1
|
Zhang B, Yang N, Li L. Bullous pemphigoid and hypercoagulability: a review. Expert Rev Clin Immunol 2025; 21:323-332. [PMID: 39772971 DOI: 10.1080/1744666x.2025.2450766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/25/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
INTRODUCTION Bullous pemphigoid (BP) is an autoimmune blistering disease characterized by autoantibodies against hemidesmosomal proteins in the basal membrane zone. The presence of a high incidence of thrombotic events has led to the identification of a hypercoagulable state in BP patients. AREAS COVERED This review highlights the interactions between coagulation and immune-inflammatory responses based on the currently available literature, as well as individual changes in characteristic coagulation parameters in BP. This review is based on publications up to August 2024 that were retrieved by a selective search in the PubMed database. EXPERT OPINION The hypercoagulable state and bullous pemphigoid (BP) have a reciprocally enhancing effect on each other. For clinicians, it is crucial to closely monitor the fluctuations in circulating coagulation markers among BP patients, such as D-dimer, fibrinogen, and fibrin degradation products (FDP). Furthermore, considering the interplay between coagulation and immune-inflammatory responses in BP, targeting the shared pathways in treatment strategies could be beneficial for patients who exhibit both BP and a hypercoagulable state.
Collapse
Affiliation(s)
- Bingjie Zhang
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Nan Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Li Li
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| |
Collapse
|
2
|
Kawasaki-Nagano M, Tamagawa-Mineoka R, Kurioka T, Arakawa Y, Nakanishi M, Kishida M, Nishigaki H, Hashidate-Yoshida T, Shindou H, Katoh N. Lysophosphatidylcholine Acyltransferase 2 Contributes to Increased Allergic and Irritant Inflammation in Mice. Exp Dermatol 2024; 33:e70015. [PMID: 39513758 DOI: 10.1111/exd.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024]
Abstract
Platelet-activating factor (PAF) is an important chemical mediator in the field of inflammation, but its function in the skin is unclear. To unravel the role of PAF, we focused on lysophosphatidylcholine acyltransferase 2 (LPCAT2 also called LPLAT9), a biosynthetic enzyme involved in PAF production, and investigated the role of PAF in allergic contact dermatitis (ACD) and irritant contact dermatitis (ICD). We measured the amount of PAF in the skin and investigated the ear swelling responses and leukocyte infiltration into the skin following the application of 2,4,6-trinitro-1-chlorobenzene (TNCB) or croton oil in wild-type (WT) and LPCAT2 knockout (LPCAT2-KO) mice. The amount of PAF was increased in the skin of WT mice after TNCB or croton oil application but not detected in LPCAT2-KO mice. The ear swelling response was decreased in LPCAT2-KO mice compared with that in WT mice. In the ACD model, the numbers of lymphocytes, eosinophils, macrophages, mast cells and neutrophils were smaller in LPCAT2-KO mice than in WT mice. In the ICD model, the ear swelling response was also decreased in LPCAT2-KO mice compared with that in WT mice. When double staining of each inflammatory cell type and LPCAT2 was performed in ACD tissue, marked co-staining of the eosinophil marker and LPCAT2 was observed. In addition, LPCAT2 expression was observed in the epidermis. These results indicate that PAF is involved in the infiltration of several cell types into the sites of allergic and non-allergic skin inflammation. Furthermore, eosinophils and keratinocytes are primarily responsible for PAF production in skin inflammation.
Collapse
Affiliation(s)
- Midori Kawasaki-Nagano
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Risa Tamagawa-Mineoka
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoki Kurioka
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yukiyasu Arakawa
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mari Nakanishi
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Megumi Kishida
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiromi Nishigaki
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Norito Katoh
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
3
|
Frommeyer TC, Gilbert MM, Brittain GV, Wu T, Nguyen TQ, Rohan CA, Travers JB. UVB-Induced Microvesicle Particle Release and Its Effects on the Cutaneous Microenvironment. Front Immunol 2022; 13:880850. [PMID: 35603177 PMCID: PMC9120817 DOI: 10.3389/fimmu.2022.880850] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
Ultraviolet B radiation (UVB) has profound effects on human skin that results in a broad spectrum of immunological local and systemic responses and is the major cause of skin carcinogenesis. One important area of study in photobiology is how UVB is translated into effector signals. As the skin is exposed to UVB light, subcellular microvesicle particles (MVP), a subtype of bioactive extracellular vesicles, are released causing a variety of local and systemic immunological effects. In this review, we highlight keratinocyte MVP release in keratinocytes in response to UVB. Specifically, Platelet-activating factor receptor agonists generated by UVB result in MVP released from keratinocytes. The downstream effects of MVP release include the ability of these subcellular particles to transport agents including the glycerophosphocholine-derived lipid mediator Platelet-activating factor (PAF). Moreover, even though UVB is only absorbed in the epidermis, it appears that PAF release from MVPs also mediates systemic immunosuppression and enhances tumor growth and metastasis. Tumor cells expressing PAF receptors can use this mechanism to evade chemotherapy responses, leading to treatment resistance for advanced cancers such as melanoma. Furthermore, novel pharmacological agents provide greater insight into the UVB-induced immune response pathway and a potential target for pharmacological intervention. This review outlines the need to more clearly elucidate the mechanism linking UVB-irradiation with the cutaneous immune response and its pathological manifestations. An improved understanding of this process can result in new insights and treatment strategies for UVB-related disorders from carcinogenesis to photosensitivity.
Collapse
Affiliation(s)
- Timothy C. Frommeyer
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Michael M. Gilbert
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Garrett V. Brittain
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Tongfan Wu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Trang Q. Nguyen
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Craig A. Rohan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Medicine, Dayton Veterans Administration Medical Center, Dayton, OH, United States
| | - Jeffrey B. Travers
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Medicine, Dayton Veterans Administration Medical Center, Dayton, OH, United States
- *Correspondence: Jeffrey B. Travers,
| |
Collapse
|
4
|
Abhilasha KV, Sumanth MS, Thyagarajan A, Sahu RP, Kemparaju K, Marathe GK. Reversible cross-tolerance to platelet-activating factor signaling by bacterial toxins. Platelets 2021; 32:960-967. [PMID: 32835559 DOI: 10.1080/09537104.2020.1810652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bacterial toxins signaling through Toll-like receptors (TLRs) are implicated in the pathogenesis of many inflammatory diseases. Among the toxins, lipopolysaccharide (LPS) exerts its action via TLR-4 while lipoteichoic acid (LTA) and bacterial lipoproteins such as Braun lipoprotein (BLP) or its synthetic analogue Pam3CSK4 act through TLR-2. Part of the TLR mediated pathogenicity is believed to stem from endogenously biosynthesized platelet-activating factor (PAF)- a potent inflammatory phospholipid acting through PAF-receptor (PAF-R). However, the role of PAF in inflammatory diseases like endotoxemia is controversial. In order to test the direct contribution of PAF in TLR-mediated pathogenicity, we intraperitoneally injected PAF to Wistar albino mice in the presence or absence of bacterial toxins. Intraperitoneal injection of PAF (5 μg/mouse) causes sudden death of mice, that can be delayed by simultaneously or pre-treating the animals with high doses of bacterial toxins- a phenomenon known as endotoxin cross-tolerance. The bacterial toxins- induced tolerance to PAF can be reversed by increasing the concentration of PAF suggesting the reversibility of cross-tolerance. We did similar experiments using human platelets that express both canonical PAF-R and TLRs. Although bacterial toxins did not induce human platelet aggregation, they inhibited PAF-induced platelet aggregation in a reversible manner. Using rabbit platelets that are ultrasensitive to PAF, we found bacterial toxins (LPS and LTA) and Pam3CSK4 causing rabbit platelet aggregation via PAF-R dependent way. The physical interaction of PAF-R and bacterial toxins is also demonstrated in a human epidermal cell line having stable PAF-R expression. Thus, we suggest the possibility of direct physical interaction of bacterial toxins with PAF-R leading to cross-tolerance.
Collapse
Affiliation(s)
| | | | - Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Ravi Prakash Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Kempaiah Kemparaju
- Department of Studies in Biochemistry, University of Mysore, Mysuru, India.,Department of Studies in Molecular Biology, University of Mysore, Mysuru, India
| | - Gopal Kedihithlu Marathe
- Department of Studies in Biochemistry, University of Mysore, Mysuru, India.,Department of Studies in Molecular Biology, University of Mysore, Mysuru, India
| |
Collapse
|
5
|
Travers JB, Rohan JG, Sahu RP. New Insights Into the Pathologic Roles of the Platelet-Activating Factor System. Front Endocrinol (Lausanne) 2021; 12:624132. [PMID: 33796070 PMCID: PMC8008455 DOI: 10.3389/fendo.2021.624132] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
Described almost 50 years ago, the glycerophosphocholine lipid mediator Platelet-activating factor (PAF) has been implicated in many pathologic processes. Indeed, elevated levels of PAF can be measured in response to almost every type of pathology involving inflammation and cell damage/death. In this review, we provide evidence for PAF involvement in pathologic processes, with focus on cancer, the nervous system, and in photobiology. Importantly, recent insights into how PAF can generate and travel via bioactive extracellular vesicles such as microvesicle particles (MVP) are presented. What appears to be emerging from diverse pathologies in different organ systems is a common theme where pro-oxidative stressors generate oxidized glycerophosphocholines with PAF agonistic effects, which then trigger more enzymatic PAF synthesis via the PAF receptor. A downstream consequence of PAF receptor activation is the generation and release of MVP which provide a mechanism to transmit PAF as well as other bioactive agents. The knowledge gaps which when addressed could result in novel therapeutic strategies are also discussed. Taken together, an enhanced understanding of the PAF family of lipid mediators is essential in our improved comprehension of the relationship amongst the diverse cutaneous, cancerous, neurologic and systemic pathologic processes.
Collapse
Affiliation(s)
- Jeffrey B. Travers
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Dayton Veterans Administration Medical Center, Dayton, OH, United States
- *Correspondence: Jeffrey B. Travers, ; orcid.org/0000-0001-7232-1039
| | - Joyce G. Rohan
- Naval Medical Research Unit Dayton, Environmental Health Effects Directorate, Wright Patterson Air Force Base, OH, United States
| | - Ravi P. Sahu
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| |
Collapse
|
6
|
Liu L, Fahy KE, Awoyemi AA, Thapa P, Kelly LE, Chen J, Bihl JC, Cool DR, Chen Y, Rapp CM, Johnson RM, Travers JB. Thermal Burn Injury Generates Bioactive Microvesicles: Evidence for a Novel Transport Mechanism for the Lipid Mediator Platelet-Activating Factor (PAF) That Involves Subcellular Particles and the PAF Receptor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:193-201. [PMID: 32434939 PMCID: PMC7342023 DOI: 10.4049/jimmunol.1901393] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/22/2020] [Indexed: 12/22/2022]
Abstract
Thermal burn injuries are an important environmental stressor that can result in considerable morbidity and mortality. The exact mechanism by which an environmental stimulus to skin results in local and systemic effects is an area of active research. One potential mechanism to allow skin keratinocytes to disperse bioactive substances is via microvesicle particles, which are subcellular bodies released directly from cellular membranes. Our previous studies have indicated that thermal burn injury of the skin keratinocyte in vitro results in the production of the lipid mediator platelet-activating factor (PAF). The present studies demonstrate that thermal burn injury to keratinocytes in vitro and human skin explants ex vivo, and mice in vivo generate microvesicle particles. Use of pharmacologic and genetic tools indicates that the optimal release of microvesicles is dependent upon the PAF receptor. Of note, burn injury-stimulated microvesicle particles do not carry appreciable protein cytokines yet contain high levels of PAF. These studies describe a novel mechanism involving microvesicle particles by which a metabolically labile bioactive lipid can travel from cells in response to environmental stimuli.
Collapse
Affiliation(s)
- Langni Liu
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH 45435
| | - Katherine E Fahy
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH 45435
| | - Azeezat A Awoyemi
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH 45435
| | - Pariksha Thapa
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH 45435
| | - Lisa E Kelly
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH 45435
| | - Jay Chen
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH 45435
| | - Ji C Bihl
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH 45435
| | - David R Cool
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH 45435
| | - Yanfang Chen
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH 45435
| | - Christine M Rapp
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH 45435
| | - R Michael Johnson
- Department of Plastic Surgery, Wright State University, Dayton, OH 45435
| | - Jeffrey B Travers
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH 45435;
- Department of Dermatology, Wright State University, Dayton, OH 45435; and
- Dayton VA Medical Center, Dayton, OH 45428
| |
Collapse
|
7
|
Abstract
Environmental stressors exert a profound effect on humans. Many environmental stressors have in common the ability to induce reactive oxygen species. The goal of this chapter is to present evidence that the potent lipid mediator platelet-activating factor (PAF) is involved in the effects of many stressors ranging from cigarette smoke to ultraviolet B radiation. These environmental stressors can generate PAF enzymatically as well as PAF-like lipids produced by free radical-mediated attack of glycerophosphocholines. Inasmuch as PAF exerts both acute inflammation and delayed immunosuppressive effects, involvement of the PAF system can provide an explanation for many consequences of environmental stressor exposures.
Collapse
Affiliation(s)
- Jeffrey B Travers
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH, USA.
- Dayton Veterans Administration Medical Center, Dayton, OH, USA.
| |
Collapse
|
8
|
Fahy K, Liu L, Rapp CM, Borchers C, Bihl JC, Chen Y, Simman R, Travers JB. UVB-generated Microvesicle Particles: A Novel Pathway by Which a Skin-specific Stimulus Could Exert Systemic Effects. Photochem Photobiol 2017; 93:937-942. [PMID: 28039861 DOI: 10.1111/php.12703] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/03/2016] [Indexed: 12/29/2022]
Abstract
Ultraviolet B radiation (UVB) exerts profound effects on human skin. Much is known regarding the ability of UVB to generate a plethora of bioactive agents ranging from cytokines and other bioactive proteins, lipid mediators and microRNAs. It is presumed that these agents are in large part responsible for the effects of UVB, which is only absorbed appreciably in the epidermis. However, the exact mechanism by which these bioactive agents can leave the epidermis are as yet unclear. This review addresses the potential role of microvesicle particles (MVP) as UVB signaling agents through transmitting biologic mediators. New data are provided that UVB treatment of human skin explants also generates MVP production. We hypothesize that UVB production of MVPs (UVB-MVP) could serve this important function of transmitting keratinocyte-derived bioactive agents. Moreover, we propose that UVB-MVP formation involves the lipid mediator platelet-activating factor. This novel pathway has the potential to be exploited pharmacologically to modulate UVB effects.
Collapse
Affiliation(s)
- Katherine Fahy
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH
| | - Langni Liu
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH
| | - Christine M Rapp
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH
| | - Christina Borchers
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH
| | - Ji C Bihl
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH
| | - Yanfang Chen
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH
| | - Richard Simman
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH.,Department of Dermatology, Boonshoft School of Medicine, Wright State University, Dayton, OH
| | - Jeffrey B Travers
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH.,Department of Dermatology, Boonshoft School of Medicine, Wright State University, Dayton, OH.,Dayton V.A. Medical Center, Dayton, OH
| |
Collapse
|
9
|
Platelet-activating factor induces proliferation in differentiated keratinocytes. Mol Cell Biochem 2013; 384:83-94. [PMID: 23975504 DOI: 10.1007/s11010-013-1784-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 08/09/2013] [Indexed: 10/26/2022]
Abstract
Increased levels of platelet-activating factor (PAF; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) are found in several inflammatory dermatoses, but PAF's exact role in epidermis is uncertain. In order to better understand the physiological consequences of excess PAF production in epidermis, we examined the gene regulatory effects of PAF short-term stimulation in differentiated HaCaT keratinocytes by transcriptional profiling. Even though PAF induces COX2 expression, we found that PAF regulates only few genes associated with inflammation in differentiated keratinocytes. Rather, we show that natural PAF rapidly regulates genes involved in proliferation, (anti)-apoptosis and migration, all sub-processes of re-epithelialization and wound healing. Moreover, profiling of phosphorylated kinases, cellular wound-scratch experiments, resazurin assay and flow cytometry cell cycle phase analysis all support a role for PAF in keratinocyte proliferation and epidermal re-epithelialization. In conclusion, these results suggest that PAF acts as an activator of proliferation and may, therefore, function as a connector between inflammation and proliferation in differentiated keratinocytes.
Collapse
|
10
|
Platelet activating factor stimulates arachidonic acid release in differentiated keratinocytes via arachidonyl non-selective phospholipase A2. Arch Dermatol Res 2009; 302:221-7. [PMID: 20041255 PMCID: PMC2829133 DOI: 10.1007/s00403-009-1017-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/10/2009] [Accepted: 12/14/2009] [Indexed: 11/27/2022]
Abstract
Platelet activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) is known to be present in excess in psoriatic skin, but its exact role is uncertain. In the present study we demonstrate for the first time the role of group VI PLA2 in PAF-induced arachidonic acid release in highly differentiated human keratinocytes. The group IVα PLA2 also participates in the release, while secretory PLA2s play a minor role. Two anti-inflammatory synthetic fatty acids, tetradecylthioacetic acid and tetradecylselenoacetic acid, are shown to interfere with signalling events upstream of group IVα PLA2 activation. In summary, our major novel finding is the involvement of the arachidonyl non-selective group VI PLA2 in PAF-induced inflammatory responses.
Collapse
|
11
|
Involvement of platelet-activating factor in ultraviolet B-induced hyperalgesia. J Invest Dermatol 2008; 129:167-74. [PMID: 18580961 DOI: 10.1038/jid.2008.181] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ultraviolet B (UVB) radiation causes cutaneous inflammation. One important clinical consequence of UVB-induced inflammation is increased pain or hyperalgesia, which is likely mediated by enhanced sensitivity of cutaneous sensory neurons. Previous studies have demonstrated that UVB radiation generates the lipid mediator, platelet-activating factor (PAF), as well as oxidized phospholipids that act as PAF-mimetics. These substances exert effects through the PAF receptor (PAF-R). This study was designed to assess whether PAF-R is involved in UVB-induced hyperalgesia. Intradermal injection of carbamoyl PAF (CPAF; 1-hexadecyl-2-N-methylcarbamoyl glycerophosphocholine) resulted in an enhanced response to mechanical stimuli in wild-type mice but not in PAF-R knockout (KO) mice. There was no significant change in paw withdrawal to noxious thermal stimuli in either genotype after intradermal injection of CPAF. Exposure of the hind paw to 1,500 J m(-2) UVB radiation caused an increased sensitivity to both mechanical and thermal stimulation in wild-type mice but not in PAF-R KO mice. The thermal hyperalgesia caused by UVB irradiation was inhibited in mice that lacked PAF-R in bone marrow-derived cells. These data demonstrate that the PAF-R is important for UVB-induced hyperalgesia. Further investigation of the role of PAF-R signaling in UVB-induced hyperalgesia could provide better understanding of the pathological processes initiated by UVB-induced skin damage.
Collapse
|
12
|
Sehra S, Tuana FMB, Holbreich M, Mousdicas N, Kaplan MH, Travers JB. Clinical correlations of recent developments in the pathogenesis of atopic dermatitis. An Bras Dermatol 2008. [DOI: 10.1590/s0365-05962008000100009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Atopic dermatitis is a chronic inflammatory skin disease with a steadily increasing prevalence affecting 10-20 of infants and 1-3 of adults globally. It is often the first clinical manifestation of atopic disease preceding asthma and allergic rhinitis. Probably half of the children with atopic dermatitis develop some other form of atopic disease later in life. The pathogenesis involves a complex interplay of factors including genetic predisposition due to altered immune or skin barrier function, interactions with the environment such as food and allergen exposures, and infectious triggers of inflammation. In this review, we summarize the recent advances in understanding the contribution of different factors in the pathophysiology of atopic dermatitis and how insights provide new therapeutic potential for its treatment.
Collapse
Affiliation(s)
- Sarita Sehra
- Center for Pediatric Research, United States of America
| | | | | | | | | | | |
Collapse
|
13
|
Zhang Q, Mousdicas N, Yi Q, Al-Hassani M, Billings SD, Perkins SM, Howard KM, Ishii S, Shimizu T, Travers JB. Staphylococcal lipoteichoic acid inhibits delayed-type hypersensitivity reactions via the platelet-activating factor receptor. J Clin Invest 2005; 115:2855-61. [PMID: 16184199 PMCID: PMC1224300 DOI: 10.1172/jci25429] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 07/12/2005] [Indexed: 01/17/2023] Open
Abstract
Staphylococcus aureus infections are known triggers for skin inflammation and can modulate immune responses. The present studies used model systems consisting of platelet-activating factor receptor-positive and -negative (PAF-R-positive and -negative) cells and PAF-R-deficient mice to demonstrate that staphylococcal lipoteichoic acid (LTA), a constituent of Gram-positive bacteria cell walls, acts as a PAF-R agonist. We show that LTA stimulates an immediate intracellular Ca2+ flux only in PAF-R-positive cells. Intradermal injections of LTA and the PAF-R agonist 1-hexadecyl-2-N-methylcarbamoyl glycerophosphocholine (CPAF) induced cutaneous inflammation in wild-type but not PAF-R-deficient mice. Systemic exposure to LTA or CPAF inhibited delayed-type hypersensitivity (DTH) reactions to the chemical dinitrofluorobenzene only in PAF-R-expressing mice. The inhibition of DTH reactions was abrogated by the addition of neutralizing antibodies to IL-10. Finally, we measured levels of LTA that were adequate to stimulate PAF-R in vitro on the skin of subjects with infected atopic dermatitis. Based on these studies, we propose that LTA exerts immunomodulatory effects via the PAF-R through production of the Th2 cytokine IL-10. These findings show a novel mechanism by which staphylococcal infections can inhibit Th1 reactions and thus worsen Th2 skin diseases, such as atopic dermatitis.
Collapse
MESH Headings
- Animals
- Calcium/immunology
- Cell Line
- Dermatitis, Atopic/immunology
- Dermatitis, Atopic/microbiology
- Dermatitis, Atopic/pathology
- Dinitrofluorobenzene/adverse effects
- Drug Hypersensitivity/immunology
- Drug Hypersensitivity/pathology
- Drug Synergism
- Humans
- Hypersensitivity, Delayed/chemically induced
- Hypersensitivity, Delayed/immunology
- Hypersensitivity, Delayed/pathology
- Inflammation/chemically induced
- Inflammation/immunology
- Inflammation/pathology
- Interleukin-10/immunology
- Lipopolysaccharides/administration & dosage
- Lipopolysaccharides/chemistry
- Mice
- Mice, Knockout
- Platelet Activating Factor/administration & dosage
- Platelet Activating Factor/analogs & derivatives
- Platelet Membrane Glycoproteins/agonists
- Platelet Membrane Glycoproteins/deficiency
- Platelet Membrane Glycoproteins/immunology
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/deficiency
- Receptors, G-Protein-Coupled/immunology
- Skin/immunology
- Skin/pathology
- Staphylococcal Infections/immunology
- Staphylococcal Infections/pathology
- Staphylococcus aureus/chemistry
- Staphylococcus aureus/immunology
- Teichoic Acids/administration & dosage
- Teichoic Acids/chemistry
- Th1 Cells/immunology
- Th1 Cells/pathology
- Th2 Cells/immunology
- Th2 Cells/pathology
Collapse
Affiliation(s)
- Qiwei Zhang
- Department of Dermatology, H.B. Wells Center for Pedoatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wu R, Shen G, Morris R, Patnaik M, Peter JB. Elevated autoantibodies against oxidized palmitoyl arachidonoyl phosphocholine in patients with hypertension and myocardial infarction. J Autoimmun 2005; 24:353-60. [PMID: 15913955 DOI: 10.1016/j.jaut.2005.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2004] [Revised: 02/12/2005] [Accepted: 02/22/2005] [Indexed: 11/19/2022]
Abstract
Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (oxPAPC) is antigenic and an important epitope of oxLDL. This study validates the assay for autoantibodies against oxPAPC (anti-oxPAPC-Ab) and investigates the possible association between anti-oxPAPC-Ab and cardiovascular disease. A synthetic PAPC was oxidatively modified as an antigen for the anti-oxPAPC-Ab assay. The concentrations of the antibody in serum were measured by EIA. The analytical parameters of the anti-oxPAPC-Ab assay were validated. Levels of anti-oxPAPC-Ab were prevalent in patients with hypertension, myocardial infarction (MI) and healthy subjects. Anti-oxPAPC-Ab specifically reacts with oxPAPC, but not with 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC). The characteristics of the assay included precision (inter-assay coefficients of variation were 7.9% for IgG and 13.2% for IgM), cross-reactivity, clinical sensitivity for hypertension (43% and 47%) and MI (37% and 41%), clinical specificity (95.2%) and normal values (less than 13 Unit/mL for IgG and less than 7 Unit/mL for IgM). Elevated levels of anti-oxPAPC-Ab were found in smoking populations, in patients with hypertension and MI. Anti-oxPAPC-Ab are significantly elevated in patients with hypertension and MI. A synthetic PAPC, after oxidation, was used to detect anti-oxPAPC-Ab, which may greatly enhance the reliability of the assay. The determination of anti-oxPAPC-Ab could serve as an autoimmune marker in the associating diagnosis of cardiovascular disease.
Collapse
Affiliation(s)
- Ruihua Wu
- RDL Reference Laboratory, 10755 Venice Boulevard, Los Angeles, CA 90034, USA.
| | | | | | | | | |
Collapse
|
15
|
Cowan FM, Broomfield CA, Lenz DE, Smith WJ. Putative role of proteolysis and inflammatory response in the toxicity of nerve and blister chemical warfare agents: implications for multi-threat medical countermeasures. J Appl Toxicol 2003; 23:177-86. [PMID: 12794939 DOI: 10.1002/jat.901] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Despite the contrasts in chemistry and toxicity, for blister and nerve chemical warfare agents there may be some analogous proteolytic and inflammatory mediators and pathological pathways that can be pharmacological targets for a single-drug multi-threat medical countermeasure. The dermal-epidermal separation caused by proteases and bullous diseases compared with that observed following exposure to the blister agent sulfur mustard (2,2'-dichlorodiethyl sulfide) has fostered the hypothesis that sulfur mustard vesication involves proteolysis and inflammation. In conjunction with the paramount toxicological event of cholinergic crisis that causes acute toxicity and precipitates neuronal degeneration, both anaphylactoid reactions and pathological proteolytic activity have been reported in nerve-agent-intoxicated animals. Two classes of drugs already have demonstrated multi-threat activity for both nerve and blister agents. Serine protease inhibitors can prolong the survival of animals intoxicated with the nerve agent soman and can also protect against vesication caused by the blister agent sulfur mustard. Poly (ADP-ribose) polymerase (PARP) inhibitors can reduce both soman-induced neuronal degeneration and sulfur-mustard-induced epidermal necrosis. Protease and PARP inhibitors, like many of the other countermeasures for blister and nerve agents, have potent primary or secondary anti-inflammatory pharmacology. Accordingly, we hypothesize that drugs with anti-inflammatory actions against either nerve or blister agent might also display multi-threat efficacy for the inflammatory pathogenesis of both classes of chemical warfare agent.
Collapse
Affiliation(s)
- F M Cowan
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010-5400, USA.
| | | | | | | |
Collapse
|
16
|
Travers JB, Leung DYM, Johnson C, Schlievert P, Marques M, Cosgrove J, Clay KL. Augmentation of staphylococcal alpha-toxin signaling by the epidermal platelet-activating factor receptor. J Invest Dermatol 2003; 120:789-94. [PMID: 12713583 DOI: 10.1046/j.1523-1747.2003.12149.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Staphylococcal alpha-toxin is a cytolytic toxin secreted by many strains of Staphylococcus aureus that has proinflammatory and cytotoxic effects on human keratinocytes. alpha-toxin exerts its effects by forming a transmembrane pore that behaves like an ionophore for ions such as calcium. Because cellular membrane disruption with resultant intracellular calcium mobilization is a potent stimulus for the synthesis for the lipid mediator platelet-activating factor, the ability of alpha-toxin to induce platelet-activating factor production was assessed, and whether the epidermal platelet-activating factor receptor could augment toxin-induced signaling in epithelial cells examined. Treatment of the human keratinocyte-derived cell line HaCaT with alpha-toxin resulted in significant levels of platelet-activating factor, which were approximately 50% of the levels induced by calcium ionophore A23187. alpha-toxin also stimulated arachidonic acid release in HaCaT keratinocytes. Pretreatment of HaCaT cells with platelet-activating factor receptor antagonists, or overexpression of the platelet-activating factor metabolizing enzyme acetylhydrolase II blunted alpha-toxin-induced arachidonic acid release by approximately one-third, suggesting a role for toxin-produced platelet-activating factor in this process. Finally, retroviral-mediated expression of the platelet-activating factor receptor into the platelet-activating factor receptor-negative epithelial cell line KB resulted in an augmentation of alpha-toxin-mediated intracellular calcium mobilization and arachidonic acid release. These studies suggest that alpha-toxin-mediated signaling can be augmented via the epidermal platelet-activating factor receptor.
Collapse
Affiliation(s)
- Jeffrey B Travers
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Marques SA, Dy LC, Southall MD, Yi Q, Smietana E, Kapur R, Marques M, Travers JB, Spandau DF. The platelet-activating factor receptor activates the extracellular signal-regulated kinase mitogen-activated protein kinase and induces proliferation of epidermal cells through an epidermal growth factor-receptor-dependent pathway. J Pharmacol Exp Ther 2002; 300:1026-35. [PMID: 11861812 DOI: 10.1124/jpet.300.3.1026] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Platelet-activating factor (PAF) is a lipid mediator that has been implicated in a variety of keratinocyte functions. Keratinocytes express the specific receptor for PAF (PAF-R), a seven-transmembrane G-protein-coupled receptor. Although PAF-R-dependent stimulation of numerous signal transduction pathways has been shown in a variety of cell types, to date there has been no analysis of PAF-R signal transduction in human epidermal cells. There is also contradictory evidence that PAF acts as either a suppressor or activator of keratinocyte proliferation. Using a model system created by retroviral-mediated transduction of the PAF-R into the PAF-R-negative epidermal cell line KB, we now demonstrate that the activation of the epidermal PAF-R results in the activation of both the extracellular signal-regulated kinase (ERK) and p38, but not the jun N-terminal kinase mitogen-activated protein (MAP) kinase pathways. Additionally, we show that the activation of the PAF-R stimulates the replication of epidermal cells. The activation of the ERK signal transduction pathway, as well as the PAF-dependent increase in cell proliferation, was dependent on the transactivation of the epidermal growth factor receptor (EGF-R). PAF-R-induced transactivation of the EGF-R was blocked by pharmacologic inhibitors of matrix metalloproteinases, of heparin-binding epidermal growth factor (HB-EGF), and specific inhibitors of the EGF-R tyrosine kinase. Activation of p38 MAP kinase by the PAF-R was not dependent on EGF-R activation and represents a distinct pathway of PAF-R-mediated signal transduction. In summary, these studies provide a mechanism whereby the PAF-R can exert proliferative effects through the activation of the EGF-R.
Collapse
Affiliation(s)
- Silvio A Marques
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Countryman NB, Pei Y, Yi Q, Spandau DF, Travers JB. Evidence for involvement of the epidermal platelet-activating factor receptor in ultraviolet-B-radiation-induced interleukin-8 production. J Invest Dermatol 2000; 115:267-72. [PMID: 10951245 DOI: 10.1046/j.1523-1747.2000.00058.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ultraviolet B radiation has been shown to generate cutaneous inflammation in part through inducing oxidative stress and cytokine production in human keratinocytes. Amongst the proinflammatory cytokines synthesized in response to ultraviolet B radiation is the potent chemoattractant interleukin-8. Though the lipid mediator platelet-activating factor (PAF) is synthesized in response to oxidative stress, and keratinocytes express PAF receptors linked to cytokine biosynthesis, it is not known whether PAF is involved in ultraviolet-B-induced epidermal cell cytokine production. These studies examined the role of the PAF system in ultraviolet-B-induced epidermal cell interleukin-8 biosynthesis using a novel model system created by retroviral-mediated transduction of the PAF-receptor-negative human epidermal cell line KB with the human PAF receptor. Treatment of PAF-receptor-expressing KB cells with the metabolically stable PAF receptor agonist carbamoyl-PAF resulted in increased interleukin-8 mRNA and protein, indicating that activation of the epidermal PAF receptor was linked to interleukin-8 production. Ultraviolet B irradiation of PAF-receptor-expressing KB cells resulted in significant increases in both interleukin-8 mRNA and protein in comparison to ultraviolet-B-treated control KB cells. Pretreatment with PAF receptor antagonists inhibited both carbamoyl-PAF-induced and ultraviolet-B-induced interleukin-8 production in the PAF-receptor-positive cells, but not in control KB cells. Similarly, treatment of the PAF-receptor-expressing primary cultures of human keratinocytes or the human epidermal cell line A-431 with carbamoyl-PAF or ultraviolet B radiation resulted in interleukin-8 production that was partially inhibited by PAF receptor antagonists. These studies suggest that the epidermal PAF receptor may be a pharmacologic target for ultraviolet B radiation in skin and thus may act to augment ultraviolet-B-mediated production of cytokines such as interleukin-8.
Collapse
Affiliation(s)
- N B Countryman
- Departments of Dermatology, the H.B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
The use of topical corticosteroids has revolutionised the treatment of inflammatory skin diseases. However, problems including pharmacological resistance, as well as the side effect profile of potent topical corticosteroids, has prompted studies to investigate into other topical non-corticosteroidal agents in inflammatory skin diseases. This review outlines the major types of inflammatory skin diseases and discusses emerging therapies based on topical immunosuppressive macrolide antibiotics. In particular, tacrolimus and ascomycin derivatives have been shown to be effective for treating atopic dermatitis with a surprising lack of side effects. It is expected that these agents will play an important role in future dermatological therapy. Accumulating evidence suggests the importance of lipid-derived mediators of inflammation (eicosanoids and platelet-activating factor) in cutaneous inflammatory diseases. The role of these mediators in skin inflammation is also addressed in this review. Though there appears to be a large amount of redundancy in the activities of these lipid mediators, this family of agents could potentially serve as targets for anti-inflammatory therapy. Inasmuch as the phospholipase A(2) family of enzymes serve to synthesise both eicosanoids and platelet-activating factor, inhibition at this step could have important therapeutic benefits in designing therapy for inflammatory skin diseases.
Collapse
Affiliation(s)
- J B Travers
- Departments of Dermatology, Pediatrics, Pharmacology, Indiana University School of Medicine, 550 University Blvd Suite 3240, Indianapolis, Indiana 46202, USA.
| |
Collapse
|
20
|
Dy LC, Pei Y, Travers JB. Augmentation of ultraviolet B radiation-induced tumor necrosis factor production by the epidermal platelet-activating factor receptor. J Biol Chem 1999; 274:26917-21. [PMID: 10480902 DOI: 10.1074/jbc.274.38.26917] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ultraviolet B radiation (UVB) has been shown to damage human keratinocytes in part by inducing oxidative stress and cytokine production. Indeed, UVB-induced production of the pro-inflammatory and cytotoxic cytokine tumor necrosis factor alpha (TNF-alpha) has been implicated in the epidermal damage seen in response to acute solar radiation. Though the lipid mediator platelet-activating factor (PAF) is synthesized in response to oxidative stress, and keratinocytes express PAF receptors linked to cytokine biosynthesis, it is not known whether PAF is involved in UVB-induced epidermal cell cytokine production. These studies examined the role of the PAF system in UVB-induced epidermal cell TNF-alpha biosynthesis using a novel model system created by retroviral-mediated transduction of the PAF receptor-negative human epidermal cell line KB with the human PAF receptor (PAF-R). Treatment of PAF-R-expressing KB cells with the metabolically stable PAF-R agonist carbamoyl-PAF resulted in increased TNF-alpha mRNA and protein, indicating that activation of the epidermal PAF-R was linked to TNF-alpha production. UVB irradiation of PAF-R-expressing KB cells resulted in significant increases in both TNF-alpha mRNA and protein in comparison to UVB-treated control KB cells. However, UVB treatment up-regulated cyclooxygenase-2 mRNA levels to the same extent in both PAF-R-expressing and control KB cells. Pretreatment with the antioxidant vitamin E or the PAF-R antagonists WEB 2086 and A-85783 inhibited UVB-induced TNF-alpha production in the PAF-R-positive but not control KB cells. These studies suggest that the epidermal PAF-R may be a pharmacological target for UVB in skin.
Collapse
Affiliation(s)
- L C Dy
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|