
Affiliation(s)
- A Perz-Edwards
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
6
|
Abstract
The embryonic vertebrate limb serves as an excellent experimental model system in which to study mechanisms that regulate morphogenesis of the skeleton. The appendicular skeleton arises through the process of endochondral ossification, whereby a cartilage template is initially formed and subsequently replaced by bone. One molecule that has a dramatic effect on these processes is the vitamin-A metabolite, retinoic acid (RA). RA functions through a class of nuclear hormone receptors, the retinoic acid receptors (RARs) and retinoid-X-receptors (RXRs), to regulate gene transcription. Experimental evidence from RA teratogenesis suggests that the presence of ligand-activated RARs and/or inappropriate expression of RARs inhibits chondrogenesis. Conversely, genetic analysis has shown that the absence of the receptors can lead to deficiencies in cartilage formation while also promoting chondrogenesis at ectopic sites. Taken together, these studies suggest that the RARs play a fundamental role in the early stages of skeletal development, specifically those involved in the formation of prechondrogenic condensations and their subsequent differentiation into chondroblasts.
Collapse
Affiliation(s)
- T M Underhill
- School of Dentistry, University of Western Ontario, London, Canada.
| | | |
Collapse
|
7
|
Barletta E, Mugnai G, Ruggieri S. Inverse relationship between invasiveness and differentiative capacity in different human neuroblastoma cell lines. Int J Cancer 1997; 70:556-60. [PMID: 9052755 DOI: 10.1002/(sici)1097-0215(19970304)70:5<556::aid-ijc11>3.0.co;2-b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In order to clarify the relationship between invasiveness and loss of cellular differentiation in tumor cells, we studied the invasive properties on Matrigel of (a) a series of clones we isolated from human neuroblastoma LaN1 and Platt cell lines inducible to differentiation by adhesion on fibronectin, and (b) SY5Y human neuroblastoma cells inducible to differentiation by retinoic acid. We found that, regardless of the parental line, the more differentiated clones were scarcely invasive, while the less differentiated clones showed a higher degree of invasiveness. Differences in invasiveness between differentiated and non-differentiated neuroblastoma clones did not reflect differences in adhesiveness to laminin, the major component of Matrigel. The retinoic acid-sensitive SY5Y human neuroblastoma cells also reduced their invasiveness on Matrigel after differentiation induced by growth in media supplemented with retinoic acid. These results point to an inverse relationship between differentiative properties and invasiveness in human neuroblastoma cell lines.
Collapse
Affiliation(s)
- E Barletta
- Institute of General Pathology, University of Florence, Italy
| | | | | |
Collapse
|
8
|
Cash DE, Bock CB, Schughart K, Linney E, Underhill TM. Retinoic acid receptor alpha function in vertebrate limb skeletogenesis: a modulator of chondrogenesis. J Cell Biol 1997; 136:445-57. [PMID: 9015314 PMCID: PMC2134817 DOI: 10.1083/jcb.136.2.445] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/1996] [Revised: 06/21/1996] [Indexed: 02/03/2023] Open
Abstract
Retinoic acid is a signaling molecule involved in the regulation of growth and morphogenesis during development. There are three types of nuclear receptors for all-trans retinoic acid in mammals, RAR alpha, RAR beta, and RAR gamma, which transduce the retinoic acid signal by inducing or repressing the transcription of target genes (Leid, M., P. Kastner, and P. Chambon. 1992. Trends Biochem. Sci. 17:427-433). While RAR alpha, RAR beta, and RAR gamma are expressed in distinct but overlapping patterns in the developing mouse limb, their exact role in limb development remains unclear. To better understand the role of retinoic acid receptors in mammalian limb development, we have ectopically expressed a modified RAR alpha with constitutive activity (Balkan, W., G.K. Klintworth, C.B. Bock, and E. Linney. 1992. Dev. Biol. 151:622-625) in the limbs of transgenic mice. Overexpression of the transgene was associated with marked pre- and postaxial limb defects, particularly in the hind limb, where expression of the transgene was consistently seen across the whole anteroposterior axis. The defects displayed in these mice recapitulate, to a large degree, many of the congenital limb malformations observed in the fetuses of dams administered high doses of retinoic acid (Kochhar, D.M. 1973. Teratology. 7:289-295). Further analysis of these transgenic animals showed that the defect in skeletogenesis resided at the level of chondrogenesis. Comparison of the expression of the transgene relative to that of endogenous RAR alpha revealed that downregulation of RAR alpha is important in allowing the chondrogenic phenotype to be expressed. These results demonstrate a specific function for RARalpha in limb development and the regulation of chondroblast differentiation.
Collapse
Affiliation(s)
- D E Cash
- Department of Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|