1
|
Alaoui HS, Quèbre V, Delimi L, Rech J, Debaugny-Diaz R, Labourdette D, Campos M, Cornet F, Walter JC, Bouet JY. In vivo assembly of bacterial partition condensates on circular supercoiled and linear DNA. Mol Microbiol 2025; 123:232-244. [PMID: 39109686 DOI: 10.1111/mmi.15297] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 03/12/2025]
Abstract
In bacteria, faithful DNA segregation of chromosomes and plasmids is mainly mediated by ParABS systems. These systems, consisting of a ParA ATPase, a DNA binding ParB CTPase, and centromere sites parS, orchestrate the separation of newly replicated DNA copies and their intracellular positioning. Accurate segregation relies on the assembly of a high-molecular-weight complex, comprising a few hundreds of ParB dimers nucleated from parS sites. This complex assembles in a multi-step process and exhibits dynamic liquid-droplet properties. Despite various proposed models, the complete mechanism for partition complex assembly remains elusive. This study investigates the impact of DNA supercoiling on ParB DNA binding profiles in vivo, using the ParABS system of the plasmid F. We found that variations in DNA supercoiling does not significantly affect any steps in the assembly of the partition complex. Furthermore, physical modeling, leveraging ChIP-seq data from linear plasmids F, suggests that ParB sliding is restricted to approximately 2 Kbp from parS, highlighting the necessity for additional mechanisms beyond ParB sliding over DNA for concentrating ParB into condensates nucleated at parS. Finally, explicit simulations of a polymer coated with bound ParB suggest a dominant role for ParB-ParB interactions in DNA compaction within ParB condensates.
Collapse
Affiliation(s)
- Hicham Sekkouri Alaoui
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse Paul Sabatier, UPS, Toulouse, France
| | - Valentin Quèbre
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse Paul Sabatier, UPS, Toulouse, France
| | - Linda Delimi
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| | - Jérôme Rech
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse Paul Sabatier, UPS, Toulouse, France
| | - Roxanne Debaugny-Diaz
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse Paul Sabatier, UPS, Toulouse, France
| | | | - Manuel Campos
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse Paul Sabatier, UPS, Toulouse, France
| | - François Cornet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse Paul Sabatier, UPS, Toulouse, France
| | - Jean-Charles Walter
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| | - Jean-Yves Bouet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse Paul Sabatier, UPS, Toulouse, France
| |
Collapse
|
2
|
Fraikin N, Van Melderen L. Single-cell evidence for plasmid addiction mediated by toxin-antitoxin systems. Nucleic Acids Res 2024; 52:1847-1859. [PMID: 38224456 PMCID: PMC10899753 DOI: 10.1093/nar/gkae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024] Open
Abstract
Toxin-antitoxin (TA) systems are small selfish genetic modules that increase vertical stability of their replicons. They have long been thought to stabilize plasmids by killing cells that fail to inherit a plasmid copy through a phenomenon called post-segregational killing (PSK) or addiction. While this model has been widely accepted, no direct observation of PSK was reported in the literature. Here, we devised a system that enables visualization of plasmid loss and PSK at the single-cell level using meganuclease-driven plasmid curing. Using the ccd system, we show that cells deprived of a ccd-encoding plasmid show hallmarks of DNA damage, i.e. filamentation and induction of the SOS response. Activation of ccd triggered cell death in most plasmid-free segregants, although some intoxicated cells were able to resume growth, showing that PSK-induced damage can be repaired in a SOS-dependent manner. Damage induced by ccd activates resident lambdoid prophages, which potentiate the killing effect of ccd. The loss of a model plasmid containing TA systems encoding toxins presenting various molecular mechanisms induced different morphological changes, growth arrest and loss of viability. Our experimental setup enables further studies of TA-induced phenotypes and suggests that PSK is a general mechanism for plasmid stabilization by TA systems.
Collapse
Affiliation(s)
- Nathan Fraikin
- Bacterial Genetics and Physiology, Department of Molecular Biology, Faculté des Sciences, Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Laurence Van Melderen
- Bacterial Genetics and Physiology, Department of Molecular Biology, Faculté des Sciences, Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| |
Collapse
|
3
|
Cornet F, Blanchais C, Dusfour-Castan R, Meunier A, Quebre V, Sekkouri Alaoui H, Boudsoq F, Campos M, Crozat E, Guynet C, Pasta F, Rousseau P, Ton Hoang B, Bouet JY. DNA Segregation in Enterobacteria. EcoSal Plus 2023; 11:eesp00382020. [PMID: 37220081 PMCID: PMC10729935 DOI: 10.1128/ecosalplus.esp-0038-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/13/2023] [Indexed: 01/28/2024]
Abstract
DNA segregation ensures that cell offspring receive at least one copy of each DNA molecule, or replicon, after their replication. This important cellular process includes different phases leading to the physical separation of the replicons and their movement toward the future daughter cells. Here, we review these phases and processes in enterobacteria with emphasis on the molecular mechanisms at play and their controls.
Collapse
Affiliation(s)
- François Cornet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Corentin Blanchais
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Romane Dusfour-Castan
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Alix Meunier
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Valentin Quebre
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Hicham Sekkouri Alaoui
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - François Boudsoq
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Manuel Campos
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Estelle Crozat
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Catherine Guynet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Franck Pasta
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Philippe Rousseau
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Bao Ton Hoang
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Jean-Yves Bouet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| |
Collapse
|
4
|
Goldlust K, Ducret A, Halte M, Dedieu-Berne A, Erhardt M, Lesterlin C. The F pilus serves as a conduit for the DNA during conjugation between physically distant bacteria. Proc Natl Acad Sci U S A 2023; 120:e2310842120. [PMID: 37963249 PMCID: PMC10666033 DOI: 10.1073/pnas.2310842120] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/27/2023] [Indexed: 11/16/2023] Open
Abstract
Horizontal transfer of F-like plasmids by bacterial conjugation is responsible for disseminating antibiotic resistance and virulence determinants among pathogenic Enterobacteriaceae species, a growing health concern worldwide. Central to this process is the conjugative F pilus, a long extracellular filamentous polymer that extends from the surface of plasmid donor cells, allowing it to probe the environment and make contact with the recipient cell. It is well established that the F pilus can retract to bring mating pair cells in tight contact before DNA transfer. However, whether DNA transfer can occur through the extended pilus has been a subject of active debate. In this study, we use live-cell microscopy to show that while most transfer events occur between cells in direct contact, the F pilus can indeed serve as a conduit for the DNA during transfer between physically distant cells. Our findings enable us to propose a unique model for conjugation that revises our understanding of the DNA transfer mechanism and the dissemination of drug resistance and virulence genes within complex bacterial communities.
Collapse
Affiliation(s)
- Kelly Goldlust
- Molecular Microbiology and Structural Biochemistry, Université Lyon 1, CNRS, Inserm, UMR5086, Lyon69007, France
| | - Adrien Ducret
- Molecular Microbiology and Structural Biochemistry, Université Lyon 1, CNRS, Inserm, UMR5086, Lyon69007, France
| | - Manuel Halte
- Institute for Biology/Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin10115, Germany
| | - Annick Dedieu-Berne
- Molecular Microbiology and Structural Biochemistry, Université Lyon 1, CNRS, Inserm, UMR5086, Lyon69007, France
| | - Marc Erhardt
- Institute for Biology/Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin10115, Germany
- Max Planck Unit for the Science of Pathogens, Berlin10117, Germany
| | - Christian Lesterlin
- Molecular Microbiology and Structural Biochemistry, Université Lyon 1, CNRS, Inserm, UMR5086, Lyon69007, France
| |
Collapse
|
5
|
Couturier A, Virolle C, Goldlust K, Berne-Dedieu A, Reuter A, Nolivos S, Yamaichi Y, Bigot S, Lesterlin C. Real-time visualisation of the intracellular dynamics of conjugative plasmid transfer. Nat Commun 2023; 14:294. [PMID: 36653393 PMCID: PMC9849209 DOI: 10.1038/s41467-023-35978-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Conjugation is a contact-dependent mechanism for the transfer of plasmid DNA between bacterial cells, which contributes to the dissemination of antibiotic resistance. Here, we use live-cell microscopy to visualise the intracellular dynamics of conjugative transfer of F-plasmid in E. coli, in real time. We show that the transfer of plasmid in single-stranded form (ssDNA) and its subsequent conversion into double-stranded DNA (dsDNA) are fast and efficient processes that occur with specific timing and subcellular localisation. Notably, the ssDNA-to-dsDNA conversion determines the timing of plasmid-encoded protein production. The leading region that first enters the recipient cell carries single-stranded promoters that allow the early and transient synthesis of leading proteins immediately upon entry of the ssDNA plasmid. The subsequent conversion into dsDNA turns off leading gene expression, and activates the expression of other plasmid genes under the control of conventional double-stranded promoters. This molecular strategy allows for the timely production of factors sequentially involved in establishing, maintaining and disseminating the plasmid.
Collapse
Affiliation(s)
- Agathe Couturier
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007, Lyon, France
| | - Chloé Virolle
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007, Lyon, France
| | - Kelly Goldlust
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007, Lyon, France
| | - Annick Berne-Dedieu
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007, Lyon, France
| | - Audrey Reuter
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007, Lyon, France
| | - Sophie Nolivos
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007, Lyon, France
| | - Yoshiharu Yamaichi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Sarah Bigot
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007, Lyon, France.
| | - Christian Lesterlin
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007, Lyon, France.
| |
Collapse
|
6
|
Abstract
In the late 1950s, a number of laboratories took up the study of plasmids once the discovery was made that extrachromosomal antibiotic resistance (R) factors are the responsible agents for the transmissibility of multiple antibiotic resistance among the enterobacteria. The use of incompatibility for the classification of plasmids is now widespread. It seems clear now on the basis of the limited studies to date that the number of incompatibility groups of plasmids will likely be extremely large when one includes plasmids obtained from bacteria that are normal inhabitants of poorly studied natural environments. The presence of both linear chromosomes and linear plasmids is now established for several Streptomyces species. One of the more fascinating developments in plasmid biology was the discovery of linear plasmids in the 1980s. A remarkable feature of the Ti plasmids of Agrobacterium tumefaciens is the presence of two DNA transfer systems. A definitive demonstration that plasmids consisted of duplex DNA came from interspecies conjugal transfer of plasmids followed by separation of plasmid DNA from chromosomal DNA by equilibrium buoyant density centrifugation. The formation of channels for DNA movement and the actual steps involved in DNA transport offer many opportunities for the discovery of proteins with novel activities and for establishing fundamentally new concepts of macromolecular interactions between DNA and specific proteins, membranes, and the peptidoglycan matrix.
Collapse
Affiliation(s)
- Donald R. Helinski
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
7
|
Köhler R, Kaganovitch E, Murray SM. High-throughput imaging and quantitative analysis uncovers the nature of plasmid positioning by ParABS. eLife 2022; 11:78743. [PMID: 36374535 PMCID: PMC9662831 DOI: 10.7554/elife.78743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/23/2022] [Indexed: 11/16/2022] Open
Abstract
The faithful segregation and inheritance of bacterial chromosomes and low-copy number plasmids requires dedicated partitioning systems. The most common of these, ParABS, consists of ParA, a DNA-binding ATPase and ParB, a protein that binds to centromeric-like parS sequences on the DNA cargo. The resulting nucleoprotein complexes are believed to move up a self-generated gradient of nucleoid-associated ParA. However, it remains unclear how this leads to the observed cargo positioning and dynamics. In particular, the evaluation of models of plasmid positioning has been hindered by the lack of quantitative measurements of plasmid dynamics. Here, we use high-throughput imaging, analysis and modelling to determine the dynamical nature of these systems. We find that F plasmid is actively brought to specific subcellular home positions within the cell with dynamics akin to an over-damped spring. We develop a unified stochastic model that quantitatively explains this behaviour and predicts that cells with the lowest plasmid concentration transition to oscillatory dynamics. We confirm this prediction for F plasmid as well as a distantly-related ParABS system. Our results indicate that ParABS regularly positions plasmids across the nucleoid but operates just below the threshold of an oscillatory instability, which according to our model, minimises ATP consumption. Our work also clarifies how various plasmid dynamics are achievable in a single unified stochastic model. Overall, this work uncovers the dynamical nature of plasmid positioning by ParABS and provides insights relevant for chromosome-based systems.
Collapse
Affiliation(s)
- Robin Köhler
- Max Planck Institute for Terrestrial Microbiology and LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Eugen Kaganovitch
- Max Planck Institute for Terrestrial Microbiology and LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Seán M Murray
- Max Planck Institute for Terrestrial Microbiology and LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| |
Collapse
|
8
|
Sugawara T, Kaneko K. Chemophoresis engine: A general mechanism of ATPase-driven cargo transport. PLoS Comput Biol 2022; 18:e1010324. [PMID: 35877681 PMCID: PMC9363008 DOI: 10.1371/journal.pcbi.1010324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 08/09/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
Cell polarity regulates the orientation of the cytoskeleton members that directs intracellular transport for cargo-like organelles, using chemical gradients sustained by ATP or GTP hydrolysis. However, how cargo transports are directly mediated by chemical gradients remains unknown. We previously proposed a physical mechanism that enables directed movement of cargos, referred to as chemophoresis. According to the mechanism, a cargo with reaction sites is subjected to a chemophoresis force in the direction of the increased concentration. Based on this, we introduce an extended model, the chemophoresis engine, as a general mechanism of cargo motion, which transforms chemical free energy into directed motion through the catalytic ATP hydrolysis. We applied the engine to plasmid motion in a ParABS system to demonstrate the self-organization system for directed plasmid movement and pattern dynamics of ParA-ATP concentration, thereby explaining plasmid equi-positioning and pole-to-pole oscillation observed in bacterial cells and in vitro experiments. We mathematically show the existence and stability of the plasmid-surfing pattern, which allows the cargo-directed motion through the symmetry-breaking transition of the ParA-ATP spatiotemporal pattern. We also quantitatively demonstrate that the chemophoresis engine can work even under in vivo conditions. Finally, we discuss the chemophoresis engine as one of the general mechanisms of hydrolysis-driven intracellular transport. The formation of organelle/macromolecule patterns depending on chemical concentration under non-equilibrium conditions, first observed during macroscopic morphogenesis, has recently been observed at the intracellular level as well, and its relevance as intracellular morphogen has been demonstrated in the case of bacterial cell division. These studies have discussed how cargos maintain positional information provided by chemical concentration gradients/localization. However, how cargo transports are directly mediated by chemical gradients remains unknown. Based on the previously proposed mechanism of chemotaxis-like behavior of cargos (referred to as chemophoresis), we introduce a chemophoresis engine as a physicochemical mechanism of cargo motion, which transforms chemical free energy to directed motion. The engine is based on the chemophoresis force to make cargoes move in the direction of the increasing ATPase(-ATP) concentration and an enhanced catalytic ATPase hydrolysis at the positions of the cargoes. Applying the engine to ATPase-driven movement of plasmid-DNAs in bacterial cells, we constructed a mathematical model to demonstrate the self-organization for directed plasmid motion and pattern dynamics of ATPase concentration, as is consistent with in vitro and in vivo experiments. We propose that this chemophoresis engine works as a general mechanism of hydrolysis-driven intracellular transport.
Collapse
Affiliation(s)
- Takeshi Sugawara
- Universal Biology Institute, The University of Tokyo, Tokyo, Japan
- * E-mail:
| | - Kunihiko Kaneko
- Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Meguro-ku, Tokyo, Japan
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Possoz C, Yamaichi Y, Galli E, Ferat JL, Barre FX. Vibrio cholerae Chromosome Partitioning without Polar Anchoring by HubP. Genes (Basel) 2022; 13:genes13050877. [PMID: 35627261 PMCID: PMC9140986 DOI: 10.3390/genes13050877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/02/2022] Open
Abstract
Partition systems are widespread among bacterial chromosomes. They are composed of two effectors, ParA and ParB, and cis acting sites, parS, located close to the replication origin of the chromosome (oriC). ParABS participate in chromosome segregation, at least in part because they serve to properly position sister copies of oriC. A fourth element, located at cell poles, is also involved in some cases, such as HubP for the ParABS1 system of Vibrio cholerae chromosome 1 (ch1). The polar anchoring of oriC of ch1 (oriC1) is lost when HubP or ParABS1 are inactivated. Here, we report that in the absence of HubP, ParABS1 actively maintains oriC1 at mid-cell, leading to the subcellular separation of the two ch1 replication arms. We further show that parS1 sites ectopically inserted in chromosome 2 (ch2) stabilize the inheritance of this replicon in the absence of its endogenous partition system, even without HubP. We also observe the positioning interference between oriC1 and oriC of ch2 regions when their positionings are both driven by ParABS1. Altogether, these data indicate that ParABS1 remains functional in the absence of HubP, which raises questions about the role of the polar anchoring of oriC1 in the cell cycle.
Collapse
|
10
|
Hu L, Rech J, Bouet JY, Liu J. Spatial control over near-critical-point operation ensures fidelity of ParABS-mediated DNA partition. Biophys J 2021; 120:3911-3924. [PMID: 34418367 PMCID: PMC8511131 DOI: 10.1016/j.bpj.2021.08.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/26/2021] [Accepted: 08/13/2021] [Indexed: 01/20/2023] Open
Abstract
In bacteria, most low-copy-number plasmid and chromosomally encoded partition systems belong to the tripartite ParABS partition machinery. Despite the importance in genetic inheritance, the mechanisms of ParABS-mediated genome partition are not well understood. Combining theory and experiment, we provided evidence that the ParABS system-DNA partitioning in vivo via the ParA-gradient-based Brownian ratcheting-operates near a transition point in parameter space (i.e., a critical point), across which the system displays qualitatively different motile behaviors. This near-critical-point operation adapts the segregation distance of replicated plasmids to the half length of the elongating nucleoid, ensuring both cell halves to inherit one copy of the plasmids. Further, we demonstrated that the plasmid localizes the cytoplasmic ParA to buffer the partition fidelity against the large cell-to-cell fluctuations in ParA level. The spatial control over the near-critical-point operation not only ensures both sensitive adaptation and robust execution of partitioning but also sheds light on the fundamental question in cell biology: how do cells faithfully measure cellular-scale distance by only using molecular-scale interactions?
Collapse
Affiliation(s)
- Longhua Hu
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jérôme Rech
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Centre National de la Recherche Scientifique, Université de Toulouse, UPS, Toulouse, France
| | - Jean-Yves Bouet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Centre National de la Recherche Scientifique, Université de Toulouse, UPS, Toulouse, France.
| | - Jian Liu
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
11
|
Sánchez-Romero MA, Mérida-Floriano Á, Casadesús J. Copy Number Heterogeneity in the Virulence Plasmid of Salmonella enterica. Front Microbiol 2020; 11:599931. [PMID: 33343541 PMCID: PMC7746676 DOI: 10.3389/fmicb.2020.599931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
Quantitative PCR analysis shows that the virulence plasmid of Salmonella enterica serovar Typhimurium (pSLT) is a low-copy-number plasmid, with 1–2 copies per chromosome. However, fluorescence microscopy observation of pSLT labeled with a lacO fluorescent tag reveals cell-to-cell differences in the number of foci, which ranges from 1 to 8. As each focus must correspond to ≥1 plasmid copy, the number of foci can be expected to indicate the minimal number of pSLT copies per cell. A correlation is found between the number of foci and the bacterial cell volume. In contrast, heterogeneity in the number of foci appears to be independent of the cell volume and may have stochastic origin. As a consequence of copy number heterogeneity, expression of a pSLT-bone reporter gene shows high levels of cell-to-cell variation, especially in actively dividing cultures. These observations support the notion that low-copy-number plasmids can be a source of gene expression noise in bacterial populations.
Collapse
Affiliation(s)
| | | | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
12
|
Daniel S, Goldlust K, Quebre V, Shen M, Lesterlin C, Bouet JY, Yamaichi Y. Vertical and Horizontal Transmission of ESBL Plasmid from Escherichia coli O104:H4. Genes (Basel) 2020; 11:genes11101207. [PMID: 33081159 PMCID: PMC7602700 DOI: 10.3390/genes11101207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
Multidrug resistance (MDR) often results from the acquisition of mobile genetic elements (MGEs) that encode MDR gene(s), such as conjugative plasmids. The spread of MDR plasmids is founded on their ability of horizontal transference, as well as their faithful inheritance in progeny cells. Here, we investigated the genetic factors involved in the prevalence of the IncI conjugative plasmid pESBL, which was isolated from the Escherichia coli O104:H4 outbreak strain in Germany in 2011. Using transposon-insertion sequencing, we identified the pESBL partitioning locus (par). Genetic, biochemical and microscopic approaches allowed pESBL to be characterized as a new member of the Type Ib partitioning system. Inactivation of par caused mis-segregation of pESBL followed by post-segregational killing (PSK), resulting in a great fitness disadvantage but apparent plasmid stability in the population of viable cells. We constructed a variety of pESBL derivatives with different combinations of mutations in par, conjugational transfer (oriT) and pnd toxin-antitoxin (TA) genes. Only the triple mutant exhibited plasmid-free cells in viable cell populations. Time-lapse tracking of plasmid dynamics in microfluidics indicated that inactivation of pnd improved the survival of plasmid-free cells and allowed oriT-dependent re-acquisition of the plasmid. Altogether, the three factors—active partitioning, toxin-antitoxin and conjugational transfer—are all involved in the prevalence of pESBL in the E. coli population.
Collapse
Affiliation(s)
- Sandra Daniel
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (S.D.); (M.S.)
| | - Kelly Goldlust
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007 Lyon, France; (K.G.); (C.L.)
| | - Valentin Quebre
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), CBI, CNRS, Université de Toulouse, UPS, 31062 Toulouse, France; (V.Q.); (J.-Y.B.)
| | - Minjia Shen
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (S.D.); (M.S.)
- Graduate School of Structure and Dynamics of Living Systems, Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| | - Christian Lesterlin
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007 Lyon, France; (K.G.); (C.L.)
| | - Jean-Yves Bouet
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), CBI, CNRS, Université de Toulouse, UPS, 31062 Toulouse, France; (V.Q.); (J.-Y.B.)
| | - Yoshiharu Yamaichi
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (S.D.); (M.S.)
- Correspondence:
| |
Collapse
|
13
|
Planchenault C, Pons MC, Schiavon C, Siguier P, Rech J, Guynet C, Dauverd-Girault J, Cury J, Rocha EPC, Junier I, Cornet F, Espéli O. Intracellular Positioning Systems Limit the Entropic Eviction of Secondary Replicons Toward the Nucleoid Edges in Bacterial Cells. J Mol Biol 2020; 432:745-761. [PMID: 31931015 DOI: 10.1016/j.jmb.2019.11.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/04/2019] [Accepted: 11/25/2019] [Indexed: 01/16/2023]
Abstract
Bacterial genomes, organized intracellularly as nucleoids, are composed of the main chromosome coexisting with different types of secondary replicons. Secondary replicons are major drivers of bacterial adaptation by gene exchange. They are highly diverse in type and size, ranging from less than 2 to more than 1000 kb, and must integrate with bacterial physiology, including to the nucleoid dynamics, to limit detrimental costs leading to their counter-selection. We show that large DNA circles, whether from a natural plasmid or excised from the chromosome tend to localize in a dynamic manner in a zone separating the nucleoid from the cytoplasm at the edge of the nucleoid. This localization is in good agreement with silico simulations of DNA circles in the nucleoid volume. Subcellular positioning systems counteract this tendency, allowing replicons to enter the nucleoid space. In enterobacteria, these systems are found in replicons above 25 kb, defining the limit with small randomly segregated plasmids. Larger replicons carry at least one of the three described family of systems, ParAB, ParRM, and StbA. Replicons above 180 kb all carry a ParAB system, suggesting this system is specifically required in the cases of large replicons. Simulations demonstrated that replicon size profoundly affects localization, compaction, and dynamics of DNA circles in the nucleoid volume. The present work suggests that presence of partition systems on the larger plasmids or chromids is not only due to selection for accurate segregation but also to counteract their unmixing with the chromosome and consequent exclusion from the nucleoid.
Collapse
Affiliation(s)
- Charlène Planchenault
- Center for Interdisciplinary Research in Biology - Collège de France, CNRS UMR7241, INSERM U1050, PSL University, France
| | - Marine C Pons
- Centre de Biologie Intégrative de Toulouse (CBI Toulouse), Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Université de Toulouse, UPS, CNRS, France
| | - Caroline Schiavon
- Centre de Biologie Intégrative de Toulouse (CBI Toulouse), Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Université de Toulouse, UPS, CNRS, France
| | - Patricia Siguier
- Centre de Biologie Intégrative de Toulouse (CBI Toulouse), Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Université de Toulouse, UPS, CNRS, France
| | - Jérôme Rech
- Centre de Biologie Intégrative de Toulouse (CBI Toulouse), Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Université de Toulouse, UPS, CNRS, France
| | - Catherine Guynet
- Centre de Biologie Intégrative de Toulouse (CBI Toulouse), Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Université de Toulouse, UPS, CNRS, France
| | - Julie Dauverd-Girault
- Center for Interdisciplinary Research in Biology - Collège de France, CNRS UMR7241, INSERM U1050, PSL University, France
| | - Jean Cury
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris, France
| | - Eduardo P C Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris, France
| | - Ivan Junier
- CNRS, Univ. Grenoble Alpes, TIMC-IMAG, F-38000 Grenoble, France
| | - François Cornet
- Centre de Biologie Intégrative de Toulouse (CBI Toulouse), Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Université de Toulouse, UPS, CNRS, France
| | - Olivier Espéli
- Center for Interdisciplinary Research in Biology - Collège de France, CNRS UMR7241, INSERM U1050, PSL University, France.
| |
Collapse
|
14
|
Abstract
Plasmids are ubiquitous in the microbial world and have been identified in almost all species of bacteria that have been examined. Their localization inside the bacterial cell has been examined for about two decades; typically, they are not randomly distributed, and their positioning depends on copy number and their mode of segregation. Low-copy-number plasmids promote their own stable inheritance in their bacterial hosts by encoding active partition systems, which ensure that copies are positioned in both halves of a dividing cell. High-copy plasmids rely on passive diffusion of some copies, but many remain clustered together in the nucleoid-free regions of the cell. Here we review plasmid localization and partition (Par) systems, with particular emphasis on plasmids from Enterobacteriaceae and on recent results describing the in vivo localization properties and molecular mechanisms of each system. Partition systems also cause plasmid incompatibility such that distinct plasmids (with different replicons) with the same Par system cannot be stably maintained in the same cells. We discuss how partition-mediated incompatibility is a consequence of the partition mechanism.
Collapse
Affiliation(s)
- Jean-Yves Bouet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, UPS, F-31000 Toulouse, France
| | - Barbara E Funnell
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5G 1M1
| |
Collapse
|
15
|
Sun J, Qiu Y, Ding P, Peng P, Yang H, Li L. Conjugative Transfer of Dioxin-Catabolic Megaplasmids and Bioaugmentation Prospects of a Rhodococcus sp. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6298-6307. [PMID: 28485586 DOI: 10.1021/acs.est.7b00188] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Genetic bioaugmentation, in which bacteria harboring conjugative plasmids provide catabolic functions, is a promising strategy to restore dioxin-contaminated environments. Here we examined the conjugative transfer of the dioxin-catabolic plasmids pDF01 and pDF02 harbored by Rhodococcus sp. strain p52. A mating experiment using strain p52 as a donor showed that pDF01 and pDF02 were concomitantly and conjugatively transferred from strain p52 to a Pseudomonas aeruginosa recipient at a conjugation frequency of 3 × 10-4 colonies per recipient. pDF01 and pDF02 were isolated from the P. aeruginosa transconjugant and identified by Southern hybridization, and they were localized in the transconjugant cells by fluorescence in situ hybridization. Moreover, the catabolic plasmids functioned in the transconjugant, which gained the ability to use dibenzofuran and chlorodibenzofuran for growth, and they were maintained in 50% of the transconjugant cells for 30 generations without selective pressure. Furthermore, conjugative transfer of the catabolic plasmids to activated sludge bacteria was detected. Sequencing of pDF01 and pDF02 revealed the genetic basis for the plasmids' conjugative transfer and stable maintenance, as well as their cooperation during dioxin catabolism. Therefore, strain p52 harboring pDF01 and pDF02 has potential for genetic bioaugmentation in dioxin-contaminated environments.
Collapse
Affiliation(s)
- Jiao Sun
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University , Jinan, China
| | - Yilun Qiu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University , Jinan, China
| | - Pengfei Ding
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University , Jinan, China
| | - Peng Peng
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University , Jinan, China
| | - Haiyan Yang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University , Jinan, China
| | - Li Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University , Jinan, China
| |
Collapse
|
16
|
Hu L, Vecchiarelli AG, Mizuuchi K, Neuman KC, Liu J. Brownian Ratchet Mechanism for Faithful Segregation of Low-Copy-Number Plasmids. Biophys J 2017; 112:1489-1502. [PMID: 28402891 PMCID: PMC5390091 DOI: 10.1016/j.bpj.2017.02.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 02/19/2017] [Accepted: 02/28/2017] [Indexed: 11/16/2022] Open
Abstract
Bacterial plasmids are extrachromosomal DNA that provides selective advantages for bacterial survival. Plasmid partitioning can be remarkably robust. For high-copy-number plasmids, diffusion ensures that both daughter cells inherit plasmids after cell division. In contrast, most low-copy-number plasmids need to be actively partitioned by a conserved tripartite ParA-type system. ParA is an ATPase that binds to chromosomal DNA; ParB is the stimulator of the ParA ATPase and specifically binds to the plasmid at a centromere-like site, parS. ParB stimulation of the ParA ATPase releases ParA from the bacterial chromosome, after which it takes a long time to reset its DNA-binding affinity. We previously demonstrated in vitro that the ParA system can exploit this biochemical asymmetry for directed cargo transport. Multiple ParA-ParB bonds can bridge a parS-coated cargo to a DNA carpet, and they can work collectively as a Brownian ratchet that directs persistent cargo movement with a ParA-depletion zone trailing behind. By extending this model, we suggest that a similar Brownian ratchet mechanism recapitulates the full range of actively segregated plasmid motilities observed in vivo. We demonstrate that plasmid motility is tuned as the replenishment rate of the ParA-depletion zone progressively increases relative to the cargo speed, evolving from diffusion to pole-to-pole oscillation, local excursions, and, finally, immobility. When the plasmid replicates, the daughters largely display motilities similar to that of their mother, except that when the single-focus progenitor is locally excursive, the daughter foci undergo directed segregation. We show that directed segregation maximizes the fidelity of plasmid partition. Given that local excursion and directed segregation are the most commonly observed modes of plasmid motility in vivo, we suggest that the operation of the ParA-type partition system has been shaped by evolution for high fidelity of plasmid segregation.
Collapse
Affiliation(s)
- Longhua Hu
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Anthony G Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology (MCDB), University of Michigan, Ann Arbor, Michigan
| | - Kiyoshi Mizuuchi
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Keir C Neuman
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Jian Liu
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
17
|
Wang Y. Spatial distribution of high copy number plasmids in bacteria. Plasmid 2017; 91:2-8. [PMID: 28263761 DOI: 10.1016/j.plasmid.2017.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 11/26/2022]
Abstract
Plasmids play essential roles in bacterial metabolism, evolution, and pathogenesis. The maintenance of plasmids is of great importance both scientifically and practically. In this mini-review, I look at the problem from a slightly different point of view and focus on the spatial distribution of high copy number plasmids, for which no active segregation mechanism has been identified. I review several distribution models and summarize the direct and indirect evidence in the literature, including the most recent progress on measuring the spatial distribution of high copy number plasmids using emerging super-resolution fluorescence microscopy. It is concluded that many open questions remain in the field and that in-depth studies on the spatial distribution of plasmids could shed light on the understanding of the maintenance of plasmids in bacteria.
Collapse
Affiliation(s)
- Yong Wang
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, United States; Microelectronics and Photonics Program, University of Arkansas, Fayetteville, AR 72701, United States; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, United States.
| |
Collapse
|
18
|
Santinha J, Martins L, Häkkinen A, Lloyd-Price J, Oliveira SMD, Gupta A, Annila T, Mora A, Ribeiro AS, Fonseca JR. iCellFusion. Biometrics 2017. [DOI: 10.4018/978-1-5225-0983-7.ch033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Temporal, multimodal microscopy imaging of live cells is becoming widely used in studies of cellular processes. In general, temporal sequences of images with functional and morphological data from live cells are acquired using multiple image sensors. The images from the different sources usually differ in resolution and have non-coincident fields of view, making the merging process complex. We present a new tool – iCellFusion – that performs data fusion of images from Phase-Contrast Microscopy and Fluorescence Microscopy in order to correlate the information on cell morphology, lineage and functionality. Prior to image fusion, iCellFusion performs automatic or computer-aided cell segmentation and establishes cell lineages. We exemplify its usage on time-lapse, multimodal microscopy images of bacteria producing fluorescent spots. We expect iCellFusion to assist research in Cell and Molecular Biology and the healthcare sector, where live-cell imaging is an increasingly important technique to detect and study diseases at the cellular level.
Collapse
Affiliation(s)
- João Santinha
- UNINOVA – Instituto de Desenvolvimento de Novas Tecnologias, Portugal
| | - Leonardo Martins
- UNINOVA – Instituto de Desenvolvimento de Novas Tecnologias, Portugal
| | | | | | | | | | | | - Andre Mora
- UNINOVA – Instituto de Desenvolvimento de Novas Tecnologias, Portugal
| | | | | |
Collapse
|
19
|
Visser BJ, Joshi MC, Bates D. Multilocus Imaging of the E. coli Chromosome by Fluorescent In Situ Hybridization. Methods Mol Biol 2017; 1624:213-226. [PMID: 28842886 PMCID: PMC7000180 DOI: 10.1007/978-1-4939-7098-8_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Fluorescence in situ hybridization (FISH) is a widely used technique to detect and localize specific DNA or RNA sequences in cells. Although supplanted in many ways by fluorescently labeled DNA binding proteins, FISH remains the only cytological method to examine many genetic loci at once (up to six), and can be performed in any cell type and genotype. These advantages have proved invaluable in studying the spatial relationships between chromosome regions and the dynamics of chromosome segregation in bacteria. A detailed protocol for DNA FISH in E. coli is described.
Collapse
Affiliation(s)
- Bryan J. Visser
- Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, USA
| | - Mohan C. Joshi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA
| | - David Bates
- Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, USA,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA
| |
Collapse
|
20
|
van Gijtenbeek LA, Robinson A, van Oijen AM, Poolman B, Kok J. On the Spatial Organization of mRNA, Plasmids, and Ribosomes in a Bacterial Host Overexpressing Membrane Proteins. PLoS Genet 2016; 12:e1006523. [PMID: 27977669 PMCID: PMC5201305 DOI: 10.1371/journal.pgen.1006523] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/30/2016] [Accepted: 12/06/2016] [Indexed: 01/03/2023] Open
Abstract
By using fluorescence imaging, we provide a time-resolved single-cell view on coupled defects in transcription, translation, and growth during expression of heterologous membrane proteins in Lactococcus lactis. Transcripts encoding poorly produced membrane proteins accumulate in mRNA-dense bodies at the cell poles, whereas transcripts of a well-expressed homologous membrane protein show membrane-proximal localization in a translation-dependent fashion. The presence of the aberrant polar mRNA foci correlates with cessation of cell division, which is restored once these bodies are cleared. In addition, activation of the heat-shock response and a loss of nucleoid-occluded ribosomes are observed. We show that the presence of a native-like N-terminal domain is key to SRP-dependent membrane localization and successful production of membrane proteins. The work presented gives new insights and detailed understanding of aberrant membrane protein biogenesis, which can be used for strategies to optimize membrane protein production.
Collapse
Affiliation(s)
- Lieke A. van Gijtenbeek
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
- * E-mail: (LAvG); (JK)
| | - Andrew Robinson
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Antoine M. van Oijen
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Bert Poolman
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
- Department of Biochemistry, University of Groningen, Groningen, The Netherlands
| | - Jan Kok
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
- * E-mail: (LAvG); (JK)
| |
Collapse
|
21
|
The MaoP/maoS Site-Specific System Organizes the Ori Region of the E. coli Chromosome into a Macrodomain. PLoS Genet 2016; 12:e1006309. [PMID: 27627105 PMCID: PMC5023128 DOI: 10.1371/journal.pgen.1006309] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/19/2016] [Indexed: 11/23/2022] Open
Abstract
The Ori region of bacterial genomes is segregated early in the replication cycle of bacterial chromosomes. Consequently, Ori region positioning plays a pivotal role in chromosome dynamics. The Ori region of the E. coli chromosome is organized as a macrodomain with specific properties concerning DNA mobility, segregation of loci and long distance DNA interactions. Here, by using strains with chromosome rearrangements and DNA mobility as a read-out, we have identified the MaoP/maoS system responsible for constraining DNA mobility in the Ori region and limiting long distance DNA interactions with other regions of the chromosome. MaoP belongs to a group of proteins conserved in the Enterobacteria that coevolved with Dam methylase including SeqA, MukBEF and MatP that are all involved in the control of chromosome conformation and segregation. Analysis of DNA rings excised from the chromosome demonstrated that the single maoS site is required in cis on the chromosome to exert its effect while MaoP can act both in cis and in trans. The position of markers in the Ori region was affected by inactivating maoP. However, the MaoP/maoS system was not sufficient for positioning the Ori region at the ¼–¾ regions of the cell. We also demonstrate that the replication and the resulting expansion of bulk DNA are localized centrally in the cell. Implications of these results for chromosome positioning and segregation in E. coli are discussed. The Ori region from bacterial chromosomes plays a pivotal role in chromosome organization and segregation as it is replicated and segregated early in cell division cycle and its positioning impacts the cellular organization of the chromosome in the cell. The E. coli chromosome is divided into four macrodomains (MD) defined as large regions in which DNA interactions occurred preferentially. Here we have identified a new system responsible for specifying properties to the Ori MD. This system is composed of two elements: a cis-acting target sequence called maoS and a gene of unknown function acting in trans called maoP. Remarkably, MaoP belongs to a group of proteins conserved only in Enterobacteria that coevolved with the Dam DNA methylase and that includes the MatP protein structuring the Ter macrodomain and the SeqA and MukBEF proteins involved in the control of chromosome conformation and segregation. These results reveal the presence of a dedicated set of factors required in chromosome management in enterobacteria that might compensate, at least partially, for the absence of the ParABS system involved in the condensation and/or segregation of the Ori region in most bacteria.
Collapse
|
22
|
Barrero‐Canosa J, Moraru C, Zeugner L, Fuchs BM, Amann R. Direct‐geneFISH: a simplified protocol for the simultaneous detection and quantification of genes and rRNA in microorganisms. Environ Microbiol 2016; 19:70-82. [DOI: 10.1111/1462-2920.13432] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Jimena Barrero‐Canosa
- Department of Molecular EcologyMax Planck Institute for Marine MicrobiologyCelsiusstr. 1BremenD‐28359 Germany
| | - Cristina Moraru
- Department of Biology of Geological ProcessesInstitute for Chemistry and Biology of the Marine environment (ICBM)Carl‐von‐Ossietzky‐Straße 9‐11OldenburgD‐26111 Germany
| | - Laura Zeugner
- Department of Molecular EcologyMax Planck Institute for Marine MicrobiologyCelsiusstr. 1BremenD‐28359 Germany
| | - Bernhard M. Fuchs
- Department of Molecular EcologyMax Planck Institute for Marine MicrobiologyCelsiusstr. 1BremenD‐28359 Germany
| | - Rudolf Amann
- Department of Molecular EcologyMax Planck Institute for Marine MicrobiologyCelsiusstr. 1BremenD‐28359 Germany
| |
Collapse
|
23
|
Diaz R, Rech J, Bouet JY. Imaging centromere-based incompatibilities: Insights into the mechanism of incompatibility mediated by low-copy number plasmids. Plasmid 2015; 80:54-62. [DOI: 10.1016/j.plasmid.2015.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 11/15/2022]
|
24
|
Marbouty M, Cournac A, Flot JF, Marie-Nelly H, Mozziconacci J, Koszul R. Metagenomic chromosome conformation capture (meta3C) unveils the diversity of chromosome organization in microorganisms. eLife 2014; 3:e03318. [PMID: 25517076 PMCID: PMC4381813 DOI: 10.7554/elife.03318] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 11/05/2014] [Indexed: 12/18/2022] Open
Abstract
Genomic analyses of microbial populations in their natural environment remain limited by the difficulty to assemble full genomes of individual species. Consequently, the chromosome organization of microorganisms has been investigated in a few model species, but the extent to which the features described can be generalized to other taxa remains unknown. Using controlled mixes of bacterial and yeast species, we developed meta3C, a metagenomic chromosome conformation capture approach that allows characterizing individual genomes and their average organization within a mix of organisms. Not only can meta3C be applied to species already sequenced, but a single meta3C library can be used for assembling, scaffolding and characterizing the tridimensional organization of unknown genomes. By applying meta3C to a semi-complex environmental sample, we confirmed its promising potential. Overall, this first meta3C study highlights the remarkable diversity of microorganisms chromosome organization, while providing an elegant and integrated approach to metagenomic analysis. DOI:http://dx.doi.org/10.7554/eLife.03318.001 Microbial communities play vital roles in the environment and sustain animal and plant life. Marine microbes are part of the ocean's food chain; soil microbes support the turnover of major nutrients and facilitate plant growth; and the microbial communities residing in the human gut support digestion and the immune system, among other roles. These communities are very complex systems, often containing 1000s of different species engaged in co-dependent relationships, and are therefore very difficult to study. The entire DNA sequence of an organism constitutes its genome, and much of this genetic information is stored in large structures called chromosomes. Examining the genome of a species can provide important clues about its lifestyle and how it evolved. To do this, DNA is extracted from cells and is then usually cut into smaller fragments, amplified, and sequenced. The small stretches of sequence obtained, called reads, are finally assembled, yielding ideally the complete genome of the organism under study. Metagenomics attempts to interpret the combined genome of all the different species in a microbial community and has been instrumental in deciphering how the different species interact with each other. Metagenomics involves sequencing stretches of the community's DNA and matching these pieces to individual species to ultimately assemble whole genomes. While this may be a relatively straightforward task for communities that contain only a handful of members, the metagenomes derived from complex microbial communities are huge, fragmented, and incomplete. This often makes it very difficult or even nearly impossible to match the inferred DNA stretches to individual species. A method called chromosome conformation capture (or ‘3C’ for short) can reveal the physical contacts between different regions of a chromosome and between the different chromosomes of a cell. How often each of these chromosomal contacts occurs provides a kind of physical signature to each genome and each individual chromosome within it. Marbouty et al. took advantage of these interactions to develop a technique that combines metagenomics and chromosome conformation capture—called meta3C—that can analyze the DNA of many different species mixed together. Testing meta3C on artificial mixtures of a few species of yeast or bacteria showed that meta3C can separate the genomes of the different species without any prior knowledge of the composition of the mix. In a single experiment, meta3C can identify individual chromosomes, match each of them to its species of origin, and reveal the three-dimensional structure of each genome in the mix. Further tests showed that meta3C can also interpret more complex communities where the number and types of the species present are not known. Meta3C holds great promise for understanding how microbial communities work and how the genomes of the species within a community are organized. However, further developments of the technique will be required to investigate communities as diverse as those present in most natural environments. DOI:http://dx.doi.org/10.7554/eLife.03318.002
Collapse
Affiliation(s)
- Martial Marbouty
- Groupe Régulation Spatiale des Génomes, Département Génomes et Génétique, Institut Pasteur, Paris, France
| | - Axel Cournac
- Groupe Régulation Spatiale des Génomes, Département Génomes et Génétique, Institut Pasteur, Paris, France
| | - Jean-François Flot
- Biological Physics and Evolutionary Dynamics Group, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Hervé Marie-Nelly
- Groupe Régulation Spatiale des Génomes, Département Génomes et Génétique, Institut Pasteur, Paris, France
| | - Julien Mozziconacci
- Department of Physics, Laboratoire de physique théorique de la matière condensée, Université Pierre et Marie Curie, Paris, France
| | - Romain Koszul
- Groupe Régulation Spatiale des Génomes, Département Génomes et Génétique, Institut Pasteur, Paris, France
| |
Collapse
|
25
|
Bouet JY, Stouf M, Lebailly E, Cornet F. Mechanisms for chromosome segregation. Curr Opin Microbiol 2014; 22:60-5. [DOI: 10.1016/j.mib.2014.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/15/2014] [Indexed: 11/25/2022]
|
26
|
Million-Weaver S, Camps M. Mechanisms of plasmid segregation: have multicopy plasmids been overlooked? Plasmid 2014; 75:27-36. [PMID: 25107339 DOI: 10.1016/j.plasmid.2014.07.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/20/2014] [Accepted: 07/21/2014] [Indexed: 11/29/2022]
Abstract
Plasmids are self-replicating pieces of DNA typically bearing non-essential genes. Given that plasmids represent a metabolic burden to the host, mechanisms ensuring plasmid transmission to daughter cells are critical for their stable maintenance in the population. Here we review these mechanisms, focusing on two active partition strategies common to low-copy plasmids: par systems type I and type II. Both involve three components: an adaptor protein, a motor protein, and a centromere, which is a sequence area in the plasmid that is recognized by the adaptor protein. The centromere-bound adaptor nucleates polymerization of the motor, leading to filament formation, which can pull plasmids apart (par I) or push them towards opposite poles of the cell (par II). No such active partition mechanisms are known to occur in high copy number plasmids. In this case, vertical transmission is generally considered stochastic, due to the random distribution of plasmids in the cytoplasm. We discuss conceptual and experimental lines of evidence questioning the random distribution model and posit the existence of a mechanism for segregation in high copy number plasmids that moves plasmids to cell poles to facilitate transmission to daughter cells. This mechanism would involve chromosomally-encoded proteins and the plasmid origin of replication. Modulation of this proposed mechanism of segregation could provide new ways to enhance plasmid stability in the context of recombinant gene expression, which is limiting for large-scale protein production and for bioremediation.
Collapse
Affiliation(s)
- Samuel Million-Weaver
- Department of Microbiology, University of Washington, Box 357735, Seattle, WA 98195-77352, United States
| | - Manel Camps
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| |
Collapse
|
27
|
Intracellular locations of replication proteins and the origin of replication during chromosome duplication in the slowly growing human pathogen Helicobacter pylori. J Bacteriol 2013; 196:999-1011. [PMID: 24363345 DOI: 10.1128/jb.01198-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We followed the position of the replication complex in the pathogenic bacterium Helicobacter pylori using antibodies raised against the single-stranded DNA binding protein (HpSSB) and the replicative helicase (HpDnaB). The position of the replication origin, oriC, was also localized in growing cells by fluorescence in situ hybridization (FISH) with fluorescence-labeled DNA sequences adjacent to the origin. The replisome assembled at oriC near one of the cell poles, and the two forks moved together toward the cell center as replication progressed in the growing cell. Termination and resolution of the forks occurred near midcell, on one side of the septal membrane. The duplicated copies of oriC did not separate until late in elongation, when the daughter chromosomes segregated into bilobed nucleoids, suggesting sister chromatid cohesion at or near the oriC region. Components of the replication machinery, viz., HpDnaB and HpDnaG (DNA primase), were found associated with the cell membrane. A model for the assembly and location of the H. pylori replication machinery during chromosomal duplication is presented.
Collapse
|
28
|
Single-cell analyses revealed transfer ranges of IncP-1, IncP-7, and IncP-9 plasmids in a soil bacterial community. Appl Environ Microbiol 2013; 80:138-45. [PMID: 24141122 DOI: 10.1128/aem.02571-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The conjugative transfer ranges of three different plasmids of the incompatibility groups IncP-1 (pBP136), IncP-7 (pCAR1), and IncP-9 (NAH7) were investigated in soil bacterial communities by culture-dependent and culture-independent methods. Pseudomonas putida, a donor of each plasmid, was mated with soil bacteria, and green fluorescent protein (GFP), encoded on the plasmid, was used as a reporter protein for successful transfer. GFP-expressing transconjugants were detected and separated at the single-cell level by flow cytometry. Each cell was then analyzed by PCR and sequencing of its 16S rRNA gene following either whole-genome amplification or cultivation. A large number of bacteria within the phylum Proteobacteria was identified as transconjugants for pBP136 by both culture-dependent and culture-independent methods. Transconjugants belonging to the phyla Actinobacteria, Bacteroidetes, and Firmicutes were detected only by the culture-independent method. Members of the genus Pseudomonas (class Gammaproteobacteria) were identified as major transconjugants of pCAR1 and NAH7 by both methods, whereas Delftia species (class Betaproteobacteria) were detected only by the culture-independent method. The transconjugants represented a minority of the soil bacteria. Although pCAR1-containing Delftia strains could not be cultivated after a one-to-one filter mating assay between the donor and cultivable Delftia strains as recipients, fluorescence in situ hybridization detected pCAR1-containing Delftia cells, suggesting that Delftia was a "transient" host of pCAR1.
Collapse
|
29
|
Reyes-Lamothe R, Tran T, Meas D, Lee L, Li AM, Sherratt DJ, Tolmasky ME. High-copy bacterial plasmids diffuse in the nucleoid-free space, replicate stochastically and are randomly partitioned at cell division. Nucleic Acids Res 2013; 42:1042-51. [PMID: 24137005 PMCID: PMC3902917 DOI: 10.1093/nar/gkt918] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Bacterial plasmids play important roles in the metabolism, pathogenesis and bacterial evolution and are highly versatile biotechnological tools. Stable inheritance of plasmids depends on their autonomous replication and efficient partition to daughter cells at cell division. Active partition systems have not been identified for high-copy number plasmids, and it has been generally believed that they are partitioned randomly at cell division. Nevertheless, direct evidence for the cellular location of replicating and nonreplicating plasmids, and the partition mechanism has been lacking. We used as model pJHCMW1, a plasmid isolated from Klebsiella pneumoniae that includes two β-lactamase and two aminoglycoside resistance genes. Here we report that individual ColE1-type plasmid molecules are mobile and tend to be excluded from the nucleoid, mainly localizing at the cell poles but occasionally moving between poles along the long axis of the cell. As a consequence, at the moment of cell division, most plasmid molecules are located at the poles, resulting in efficient random partition to the daughter cells. Complete replication of individual molecules occurred stochastically and independently in the nucleoid-free space throughout the cell cycle, with a constant probability of initiation per plasmid.
Collapse
Affiliation(s)
- Rodrigo Reyes-Lamothe
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK, Department of Biology, McGill University, Montreal, Quebec H3G 0B1, Canada and Department of Biological Science, Center for Applied Biotechnology Studies, College of Natural Science and Mathematics, California State University Fullerton, Fullerton, CA 92834-6850, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Sanchez A, Rech J, Gasc C, Bouet JY. Insight into centromere-binding properties of ParB proteins: a secondary binding motif is essential for bacterial genome maintenance. Nucleic Acids Res 2013; 41:3094-103. [PMID: 23345617 PMCID: PMC3597684 DOI: 10.1093/nar/gkt018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
ParB proteins are one of the three essential components of partition systems that actively segregate bacterial chromosomes and plasmids. In binding to centromere sequences, ParB assembles as nucleoprotein structures called partition complexes. These assemblies are the substrates for the partitioning process that ensures DNA molecules are segregated to both sides of the cell. We recently identified the sopC centromere nucleotides required for binding to the ParB homologue of plasmid F, SopB. This analysis also suggested a role in sopC binding for an arginine residue, R219, located outside the helix-turn-helix (HTH) DNA-binding motif previously shown to be the only determinant for sopC-specific binding. Here, we demonstrated that the R219 residue is critical for SopB binding to sopC during partition. Mutating R219 to alanine or lysine abolished partition by preventing partition complex assembly. Thus, specificity of SopB binding relies on two distinct motifs, an HTH and an arginine residue, which define a split DNA-binding domain larger than previously thought. Bioinformatic analysis over a broad range of chromosomal ParBs generalized our findings with the identification of a non-HTH positively charged residue essential for partition and centromere binding, present in a newly identified highly conserved motif. We propose that ParB proteins possess two DNA-binding motifs that form an extended centromere-binding domain, providing high specificity.
Collapse
Affiliation(s)
- Aurore Sanchez
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique, F-31000 Toulouse, France
| | | | | | | |
Collapse
|
31
|
ParAB-mediated intermolecular association of plasmid P1 parS sites. Virology 2011; 421:192-201. [PMID: 22018490 DOI: 10.1016/j.virol.2011.09.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/05/2011] [Accepted: 09/28/2011] [Indexed: 11/20/2022]
Abstract
The P1 plasmid partition system depends on ParA-ParB proteins acting on centromere-like parS sites for a faithful plasmid segregation during the Escherichia coli cell cycle. In vivo we placed parS into host E. coli chromosome and on a Sop(+) F plasmid and found that the stability of a P1 plasmid deleted for parA-parB could be partially restored when parB was expressed in trans. In vitro, parS, conjugated to magnetic beads could capture free parS DNA fragment in presence of ParB. In vitro, ParA stimulated ParB-mediated association of intermolecular parS sites in an ATP-dependent manner. However, in the presence of ADP, ParA reduced ParB-mediated pairing to levels below that seen by ParB alone. ParB of P1 pairs the parS sites of plasmids in vivo and fragments in vitro. Our findings support a model whereby ParB complexes P1 plasmids, ParA-ATP stimulates this interaction and ParA-ADP inhibits ParB pairing activity in a parS-independent manner.
Collapse
|
32
|
Sugawara T, Kaneko K. Chemophoresis as a driving force for intracellular organization: Theory and application to plasmid partitioning. Biophysics (Nagoya-shi) 2011; 7:77-88. [PMID: 27857595 PMCID: PMC5036777 DOI: 10.2142/biophysics.7.77] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 09/08/2011] [Indexed: 01/06/2023] Open
Abstract
Biological units such as macromolecules, organelles, and cells are directed to a proper location by gradients of chemicals. We consider a macroscopic element with surface binding sites where chemical adsorption reactions can occur and show that a thermodynamic force generated by chemical gradients acts on the element. By assuming local equilibrium and adopting the grand potential used in thermodynamics, we derive a formula for the “chemophoresis” force, which depends on chemical potential gradients and the Langmuir isotherm. The conditions under which the formula is applicable are shown to occur in intracellular reactions. Further, the role of the chemophoresis in the partitioning of bacterial chromosomal loci/plasmids during cell division is discussed. By performing numerical simulations, we demonstrate that the chemophoresis force can contribute to the regular positioning of plasmids observed in experiments.
Collapse
Affiliation(s)
- Takeshi Sugawara
- Cell Architecture Laboratory, Center for Frontier Research, National Institute of Genetics, 1111, Yata, Mishima, Shizuoka 411-8540, Japan
| | - Kunihiko Kaneko
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro, Tokyo 153-8902, Japan; Complex Systems Biology Project, ERATO, JST, Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
33
|
Yamaichi Y, Gerding MA, Davis BM, Waldor MK. Regulatory cross-talk links Vibrio cholerae chromosome II replication and segregation. PLoS Genet 2011; 7:e1002189. [PMID: 21811418 PMCID: PMC3141006 DOI: 10.1371/journal.pgen.1002189] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 05/26/2011] [Indexed: 01/13/2023] Open
Abstract
There is little knowledge of factors and mechanisms for coordinating bacterial chromosome replication and segregation. Previous studies have revealed that genes (and their products) that surround the origin of replication (oriCII) of Vibrio cholerae chromosome II (chrII) are critical for controlling the replication and segregation of this chromosome. rctB, which flanks one side of oriCII, encodes a protein that initiates chrII replication; rctA, which flanks the other side of oriCII, inhibits rctB activity. The chrII parAB2 operon, which is essential for chrII partitioning, is located immediately downstream of rctA. Here, we explored how rctA exerts negative control over chrII replication. Our observations suggest that RctB has at least two DNA binding domains--one for binding to oriCII and initiating replication and the other for binding to rctA and thereby inhibiting RctB's ability to initiate replication. Notably, the inhibitory effect of rctA could be alleviated by binding of ParB2 to a centromere-like parS site within rctA. Furthermore, by binding to rctA, ParB2 and RctB inversely regulate expression of the parAB2 genes. Together, our findings suggest that fluctuations in binding of the partitioning protein ParB2 and the chrII initiator RctB to rctA underlie a regulatory network controlling both oriCII firing and the production of the essential chrII partitioning proteins. Thus, by binding both RctB and ParB2, rctA serves as a nexus for regulatory cross-talk coordinating chrII replication and segregation.
Collapse
Affiliation(s)
- Yoshiharu Yamaichi
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Matthew A. Gerding
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Biological and Biomedical Sciences, Graduate School of Arts and Sciences, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brigid M. Davis
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Matthew K. Waldor
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
34
|
Guynet C, Cuevas A, Moncalián G, de la Cruz F. The stb operon balances the requirements for vegetative stability and conjugative transfer of plasmid R388. PLoS Genet 2011; 7:e1002073. [PMID: 21625564 PMCID: PMC3098194 DOI: 10.1371/journal.pgen.1002073] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 03/24/2011] [Indexed: 11/24/2022] Open
Abstract
The conjugative plasmid R388 and a number of other plasmids carry an operon, stbABC, adjacent to the origin of conjugative transfer. We investigated the role of the stbA, stbB, and stbC genes. Deletion of stbA affected both conjugation and stability. It led to a 50-fold increase in R388 transfer frequency, as well as to high plasmid loss. In contrast, deletion of stbB abolished conjugation but provoked no change in plasmid stability. Deletion of stbC showed no effect, neither in conjugation nor in stability. Deletion of the entire stb operon had no effect on conjugation, which remained as in the wild-type plasmid, but led to a plasmid loss phenotype similar to that of the R388ΔstbA mutant. We concluded that StbA is required for plasmid stability and that StbA and StbB control conjugation. We next observed the intracellular positioning of R388 DNA molecules and showed that they localize as discrete foci evenly distributed in live Escherichia coli cells. Plasmid instability of the R388ΔΔstbA mutant correlated with aberrant localization of the plasmid DNA molecules as clusters, either at one cell pole, at both poles, or at the cell center. In contrast, plasmid molecules in the R388ΔΔstbB mutant were mostly excluded from the cell poles. Thus, results indicate that defects in both plasmid maintenance and transfer are a consequence of variations in the intracellular positioning of plasmid DNA. We propose that StbA and StbB constitute an atypical plasmid stabilization system that reconciles two modes of plasmid R388 physiology: a maintenance mode (replication and segregation) and a propagation mode (conjugation). The consequences of this novel concept in plasmid physiology will be discussed. The ability of bacteria to evolve and adapt to new environments most often results from the acquisition of new genes by horizontal transfer. Plasmids have a preponderant role in gene exchanges through their ability to transfer DNA by conjugation, a process that transports DNA between bacteria. Besides, plasmids are autonomous DNA molecules that are faithfully transmitted to cell progeny during vegetative cell multiplication. In this study, we report a system composed of two proteins, StbA and StbB, which act to balance plasmid R388 physiology between two modes: a maintenance mode (vertical transmission) and a propagation mode (horizontal transmission). We demonstrate that StbA is essential to ensure faithful assortment of plasmid copies to daughter cells. In turn, StbB is required for plasmid R388 adequate localization for conjugation. This is the first report of a system which reconciles plasmid segregation and conjugation. Furthermore, R388 belongs to the IncW family of conjugative plasmids, which are of particular interest due to their exceptionally broad host range. We show that the StbAB system is conserved among a wide variety of conjugative plasmids, mainly broad host range plasmids. Thus, the Stb system could constitute an interesting therapeutic target to prevent the spread of adaptive genes.
Collapse
Affiliation(s)
- Catherine Guynet
- IBBTEC, Instituto de Biomedicina y Biotecnologia de Cantabria (CSIC-UC-SODERCAN), Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | | | | | | |
Collapse
|
35
|
Moraru C, Lam P, Fuchs BM, Kuypers MMM, Amann R. GeneFISH--an in situ technique for linking gene presence and cell identity in environmental microorganisms. Environ Microbiol 2011; 12:3057-73. [PMID: 20629705 DOI: 10.1111/j.1462-2920.2010.02281.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Our knowledge concerning the metabolic potentials of as yet to be cultured microorganisms has increased tremendously with the advance of sequencing technologies and the consequent discoveries of novel genes. On the other hand, it is often difficult to reliably assign a particular gene to a phylogenetic clade, because these sequences are usually found on genomic fragments that carry no direct marker of cell identity, such as rRNA genes. Therefore, the aim of the present study was to develop geneFISH - a protocol for linking gene presence with cell identity in environmental samples, the signals of which can be visualized at a single cell level. This protocol combines rRNA-targeted catalysed reporter deposition - fluorescence in situ hybridization and in situ gene detection. To test the protocol, it was applied to seawater samples from the Benguela upwelling system. For gene detection, a polynucleotide probe mix was used, which was designed based on crenarchaeotal amoA clone libraries prepared from each seawater sample. Each probe in the mix was selected to bind to targets with up to 5% mismatches. To determine the hybridization parameters, the T(m) of probes, targets and hybrids was estimated based on theoretical calculations and in vitro measurements. It was shown that at least 30%, but potentially the majority of the Crenarchaeota present in these samples harboured the amoA gene and were therefore likely to be catalysing the oxidation of ammonia.
Collapse
Affiliation(s)
- Cristina Moraru
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| | | | | | | | | |
Collapse
|
36
|
Moraru C, Moraru G, Fuchs BM, Amann R. Concepts and software for a rational design of polynucleotide probes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:69-78. [PMID: 23761233 DOI: 10.1111/j.1758-2229.2010.00189.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Fluorescence in situ hybridization (FISH) of genes and mRNA is most often based on polynucleotide probes. However, so far there was no published framework for the rational design of polynucleotide probes. The well-established concepts for oligonucleotide probe design cannot be transferred to polynucleotides. Due to the high allele diversity of genes, a single probe is not sufficient to detect all alleles of a gene. Therefore, the main objective of this study was to develop a concept and software (PolyPro) for rational design of polynucleotide probe mixes to target particular genes. PolyPro consists of three modules: a GenBank Taxonomy Extractor (GTE), a Polynucleotide Probe Designer (PPD) and a Hybridization Parameters Calculator (HPC). The new concept proposes the construction of defined polynucleotide mixes to target the habitat specific sequence diversity of a particular gene. The concept and the software are intended as a first step towards a more frequent application of polynucleotides for in situ identification of mRNA and genes in environmental microbiology.
Collapse
Affiliation(s)
- Cristina Moraru
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany HeracleSoftware, Im krummen Arm 2, 28865 Lilienthal, Germany
| | | | | | | |
Collapse
|
37
|
Komai M, Umino M, Hanai R. Mode of DNA binding by SopA protein of Escherichia coli F plasmid. J Biochem 2011; 149:455-61. [PMID: 21217150 DOI: 10.1093/jb/mvq151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The binding of SopA to the promoter region of its own gene, in which four copies of SopA's recognition sequence, 5'-CTTTGC-3', are arrayed asymmetrically, was examined in vitro. Titration using electrophoretic mobility shift assay showed that the stoichiometry of SopA protomers to the promoter-region DNA is 4 and that the binding is highly co-operative. The co-operativity was corroborated by EMSA and DNase I footprinting for a number of mutant DNA fragments in which 5'-CTTTGC-3' was changed to 5'-CTTACG-3'. EMSA in the style of circular permutation showed that SopA bends DNA. Mutation at either outermost binding site had a different effect on DNA bending by SopA, reflecting the asymmetry in the arrangement of the binding sites, for which the results of DNase I footprinting were in agreement. Gel filtration chromatography and analytical ultracentrifugation of free SopA showed that the protein can exist as a monomer and oligomers in the absence of ATP. Hence, the results indicate that the co-operativity in SopA's DNA binding is based on its intrinsic protein-protein interaction modified by DNA interaction.
Collapse
Affiliation(s)
- Masahiko Komai
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | | | | |
Collapse
|
38
|
The three vibrio cholerae chromosome II-encoded ParE toxins degrade chromosome I following loss of chromosome II. J Bacteriol 2010; 193:611-9. [PMID: 21115657 DOI: 10.1128/jb.01185-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Three homologues of the plasmid RK2 ParDE toxin-antitoxin system are present in the Vibrio cholerae genome within the superintegron on chromosome II. Here we found that these three loci-two of which have identical open reading frames and regulatory sequences-encode functional toxin-antitoxin systems. The ParE toxins inhibit bacterial division and reduce viability, presumably due to their capacity to damage DNA. The in vivo effects of ParE1/3 mimic those of ParE2, which we have previously demonstrated to be a DNA gyrase inhibitor in vitro, suggesting that ParE1/3 is likewise a gyrase inhibitor, despite its relatively low degree of sequence identity. ParE-mediated DNA damage activates the V. cholerae SOS response, which in turn likely accounts for ParE's inhibition of cell division. Each toxin's effects can be prevented by the expression of its cognate ParD antitoxin, which acts in a toxin-specific fashion both to block toxicity and to repress the expression of its parDE operon. Derepression of ParE activity in ΔparAB2 mutant V. cholerae cells that have lost chromosome II contributes to the prominent DNA degradation that accompanies the death of these cells. Overall, our findings suggest that the ParE toxins lead to the postsegregational killing of cells missing chromosome II in a manner that closely mimics postsegregational killing mediated by plasmid-encoded homologs. Thus, the parDE loci aid in the maintenance of the integrity of the V. cholerae superintegron and in ensuring the inheritance of chromosome II.
Collapse
|
39
|
Abstract
Recently, it has been reported that prokaryotes also have a mitotic-like apparatus in which polymerized fibres govern the bipolar movement of chromosomes and plasmids. Here, we show evidence that a non-mitotic-like apparatus that does not form polymerized filaments carries out plasmid partitioning. P1 ParA, which is a DNA-binding ATPase protein, was found to be distributed through the whole nucleoid and formed a dense spot at the centre of the nucleoid. The fluorescent intensity of the ParA spot blinked, and then the spot gradually migrated from the midcell to a cell quarter position. Such distribution was not observed in anucleate cells, suggesting that the nucleoid could be a matrix for gradual distribution of ParA. Plasmid DNA constantly colocalized at the spot of ParA and migrated according to spot migration and separation. Thus, the gradient distribution of ParA determines the destination of partitioning plasmids and may direct plasmids to the cell quarters.
Collapse
Affiliation(s)
- Toshiyuki Hatano
- Microbial Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | | |
Collapse
|
40
|
Abstract
Non-essential extra-chromosomal DNA elements such as plasmids are responsible for their own propagation in dividing host cells, and one means to ensure this is to carry a miniature active segregation system reminiscent of the mitotic spindle. Plasmids that are maintained at low numbers in prokaryotic cells have developed a range of such active partitioning systems, which are characterized by an impressive simplicity and efficiency and which are united by the use of dynamic, nucleotide-driven filaments to separate and position DNA molecules. A comparison of different plasmid segregation systems reveals (i) how unrelated filament-forming and DNA-binding proteins have been adopted and modified to create a range of simple DNA segregating complexes and (ii) how subtle changes in the few components of these DNA segregation machines has led to a remarkable diversity in the molecular mechanisms of closely related segregation systems. Here, our current understanding of plasmid segregation systems is reviewed and compared with other DNA segregation systems, and this is extended by a discussion of basic principles of plasmid segregation systems, evolutionary implications and the relationship between an autonomous DNA element and its host cell.
Collapse
Affiliation(s)
- Jeanne Salje
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
41
|
Gerdes K, Howard M, Szardenings F. Pushing and pulling in prokaryotic DNA segregation. Cell 2010; 141:927-42. [PMID: 20550930 DOI: 10.1016/j.cell.2010.05.033] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 04/11/2010] [Accepted: 05/20/2010] [Indexed: 10/19/2022]
Abstract
In prokaryotes, DNA can be segregated by three different types of cytoskeletal filaments. The best-understood type of partitioning (par) locus encodes an actin homolog called ParM, which forms dynamically unstable filaments that push plasmids apart in a process reminiscent of mitosis. However, the most common type of par locus, which is present on many plasmids and most bacterial chromosomes, encodes a P loop ATPase (ParA) that distributes plasmids equidistant from one another on the bacterial nucleoid. A third type of par locus encodes a tubulin homolog (TubZ) that forms cytoskeletal filaments that move rapidly with treadmill dynamics.
Collapse
Affiliation(s)
- Kenn Gerdes
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, UK.
| | | | | |
Collapse
|
42
|
Wozniak RAF, Fouts DE, Spagnoletti M, Colombo MM, Ceccarelli D, Garriss G, Déry C, Burrus V, Waldor MK. Comparative ICE genomics: insights into the evolution of the SXT/R391 family of ICEs. PLoS Genet 2009; 5:e1000786. [PMID: 20041216 PMCID: PMC2791158 DOI: 10.1371/journal.pgen.1000786] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 11/24/2009] [Indexed: 01/01/2023] Open
Abstract
Integrating and conjugative elements (ICEs) are one of the three principal types of self-transmissible mobile genetic elements in bacteria. ICEs, like plasmids, transfer via conjugation; but unlike plasmids and similar to many phages, these elements integrate into and replicate along with the host chromosome. Members of the SXT/R391 family of ICEs have been isolated from several species of gram-negative bacteria, including Vibrio cholerae, the cause of cholera, where they have been important vectors for disseminating genes conferring resistance to antibiotics. Here we developed a plasmid-based system to capture and isolate SXT/R391 ICEs for sequencing. Comparative analyses of the genomes of 13 SXT/R391 ICEs derived from diverse hosts and locations revealed that they contain 52 perfectly syntenic and nearly identical core genes that serve as a scaffold capable of mobilizing an array of variable DNA. Furthermore, selection pressure to maintain ICE mobility appears to have restricted insertions of variable DNA into intergenic sites that do not interrupt core functions. The variable genes confer diverse element-specific phenotypes, such as resistance to antibiotics. Functional analysis of a set of deletion mutants revealed that less than half of the conserved core genes are required for ICE mobility; the functions of most of the dispensable core genes are unknown. Several lines of evidence suggest that there has been extensive recombination between SXT/R391 ICEs, resulting in re-assortment of their respective variable gene content. Furthermore, our analyses suggest that there may be a network of phylogenetic relationships among sequences found in all types of mobile genetic elements.
Collapse
Affiliation(s)
- Rachel A. F. Wozniak
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Genetics, Tufts Medical School, Boston, Massachusetts, United States of America
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Derrick E. Fouts
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Matteo Spagnoletti
- Dipartimento di Biologia Cellulare e dello Sviluppo, Universitá di Roma La Sapienza, Rome, Italy
| | - Mauro M. Colombo
- Dipartimento di Biologia Cellulare e dello Sviluppo, Universitá di Roma La Sapienza, Rome, Italy
| | - Daniela Ceccarelli
- Centre d'Étude et de Valorisation de la Diversité Microbienne, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Geneviève Garriss
- Centre d'Étude et de Valorisation de la Diversité Microbienne, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Christine Déry
- Centre d'Étude et de Valorisation de la Diversité Microbienne, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Vincent Burrus
- Centre d'Étude et de Valorisation de la Diversité Microbienne, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
- * E-mail: (VB); (MKW)
| | - Matthew K. Waldor
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Genetics, Tufts Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- * E-mail: (VB); (MKW)
| |
Collapse
|
43
|
|
44
|
P1 plasmid segregation: accurate redistribution by dynamic plasmid pairing and separation. J Bacteriol 2009; 192:1175-83. [PMID: 19897644 DOI: 10.1128/jb.01245-09] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Low-copy-number plasmids, such as P1 and F, encode a type Ia partition system (P1par or Fsop) for active segregation of copies to daughter cells. Typical descriptions show a single central plasmid focus dividing and the products moving to the cell quarter regions, ensuring segregation. However, using improved optical and analytical tools and large cell populations, we show that P1 plasmid foci are very broadly distributed. Moreover, under most growth conditions, more than two foci are frequently present. Each focus contains either one or two plasmid copies. Replication and focus splitting occur at almost any position in the cell. The products then move rapidly apart for approximately 40% of the cell length. They then tend to maintain their relative positions. The segregating foci often pass close to or come to rest close to other foci in the cell. Foci frequently appear to fuse during these encounters. Such events occur several times in each cell and cell generation on average. We argue that foci pair with their neighbors and then actively separate again. The net result is an approximately even distribution of foci along the long cell axis on average. We show mathematically that trans-pairing and active separation could greatly increase the accuracy of segregation and would produce the distributions of foci that we observe. Plasmid pairing and separation may constitute a novel fine-tuning mechanism that takes the basic pattern created when plasmids separate after replication and converts it to a roughly even pattern that greatly improves the fidelity of plasmid segregation.
Collapse
|
45
|
Replication initiator DnaA of Escherichia coli changes its assembly form on the replication origin during the cell cycle. J Bacteriol 2009; 191:4807-14. [PMID: 19502409 DOI: 10.1128/jb.00435-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DnaA is a replication initiator protein that is conserved among bacteria. It plays a central role in the initiation of DNA replication. In order to monitor its behavior in living Escherichia coli cells, a nonessential portion of the protein was replaced by a fluorescent protein. Such a strain grew normally, and flow cytometry data suggested that the chimeric protein has no substantial loss of the initiator activity. The initiator was distributed all over the nucleoid. Furthermore, a majority of the cells exhibited certain distinct foci that emitted bright fluorescence. These foci colocalized with the replication origin (oriC) region and were brightest during the period spanning the initiation event. In cells that had undergone the initiation, the foci were enriched in less intense ones. In addition, a significant portion of the oriC regions at this cell cycle stage had no colocalized DnaA-enhanced yellow fluorescent protein (EYFP) focus point. It was difficult to distinguish the initiator titration locus (datA) from the oriC region. However, involvement of datA in the initiation control was suggested from the observation that, in DeltadatA cells, DnaA-EYFP maximally colocalized with the oriC region earlier in the cell cycle than it did in wild-type cells and oriC concentration was increased.
Collapse
|
46
|
Bartosik AA, Mierzejewska J, Thomas CM, Jagura-Burdzy G. ParB deficiency in Pseudomonas aeruginosa destabilizes the partner protein ParA and affects a variety of physiological parameters. MICROBIOLOGY-SGM 2009; 155:1080-1092. [PMID: 19332810 PMCID: PMC2895232 DOI: 10.1099/mic.0.024661-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Deletions leading to complete or partial removal of ParB were introduced into the Pseudomonas aeruginosa chromosome. Fluorescence microscopy of fixed cells showed that ParB mutants lacking the C-terminal domain or HTH motif formed multiple, less intense foci scattered irregularly, in contrast to the one to four ParB foci per cell symmetrically distributed in wild-type P. aeruginosa. All parB mutations affected both bacterial growth and swarming and swimming motilities, and increased the production of anucleate cells. Similar effects were observed after inactivation of parA of P. aeruginosa. As complete loss of ParA destabilized its partner ParB it was unclear deficiency of which protein is responsible for the mutant phenotypes. Analysis of four parB mutants showed that complete loss of ParB destabilized ParA whereas three mutants that retained the N-terminal 90 aa of ParB did not. As all four parB mutants demonstrate the same defects it can be concluded that either ParB, or ParA and ParB in combination, plays an important role in nucleoid distribution, growth and motility in P. aeruginosa.
Collapse
Affiliation(s)
- A A Bartosik
- Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Pawinskiego 5A, Poland
| | - J Mierzejewska
- Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Pawinskiego 5A, Poland
| | - C M Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - G Jagura-Burdzy
- Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Pawinskiego 5A, Poland
| |
Collapse
|
47
|
Kolatka K, Witosinska M, Pierechod M, Konieczny I. Bacterial partitioning proteins affect the subcellular location of broad-host-range plasmid RK2. MICROBIOLOGY-SGM 2008; 154:2847-2856. [PMID: 18757818 DOI: 10.1099/mic.0.2008/018762-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It has been demonstrated that plasmids are not randomly distributed but are located symmetrically in mid-cell, or (1/4), (3/4) positions in bacterial cells. In this work we compared the localization of broad-host-range plasmid RK2 mini-replicons, which lack an active partitioning system, in Escherichia coli and Pseudomonas putida cells. In E. coli the location of the plasmid mini-replicon cluster was at the cell poles. In contrast, in Pseudomonas cells, as a result of the interaction of chromosomally encoded ParB protein with RK2 centromere-like sequences, these mini-derivatives were localized in the proximity of mid-cell, or (1/4), (3/4) positions. The expression of the Pseudomonas parAB genes in E. coli resulted in a positional change in the RK2 mini-derivative to the mid-cell or (1/4), (3/4) positions. Moreover, in a P. putida parAB mutant, both RK2 mini-derivatives and the entire RK2 plasmid exhibited disturbances of subcellular localization. These observations raise the possibility that in certain bacteria chromosomally encoded partitioning machinery could affect subcellular plasmid positioning.
Collapse
Affiliation(s)
- Katarzyna Kolatka
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Monika Witosinska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Marcin Pierechod
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| |
Collapse
|
48
|
Cell-cell signaling and the Agrobacterium tumefaciens Ti plasmid copy number fluctuations. Plasmid 2008; 60:89-107. [PMID: 18664372 DOI: 10.1016/j.plasmid.2008.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 05/15/2008] [Indexed: 11/20/2022]
Abstract
The Agrobacterium tumefaciens oncogenic Ti plasmids replicate and segregate to daughter cells via repABC cassettes, in which repA and repB are plasmid partitioning genes and repC encodes the replication initiator protein. repABC cassettes are encountered in a growing number of plasmids and chromosomes of the alpha-proteobacteria, and findings from particular representatives of agrobacteria, rhizobia and Paracoccus have began to shed light on their structure and functions. Amongst repABC replicons, Ti plasmids and particularly the octopine-type Ti have recently stood as model in regulation of repABC basal expression, which acts in plasmid copy number control, but also appear to undergo pronounced up-regulation of repABC, upon interbacterial and host-bacterial signaling. The last results in considerable Ti copy number increase and collective elevation of Ti gene expression. Inhibition of the Ti repABC is in turn conferred by a plant defense compound, which primarily affects Agrobacterium virulence and interferes with cell-density perception. Altogether, the above suggest that the entire Ti gene pool is subjected to the bacterium-eukaryote signaling network, a phenomenon quite unprecedented for replicons thought of as stringently controlled. It remains to be seen whether similar copy number variations characterize related replicons or if they are of even broader significance in plasmid biology.
Collapse
|
49
|
Affiliation(s)
- Dylan M. Morris
- Division of Biology, California Institute of Technology, Pasadena, California 91125;
| | - Grant J. Jensen
- Division of Biology, California Institute of Technology, Pasadena, California 91125;
| |
Collapse
|
50
|
Adachi S, Fukushima T, Hiraga S. Dynamic events of sister chromosomes in the cell cycle of Escherichia coli. Genes Cells 2008; 13:181-97. [DOI: 10.1111/j.1365-2443.2007.01157.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|