1
|
White JA, Kaninjing ET, Adeniji KA, Jibrin P, Obafunwa JO, Ogo CN, Mohammed F, Popoola A, Fatiregun OA, Oluwole OP, Thorpe RJ, Karanam B, Elhussin I, Ambs S, Tang W, Davis M, Polak P, Campbell MJ, Brignole KR, Rotimi SO, Dean-Colomb W, Odedina FT, Yates C. Whole-exome sequencing of Nigerian benign prostatic hyperplasia reveals increased alterations in apoptotic pathways. Prostate 2024; 84:460-472. [PMID: 38192023 PMCID: PMC10922327 DOI: 10.1002/pros.24662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/19/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Through whole-exome sequencing of 60 formalin-fixed paraffin-embedded Nigerian (NGRn) benign prostatic hyperplasia (BPH) samples, we identified germline and somatic alterations in apoptotic pathways impacting BPH development and progression. Prostate enlargement is a common occurrence in male aging; however, this enlargement can lead to lower urinary tract symptoms that negatively impact quality of life. This impact is disproportionately present in men of African ancestry. BPH pathophysiology is poorly understood and studies examining non-European populations are lacking. METHODS In this study, NGRn BPH, normal prostate, and prostate cancer (PCa) tumor samples were sequenced and compared to characterize genetic alterations in NGRn BPH. RESULTS Two hundred and two nonbenign, ClinVar-annotated germline variants were present in NGRn BPH samples. Six genes [BRCA1 (92%), HSD3B1 (85%), TP53 (37%), PMS2 (23%), BARD1 (20%), and BRCA2 (17%)] were altered in at least 10% of samples; however, compared to NGRn normal and tumor, the frequency of alterations in BPH samples showed no significant differences at the gene or variant level. BRCA2_rs11571831 and TP53_rs1042522 germline alterations had a statistically significant co-occurrence interaction in BPH samples. In at least two BPH samples, 173 genes harbored somatic variants known to be clinically actionable. Three genes (COL18A1, KIF16B, and LRP1) showed a statistically significant (p < 0.05) higher frequency in BPH. NGRn BPH also had five gene pairs (PKD1/KIAA0100, PKHD1/PKD1, DNAH9/LRP1B, NWD1/DCHS2, and TCERG1/LMTK2) with statistically significant co-occurring interactions. Two hundred and seventy-nine genes contained novel somatic variants in NGRn BPH. Three genes (CABP1, FKBP1C, and RP11-595B24.2) had a statistically significant (p < 0.05) higher alteration frequency in NGRn BPH and three were significantly higher in NGRn tumor (CACNA1A, DMKN, and CACNA2D2). Pairwise Fisher's exact tests showed 14 gene pairs with statistically significant (p < 0.05) interactions and four interactions approaching significance (p < 0.10). Mutational patterns in NGRn BPH were similar to COSMIC (Catalog of Somatic Mutations in Cancer) signatures associated with aging and dysfunctional DNA damage repair. CONCLUSIONS NGRn BPH contained significant germline alteration interactions (BRCA2_rs11571831 and TP53_rs1042522) and increased somatic alteration frequencies (LMTK2, LRP1, COL18A1, CABP1, and FKBP1C) that impact apoptosis. Normal prostate development is maintained by balancing apoptotic and proliferative activity. Dysfunction in either mechanism can lead to abnormal prostate growth. This work is the first to examine genomic sequencing in NGRn BPH and provides data that fill known gaps in the understanding BPH and how it impacts men of African ancestry.
Collapse
Affiliation(s)
- Jason A White
- Center for Cancer Research, Tuskegee University, Tuskegee, Alabama, USA
- Prostate Cancer Transatlantic Consortium (CaPTC), Abuja, Wuse Zone 1, Nigeria
- Department of Genetics, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Ernest T Kaninjing
- Prostate Cancer Transatlantic Consortium (CaPTC), Abuja, Wuse Zone 1, Nigeria
- School of Health and Human Performance, Georgia College & State University, Milledgeville, Georgia, USA
| | - Kayode A Adeniji
- Prostate Cancer Transatlantic Consortium (CaPTC), Abuja, Wuse Zone 1, Nigeria
- College of Health Sciences, University of Ilorin Teaching Hospital, Ilorin, Kwara State, Nigeria
| | - Paul Jibrin
- Prostate Cancer Transatlantic Consortium (CaPTC), Abuja, Wuse Zone 1, Nigeria
- College of Health Sciences, National Hospital Abuja, Abuja, Federal Capital Territory, Nigeria
| | - John O Obafunwa
- Prostate Cancer Transatlantic Consortium (CaPTC), Abuja, Wuse Zone 1, Nigeria
- Department of Pathology and Forensic Medicine, Lagos State University Teaching Hospital, Ikeja, Lagos, Nigeria
| | - Chidiebere N Ogo
- Prostate Cancer Transatlantic Consortium (CaPTC), Abuja, Wuse Zone 1, Nigeria
- Department of Surgery, Federal Medical Centre, Abeokuta, Ogun State, Nigeria
| | - Faruk Mohammed
- Prostate Cancer Transatlantic Consortium (CaPTC), Abuja, Wuse Zone 1, Nigeria
- Department of Pathology, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Ademola Popoola
- Prostate Cancer Transatlantic Consortium (CaPTC), Abuja, Wuse Zone 1, Nigeria
- College of Health Sciences, University of Ilorin Teaching Hospital, Ilorin, Kwara State, Nigeria
| | - Omolara A Fatiregun
- Prostate Cancer Transatlantic Consortium (CaPTC), Abuja, Wuse Zone 1, Nigeria
- Department of Clinical Oncology, Lagos State University Teaching Hospital, Ikeja, Lagos, Nigeria
| | - Olabode P Oluwole
- College of Health Sciences, University of Abuja, Abuja, Federal Capital Territory, Nigeria
| | - Roland J Thorpe
- Center for Health Disparities Solutions, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Balasubramanyam Karanam
- Center for Cancer Research, Tuskegee University, Tuskegee, Alabama, USA
- Prostate Cancer Transatlantic Consortium (CaPTC), Abuja, Wuse Zone 1, Nigeria
| | - Isra Elhussin
- Center for Cancer Research, Tuskegee University, Tuskegee, Alabama, USA
- Prostate Cancer Transatlantic Consortium (CaPTC), Abuja, Wuse Zone 1, Nigeria
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, Johns Hopkins University School of Medicine, Brady Urological Institute, Baltimore, Maryland, USA
| | - Stefan Ambs
- Prostate Cancer Transatlantic Consortium (CaPTC), Abuja, Wuse Zone 1, Nigeria
- Molecular Epidemiology Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Wei Tang
- Molecular Epidemiology Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Melissa Davis
- Department of Genetics, Morehouse School of Medicine, Atlanta, Georgia, USA
- Department of Surgery, New York Presbyterian-Weill Cornell Medicine, New York, New York, USA
| | - Paz Polak
- Quest Diagnostics, Secaucus, New Jersey, USA
| | - Moray J Campbell
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kathryn R Brignole
- Lineberger Comprehensive Cancer Center, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA
| | - Solomon O Rotimi
- Prostate Cancer Transatlantic Consortium (CaPTC), Abuja, Wuse Zone 1, Nigeria
- Department of Biochemistry and Covenant Applied Informatics and Communication Africa Centre of Excellence, Covenant University, Ota, Nigeria
| | - Windy Dean-Colomb
- Center for Cancer Research, Tuskegee University, Tuskegee, Alabama, USA
- Prostate Cancer Transatlantic Consortium (CaPTC), Abuja, Wuse Zone 1, Nigeria
- Piedmont Medical Oncology-Newnan, Newnan, Georgia, USA
| | - Folake T Odedina
- Center for Health Equity and Community Engagement Research, Mayo Clinic, Jacksonville, Florida, USA
| | - Clayton Yates
- Center for Cancer Research, Tuskegee University, Tuskegee, Alabama, USA
- Prostate Cancer Transatlantic Consortium (CaPTC), Abuja, Wuse Zone 1, Nigeria
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, Johns Hopkins University School of Medicine, Brady Urological Institute, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Yu X, Liu R, Song L, Gao W, Wang X, Zhang Y. Differences in the pathogenetic characteristics of prostate cancer in the transitional and peripheral zones and the possible molecular biological mechanisms. Front Oncol 2023; 13:1165732. [PMID: 37456243 PMCID: PMC10348634 DOI: 10.3389/fonc.2023.1165732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Since the theory of modern anatomical partitioning of the prostate was proposed, the differences in the incidence and pathological parameters of prostate cancer between the peripheral zone and transition zone have been gradually revealed. It suggests that there are differences in the pathogenic pathways and molecular biology of prostate cancer between different regions of origin. Over the past decade, advances in sequencing technologies have revealed more about molecules, genomes, and cell types specific to the peripheral and transitional zones. In recent years, the innovation of spatial imaging and multiple-parameter magnetic resonance imaging has provided new technical support for the zonal study of prostate cancer. In this work, we reviewed all the research results and the latest research progress in the study of prostate cancer in the past two decades. We summarized and proposed several vital issues and focused directions for understanding the differences between peripheral and transitional zones in prostate cancer.
Collapse
Affiliation(s)
- Xudong Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing Tumor Minimally Invasive Medical Center of Integrated Traditional Chinese and Western Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine and Beijing Municipal Health Commission, Beijing, China
| | - Ruijia Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lianying Song
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenfeng Gao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xuyun Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yaosheng Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing Tumor Minimally Invasive Medical Center of Integrated Traditional Chinese and Western Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine and Beijing Municipal Health Commission, Beijing, China
| |
Collapse
|
3
|
Jiang CY, Yu JJ, Ruan Y, Wang XH, Zhao W, Wang XJ, Zhu YP, Gao Y, Hao KY, Chen L, Han BM, Xia SJ, Zhao FJ. LIM domain only 2 over-expression in prostate stromal cells facilitates prostate cancer progression through paracrine of Interleukin-11. Oncotarget 2018; 7:26247-58. [PMID: 27028859 PMCID: PMC5041978 DOI: 10.18632/oncotarget.8359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/07/2016] [Indexed: 12/18/2022] Open
Abstract
Mechanisms of stromal-epithelial crosstalk are essential for Prostate cancer (PCa) tumorigenesis and progression. Peripheral zone of the prostate gland possesses a stronger inclination for PCa than transition zone. We previously found a variety of genes that differently expressed among different prostate stromal cells, including LIM domain only 2 (LMO2) which highly expressed in peripheral zone derived stromal cells (PZSCs) and PCa associated fibroblasts (CAFs) compared to transition zone derived stromal cells (TZSCs). Studies on its role in tumors have highlighted LMO2 as an oncogene. Herein, we aim to study the potential mechanisms of stromal LMO2 in promoting PCa progression. The in vitro cells co-culture and in vivo cells recombination revealed that LMO2 over-expressed prostate stromal cells could promote the proliferation and invasiveness of either prostate epithelial or cancer cells. Further protein array screening confirmed that stromal LMO2 stimulated the secretion of Interleukin-11 (IL-11), which could promote proliferation and invasiveness of PCa cells via IL-11 receptor α (IL11Rα) – STAT3 signaling. Moreover, stromal LMO2 over-expression could suppress miR-204-5p which was proven to be a negative regulator of IL-11 expression. Taken together, results of our study demonstrate that prostate stromal LMO2 is capable of stimulating IL-11 secretion and by which activates IL11Rα – STAT3 signaling in PCa cells and then facilitates PCa progression. These results may make stromal LMO2 responsible for zonal characteristic of PCa and as a target for PCa microenvironment-targeted therapy.
Collapse
Affiliation(s)
- Chen-Yi Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jun-Jie Yu
- Department of Urology, Subei People's Hospital of Jiangsu Province, Clinical Medical College of Yangzhou University, Yangzhou 225001, China
| | - Yuan Ruan
- Department of Urology, Shanghai General Hospital Affiliated to Nanjing Medical University, Shanghai 200080, China
| | - Xiao-Hai Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wei Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xing-Jie Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yi-Ping Zhu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yuan Gao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Kui-Yuan Hao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Lei Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Bang-Min Han
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shu-Jie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Department of Urology, Shanghai General Hospital Affiliated to Nanjing Medical University, Shanghai 200080, China
| | - Fu-Jun Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
4
|
Fisher KW, Zhang S, Wang M, Montironi R, Wang L, Baldrige LA, Wang JY, MacLennan GT, Williamson SR, Lopez-Beltran A, Cheng L. TMPRSS2-ERGgene fusion is rare compared to PTENdeletions in stage T1a prostate cancer. Mol Carcinog 2017; 56:814-820. [DOI: 10.1002/mc.22535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Kurt W. Fisher
- Department of Pathology; Indiana University School of Medicine; Indianapolis Indiana
| | - Shaobo Zhang
- Department of Pathology; Indiana University School of Medicine; Indianapolis Indiana
| | - Mingsheng Wang
- Department of Pathology; Indiana University School of Medicine; Indianapolis Indiana
| | - Rodolfo Montironi
- Department of Urology; Institute of Pathological Anatomy and Histopathology; Polytechnic University of the Marche Region (Ancona); United Hospitals; Ancona Italy
| | - Lisha Wang
- Michigan Center for Translational Pathology; University of Michigan; Ann Arbor Michigan
| | - Lee A. Baldrige
- Department of Pathology; Indiana University School of Medicine; Indianapolis Indiana
| | - Jonas Y. Wang
- Department of Pathology; Indiana University School of Medicine; Indianapolis Indiana
| | - Gregory T. MacLennan
- Departments of Pathology and Laboratory Medicine; Case Western Reserve University; Cleveland Ohio
| | - Sean R. Williamson
- Department of Pathology and Laboratory Medicine; Henry Ford Health System; Detroit Michigan
- Josephine Ford Cancer Institute; Henry Ford Health System; Detroit Michigan
- Department of Pathology; Wayne State University School of Medicine; Detroit Michigan
| | - Antonio Lopez-Beltran
- Faculty of Medicine, Department of Pathology and Surgery, Cordoba University Spain and Champalimaud Clinical Center; Cordoba University; Lisbon Portugal
| | - Liang Cheng
- Department of Pathology; Indiana University School of Medicine; Indianapolis Indiana
| |
Collapse
|
5
|
Tu L, Huda N, Grimes BR, Slee RB, Bates AM, Cheng L, Gilley D. Widespread telomere instability in prostatic lesions. Mol Carcinog 2015; 55:842-52. [PMID: 25917938 DOI: 10.1002/mc.22326] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 02/13/2015] [Accepted: 03/26/2015] [Indexed: 12/11/2022]
Abstract
A critical function of the telomere is to disguise chromosome ends from cellular recognition as double strand breaks, thereby preventing aberrant chromosome fusion events. Such chromosome end-to-end fusions are known to initiate genomic instability via breakage-fusion-bridge cycles. Telomere dysfunction and other forms of genomic assault likely result in misregulation of genes involved in growth control, cell death, and senescence pathways, lowering the threshold to malignancy and likely drive disease progression. Shortened telomeres and anaphase bridges have been reported in a wide variety of early precursor and malignant cancer lesions including those of the prostate. These findings are being extended using methods for the analysis of telomere fusions (decisive genetic markers for telomere dysfunction) specifically within human tissue DNA. Here we report that benign prostatic hyperplasia (BPH), high-grade prostatic intraepithelial neoplasia (PIN), and prostate cancer (PCa) prostate lesions all contain similarly high frequencies of telomere fusions and anaphase bridges. Tumor-adjacent, histologically normal prostate tissue generally did not contain telomere fusions or anaphase bridges as compared to matched PCa tissues. However, we found relatively high levels of telomerase activity in this histologically normal tumor-adjacent tissue that was reduced but closely correlated with telomerase levels in corresponding PCa samples. Thus, we present evidence of high levels of telomere dysfunction in BPH, an established early precursor (PIN) and prostate cancer lesions but not generally in tumor adjacent normal tissue. Our results suggest that telomere dysfunction may be a common gateway event leading to genomic instability in prostate tumorigenesis. .
Collapse
Affiliation(s)
- LiRen Tu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Nazmul Huda
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brenda R Grimes
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Roger B Slee
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Alison M Bates
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - David Gilley
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
6
|
Abstract
Androgen receptor (AR) signaling is vital to the development and function of the prostate and is a key pathway in prostate cancer. AR is differentially expressed in the stroma and epithelium, with both paracrine and autocrine control throughout the prostate. Stromal-epithelial interactions within the prostate are commonly dependent on AR signaling and expression. Alterations in these pathways can promote tumorigenesis. AR is also expressed in normal and malignant mammary tissues. Emerging data indicate a role for AR in certain subtypes of breast cancer that has the potential to be exploited therapeutically. The aim of this review is to highlight the importance of these interactions in normal development and tumorigenesis, with a focus on the prostate and breast.
Collapse
Affiliation(s)
- Cera M Nieto
- Department of PharmacologyUniversity of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Leah C Rider
- Department of PharmacologyUniversity of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Scott D Cramer
- Department of PharmacologyUniversity of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
7
|
|
8
|
Alizad A, Mehrmohammadi M, Mitri FG, Davis BJ, Sebo TJ, Mynderse LA, Kinnick RR, Greenleaf JF, Fatemi M. Application of vibro-acoustography in prostate tissue imaging. Med Phys 2013; 40:022902. [PMID: 23387773 DOI: 10.1118/1.4773890] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
PURPOSE To evaluate the potential of the imaging modality vibro-acoustography (VA) for imaging of the prostate. METHODS Excised cadaver prostate specimens were embedded in tissue mimicking gel to simulate the properties of surrounding soft tissues. The samples were imaged at various depths using a laboratory prototyped VA imaging system. The recorded signals were used for offline processing and image reconstruction. In a selected subgroup of tissue samples, conventional ultrasound (B-mode) and x-ray imaging were performed for further analysis, evaluation, and validation of the VA images. RESULTS The imaging results of prostate tissue samples indicate the capability of VA imaging to detect prostatic nodules and lesions. In the prostate sample with an adenocarcinoma, the lesion appears with a clear contrast with respect to its surrounding tissue. The VA images could also identify the presence of calcifications deep inside the prostate tissue. Further, quantifications of the imaging results demonstrate that VA imaging has higher sensitivity to detect the calcifications compared to conventional ultrasound imaging. VA is also capable of visualizing prostatic tissue structures and in some cases can identify the anatomical zones. More specifically, the observed higher texture level in peripheral zones demonstrates the ability of VA to differentiate between prostatic anatomical zones. CONCLUSIONS Imaging results of ex vivo prostate tissues, reveals the potency of VA as a promising tool to detect abnormalities, delineate tissue structures and anatomical zones, and locate calcifications. The results of this pilot study suggest that in vivo VA imaging of the prostate may be of clinical utility.
Collapse
Affiliation(s)
- Azra Alizad
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Jiang Q, Han BM, Zhao FJ, Hong Y, Xia SJ. The differential effects of prostate stromal cells derived from different zones on prostate cancer epithelial cells under the action of sex hormones. Asian J Androl 2011; 13:798-805. [PMID: 21765438 DOI: 10.1038/aja.2011.22] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
It is well known that prostate cancer (PCa) occurs predominantly in the peripheral zone (PZ), whereas benign prostatic hyperplasia (BPH) typically develops in the transition zone. To identify possible mechanisms underlying zonal differences, we compared the effects of prostate stromal cells derived from the peripheral zone (PZsc) and the transition zone (TZsc) on a PCa epithelial cell line (PC3) in the presence of sex hormones. First, we observed that androgen receptor (AR) mRNA was more highly expressed in PZsc than TZsc when the cells were treated with dihydrotestosterone (DHT) and β-oestradiol (E2) (P<0.05). By ELISA, we looked for differences in the secretion of peptide growth factors from PZsc and TZsc. We found that keratinocyte growth factor (KGF) secretion increased with increasing concentrations of DHT (P<0.01) and was higher in PZsc than TZsc. Under treatment with DHT plus E2, PZsc secreted more transforming growth factor-β1 (TGF-β1) than TZsc, but this pattern was reversed when the cells were treated with E2 only. With increasing concentrations of DHT, insulin-like growth factor-1 (IGF-1) secretion increased in PZsc but decreased in TZsc. To further characterize the effects of PZsc and TZsc on PC3 cells, we developed a coculture model and performed MTT assays, Western blot analysis and real-time RT-PCR. We found that PZsc promoted PC3 cell proliferation and progression better than TZsc, particularly when treated with 10 nmol l(-1) DHT plus 10 nmol l(-1) E2. In conclusion, our data suggest that PZsc may have a greater capacity to induce PCa development and progression than TZsc via growth factors regulated by sex hormones. These findings provide possible mechanisms underlying zonal differences in prostate diseases, which may aid the search for novel therapeutic targets for PCa.
Collapse
Affiliation(s)
- Qi Jiang
- Department of Urology, Shanghai First People's Hospital, Institute of Urology, Shanghai Jiao Tong University, Shanghai 200080, China
| | | | | | | | | |
Collapse
|
10
|
Differences in phenotype and gene expression of prostate stromal cells from patients of varying ages and their influence on tumour formation by prostate epithelial cells. Asian J Androl 2011; 13:732-41. [PMID: 21642999 DOI: 10.1038/aja.2011.11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Prostate cancer (PCa) is an age-related disease, and the stromal microenvironment plays an important role in prostatic malignant progression. However, the differences in prostate stromal cells present in young and old tissue are still obscure. We established primary cultured stromal cells from normal prostatic peripheral zone (PZ) of donors of varying ages and found that cultured stromal cells from old donors (PZ-old) were more enlarged and polygonal than those from young donors (PZ-young). Furthermore, based on immunocytochemical and ultrastructural analysis, the components of stromal cells changed from a majority of fibroblasts to a mixture of fibroblasts and myofibroblasts with increasing donor age. Using a three-dimensional in vitro culture system, we found that PZ-old stromal cells could enhance the proliferation, migration and invasion of cocultured benign BPH-1 and PC-3 cells. Using an in vivo tissue recombination system, we also found that PZ-old stromal cells are more effective than PZ-young cells in promoting tumour formation by BPH-1 cells of high passage (>100) and PC-3 cells. To probe the possible mechanism of these effects, we performed cDNA microarray analysis and profiled 509 upregulated genes and 188 downregulated genes in PZ-old cells. Among the changed genes, we found genes coding for a subset of paracrine factors that are capable of influencing adjacent epithelial cells; these include hepatocyte growth factor (HGF), fibroblast growth factor 5 (FGF5), insulin-like growth factor 2 (IGF2), insulin-like growth factor-binding protein 4 (IGFBP4), IGFBP5 and matrix metallopeptidase 1 (MMP1). Changes in the expression of these genes were further confirmed by quantitative real-time polymerase chain reaction (PCR), Western blotting and enzyme-linked immunosorbent assays. Overall, our findings indicate that stromal cells from prostate PZ of old donors are more active than similar cells from young donors in promoting the malignant process of adjacent epithelial cells. This finding hints at a new potential strategy for the prevention of PCa.
Collapse
|
11
|
Descazeaud A, Weinbreck N, Robert G, Vacherot F, Abbou CC, Labrousse F, Allory Y, Rubin MA, de la Taille A. Transforming growth factor β-receptor II protein expression in benign prostatic hyperplasia is associated with prostate volume and inflammation. BJU Int 2010; 108:E23-8. [PMID: 20840324 DOI: 10.1111/j.1464-410x.2010.09699.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To assess transforming growth factor β-receptor II (TGFBRII) protein expression in benign prostatic hyperplasia (BPH) using immunohistochemistry analysis, and to compare the analysis with phenotypic properties. METHODS TGFBRII protein expression was profiled using three clinical outcome tissue microarrays (TMAs), sampled from 231 patients who underwent surgery for BPH. Using these TMAs, five inflammatory cell markers were also assessed, including CD3, CD4, CD8, CD20, and CD163. The surgical procedure was open prostatectomy in 95 patients and transurethral resection of the prostate in 136 patients. RESULTS TGFBRII protein expression was found in BPH epithelium cells for both basal and secretory cells, as well as in fibromuscular stromal cells. TGFBRII staining was also strong in most of the lymphocytes infiltrating the prostate. TGFBRII stromal staining was found to be significantly associated with prostate volume (P = 0.04), whereas TGFBRII epithelial staining was found to be significantly associated with 5-α-reductase-inhibitor medical therapy received by patients before surgery (P = 0.004). Both stromal and epithelial TGFBRII staining were found to be associated with CD4 T-lymphocyte infiltrate, independently of prostate volume (P < 0.001 and P = 0.002). CONCLUSIONS TGFBRII protein expression in BPH is associated with prostate gland volume and with CD4 T-lymphocyte prostatitis. TGFBRII might be a promising therapeutic target to prevent prostate enlargement or even to decrease prostate volume.
Collapse
|
12
|
Kayhan A, Fan X, Oommen J, Oto A. Multi-parametric MR imaging of transition zone prostate cancer: Imaging features, detection and staging. World J Radiol 2010; 2:180-7. [PMID: 21161033 PMCID: PMC2999020 DOI: 10.4329/wjr.v2.i5.180] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 04/21/2010] [Accepted: 04/28/2010] [Indexed: 02/06/2023] Open
Abstract
Magnetic resonance (MR) imaging has been increasingly used in the evaluation of prostate cancer. As studies have suggested that the majority of cancers arise from the peripheral zone (PZ), MR imaging has focused on the PZ of the prostate gland thus far. However, a considerable number of cancers (up to 30%) originate in the transition zone (TZ), substantially contributing to morbidity and mortality. Therefore, research is needed on the TZ of the prostate gland. Recently, MR imaging and advanced MR techniques have been gaining acceptance in evaluation of the TZ. In this article, the MR imaging features of TZ prostate cancers, the role of MR imaging in TZ cancer detection and staging, and recent advanced MR techniques will be discussed in light of the literature.
Collapse
|
13
|
Koch P, Petri M, Paradowska A, Stenzinger A, Sturm K, Steger K, Wimmer M. PTPIP51 mRNA and protein expression in tissue microarrays and promoter methylation of benign prostate hyperplasia and prostate carcinoma. Prostate 2009; 69:1751-62. [PMID: 19691131 DOI: 10.1002/pros.21025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Protein tyrosine phosphatase interacting protein 51 (PTPIP51) shows a tissue-specific expression pattern and is associated with cellular differentiation and apoptosis in several mammalian tissues. Overexpression of the full-length protein enhances apoptosis. It is also expressed in various carcinomas. In this study the expression of PTPIP51 and its in vitro interaction partners was investigated in human benign prostate hyperplasia (BPH) and in prostate carcinoma (PCa). METHODS Tissue microarrays of human BPH and PCa were analyzed by immunohistochemistry. For polymerase chain reaction (PCR), cryo samples of BPH and PCa were used. Bisulfite DNA treatment, followed by sequencing of PCR products was performed in order to analyze CpGs methylation within the promoter region of the PTPIP51 gene. RESULTS PTPIP51 mRNA and protein expression was detected in prostatic epithelia of BPH and in tumor cells of PCa, respectively, and within smooth muscle cells of the stromal compartment. A stronger expression was present in nerve fibers, particularly in PCa, in immune cells and in smooth muscle and endothelial cells of vessels of BPH and PCa. On mRNA levels, a slightly elevated expression of PTPIP51 was observed in the PCa group as tested by real-time quantitative PCR analyses. Methylation experiments revealed that at least 70% of methylated CpGs in the CpG island of the PTPIP51 gene promoter region were identified in BPH samples. In contrast, a loss of methylation has been found in the PCa group. CONCLUSION The promoter methylation status of PTPIP51 seems to influence the expression of PTPIP51, which was seen as elevated in the PCa.
Collapse
Affiliation(s)
- Philipp Koch
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany.
| | | | | | | | | | | | | |
Collapse
|
14
|
Tumor formation of prostate cancer cells influenced by stromal cells from the transitional or peripheral zones of the normal prostate. Asian J Androl 2009; 11:176-82. [PMID: 19122679 DOI: 10.1038/aja.2008.33] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This study was designed to investigate the different involvements of prostatic stromal cells from the normal transitional zone (TZ) or peripheral zone (PZ) in the carcinogenesis of prostate cancer (PCa) epithelial cells (PC-3) in vitro and in vivo co-culture models. Ultra-structures and gene expression profiles of primary cultures of human prostatic stromal cells from the normal TZ or PZ were analyzed by electron microscopy and microarray analysis. In vitro and in vivo co-culture models composed of normal TZ or PZ stromal cells and human PCa PC-3 cells were established. We assessed tumor growth and weight in the in vivo nude mice model. There are morphological and ultra-structural differences in stromal cells from TZ and PZ of the normal prostate. In all, 514 differentially expressed genes were selected by microarray analysis; 483 genes were more highly expressed in stromal cells from TZ and 31 were more highly expressed in those from PZ. Co-culture with PZ stromal cells and transforming growth factor-beta1 (TGF-beta1) increased the tumor growth of PC-3 cells in vitro and in vivo, as well as Bcl-2 expression. On the other hand, stromal cells of TZ suppressed PC-3 cell tumor growth in the mouse model. We conclude that ultra-structures and gene expression differ between the stromal cells from TZ or PZ of the normal prostate, and stroma-epithelium interactions from TZ or PZ might be responsible for the distinct zonal localization of prostate tumor formation.
Collapse
|
15
|
Olsson M, Gustafsson O, Skogastierna C, Tolf A, Rietz BD, Morfin R, Rane A, Ekström L. Regulation and expression of human CYP7B1 in prostate: overexpression of CYP7B1 during progression of prostatic adenocarcinoma. Prostate 2007; 67:1439-46. [PMID: 17639508 DOI: 10.1002/pros.20630] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Cytochrome P450 (CYP) 7B1 is involved in many metabolic processes including androgen metabolism. Cytochrome P450 (CYP) 7B1 is expressed within the prostate and may determine the levels of the natural estrogen receptor beta (ERbeta) ligand 5alpha-androstane-3beta,17beta-diol (3betaAdiol) available and hence affect the regulation of prostate proliferation. We hypothesized that CYP7B1 expression is increased in prostate tumors and that promoter methylation contributes to the regulation of CYP7B1 expression in human prostate tissue. METHODS Expression of the CYP7B1 gene and protein in clinical prostate tissues and prostate cancer cell lines were investigated using real-time PCR and immunohistochemistry. The methylation status of the CYP7B1 gene was analyzed using methylation-specific PCR (MSP). RESULTS The immunohistochemical results demonstrate that high expression of CYP7B1 protein occurs in high-grade prostatic intraepithelial neoplasia (PIN) and adenocarcinomas. The ERbeta/CYP7B1 mRNA ratio was significantly lower in tumor compared to the non-tumor area. The MSP analysis indicate that local methylation of CYP7B1 promoter region is an important mechanism involved in down-regulation of CYP7B1 in human prostate tissue. CONCLUSIONS This is the first report showing that CYP7B1 is overexpressed in high-grade PIN and in prostate cancer and that local methylation of CYP7B1 promoter region may have significant effect on gene transcription.
Collapse
Affiliation(s)
- Mats Olsson
- Department of Urology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Guan M, Zhou X, Soulitzis N, Spandidos DA, Popescu NC. Aberrant methylation and deacetylation of deleted in liver cancer-1 gene in prostate cancer: potential clinical applications. Clin Cancer Res 2006; 12:1412-9. [PMID: 16533763 DOI: 10.1158/1078-0432.ccr-05-1906] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The deleted in liver cancer-1 (DLC-1) gene that encodes a Rho GTPase-activating protein with tumor suppressor function is located on chromosome 8p21-22, a region frequently deleted in prostate carcinomas. This study was designed to determine whether DLC-1 is deregulated in prostate carcinomas and to assess the contribution of DLC-1 alterations to prostate carcinogenesis. EXPERIMENTAL DESIGN Primary prostate carcinomas, prostate carcinoma cell lines, benign prostatic hyperplasias, and normal prostatic tissues were examined for detection of functional and structural alterations of the DLC-1 gene by real-time PCR, methylation-specific PCR, and Southern and Western blots. RESULTS Down-regulation or loss of DCL-1 mRNA expression was detected in 10 of 27 (37%) prostate carcinomas, 3 of 5 (60%) prostate carcinoma cell lines, and 5 of 21 (24%) benign prostatic hyperplasias. DLC-1 promoter methylation was identified in 13 of 27 (48%) prostate carcinomas and 2 matching normal tissues and in 15 of 21 (71%) benign prostatic hyperplasias but was absent in 10 normal prostatic tissues from noncancerous individuals. Genomic deletions were found in only 3 prostate carcinomas and 1 benign prostatic hyperplasia. DLC-1 protein was not detected in 8 of 27 (30%) prostate carcinomas and 11 of 21 (52%) benign prostatic hyperplasias. Methylation of DLC-1 correlated with age in prostate carcinoma patients (P = 0.006) and with prostate-specific antigen blood levels in benign prostatic hyperplasia patients (P = 0.029). Treatment of the three prostate carcinoma cell lines (PC-3, LNCaP, and 22Rv1) expressing a low level of DLC-1 transcripts with inhibitors of DNA methyltransferase or histone deacetylase increased DLC-1 expression. CONCLUSIONS These results show that the transcriptional silencing of DLC-1 by two epigenetic mechanisms is common and may be involved in the pathogenesis of prostate carcinomas and benign prostatic hyperplasias and could have potential clinical application in the early detection and gene therapy of prostate cancer.
Collapse
Affiliation(s)
- Ming Guan
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-4262, USA
| | | | | | | | | |
Collapse
|
17
|
Kirschenbaum A, Liu XH, Yao S, Narla G, Friedman SL, Martignetti JA, Levine AC. Sex steroids have differential effects on growth and gene expression in primary human prostatic epithelial cell cultures derived from the peripheral versus transition zones. Carcinogenesis 2005; 27:216-24. [PMID: 16123118 DOI: 10.1093/carcin/bgi219] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The majority of human prostate cancers arise from the peripheral zone (PZ). Prostate epithelial stem cells have been localized to the basal epithelial cell compartment. In addition, basal cells have been shown to maintain luminal epithelial cell differentiation and may mediate signals between the stromal and luminal cell compartments. Therefore, the study of adult prostate basal cells derived from different prostate zones may give insights into the mechanisms underlying normal and abnormal prostate growth. We herein compare the basal and sex steroid-stimulated expression and activity of several genes/proteins that are known to be critical in prostate cancer development in primary cultures of basal cells derived from the transition zone (TZ) and PZ of prostatectomy specimens. Our results demonstrate that prostate basal cells derived from the PZ versus TZ are more viable in culture, particularly in response to sex steroid addition. PZ cells exhibit higher telomerase activity and increased expression levels of androgen receptor, the anti-apoptotic protein bcl-2, and the dominant-negative splice variant of Kruppel-like Factor 6. PZ cells have lower basal expression levels of estrogen receptor-beta, the pro-apoptotic protein Bax, and cell-cycle inhibitor proteins (p53, p21(waf1/Cip1)). Finally, we demonstrate divergent responses to sex hormones in the two basal cell populations. The gene expression pattern in the PZ cells may partially explain the predominance of prostate cancer development in this region.
Collapse
Affiliation(s)
- Alexander Kirschenbaum
- Division of Endocrinology, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Steuber T, Karakiewicz PI, Augustin H, Erbersdobler A, Lange I, Haese A, Chun KHF, Walz J, Graefen M, Huland H. Transition zone cancers undermine the predictive accuracy of Partin table stage predictions. J Urol 2005; 173:737-41. [PMID: 15711259 DOI: 10.1097/01.ju.0000152591.33259.f9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE The Partin tables represent the most widely used predictor of pathological stage in men with localized prostate cancer (PCa). The accuracy and performance of the tables have been tested across different populations. However, to our knowledge the potential limitations that may stem from differences between transition zone (TZ) and peripheral zone (PZ) prostate cancers has not been explored. We tested the predictive accuracy and performance of the Partin tables according to TZ vs PZ tumor predominance. MATERIALS AND METHODS Preoperative serum prostate specific antigen, clinical stage and biopsy Gleason sum data on 1,990 patients treated with radical retropubic prostatectomy were used to define the 2001 Partin probabilities of organ confinement and seminal vesicle invasion (SVI). Data on 1,320 patients who underwent staging pelvic lymphadenectomy and radical retropubic prostatectomy were used to define the probabilities of lymph node invasion (LNI) and organ confined disease (OC). ROC area under the curve was used to assess the predictive accuracy of the 2001 Partin tables relative to observed extracapsular extension (ECE), SVI, LNI and OC. Performance characteristics for each prediction were explored graphically with local regression, nonparametric smoothing plots. Results were compared between 222 TZ cancers and 1,768 PZ cancers. RESULTS The 1,990 radical retropubic prostatectomy specimens demonstrated ECE in 689 cases (34.6%) (TZ in 58 or 27.1% and PZ in 631 or 35.8%) and SVI in 224 (TZ in 13 or 6.1% and PZ in 211 or 11.9%). The 1,320 lymphadenectomy specimens demonstrated LNI in 56 cases (TZ in 2 or 0.9% and PZ in 54 or 4.6%). OC was found in 784 cases (59.4%) (TZ in 95 or 69.9% and PZ in 689 or 58.2%). Predictive accuracy was for ECE 76.4% (TZ 69.0% and PZ 77.2%), 78.0% for SVI (TZ 73.5% and PZ 78.3%), 78.6% for LNI (TZ 44.5% and PZ 79.9%) and 79.4% for OC (TZ 73.8% and PZ 80.0%). CONCLUSIONS The biological tumor characteristics of TZ PCa differ from those of PZ PCa. These differences appear to undermine the accuracy of pathological stage predictions.
Collapse
Affiliation(s)
- T Steuber
- Department of Urology, University Hospital Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|