1
|
Krishnan HR, Zhang H, Chen Y, Bohnsack JP, Shieh AW, Kusumo H, Drnevich J, Liu C, Grayson DR, Maienschein-Cline M, Pandey SC. Unraveling the epigenomic and transcriptomic interplay during alcohol-induced anxiolysis. Mol Psychiatry 2022; 27:4624-4632. [PMID: 36089615 PMCID: PMC9734037 DOI: 10.1038/s41380-022-01732-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/14/2022]
Abstract
Positive effects of alcohol drinking such as anxiolysis and euphoria appear to be a crucial factor in the initiation and maintenance of alcohol use disorder (AUD). However, the mechanisms that lead from chromatin reorganization to transcriptomic changes after acute ethanol exposure remain unknown. Here, we used Assay for Transposase-Accessible Chromatin followed by high throughput sequencing (ATAC-seq) and RNA-seq to investigate epigenomic and transcriptomic changes that underlie anxiolytic effects of acute ethanol using an animal model. Analysis of ATAC-seq data revealed an overall open or permissive chromatin state that was associated with transcriptomic changes in the amygdala after acute ethanol exposure. We identified a candidate gene, Hif3a (Hypoxia-inducible factor 3, alpha subunit), that had 'open' chromatin regions (ATAC-seq peaks), associated with significantly increased active epigenetic histone acetylation marks and decreased DNA methylation at these regions. The mRNA levels of Hif3a were increased by acute ethanol exposure, but decreased in the amygdala during withdrawal after chronic ethanol exposure. Knockdown of Hif3a expression in the central nucleus of amygdala attenuated acute ethanol-induced increases in Hif3a mRNA levels and blocked anxiolysis in rats. These data indicate that chromatin accessibility and transcriptomic signatures in the amygdala after acute ethanol exposure underlie anxiolysis and possibly prime the chromatin for the development of AUD.
Collapse
Affiliation(s)
- Harish R. Krishnan
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.280892.90000 0004 0419 4711Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612 USA
| | - Huaibo Zhang
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.280892.90000 0004 0419 4711Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612 USA
| | - Ying Chen
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - John Peyton Bohnsack
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Annie W. Shieh
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.411023.50000 0000 9159 4457Present Address: Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210 USA
| | - Handojo Kusumo
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.280892.90000 0004 0419 4711Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612 USA
| | - Jenny Drnevich
- grid.35403.310000 0004 1936 9991High-Performance Biological Computing, Roy J. Carver Biotechnology Center, University of Illinois-Urbana Champaign, Urbana, IL 61801 USA
| | - Chunyu Liu
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.411023.50000 0000 9159 4457Present Address: Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210 USA
| | - Dennis R. Grayson
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Mark Maienschein-Cline
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.185648.60000 0001 2175 0319Research Informatics Core, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Subhash C. Pandey
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.280892.90000 0004 0419 4711Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612 USA
| |
Collapse
|
2
|
Matthews DB, Imhoff BM. Age modifies the effect of ethanol on behavior: Investigations in adolescent, adult and aged rats. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:251-275. [PMID: 34801171 DOI: 10.1016/bs.irn.2021.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The number of older people is increasing in most if not all countries in the world. In addition, the amount of alcohol consumption in the aged population is increasing and the consumption pattern is often in a binge fashion. However, little is known if the effects of alcohol, either acute or chronic exposure, vary in the older population compared to younger populations. The current mini-review will provide an overview of the effects of acute and chronic ethanol exposure at three different periods of development: adolescent, adult and aged on multiple different commonly studied behaviors. The overall conclusion is that biological age of the subject is a critical factor in understanding the effects of ethanol across the lifespan.
Collapse
Affiliation(s)
- D B Matthews
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI, United States.
| | - B M Imhoff
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI, United States
| |
Collapse
|
3
|
Walters CJ, Jubran J, Sheehan A, Erickson MT, Redish AD. Avoid-approach conflict behaviors differentially affected by anxiolytics: implications for a computational model of risky decision-making. Psychopharmacology (Berl) 2019; 236:2513-2525. [PMID: 30863879 PMCID: PMC6697581 DOI: 10.1007/s00213-019-05197-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/13/2019] [Indexed: 01/14/2023]
Abstract
Whether fear or anxiety is expressed is thought to depend on an animal's proximity to threat. In general, fear is elicited when threat is proximal, while anxiety is a response to threat that is distal and uncertain. This threat gradient model suggests that fear and anxiety involve non-overlapping neural circuitry, yet few behavioral paradigms exist that elicit both states. We studied avoid-approach conflict in rats that were behaving in a predator-inhabited foraging arena task that involved tangible threat and reward incentives. In the task, rats exhibited a variety of both fearful and anxious behaviors corresponding to proximal and distal threat, respectively. We then administered ethanol or diazepam to the rats in order to study how anxiolytics affected these fear and anxiety behaviors. We discovered that both ethanol and diazepam attenuated proximal-threat fear-like behaviors. Furthermore, we found that diazepam, but not ethanol, increased distal-threat anxiety-like behavior but also made rats less risk-averse. Finally, we describe how decisional conflict can be modeled as a partially observable Markov decision process and characterize a potential relationship between anxious behavior, diazepam's ability to suppress hippocampal theta oscillations, and hippocampal representations of the future.
Collapse
Affiliation(s)
- Cody J Walters
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | | | - Ayaka Sheehan
- University of Minnesota, Minneapolis, MN, 55455, USA
| | | | - A David Redish
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
4
|
Acute and chronic ethanol differentially modify the emotional significance of a novel environment: implications for addiction. Int J Neuropsychopharmacol 2012; 15:1109-20. [PMID: 21854680 DOI: 10.1017/s1461145711001283] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Using open-field behaviour as an experimental paradigm, we demonstrated a complex interaction between the rewarding/stimulating effects and the anxiogenic/stressful effects of both novelty and acute or chronic amphetamine in mice. As a consequence of this interaction, acute amphetamine-induced hyperlocomotion was inhibited, whereas the expression of its sensitization was facilitated in a novel environment. In the present study, we aimed to investigate the interactions between exposure to a novel environment and the acute and chronic effects of ethanol (Eth), a drug of abuse known to produce anxiolytic-like behaviour in mice. Previously habituated and non-habituated male Swiss mice (3 months old) were tested in an open field after receiving an acute injection of Eth or following repeated treatment with Eth. Acute Eth administration increased locomotion with a greater magnitude in mice exposed to the apparatus for the first time, and this was thought to be related to the attenuation of the stressful effects of novelty produced by the anxiolytic-like effect of acute Eth, leading to a subsequent prevalence of its stimulant effects. However, locomotor sensitization produced by repeated Eth administration was expressed only in the previously explored environment. This result might be related to the well-known tolerance of Eth-induced anxiolytic-like behaviour following repeated treatment, which would restore the anxiogenic effect of novelty. Our data suggest that a complex and plastic interaction between the emotional and motivational properties of novelty and drugs of abuse can critically modify the behavioural expression of addiction-related mechanisms.
Collapse
|
5
|
de Oliveira Alvares L, Engelke DS, Diehl F, Scheffer-Teixeira R, Haubrich J, de Freitas Cassini L, Molina VA, Quillfeldt JA. Stress response recruits the hippocampal endocannabinoid system for the modulation of fear memory. Learn Mem 2010; 17:202-9. [PMID: 20348201 DOI: 10.1101/lm.1721010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The modulation of memory processes is one of the several functions of the endocannabinoid system (ECS) in the brain, with CB1 receptors highly expressed in areas such as the dorsal hippocampus. Experimental evidence suggested an important role of the ECS in aversively motivated memories. Similarly, glucocorticoids released in response to stress exposure also modulates memory formation, and both stress and dexamethasone activate the ECS. Here, we investigate the interaction between the ECS and glucocorticoids in the hippocampus in the modulation of fear memory consolidation. Two protocols with different shock intensities were used in order to control the level of aversiveness. Local infusion of AM251 into the hippocampus immediately after training was amnestic in the strong, but not in the weak protocol. Moreover, AM251 was amnestic in animals stressed 0, but not 30-min prior to the weak protocol, reverting the stress-induced facilitatory effect. Finally, intrahippocampal AM251 infusion reduced memory in animals that received dexamethasone immediately, but not 30 min before training. These results are (1) consistent with the view that the dorsal hippocampus ECS is activated on demand, in a rapid and short-lived fashion in order to modulate the consolidation of an aversive memory, and (2) show that this recruitment seems to be mediated by glucocorticoids, either in the hippocampus or in other brain regions functionally associated with the hippocampus.
Collapse
Affiliation(s)
- Lucas de Oliveira Alvares
- Laboratório de Psicobiologia e Neurocomputação, Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, CEP 91.501-970, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Old mice present increased levels of succinate dehydrogenase activity and lower vulnerability to dyskinetic effects of 3-nitropropionic acid. Pharmacol Biochem Behav 2009; 91:327-32. [DOI: 10.1016/j.pbb.2008.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 07/24/2008] [Accepted: 08/04/2008] [Indexed: 11/20/2022]
|
7
|
Abreu-Villaça Y, Nunes F, do E Queiroz-Gomes F, Manhães AC, Filgueiras CC. Combined exposure to nicotine and ethanol in adolescent mice differentially affects anxiety levels during exposure, short-term, and long-term withdrawal. Neuropsychopharmacology 2008; 33:599-610. [PMID: 17460612 DOI: 10.1038/sj.npp.1301429] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Smoking and consumption of alcoholic beverages are frequently associated during adolescence. This association could be explained by the cumulative behavioral effects of nicotine and ethanol, particularly those related to anxiety levels. However, despite epidemiological findings, there have been few animal studies of the basic neurobiology of the combined exposure in the adolescent brain. In the present work we assessed, through the use of the elevated plus maze, the short- and long-term anxiety effects of nicotine (NIC) and/or ethanol (ETOH) exposure during adolescence (from the 30th to the 45th postnatal day) in four groups of male and female C57BL/6 mice: (1) Concomitant NIC (nicotine free-base solution (50 microg/ml) in 2% saccharin to drink) and ETOH (ethanol solution (25%, 2 g/kg) i.p. injected every other day) exposure; (2) NIC exposure; (3) ETOH exposure; (4) Vehicle. C57BL/6 mice were selected, in spite of the fact that they present slower ethanol metabolism, because they readily consume nicotine in the concentration used in the present study. During exposure (45th postnatal day: PN45), our results indicated that ethanol was anxiolytic in adolescent mice and that nicotine reverted this effect. Short-term drug withdrawal (PN50) elicited sex-dependent effects: exposure to nicotine and/or ethanol was anxiogenic only for females. Although neither nicotine nor ethanol effects persisted up to 1 month postexposure (PN75), the coadministration elicited an anxiogenic response. In spite of the fact that generalizations based on the results from a single strain of mice are prone to shortcomings, our results suggest that the deficient response to the anxiolytic effects of ethanol in adolescents co-exposed to nicotine may drive higher ethanol consumption. Additionally, increased anxiety during long-term smoking and drinking withdrawal may facilitate relapse to drug use.
Collapse
Affiliation(s)
- Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcântara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
8
|
Martín-García E, Pallarès M. Intrahippocampal nicotine and neurosteroids effects on the anxiety-like behaviour in voluntary and chronic alcohol-drinking rats. Behav Brain Res 2005; 164:117-27. [PMID: 16051379 DOI: 10.1016/j.bbr.2005.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 06/03/2005] [Accepted: 06/06/2005] [Indexed: 12/24/2022]
Abstract
Considerable evidence suggests that the anxiolytic effects of ethanol may be one of the factors that promotes alcohol consumption. The present study aimed to characterize the effects of intrahippocampal administrations of nicotine and the two neurosteroids pregnenolone sulphate (PregS) and allopregnanolone (AlloP) on anxiety-like behaviours in alcohol-drinking rats. A long-lasting free-choice drinking procedure with an early availability (from weaning) of an alcoholic solution (10% (v/v) ethanol, 3% (w/v) glucose in distilled water) was used. After 80 days of consumption, alcohol-drinking and control rats were deprived of food and assigned at random to six groups. After 100 days of consumption, each group received two consecutive intrahippocampal (dorsal CA1) injections. First injection: nicotine (4.6 microg, 20 mM) or saline; second injection: PregS (5 ng, 24 microM), AlloP (0.2 microg, 1.26 microM) or saline. Following the injections, novelty-directed activity (open field, OF), and motor coordination (80 degrees inclined screen) were tested. Blood alcohol concentrations (BACs) were assessed. Anxiolytic-like effects of voluntary ethanol consumption and intrahippocampal AlloP administration were observed. Alcohol intake increased the novelty-induced ambulation and exploration of central areas, and decreased defecation. The high exploration levels induced by AlloP decreased significantly over sessions, indicating a rapid habituation to the environmental conditions. Motor coordination was deteriorated by ethanol consumption. These results demonstrate the effects of chronic alcohol intake and neurosteroid administration on anxiety-related behaviours, and suggest an important role of the hippocampal GABA(A) receptor in these behaviours.
Collapse
Affiliation(s)
- Elena Martín-García
- Institut de Neurociències, Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | |
Collapse
|
9
|
Prediger RDS, Batista LC, Takahashi RN. Adenosine A1 receptors modulate the anxiolytic-like effect of ethanol in the elevated plus-maze in mice. Eur J Pharmacol 2005; 499:147-54. [PMID: 15363961 DOI: 10.1016/j.ejphar.2004.07.106] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 07/22/2004] [Accepted: 07/26/2004] [Indexed: 11/30/2022]
Abstract
The anxiolytic property of ethanol is generally accepted to be an important motivational factor for its consumption and the development of alcohol dependence. Recent studies suggest that adenosine receptors mediate important actions of ethanol, such as motor incoordination and hypnotic effects. In addition, several lines of evidence support the involvement of adenosine in anxiety. The aim of the present study was to evaluate the role of adenosine receptors in the anxiolytic-like effect of ethanol in mice. The effects of acute administration of the adenosine receptor antagonists caffeine (nonselective), 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, adenosine A1 receptor antagonist) and 4-(2-[7-amino-2-[2-furyl][1,2,4]triazolo-[2,3-a][1,3,5]triazin-5-yl-amino]ethyl)phenol (ZM241385, adenosine A(2A) receptor antagonist), together with the adenosine A1 receptor agonist 2-chloro-N6-cyclopentyladenosine (CCPA), and their interaction with ethanol in the elevated plus-maze test in mice were studied. The highest doses of caffeine (30.0 mg/kg, i.p.) and DPCPX (6.0 mg/kg, i.p.) produced an anxiogenic-like effect, while CCPA administration (0.25 mg/kg, i.p.) showed an anxiolytic-like activity. The prior administration of "non-anxiogenic" doses of caffeine (10.0 mg/kg, i.p.) and DPCPX (3.0 mg/kg, i.p.), but not ZM241385 (1.0 mg/kg, i.p.), significantly reduced the anxiolytic-like effect of ethanol (1.2 g/kg, i.p.). Moreover, anxiolytic-like response was observed by the co-administration of "non-anxiolytic" doses of CCPA (0.125 mg/kg) and ethanol (0.6 g/kg). These results reinforce the involvement of adenosine in anxiety and suggest that the activation of adenosine A1 receptors, but not adenosine A(2A) receptors, mediate the anxiolytic-like effect induced by ethanol in mice.
Collapse
Affiliation(s)
- Rui D S Prediger
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, UFSC, Rua Ferreira Lima 82, Florianópolis, SC 88015-420, Brazil
| | | | | |
Collapse
|
10
|
Wilson MA, Burghardt PR, Ford KA, Wilkinson MB, Primeaux SD. Anxiolytic effects of diazepam and ethanol in two behavioral models: comparison of males and females. Pharmacol Biochem Behav 2004; 78:445-58. [PMID: 15251253 DOI: 10.1016/j.pbb.2004.04.017] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 04/14/2004] [Accepted: 04/19/2004] [Indexed: 11/21/2022]
Abstract
The present study compared the anxiolytic effects of the benzodiazepine agonist diazepam and ethanol in adult male and female rats. Varying doses of diazepam (1-3 mg/kg) or ethanol (0.5-2.0 g/kg) were tested using both the elevated plus maze and defensive prod-burying models. Two time points following ethanol administration (10 and 30 min) were tested in the plus maze. Sex differences were seen in some anxiety-related behaviors, with females showing greater open arm time and reduced burying behavior than males. Although this suggests females displayed less anxiety-like behavior than males, the differences in the plus maze were not observed in all testing situations. Both diazepam and ethanol dose-dependently increased open arm times in the plus maze and reduced burying behavior in the defensive prod-burying task. The parallel nature of the dose-response curves suggests that both diazepam and ethanol have similar anxiolytic effects in males and females. No sex differences were seen in the brain levels of diazepam-like activity or blood alcohol levels with these treatments. A greater corticosterone response was observed in females than males with these two behavioral tests, but neither diazepam nor ethanol decreased this response. These results suggest a dissociation between the anxiety-reducing influences of these compounds and the changes in stress-related endocrine responses.
Collapse
Affiliation(s)
- Marlene A Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Building 1, D26 Columbia, SC 29208, USA.
| | | | | | | | | |
Collapse
|
11
|
de Paula HMG, Hoshino K. Potentiation of panic-like behaviors of the rat by subconvulsive doses of strychnine. Physiol Behav 2004; 80:459-64. [PMID: 14741230 DOI: 10.1016/j.physbeh.2003.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was carried out to determine possible panicogenic effects of strychnine administered in subconvulsive doses to rats. Two experiments were conducted to assess two major features of panic in animal models: panic-related flight (through the observation of wild running [WR]) and defensive fights. In the first one, 20 adult male Wistar rats were injected with six different doses of strychnine ranging from 0.5 to 4.0 mg/kg. After 15 min of free observation, the animals were submitted to high-intensity acoustic stimulation and the incidence of WR was recorded. Higher doses of strychnine (above 2.5 mg/kg) easily evoked seizures, but lower doses raised the incidence of WR in a dose-dependent manner. The most effective dose for WR (1.5 mg/kg) was used in the second experiment, in which we investigated the effects of strychnine on sleep-deprivation-induced fights (SDIFs) that have defensive characteristics. For this purpose, 40 subjects were submitted to 5 days of REM-sleep deprivation by the single-platform method and were then assigned into two groups, i.e., strychnine vs. control. After the injections, the animals were observed in social groupings for SDIF recordings over a period of 60 min. The strychnine-treated groups had more SDIF than the control groups (P<.05, Mann-Whitney U test). We conclude that the high level of neural excitability promoted by partial blockade of the glycinergic system can contribute to the manifestation of panic reactions.
Collapse
|
12
|
Lodge DJ, Lawrence AJ. The effect of isolation rearing on volitional ethanol consumption and central CCK/dopamine systems in Fawn-Hooded rats. Behav Brain Res 2003; 141:113-22. [PMID: 12742247 DOI: 10.1016/s0166-4328(02)00328-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Numerous studies have demonstrated that socially isolating rats (from weaning) produces a sustained anxious phenotype and an enhanced response to psychostimulant drugs such as amphetamine and cocaine. In addition, isolation rearing has been shown to induce significant changes in the mesolimbic dopamine system. These data indicate that isolation rearing not only induces an anxiogenic phenotype but also induces neurochemical changes in reward nuclei of the brain, which is correlated with an enhanced response to psychostimulants. For these reasons, the effect of isolation rearing on volitional ethanol consumption was examined in Fawn-Hooded (FH) rats and correlated with neurochemical changes in central dopamine and cholecystokinin systems. Social isolation from weaning produced an anxiogenic phenotype as measured by a decreased time spent on the open arms of an elevated plus-maze. Interestingly, isolation-rearing induced a greater proportion of FH rats to acquire preference for ethanol while having no effect on the amount of ethanol consumed by alcohol-preferring rats. In addition, isolation rearing induced a number of changes in central CCK/dopamine systems.
Collapse
Affiliation(s)
- Daniel J Lodge
- Department of Pharmacology, Monash University, P.O. Box 13E, Clayton, Vic. 3800, Australia.
| | | |
Collapse
|
13
|
Bertoglio LJ, Carobrez AP. Anxiolytic effects of ethanol and phenobarbital are abolished in test-experienced rats submitted to the elevated plus maze. Pharmacol Biochem Behav 2002; 73:963-9. [PMID: 12213543 DOI: 10.1016/s0091-3057(02)00958-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prior test experience compromises the anxiolytic efficacy of benzodiazepines (BZs) either in rats or mice, a phenomenon not exclusive to the elevated plus-maze (EPM) animal model of anxiety, which is referred to as "one-trial tolerance." However, it remains to be determined whether a similar event occurs when testing other drugs that also possess binding-sites on the GABA(A) receptor, such as ethanol and barbiturates. In the present study, we have addressed this issue using maze-naive and maze-experienced (free exploration of the EPM 48 h earlier for 5 min) rats pretreated with ethanol (1.0-1.4 g/kg) or phenobarbital (20-60 mg/kg) and submitted to the EPM. The results confirmed the anxiolytic profile of both drugs, represented by increased open arm exploration and decreased risk assessment behavior, in maze-naive rats. However, in maze-experienced rats, neither ethanol nor phenobarbital anxiolytic effects were observed, suggesting that prior maze experience compromised the drugs' anxiolytic activity. Thus, the "one-trial tolerance" phenomenon might also be extended to other drugs that bind to the GABA(A) receptor complex.
Collapse
Affiliation(s)
- L J Bertoglio
- Departamento de Farmacologia, CCB, Universidade Federal de Santa Catarina, Rua Ferreira Lima 82, Florianópolis, SC 88015-420, Brazil
| | | |
Collapse
|
14
|
Abstract
The anxiolytic effect of ethanol is generally accepted to be involved in the development of alcohol dependence. Because serotonin (5-HT) is said to be involved in both anxiety and alcohol dependence, in the present study the effect of acute ethanol administration on basal 5-HT release of the medial prefrontal cortex and its effect on 5-HT release in rats submitted to an animal model of anxiety, the elevated plus maze test, were detected in two rat strains showing a different anxiety-related behavior. Ethanol had an anxiolytic-like effect and induced an increase of basal 5-HT release in the medial prefrontal cortex in the home cage in the less anxious Wistar-Harlan rats. Both effects were not seen in the more anxious Wistar-BgVV rats. The exposure to the elevated plus maze test induced an increase of extracellular 5-HT in the more anxious Wistar-BgVV rats but not in the less anxious Wistar-Harlan rats. Ethanol did not change 5-HT release during the elevated plus maze test in both rat strains. Thus, the anxiolytic-like effect of ethanol in Wistar-Harlan rats was not primarily associated with a decrease of 5-HT release in the prefrontal cortex as it is seen with other anxiolytic agents like diazepam.
Collapse
Affiliation(s)
- Barbara Langen
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Freie Universität Berlin, Koserstr. 20, 14195, Berlin, Germany.
| | | | | |
Collapse
|
15
|
de Paula HMG, Hoshino K. Correlation between the fighting rates of REM sleep-deprived rats and susceptibility to the 'wild running' of audiogenic seizures. Brain Res 2002; 926:80-5. [PMID: 11814409 DOI: 10.1016/s0006-8993(01)03306-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sleep-deprived rats exhibit defensive fighting as well as explosive flights very similar to the wild-running of audiogenic seizures. In order to determine why sleep deprivation is a common factor that facilitates both panic and convulsive manifestations, the present study was undertaken to investigate whether rats that display sleep deprivation-induced fighting (SDIF) are the same as those that are susceptible to audiogenic wild-running (WR). Twenty-eight male adult Wistar rats were divided into two groups assigned to two experimental schemes. In the first, 18 subjects were submitted to REM-sleep deprivation for 5 days and had their SDIF evaluated in social grouping. After 1 week for recovery, their susceptibility to WR was tested in an acoustic stimulation trial (104 dB, 200 Hz, 60 s). Rats that did not present WR received a lactate infusion and were tested again by acoustic stimulation 40 min later. In the second experimental scheme, 10 subjects were initially evaluated for WR susceptibility and the number of SDIF was recorded in social grouping after 1 week. Three categories of WR-susceptibility were determined: WR-sensitive rats, intermediate WR-sensitive rats and WR-insensitive rats. The number of SDIF in each category was significantly different and there was a high positive correlation (r=0.89; Spearman test) between the number of SDIF and the level of WR-susceptibility. We conclude that the reasons why sleep deprivation exerts facilitatory effects on both panic and convulsive manifestations are due to overlappings of neural pathways responsible for both behavioral patterns and for the property of sleep deprivation to increase neuronal excitability.
Collapse
|
16
|
Duncan PM. Effects of insulin-produced hypoglycemia in combination with ethanol on spontaneous motor activity in rats. Pharmacol Biochem Behav 2001; 69:291-8. [PMID: 11420097 DOI: 10.1016/s0091-3057(01)00538-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The hazardous consequences of drinking alcohol by persons receiving insulin treatment is indicated by clinical reports, but little controlled research has investigated the combination of hypoglycemia and ethanol intoxication. Ethanol's effect on spontaneous motor activity (SMA, detected by Opto-Varimax activity meters) in hypoglycemic (HG) rats was determined over a range of ethanol doses in two experiments. Combinations of insulin and ethanol were administered intraperitoneally to moderately food-deprived rats. Blood glucose was measured before and after a 30-min SMA-monitoring period. In Experiment 1, ethanol doses of 300, 600 and 1200 mg/kg were combined with insulin at doses 0.5 and 2 U/kg. A second experiment tested a narrower range of drug doses (ethanol 600 and 1200 mg/kg, insulin 1 U/kg) under slightly different procedures. After insulin treatment, blood-glucose levels dropped to approximately 40-60% of control levels and this HG was accompanied by decreased SMA. Ethanol did not influence blood-glucose levels, nor did it potentiate the HG produced by insulin. Combination of HG and the highest ethanol dose potentiated the SMA-depressant effect in both experiments, whereas lower ethanol doses partially reversed the suppression of motor activity in HG rats.
Collapse
Affiliation(s)
- P M Duncan
- Psychology Department, Old Dominion University, Norfolk, VA 23259-0267, USA.
| |
Collapse
|
17
|
Morato GS, Ferreira VMM, Ferrara P, Farges RC. Effects of central and systemic injections of peripheral benzodiazepine receptor ligands on the anxiolytic actions of ethanol in rats. Addict Biol 2001; 6:129-136. [PMID: 11341852 DOI: 10.1080/13556210020040208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The influence of peripheral benzodiazepine receptor ligands Ro5-4864 (0.05 or 1.0 mg/kg, i.p.) or PK11195 (0.05 or 1.0 mg/kg, i.p.) on the anxiolytic effect of ethanol (1.2 g/kg; 14% p/v; i.p.) was investigated in rats tested on the elevated plus-maze. Other animals were injected through intrahippocampal administrations of the ligands (0.5 or 1.0 nmol/0.5 &mgr;l) before ethanol (1.2g/kg; 14% p/v; i.p.) and submitted to the elevated plus-maze test. The results showed that the systemic administration of either ligands 24 hours before the ethanol treatment resulted in a reduced anxiolytic effect of this drug. Only PK11195 reversed the effect of ethanol after intrahippocampal injection. These data suggest that peripheral benzodiazepine receptors play a role in ethanol anxiolysis.
Collapse
Affiliation(s)
- G. S. Morato
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | | | |
Collapse
|