1
|
Li X, Liu Y, Duan C, Yang L, Zhou D, Zhang Z, Chen H, Li G, Zhu C, Tian C. Effects of chronic high-temperature stress on muscle tissue integrity and metabolism-related genes in Clarias fuscus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101497. [PMID: 40174404 DOI: 10.1016/j.cbd.2025.101497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
The increasing prevalence of high-temperature days due to global warming presents significant challenges for aquatic ecosystems and aquaculture practices. This study investigates the effects of chronic high-temperature stress on Clarias fuscus, a catfish species native to subtropical and tropical regions. The fish were cultured for 90 days under high-temperature conditions (HT, 34 °C) and normal temperature conditions (CT, 26 °C). Histological and transcriptomic analyses were conducted to assess the impact of continuous high-temperature stress on muscle tissue. Histological examination revealed significant damage in the HT group, characterized by irregular tissue arrangement, widened muscle fiber gaps, broken muscle filaments, and cracked nuclei. Transcriptomic analysis identified 975 differentially expressed genes (DEGs) in muscle tissue under high-temperature stress, with 512 genes up-regulated and 463 down-regulated. Notably, heat shock protein (Hsp) family genes, including Hsp40, Hsp70 and Hsp90, were significantly up-regulated under heat stress. Enrichment analysis of these DEGs revealed significant alterations in protein processing, the PPAR signaling pathway, and fatty acid oxidation and metabolism within the endoplasmic reticulum. These findings suggest that C. fuscus experiences substantial tissue damage and a reduced metabolic response under high-temperature stress. This study provides a scientific foundation for future research on the adaptability of fish to temperature fluctuations.
Collapse
Affiliation(s)
- Xiaolong Li
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Yong Liu
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Cunyu Duan
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Lei Yang
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Dayan Zhou
- Guangxi Introduction and Breeding Center of Aquaculture, Nanning 530001, China
| | - Zhixin Zhang
- Guangxi Introduction and Breeding Center of Aquaculture, Nanning 530001, China
| | - Huapu Chen
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Guangli Li
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Chunhua Zhu
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Changxu Tian
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China.
| |
Collapse
|
2
|
Banerjee S, Chowdhury D, Chakraborty S, Haldar S. Force-regulated chaperone activity of BiP/ERdj3 is opposite to their homologs DnaK/DnaJ. Protein Sci 2024; 33:e5068. [PMID: 38864739 PMCID: PMC11168073 DOI: 10.1002/pro.5068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/17/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024]
Abstract
Polypeptide chains experience mechanical tension while translocating through cellular tunnels, which are subsequently folded by molecular chaperones. However, interactions between tunnel-associated chaperones and these emerging polypeptides under force is not completely understood. Our investigation focused on mechanical chaperone activity of two tunnel-associated chaperones, BiP and ERdj3 both with and without mechanical constraints and comparing them with their cytoplasmic homologs: DnaK and DnaJ. While BiP/ERdj3 have been observed to exhibit robust foldase activity under force, DnaK/DnaJ showed holdase function. Importantly, the tunnel-associated chaperones (BiP/ERdj3) transitioned to a holdase state in the absence of force, indicating a force-dependent chaperone behavior. This chaperone-driven folding event in the tunnel generated an additional mechanical energy of up to 54 zJ, potentially aiding protein translocation. Our findings align with strain theory, where chaperones with higher intrinsic deformability act as mechanical foldases (BiP, ERdj3), while those with lower deformability serve as holdases (DnaK and DnaJ). This study thus elucidates the differential mechanically regulated chaperoning activity and introduces a novel perspective on co-translocational protein folding.
Collapse
Affiliation(s)
- Souradeep Banerjee
- Department of BiologyTrivedi School of Biosciences, Ashoka UniversitySonepatHaryanaIndia
| | - Debojyoti Chowdhury
- Department of Chemical and Biological SciencesS.N. Bose National Center for Basic SciencesKolkataWest BengalIndia
| | - Soham Chakraborty
- Department of BiologyTrivedi School of Biosciences, Ashoka UniversitySonepatHaryanaIndia
| | - Shubhasis Haldar
- Department of BiologyTrivedi School of Biosciences, Ashoka UniversitySonepatHaryanaIndia
- Department of Chemical and Biological SciencesS.N. Bose National Center for Basic SciencesKolkataWest BengalIndia
- Technical Research Centre, S.N. Bose National Centre for Basic SciencesKolkataWest BengalIndia
| |
Collapse
|
3
|
Weiand M, Sandfort V, Nadzemova O, Schierwagen R, Trebicka J, Schlevogt B, Kabar I, Schmidt H, Zibert A. Comparative analysis of SEC61A1 mutant R236C in two patient-derived cellular platforms. Sci Rep 2024; 14:9506. [PMID: 38664472 PMCID: PMC11045796 DOI: 10.1038/s41598-024-59033-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
SEC61A1 encodes a central protein of the mammalian translocon and dysfunction results in severe disease. Recently, mutation R236C was identified in patients having autosomal dominant polycystic liver disease (ADPLD). The molecular phenotype of R236C was assessed in two cellular platforms. Cells were immortalized by retroviral transduction of an oncogene (UCi) or reprogrammed to induced pluripotent stem cells (iPSC) that were differentiated to cholangiocyte progenitor-like cells (CPLC). UCi and CPLC were subjected to analyses of molecular pathways that were associated with development of disease. UCi displayed markers of epithelial cells, while CPLCs expressed typical markers of both cholangiocytes and hepatocytes. Cells encoding R236C showed a stable, continuous proliferation in both platforms, however growth rates were reduced as compared to wildtype control. Autophagy, cAMP synthesis, and secretion of important marker proteins were reduced in R236C-expressing cells. In addition, R236C induced increased calcium leakiness from the ER to the cytoplasm. Upon oxidative stress, R236C led to a high induction of apoptosis and necrosis. Although the grade of aberrant cellular functions differed between the two platforms, the molecular phenotype of R236C was shared suggesting that the mutation, regardless of the cell type, has a dominant impact on disease-associated pathways.
Collapse
Affiliation(s)
- Matthias Weiand
- Medizinische Klinik B, Universitätsklinikum Münster, Münster, Germany
| | - Vanessa Sandfort
- Medizinische Klinik B, Universitätsklinikum Münster, Münster, Germany
| | - Oksana Nadzemova
- Medizinische Klinik B, Universitätsklinikum Münster, Münster, Germany
| | | | - Jonel Trebicka
- Medizinische Klinik B, Universitätsklinikum Münster, Münster, Germany
| | - Bernhard Schlevogt
- Department of Gastroenterology, Medical Center Osnabrück, Osnabrück, Germany
| | - Iyad Kabar
- Medizinische Klinik B, Universitätsklinikum Münster, Münster, Germany
| | - Hartmut Schmidt
- Klinik für Gastroenterologie und Hepatologie, Uniklinik Essen, Essen, Germany
| | - Andree Zibert
- Medizinische Klinik B (Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie), Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A14, 48149, Münster, Germany.
| |
Collapse
|
4
|
Piña F, Yan B, Hu J, Niwa M. Reticulons bind sphingolipids to activate the endoplasmic reticulum cell cycle checkpoint, the ER surveillance pathway. Cell Rep 2023; 42:113403. [PMID: 37979174 PMCID: PMC11647836 DOI: 10.1016/j.celrep.2023.113403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/09/2022] [Accepted: 10/23/2023] [Indexed: 11/20/2023] Open
Abstract
The inheritance of a functional endoplasmic reticulum (ER) is ensured by the ER stress surveillance (ERSU) pathway. Here, we made the unexpected discovery that reticulon 1 (Rtn1) and Yop1, well-known ER-curvature-generating proteins, each possess two sphingolipid-binding motifs within their transmembrane domains and that these motifs recognize the ER-stress-induced sphingolipid phytosphingosine (PHS), resulting in an ER inheritance block. Upon binding PHS, Rtn1/Yop1 accumulate on the ER tubule, poised to enter the emerging daughter cell, and cause its misdirection to the bud scars (i.e., previous cell division sites). Amino acid changes in the conserved PHS-binding motifs preclude Rtn1 or Yop1 from binding PHS and diminish their enrichment on the tubular ER, ultimately preventing the ER-stress-induced inheritance block. Conservation of these sphingolipid-binding motifs in human reticulons suggests that sphingolipid binding to Rtn1 and Yop1 represents an evolutionarily conserved mechanism that enables cells to respond to ER stress.
Collapse
Affiliation(s)
- Francisco Piña
- Division of Biological Sciences, Molecular Biology Section, University of California, San Diego, NSB#1, Rm. 5328, 9500 Gilman Drive, San Diego, CA 92093-0377, USA
| | - Bing Yan
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Rm. 6210, Chaoyang District, Beijing 100101, China
| | - Junjie Hu
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Rm. 6210, Chaoyang District, Beijing 100101, China
| | - Maho Niwa
- Division of Biological Sciences, Molecular Biology Section, University of California, San Diego, NSB#1, Rm. 5328, 9500 Gilman Drive, San Diego, CA 92093-0377, USA.
| |
Collapse
|
5
|
Abstract
Multipass membrane proteins contain two or more α-helical transmembrane domains (TMDs) that span the lipid bilayer. They are inserted cotranslationally into the prokaryotic plasma membrane or eukaryotic endoplasmic reticulum membrane. The Sec61 complex (SecY complex in prokaryotes) provides a ribosome docking site, houses a channel across the membrane, and contains a lateral gate that opens toward the lipid bilayer. Model multipass proteins can be stitched into the membrane by iteratively using Sec61's lateral gate for TMD insertion and its central pore for translocation of flanking domains. Native multipass proteins, with their diverse TMDs and complex topologies, often also rely on members of the Oxa1 family of translocation factors, the PAT complex chaperone, and other poorly understood factors. Here, we discuss the mechanisms of TMD insertion, highlight the limitations of an iterative insertion model, and propose a new hypothesis for multipass membrane protein biogenesis based on recent findings.
Collapse
Affiliation(s)
- Luka Smalinskaitė
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
6
|
Yang LK, Zhang J, Liu D, Han TY, Qin QS, Wang AQ, Dong B. Ancestral glycoprotein hormone and its cognate receptor present in primitive chordate ascidian: Molecular identification and functional characterization. Int J Biol Macromol 2023; 229:401-412. [PMID: 36592853 DOI: 10.1016/j.ijbiomac.2022.12.297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
The glycoprotein hormone (GPH) system is fundamentally significant in regulating the physiology of chordates, such as thyroid activity and gonadal function. However, the knowledge of the GPH system in the primitive chordate ascidian species is largely lacking. Here, we reported an ancestral GPH system in the ascidian (Styela clava), which consists of GPH α subunit (Sc-GPA2), GPH β subunit (Sc-GPB5), and the cognate leucine-rich repeat-containing G protein-coupled receptor (Sc-GPHR). Comparative structure analysis revealed that distinct from vertebrate GPH β subunits, Sc-GPB5 was less conserved, showing an atypical N-terminal sequence with a type II transmembrane domain instead of a typical signal peptide. By investigating the presence of recombinant Sc-GPA2 and Sc-GPB5 in cell lysates and culture media of HEK293T cells, we confirmed that these two subunits could be secreted out of the cells via distinct secretory pathways. The deglycosylation experiments demonstrated that N-linked glycosylation only occurred on the conserved cysteine residue (N78) of Sc-GPA2, whereas Sc-GPB5 was non-glycosylated. Although Sc-GPB5 exhibited distinct topology and biochemical properties in contrast to its chordate counterparts, it could still interact with Sc-GPA2 to form a heterodimer. The Sc-GPHR was then confirmed to be activated by tethered Sc-GPA2/GPB5 heterodimer on the Gs-cAMP pathway, suggesting that Sc-GPA2/GPB5 heterodimer-initiated Gs-cAMP signaling pathway is evolutionarily conserved in chordates. Furthermore, in situ hybridization and RT-PCR results revealed the co-expression patterns of Sc-GPA2 and Sc-GPB5 with Sc-GPHR transcripts, respectively in ascidian larvae and adults, highlighting the potential functions of Sc-GPA2/GPB5 heterodimer as an autocrine/paracrine neurohormone in regulating metamorphosis of larvae and physiological functions of adults. Our study systematically investigated the GPA2/GPB5-GPHR system in ascidian for the first time, which offers insights into understanding the function and evolution of the GPH system within the chordate lineage.
Collapse
Affiliation(s)
- Li-Kun Yang
- Fang Zongxi Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jin Zhang
- Fang Zongxi Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Di Liu
- Fang Zongxi Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Tong-Ye Han
- Fang Zongxi Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Qi-Shu Qin
- Fang Zongxi Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - An-Qi Wang
- Haide College, Ocean University of China, Qingdao 266100, China
| | - Bo Dong
- Fang Zongxi Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laoshan Laboratory, Qingdao 266237, China; Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
7
|
Jade D, Gupta S, Mohan S, Ponnambalam S, Harrison M, Bhatnagar R. Homology modelling and molecular simulation approach to prediction of B-cell and T-cell epitopes in an OMP25 peptide vaccine against Brucella abortus. MOLECULAR SIMULATION 2023. [DOI: 10.1080/08927022.2023.2165126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Dhananjay Jade
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, JNU, New Delhi India
- School of Biomedical Sciences, University of Leeds School of Molecular and Cellular Biology, Leeds, UK
- School of Molecular & Cellular Biology, University of Leeds, Leeds, UK
| | - Sonal Gupta
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, JNU, New Delhi India
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, USA
| | - Surender Mohan
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, JNU, New Delhi India
| | | | - Michael Harrison
- School of Biomedical Sciences, University of Leeds School of Molecular and Cellular Biology, Leeds, UK
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, JNU, New Delhi India
- Banaras Hindu University, Banaras, India
- Amity University Jaipur, Jaipur, India
| |
Collapse
|
8
|
Lewis AJO, Hegde RS. A unified evolutionary origin for the ubiquitous protein transporters SecY and YidC. BMC Biol 2021; 19:266. [PMID: 34911545 PMCID: PMC8675477 DOI: 10.1186/s12915-021-01171-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/21/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Protein transporters translocate hydrophilic segments of polypeptide across hydrophobic cell membranes. Two protein transporters are ubiquitous and date back to the last universal common ancestor: SecY and YidC. SecY consists of two pseudosymmetric halves, which together form a membrane-spanning protein-conducting channel. YidC is an asymmetric molecule with a protein-conducting hydrophilic groove that partially spans the membrane. Although both transporters mediate insertion of membrane proteins with short translocated domains, only SecY transports secretory proteins and membrane proteins with long translocated domains. The evolutionary origins of these ancient and essential transporters are not known. RESULTS The features conserved by the two halves of SecY indicate that their common ancestor was an antiparallel homodimeric channel. Structural searches with SecY's halves detect exceptional similarity with YidC homologs. The SecY halves and YidC share a fold comprising a three-helix bundle interrupted by a helical hairpin. In YidC, this hairpin is cytoplasmic and facilitates substrate delivery, whereas in SecY, it is transmembrane and forms the substrate-binding lateral gate helices. In both transporters, the three-helix bundle forms a protein-conducting hydrophilic groove delimited by a conserved hydrophobic residue. Based on these similarities, we propose that SecY originated as a YidC homolog which formed a channel by juxtaposing two hydrophilic grooves in an antiparallel homodimer. We find that archaeal YidC and its eukaryotic descendants use this same dimerisation interface to heterodimerise with a conserved partner. YidC's sufficiency for the function of simple cells is suggested by the results of reductive evolution in mitochondria and plastids, which tend to retain SecY only if they require translocation of large hydrophilic domains. CONCLUSIONS SecY and YidC share previously unrecognised similarities in sequence, structure, mechanism, and function. Our delineation of a detailed correspondence between these two essential and ancient transporters enables a deeper mechanistic understanding of how each functions. Furthermore, key differences between them help explain how SecY performs its distinctive function in the recognition and translocation of secretory proteins. The unified theory presented here explains the evolution of these features, and thus reconstructs a key step in the origin of cells.
Collapse
Affiliation(s)
- Aaron J O Lewis
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
9
|
Inhibitors of the Sec61 Complex and Novel High Throughput Screening Strategies to Target the Protein Translocation Pathway. Int J Mol Sci 2021; 22:ijms222112007. [PMID: 34769437 PMCID: PMC8585047 DOI: 10.3390/ijms222112007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 02/08/2023] Open
Abstract
Proteins targeted to the secretory pathway start their intracellular journey by being transported across biological membranes such as the endoplasmic reticulum (ER). A central component in this protein translocation process across the ER is the Sec61 translocon complex, which is only intracellularly expressed and does not have any enzymatic activity. In addition, Sec61 translocon complexes are difficult to purify and to reconstitute. Screening for small molecule inhibitors impairing its function has thus been notoriously difficult. However, such translocation inhibitors may not only be valuable tools for cell biology, but may also represent novel anticancer drugs, given that cancer cells heavily depend on efficient protein translocation into the ER to support their fast growth. In this review, different inhibitors of protein translocation will be discussed, and their specific mode of action will be compared. In addition, recently published screening strategies for small molecule inhibitors targeting the whole SRP-Sec61 targeting/translocation pathway will be summarized. Of note, slightly modified assays may be used in the future to screen for substances affecting SecYEG, the bacterial ortholog of the Sec61 complex, in order to identify novel antibiotic drugs.
Collapse
|
10
|
Amaya C, Cameron CJF, Devarkar SC, Seager SJH, Gerstein MB, Xiong Y, Schlieker C. Nodal modulator (NOMO) is required to sustain endoplasmic reticulum morphology. J Biol Chem 2021; 297:100937. [PMID: 34224731 PMCID: PMC8327139 DOI: 10.1016/j.jbc.2021.100937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 12/03/2022] Open
Abstract
The endoplasmic reticulum (ER) is a membrane-bound organelle responsible for protein folding, lipid synthesis, and calcium homeostasis. Maintenance of ER structural integrity is crucial for proper function, but much remains to be learned about the molecular players involved. To identify proteins that support the structure of the ER, we performed a proteomic screen and identified nodal modulator (NOMO), a widely conserved type I transmembrane protein of unknown function, with three nearly identical orthologs specified in the human genome. We found that overexpression of NOMO1 imposes a sheet morphology on the ER, whereas depletion of NOMO1 and its orthologs causes a collapse of ER morphology concomitant with the formation of membrane-delineated holes in the ER network positive for the lysosomal marker lysosomal-associated protein 1. In addition, the levels of key players of autophagy including microtubule-associated protein light chain 3 and autophagy cargo receptor p62/sequestosome 1 strongly increase upon NOMO depletion. In vitro reconstitution of NOMO1 revealed a "beads on a string" structure likely representing consecutive immunoglobulin-like domains. Extending NOMO1 by insertion of additional immunoglobulin folds results in a correlative increase in the ER intermembrane distance. Based on these observations and a genetic epistasis analysis including the known ER-shaping proteins Atlastin2 and Climp63, we propose a role for NOMO1 in the functional network of ER-shaping proteins.
Collapse
Affiliation(s)
- Catherine Amaya
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Christopher J F Cameron
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Swapnil C Devarkar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Sebastian J H Seager
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Mark B Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, USA; Department of Computer Science, Yale University, New Haven, Connecticut, USA; Department of Statistics and Data Science, Yale University, New Haven, Connecticut, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Christian Schlieker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
11
|
Niwa M. A cell cycle checkpoint for the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118825. [PMID: 32828757 DOI: 10.1016/j.bbamcr.2020.118825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
The generation of new cells is one of the most fundamental aspects of cell biology. Proper regulation of the cell cycle is critical for human health, as underscored by many diseases associated with errors in cell cycle regulation, including both cancer and hereditary diseases. A large body of work has identified regulatory mechanisms and checkpoints that ensure accurate and timely replication and segregation of chromosomal DNA. However, few studies have evaluated the extent to which similar checkpoints exist for the division of cytoplasmic components, including organelles. Such checkpoint mechanisms might be crucial for compartments that cannot be generated de novo, such as the endoplasmic reticulum (ER). In this review, we highlight recent work in the model organism Saccharomyces cerevisiae that led to the discovery of such a checkpoint that ensures that cells inherit functional ER into the daughter cell.
Collapse
Affiliation(s)
- Maho Niwa
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, NSB#1, Rm 5328, 9500 Gilman Drive, La Jolla, CA 92093-0377, United States of America.
| |
Collapse
|
12
|
Multiple ways to kill bacteria via inhibiting novel cell wall or membrane targets. Future Med Chem 2020; 12:1253-1279. [PMID: 32538147 DOI: 10.4155/fmc-2020-0046] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The rise of antibiotic-resistant infections has been well documented and the need for novel antibiotics cannot be overemphasized. US FDA approved antibiotics target only a small fraction of bacterial cell wall or membrane components, well-validated antimicrobial targets. In this review, we highlight small molecules that inhibit relatively unexplored cell wall and membrane targets. Some of these targets include teichoic acids-related proteins (DltA, LtaS, TarG and TarO), lipid II, Mur family enzymes, components of LPS assembly (MsbA, LptA, LptB and LptD), penicillin-binding protein 2a in methicillin-resistant Staphylococcus aureus, outer membrane protein transport (such as LepB and BamA) and lipoprotein transport components (LspA, LolC, LolD and LolE). Inhibitors of SecA, cell division protein, FtsZ and compounds that kill persister cells via membrane targeting are also covered.
Collapse
|
13
|
Yu WC. Translocation of Heterogeneous Flexible Polymers Assisted by Binding Particles. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2387-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Essential Mycoplasma Glycolipid Synthase Adheres to the Cell Membrane by Means of an Amphipathic Helix. Sci Rep 2019; 9:7085. [PMID: 31068620 PMCID: PMC6506492 DOI: 10.1038/s41598-019-42970-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/29/2019] [Indexed: 11/22/2022] Open
Abstract
Because of the lack of cell wall, Micoplasma species require a fine control of membrane fluidity and integrity. mg517 is an essential gene of Mycoplasma genitalium responsible for the biosynthesis of membrane glycoglycerolipids. It encodes for a unique glycosyltransferase (MG517) with processive activity, transferring activated glycosyl donors to either nude diacylglycerol or already glycosylated diacylglycerol. This dual activity, asserted to different enzymes in other species, is sensitive to and regulated by the presence of anionic lipid vesicles in vitro. We present here a computational model of the C-terminus domain of MG517 that complements a previous structural model of the N-terminus domain. By means of sequence analysis, molecular dynamics and metadynamics simulations, we have identified a short α-helix at the apical C-terminus of MG517 with clear amphipathic character. Binding to a membrane model is thermodynamically favored which suggests that this structural element guides the adhesion of MG517 to the cell membrane. We have experimentally verified that truncation of part of this helix causes a substantial reduction of glycoglycerolipids synthesis. The model proposes that MG517 recognizes and binds the diacylglycerol substrate embedded in the membrane by means of this α-helix at the C-terminus together with a previously identified binding pocket at the N-terminus.
Collapse
|
15
|
Lang S, Nguyen D, Pfeffer S, Förster F, Helms V, Zimmermann R. Functions and Mechanisms of the Human Ribosome-Translocon Complex. Subcell Biochem 2019; 93:83-141. [PMID: 31939150 DOI: 10.1007/978-3-030-28151-9_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The membrane of the endoplasmic reticulum (ER) in human cells harbors the protein translocon, which facilitates membrane insertion and translocation of almost every newly synthesized polypeptide targeted to organelles of the secretory pathway. The translocon comprises the polypeptide-conducting Sec61 channel and several additional proteins, which are associated with the heterotrimeric Sec61 complex. This ensemble of proteins facilitates ER targeting of precursor polypeptides, Sec61 channel opening and closing, and modification of precursor polypeptides in transit through the Sec61 complex. Recently, cryoelectron tomography of translocons in native ER membranes has given unprecedented insights into the architecture and dynamics of the native, ribosome-associated translocon and the Sec61 channel. These structural data are discussed in light of different Sec61 channel activities including ribosome receptor function, membrane insertion or translocation of newly synthesized polypeptides as well as the possible roles of the Sec61 channel as a passive ER calcium leak channel and regulator of ATP/ADP exchange between cytosol and ER.
Collapse
Affiliation(s)
- Sven Lang
- Competence Center for Molecular Medicine, Saarland University Medical School, Building 44, 66421, Homburg, Germany.
| | - Duy Nguyen
- Center for Bioinformatics, Saarland University, 66041, Saarbrücken, Germany
| | - Stefan Pfeffer
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, 82152, Martinsried, Germany
- ZMBH, 69120, Heidelberg, Germany
| | - Friedrich Förster
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, 82152, Martinsried, Germany
- Center for Biomolecular Research, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, 66041, Saarbrücken, Germany
| | - Richard Zimmermann
- Competence Center for Molecular Medicine, Saarland University Medical School, Building 44, 66421, Homburg, Germany
| |
Collapse
|
16
|
Sun S, Wang S, Tong Z, Yao X, Gao J. A molecular dynamics study on the resilience of Sec61 channel from open to closed state. RSC Adv 2019; 9:14876-14883. [PMID: 35516291 PMCID: PMC9064252 DOI: 10.1039/c9ra01684h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/07/2019] [Indexed: 01/15/2023] Open
Abstract
When the nascent chain is released from the ribosome, its packing into the apolar environment of the lipid bilayer in the endoplasmic reticulum is facilitated by the Sec61 translocon. In this process, coupling of the conformational change of the channel is essential to transport the nascent chain and meanwhile maintain the membrane permeability barrier. Two molecular dynamics simulations were performed in the current work to investigate the resilience of the lateral gate and the linkage mechanism of the lateral gate, pore ring and plug. The results affirmed that the lateral gate is able to recover its partially-closed state rapidly after the nascent chain segment enters the bilayer. This triggers subsequent motions of the pore ring and plug, which prevent the small molecules passing through the pore. The pore diameter in the partially-closed state is about 6–7 Å. The plug would move upward ∼2 Å if the lateral gate could not close. Two waters permeate through the channel when the lateral gate was open. Water molecules could go across the bilayer via the gap of the open lateral gate due to the occluding of the pore ring and plug. The lateral gate of Sec61 is able to recover its partially-closed state rapidly after the nascent chain segment enters the bilayer, which triggers subsequent motions of the pore ring and plug.![]()
Collapse
Affiliation(s)
- Sujuan Sun
- Key Laboratory of Forest Chemistry & Engineering
- School of Chemistry and Chemical Engineering
- Guangxi University for Nationalities
- Nanning 530006
- China
| | - Shuangshuang Wang
- Guangxi Colleges and Universities Key Laboratory of Beibu Gulf Oil and Natural Gas Resource Effective Utilization
- College of Petroleum and Chemical Engineering
- Beibu Gulf University
- Qinzhou 535011
- China
| | - Zhangfa Tong
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- China
| | - Xingdong Yao
- Key Laboratory of Forest Chemistry & Engineering
- School of Chemistry and Chemical Engineering
- Guangxi University for Nationalities
- Nanning 530006
- China
| | - Jian Gao
- Guangxi Colleges and Universities Key Laboratory of Beibu Gulf Oil and Natural Gas Resource Effective Utilization
- College of Petroleum and Chemical Engineering
- Beibu Gulf University
- Qinzhou 535011
- China
| |
Collapse
|
17
|
Bridges RJ, Bradbury NA. Cystic Fibrosis, Cystic Fibrosis Transmembrane Conductance Regulator and Drugs: Insights from Cellular Trafficking. Handb Exp Pharmacol 2018; 245:385-425. [PMID: 29460152 DOI: 10.1007/164_2018_103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The eukaryotic cell is organized into membrane-delineated compartments that are characterized by specific cadres of proteins sustaining biochemically distinct cellular processes. The appropriate subcellular localization of proteins is key to proper organelle function and provides a physiological context for cellular processes. Disruption of normal trafficking pathways for proteins is seen in several genetic diseases, where a protein's absence for a specific subcellular compartment leads to organelle disruption, and in the context of an individual, a disruption of normal physiology. Importantly, several drug therapies can also alter protein trafficking, causing unwanted side effects. Thus, a deeper understanding of trafficking pathways needs to be appreciated as novel therapeutic modalities are proposed. Despite the promising efficacy of novel therapeutic agents, the intracellular bioavailability of these compounds has proved to be a potential barrier, leading to failures in treatments for various diseases and disorders. While endocytosis of drug moieties provides an efficient means of getting material into cells, the subsequent release and endosomal escape of materials into the cytosol where they need to act has been a barrier. An understanding of cellular protein/lipid trafficking pathways has opened up strategies for increasing drug bioavailability. Approaches to enhance endosomal exit have greatly increased the cytosolic bioavailability of drugs and will provide a means of investigating previous drugs that may have been shelved due to their low cytosolic concentration.
Collapse
Affiliation(s)
- Robert J Bridges
- Department of Physiology and Biophysics, Chicago Medical School, North Chicago, IL, USA
| | - Neil A Bradbury
- Department of Physiology and Biophysics, Chicago Medical School, North Chicago, IL, USA.
| |
Collapse
|
18
|
Yoo YS, Han HG, Jeon YJ. Unfolded Protein Response of the Endoplasmic Reticulum in Tumor Progression and Immunogenicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2969271. [PMID: 29430279 PMCID: PMC5752989 DOI: 10.1155/2017/2969271] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/29/2017] [Indexed: 12/11/2022]
Abstract
The endoplasmic reticulum (ER) is a pivotal regulator of folding, quality control, trafficking, and targeting of secreted and transmembrane proteins, and accordingly, eukaryotic cells have evolved specialized machinery to ensure that the ER enables these proteins to acquire adequate folding and maturation in the presence of intrinsic and extrinsic insults. This adaptive capacity of the ER to intrinsic and extrinsic perturbations is important for maintaining protein homeostasis, which is termed proteostasis. Failure in adaptation to these perturbations leads to accumulation of misfolded or unassembled proteins in the ER, which is termed ER stress, resulting in the activation of unfolded protein response (UPR) of the ER and the execution of ER-associated degradation (ERAD) to restore homeostasis. Furthermore, both of the two axes play key roles in the control of tumor progression, inflammation, immunity, and aging. Therefore, understanding UPR of the ER and subsequent ERAD will provide new insights into the pathogenesis of many human diseases and contribute to therapeutic intervention in these diseases.
Collapse
Affiliation(s)
- Yoon Seon Yoo
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Hye Gyeong Han
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Young Joo Jeon
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| |
Collapse
|
19
|
Let's talk about Secs: Sec61, Sec62 and Sec63 in signal transduction, oncology and personalized medicine. Signal Transduct Target Ther 2017; 2:17002. [PMID: 29263911 PMCID: PMC5661625 DOI: 10.1038/sigtrans.2017.2] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 12/11/2022] Open
Abstract
The heterotrimeric Sec61 complex and the dimeric Sec62/Sec63 complex are located in the membrane of the human endoplasmic reticulum (ER) and play a central role in translocation of nascent and newly synthesized precursor polypeptides into the ER. This process involves targeting of the precursors to the membrane and opening of the polypeptide conducting Sec61 channel for translocation. Apart from this central role in the intracellular transport of polypeptides, several studies of the last decade uncovered additional functions of Sec proteins in intracellular signaling: Sec62 can induce ER-phagy in the process of recovery of cells from ER stress and the Sec61 channel can also act as a passive ER calcium leak channel. Furthermore, mutations, amplifications and an overexpression of the SEC genes were linked to various diseases including kidney and liver diseases, diabetes and human cancer. Studies of the last decade could not only elucidate the functional role of Sec proteins in the pathogenesis of these diseases, but also demonstrate a relevance of Sec62 as a prognostic and predictive biomarker in head and neck cancer, prostate and lung cancer including a basis for new therapeutic strategies. In this article, we review the current understanding of protein transport across the ER membrane as central function of Sec proteins and further focus on recent studies that gave first insights into the functional role and therapeutic relevance of Sec61, Sec62 and Sec63 in human diseases.
Collapse
|
20
|
Gupta S, Roy M, Ghosh A. The Archaeal Signal Recognition Particle: Present Understanding and Future Perspective. Curr Microbiol 2016; 74:284-297. [DOI: 10.1007/s00284-016-1167-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 11/21/2016] [Indexed: 10/20/2022]
|
21
|
Zhou Z, Pang Z, Li G, Lin C, Wang J, Lv Q, He C, Zhu L. Endoplasmic reticulum membrane-bound MoSec62 is involved in the suppression of rice immunity and is essential for the pathogenicity of Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2016; 17:1211-1222. [PMID: 26679839 PMCID: PMC6638330 DOI: 10.1111/mpp.12357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 05/31/2023]
Abstract
Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) constitutes the first line of plant inducible immunity. As an important step of plant colonization, phytopathogens have to suppress PTI, and secreted effectors are therefore co-evolved and deployed. In this study, we characterized the function of MoSec62 of Magnaporthe oryzae, the causal agent of the destructive rice blast. MoSec62 encodes a homologue of Sec62p, a yeast endoplasmic reticulum (ER) membrane transporter for precursors of secretory proteins. We showed that a T-DNA insertion into the promoter region of MoSec62, causing a disturbance to the up-regulation of MoSec62 expression during blast invasion, resulted in a complete loss of blast virulence of the mutant, M1575. Both 3,3'-diaminobenzidine (DAB) staining of the infected rice leaves and expression analysis revealed that the infectious attempt by the mutant led to strong defence responses of rice. Consistently, in transcriptomic analysis of rice leaves subject to blast inoculation, a battery of defence responses was found to be induced exclusively on M1575 challenge. For further exploration, we tested the pathogenicity on a highly susceptible rice variety and detected the accumulation of Slp1, a known PTI suppressor. Both results suggested that the mutant most likely failed to overcome rice PTI. In addition, we showed that MoSec62 was able to rescue the thermosensitivity of a yeast Δsec62, and the MoSec62-GFP fusion was co-localized to the ER membrane, both suggesting the conservation of Sec62 homologues. In conclusion, our data indicate that MoSec62, probably as an ER membrane transporter, plays an essential role in antagonizing rice defence at the early stages of blast invasion.
Collapse
Affiliation(s)
- Zhuangzhi Zhou
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiqian Pang
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guihua Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chunhua Lin
- College of Environment and Plant Protection, Hainan University, Haikou, 570228, China
| | - Jing Wang
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiming Lv
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, 570228, China.
| | - Lihuang Zhu
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
22
|
Rollauer SE, Sooreshjani MA, Noinaj N, Buchanan SK. Outer membrane protein biogenesis in Gram-negative bacteria. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0023. [PMID: 26370935 DOI: 10.1098/rstb.2015.0023] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gram-negative bacteria contain a double membrane which serves for both protection and for providing nutrients for viability. The outermost of these membranes is called the outer membrane (OM), and it contains a host of fully integrated membrane proteins which serve essential functions for the cell, including nutrient uptake, cell adhesion, cell signalling and waste export. For pathogenic strains, many of these outer membrane proteins (OMPs) also serve as virulence factors for nutrient scavenging and evasion of host defence mechanisms. OMPs are unique membrane proteins in that they have a β-barrel fold and can range in size from 8 to 26 strands, yet can still serve many different functions for the cell. Despite their essential roles in cell survival and virulence, the exact mechanism for the biogenesis of these OMPs into the OM has remained largely unknown. However, the past decade has witnessed significant progress towards unravelling the pathways and mechanisms necessary for moulding a nascent polypeptide into a functional OMP within the OM. Here, we will review some of these recent discoveries that have advanced our understanding of the biogenesis of OMPs in Gram-negative bacteria, starting with synthesis in the cytoplasm to folding and insertion into the OM.
Collapse
Affiliation(s)
- Sarah E Rollauer
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Moloud A Sooreshjani
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Susan K Buchanan
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
23
|
Ren QB, Ma SH, Chen YJ, Sun LZ, Cao WP. Numerical simulation on polymer translocation into crowded environment with nanoparticles. Colloid Polym Sci 2016. [DOI: 10.1007/s00396-016-3891-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Karademir B, Corek C, Ozer NK. Endoplasmic reticulum stress and proteasomal system in amyotrophic lateral sclerosis. Free Radic Biol Med 2015; 88:42-50. [PMID: 26073124 DOI: 10.1016/j.freeradbiomed.2015.05.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 12/14/2022]
Abstract
Protein processing including folding, unfolding and degradation is involved in the mechanisms of many diseases. Unfolded protein response and/or endoplasmic reticulum stress are accepted to be the first steps which should be completed via protein degradation. In this direction, proteasomal system and autophagy play important role as the degradation pathways and controlled via complex mechanisms. Amyotrophic lateral sclerosis is a multifactorial neurodegenerative disease which is also known as the most catastrophic one. Mutation of many different genes are involved in the pathogenesis such as superoxide dismutase 1, chromosome 9 open reading frame 72 and ubiquilin 2. These genes are mainly related to the antioxidant defense systems, endoplasmic reticulum stress related proteins and also protein aggregation, degradation pathways and therefore mutation of these genes cause related disorders.This review focused on the role of protein processing via endoplasmic reticulum and proteasomal system in amyotrophic lateral sclerosis which are the main players in the pathology. In this direction, dysfunction of endoplasmic reticulum associated degradation and related cell death mechanisms that are autophagy/apoptosis have been detailed.
Collapse
Affiliation(s)
- Betul Karademir
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Ceyda Corek
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Nesrin Kartal Ozer
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, 34854 Maltepe, Istanbul, Turkey.
| |
Collapse
|
25
|
O'Neil PK, Rollauer SE, Noinaj N, Buchanan SK. Fitting the Pieces of the β-Barrel Assembly Machinery Complex. Biochemistry 2015; 54:6303-11. [PMID: 26394220 PMCID: PMC4631317 DOI: 10.1021/acs.biochem.5b00852] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
β-Barrel membrane proteins are found in the outer membranes of mitochondria, chloroplasts, and Gram-negative bacteria; however, exactly how they are folded and inserted remains unknown. Over the past decade, both functional and structural studies have greatly contributed to addressing this elusive mechanism. It is known that a conserved core machinery is required for each organelle, though the overall composition varies significantly. The vast majority of studies that aimed to understand the biogenesis of β-barrel membrane proteins has been conducted in Gram-negative bacteria. Here, it is the task of a multicomponent complex known as the β-barrel assembly machinery (BAM) complex to fold and insert new β-barrel membrane proteins into the outer membrane. In this review, we will discuss recent discoveries with the goal of utilizing all reported structural and functional studies to piece together a current structural model for the fully assembled BAM complex.
Collapse
Affiliation(s)
- Patrick K O'Neil
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - Sarah E Rollauer
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - Susan K Buchanan
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| |
Collapse
|
26
|
Adhikari R, Bhattacharya A. Translocation of a semiflexible polymer through a nanopore in the presence of attractive binding particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:032711. [PMID: 26465502 DOI: 10.1103/physreve.92.032711] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Indexed: 06/05/2023]
Abstract
We study the translocation dynamics of a semiflexible polymer through a nanopore from the cis into the trans compartment containing attractive binding particles (BPs) using the Langevin dynamics simulation in two dimensions. The binding particles accelerate the threading process in two ways: (i) reducing the back-sliding of the translocated monomer, and (ii) providing the pulling force toward the translocation direction. We observe that for certain binding strength (ε_{c}) and concentration (ρ) of the BPs, the translocation is faster than the ideal ratcheting condition as elucidated by Simon, Peskin, and Oster [M. Simon, C. S. Peskin, and G. F. Oster, Proc. Natl. Acad. Sci. USA 89, 3770 (1992)PNASA60027-842410.1073/pnas.89.9.3770]. The asymmetry produced by the BPs at the trans-side leads to similarities of this process to that of a driven translocation with an applied force inside the pore manifested in various physical quantities. Furthermore, we provide an analytic expression for the force experienced by the translocating chain as well as for the scaled mean first passage time (MFPT), for which we observe that for various combinations of N, ε, and ρ the scaled MFPT (〈τ〉/N^{1.5}ρ^{0.8}) collapses onto the same master plot. Based on the analysis of our simulation data, we provide plausible arguments with regard to how the scaling theory of driven translocation can be generalized for such a directed diffusion process by replacing the externally applied force with an effective force.
Collapse
Affiliation(s)
- Ramesh Adhikari
- Department of Physics, University of Central Florida, Orlando, Florida 32816-2385, USA
| | - Aniket Bhattacharya
- Department of Physics, University of Central Florida, Orlando, Florida 32816-2385, USA
| |
Collapse
|
27
|
Cao WP, Ren QB, Luo MB. Translocation of polymers into crowded media with dynamic attractive nanoparticles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:012603. [PMID: 26274196 DOI: 10.1103/physreve.92.012603] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Indexed: 06/04/2023]
Abstract
The translocation of polymers through a small pore into crowded media with dynamic attractive nanoparticles is simulated. Results show that the nanoparticles at the trans side can affect the translocation by influencing the free-energy landscape and the diffusion of polymers. Thus the translocation time τ is dependent on the polymer-nanoparticle attraction strength ɛ and the mobility of nanoparticles V. We observe a power-law relation of τ with V, but the exponent is dependent on ɛ and nanoparticle concentration. In addition, we find that the effect of attractive dynamic nanoparticles on the dynamics of polymers is dependent on the time scale. At a short time scale, subnormal diffusion is observed at strong attraction and the diffusion is slowed down by the dynamic nanoparticles. However, the diffusion of polymers is normal at a long time scale and the diffusion constant increases with the increase in V.
Collapse
Affiliation(s)
- Wei-Ping Cao
- Department of Physics, Zhejiang University, Hangzhou 310027, China
- Department of Physics, Lishui University, Lishui 323000, China
| | - Qing-Bao Ren
- Department of Physics, Lishui University, Lishui 323000, China
| | - Meng-Bo Luo
- Department of Physics, Zhejiang University, Hangzhou 310027, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
28
|
Sozen E, Karademir B, Ozer NK. Basic mechanisms in endoplasmic reticulum stress and relation to cardiovascular diseases. Free Radic Biol Med 2015; 78:30-41. [PMID: 25452144 DOI: 10.1016/j.freeradbiomed.2014.09.031] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 09/03/2014] [Accepted: 09/26/2014] [Indexed: 01/30/2023]
Abstract
The folding process is an important step in protein synthesis for the functional shape or conformation of the protein. The endoplasmic reticulum (ER) is the main organelle for the correct folding procedure, which maintains the homeostasis of the organism. This process is normally well organized under unstressed conditions, whereas it may fail under oxidative and ER stress. The unfolded protein response (UPR) is a defense mechanism that removes the unfolded/misfolded proteins to prevent their accumulation, and two main degradation systems are involved in this defense, including the proteasome and autophagy. Cells decide which mechanism to use according to the type, severity, and duration of the stress. If the stress is too severe and in excess, the capacity of these degradation mechanisms, proteasomal degradation and autophagy, is not sufficient and the cell switches to apoptotic death. Because the accumulation of the improperly folded proteins leads to several diseases, it is important for the body to maintain this balance. Cardiovascular diseases are one of the important disorders related to failure of the UPR. Especially, protection mechanisms and the transition to apoptotic pathways have crucial roles in cardiac failure and should be highlighted in detailed studies to understand the mechanisms involved. This review is focused on the involvement of the proteasome, autophagy, and apoptosis in the UPR and the roles of these pathways in cardiovascular diseases.
Collapse
Affiliation(s)
- Erdi Sozen
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Betul Karademir
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Nesrin Kartal Ozer
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey.
| |
Collapse
|
29
|
Yu W, Luo K. Polymer translocation through a nanopore driven by binding particles: influence of chain rigidity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:042708. [PMID: 25375524 DOI: 10.1103/physreve.90.042708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Indexed: 06/04/2023]
Abstract
We investigate the influence of chain rigidity on the dynamics of polymer translocation in the presence of binding particles (BPs) through a nanopore using two-dimensional Langevin dynamics simulations. With increasing chain rigidity κ, the mean translocation time 〈τ〉 increases monotonically due to an increase in the radius of gyration and a decrease in the center of mass velocity. Particularly for weak binding, we further find that 〈τ〉 shows a power-law behavior with the persistence length lp. Analysis indicates a scaling relation between the average velocity of the center of mass of a chain 〈vc.m.〉 and lp. As the chain becomes stiffer, the distribution of the translocation time τ approximates the Gaussian distribution and gets broader with the peak position being shifted towards longer translocation time. The corresponding translocation coordinate smax of the maximum waiting time gets smaller with increasing chain rigidity. Finally, under an extremely low BP concentration, 〈τ〉 shows a minimum for small κ, while it decreases monotonically for large κ with increasing binding energy. Our results suggest a nontrivial effect of the intrinsic property of chains on the dynamics of polymer translocation driven by BPs.
Collapse
Affiliation(s)
- Wancheng Yu
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, People's Republic of China
| | - Kaifu Luo
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, People's Republic of China
| |
Collapse
|
30
|
Safra M, Henis-Korenblit S. A new tool in C. elegans reveals changes in secretory protein metabolism in ire-1-deficient animals. WORM 2014; 3:e27733. [PMID: 25191629 PMCID: PMC4152325 DOI: 10.4161/worm.27733] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/15/2013] [Accepted: 01/03/2014] [Indexed: 12/24/2022]
Abstract
We recently showed that the ire-1/xbp-1 arm of the UPR plays a crucial role in maintaining basic endoplasmic reticulum (ER) functions required for the metabolism of secreted proteins even during unstressed growth conditions. During these studies we realized that although C. elegans is a powerful system to study the genetics of many cellular processes; it lacks effective tools for tracking the metabolism of secreted proteins at the cell and organism levels. Here, we outline how genetic manipulations and expression analysis of a DAF-28::GFP translational fusion transgene can be combined to infer different steps in the life cycle of secretory proteins. We demonstrate how we have used this tool to reveal folding defects, clearance defects, and secretion defects in ire-1 and xbp-1 mutants. We believe that further studies using this tool will deepen the understanding of secretory protein metabolism.
Collapse
Affiliation(s)
- Modi Safra
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat Gan, Israel
| | - Sivan Henis-Korenblit
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat Gan, Israel
| |
Collapse
|
31
|
Zhang C, Kho YS, Wang Z, Chiang YT, Ng GKH, Shaw PC, Wang Y, Qi RZ. Transmembrane and coiled-coil domain family 1 is a novel protein of the endoplasmic reticulum. PLoS One 2014; 9:e85206. [PMID: 24454821 PMCID: PMC3891740 DOI: 10.1371/journal.pone.0085206] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/23/2013] [Indexed: 01/01/2023] Open
Abstract
The endoplasmic reticulum (ER) is a continuous membrane network in eukaryotic cells comprising the nuclear envelope, the rough ER, and the smooth ER. The ER has multiple critical functions and a characteristic structure. In this study, we identified a new protein of the ER, TMCC1 (transmembrane and coiled-coil domain family 1). The TMCC family consists of at least 3 putative proteins (TMCC1-3) that are conserved from nematode to human. We show that TMCC1 is an ER protein that is expressed in diverse human cell lines. TMCC1 contains 2 adjacent transmembrane domains near the C-terminus, in addition to coiled-coil domains. TMCC1 was targeted to the rough ER through the transmembrane domains, whereas the N-terminal region and C-terminal tail of TMCC1 were found to reside in the cytoplasm. Moreover, the cytosolic region of TMCC1 formed homo- or hetero-dimers or oligomers with other TMCC proteins and interacted with ribosomal proteins. Notably, overexpression of TMCC1 or its transmembrane domains caused defects in ER morphology. Our results suggest roles of TMCC1 in ER organization.
Collapse
Affiliation(s)
- Chao Zhang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yik-Shing Kho
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhe Wang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yan Ting Chiang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Department of Experimental Therapeutics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Gary K. H. Ng
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Pang-Chui Shaw
- Biochemistry Programme and Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yuzhuo Wang
- Department of Experimental Therapeutics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Robert Z. Qi
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- * E-mail:
| |
Collapse
|
32
|
Bravo R, Parra V, Gatica D, Rodriguez AE, Torrealba N, Paredes F, Wang ZV, Zorzano A, Hill JA, Jaimovich E, Quest AFG, Lavandero S. Endoplasmic reticulum and the unfolded protein response: dynamics and metabolic integration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 301:215-90. [PMID: 23317820 DOI: 10.1016/b978-0-12-407704-1.00005-1] [Citation(s) in RCA: 446] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The endoplasmic reticulum (ER) is a dynamic intracellular organelle with multiple functions essential for cellular homeostasis, development, and stress responsiveness. In response to cellular stress, a well-established signaling cascade, the unfolded protein response (UPR), is activated. This intricate mechanism is an important means of re-establishing cellular homeostasis and alleviating the inciting stress. Now, emerging evidence has demonstrated that the UPR influences cellular metabolism through diverse mechanisms, including calcium and lipid transfer, raising the prospect of involvement of these processes in the pathogenesis of disease, including neurodegeneration, cancer, diabetes mellitus and cardiovascular disease. Here, we review the distinct functions of the ER and UPR from a metabolic point of view, highlighting their association with prevalent pathologies.
Collapse
Affiliation(s)
- Roberto Bravo
- Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yu W, Ma Y, Luo K. Translocation of stiff polymers through a nanopore driven by binding particles. J Chem Phys 2012; 137:244905. [DOI: 10.1063/1.4772658] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
34
|
Jin YC, Li ZH, Hong ZS, Xu CX, Han JA, Choi SH, Yin JL, Zhang QK, Lee KB, Kang SK, Song MK, Kim YJ, Kang HS, Choi YJ, Lee HG. Conjugated linoleic acid synthesis-related protein proteasome subunit α 5 (PSMA5) is increased by vaccenic acid treatment in goat mammary tissue. J Dairy Sci 2012; 95:4286-97. [PMID: 22818443 DOI: 10.3168/jds.2011-4281] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 03/07/2012] [Indexed: 11/19/2022]
Abstract
This study was conducted to identify proteins associated with the endogenous synthesis of conjugated linoleic acid (CLA) from trans-vaccenic acid (TVA; trans-11 C18:1, a precursor for CLA endogenous synthesis) in mammary tissues. Six lactating goats were divided into 2 groups. One group was given an intravenous bolus injection of TVA (150mg) twice daily over 4 d; the other group received saline injections. Treatment with TVA increased the concentration of cis-9,trans-11 CLA and TVA in goat milk. Additionally, TVA treatment increased the expression of stearoyl-CoA desaturase (SCD) in mammary tissue. Using 2-dimensional gel electrophoresis and electrospray ionization quadrupole time-of-flight mass spectrometry, 3 proteins affected by infusions of TVA were identified. Proteasome (prosome, macropain) subunit α type 5 (PSMA5) was upregulated, whereas peroxiredoxin-1 and translationally controlled tumor protein 1 were downregulated in TVA-treated animals compared with the vehicle-injected controls. Only the effect of TVA on PSMA5 could be confirmed by Western blot analysis. To further explore the regulation of PSMA5 in mammary epithelial cells when TVA is converted into CLA, we used a differentiated bovine mammary epithelial cell line treated with TVA for 6h. Changes in cis-9,trans-11 CLA concentrations and mRNA expression patterns of both SCD and PSMA5 were monitored. The concentration of cis-9,trans-11 CLA increased after TVA treatment. The mRNA expression level of PSMA5 was significantly elevated to 6h, but SCD mRNA expression only increased in 2h after TVA treatment. These results indicate that PSMA5 is highly expressed in goat mammary tissue and bovine mammary epithelial cells when TVA is converted into CLA. Our data suggest that PSMA5 protein is associated with CLA biosynthesis in mammary tissue.
Collapse
Affiliation(s)
- Y C Jin
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Luzón-Toro B, Torroglosa A, Núñez-Torres R, Enguix-Riego MV, Fernández RM, de Agustín JC, Antiñolo G, Borrego S. Comprehensive analysis of NRG1 common and rare variants in Hirschsprung patients. PLoS One 2012; 7:e36524. [PMID: 22574178 PMCID: PMC3344894 DOI: 10.1371/journal.pone.0036524] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 04/03/2012] [Indexed: 12/19/2022] Open
Abstract
Hirschsprung disease (HSCR, OMIM 142623) is a developmental disorder characterized by the absence of ganglion cells along variable lengths of the distal gastrointestinal tract, which results in tonic contraction of the aganglionic gut segment and functional intestinal obstruction. The RET proto-oncogene is the major gene for HSCR with differential contributions of its rare and common, coding and noncoding mutations to the multifactorial nature of this pathology. Many other genes have been described to be associated with the pathology, as NRG1 gene (8p12), encoding neuregulin 1, which is implicated in the development of the enteric nervous system (ENS), and seems to contribute by both common and rare variants. Here we present the results of a comprehensive analysis of the NRG1 gene in the context of the disease in a series of 207 Spanish HSCR patients, by both mutational screening of its coding sequence and evaluation of 3 common tag SNPs as low penetrance susceptibility factors, finding some potentially damaging variants which we have functionally characterized. All of them were found to be associated with a significant reduction of the normal NRG1 protein levels. The fact that those mutations analyzed alter NRG1 protein would suggest that they would be related with HSCR disease not only in Chinese but also in a Caucasian population, which reinforces the implication of NRG1 gene in this pathology.
Collapse
Affiliation(s)
- Berta Luzón-Toro
- Department of Genetics, Reproduction and Fetal Medicine. Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Ana Torroglosa
- Department of Genetics, Reproduction and Fetal Medicine. Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Rocío Núñez-Torres
- Department of Genetics, Reproduction and Fetal Medicine. Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - María Valle Enguix-Riego
- Department of Genetics, Reproduction and Fetal Medicine. Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Raquel María Fernández
- Department of Genetics, Reproduction and Fetal Medicine. Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | | | - Guillermo Antiñolo
- Department of Genetics, Reproduction and Fetal Medicine. Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Salud Borrego
- Department of Genetics, Reproduction and Fetal Medicine. Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| |
Collapse
|
36
|
Cho JA, Chinnapen DJF, Aamar E, te Welscher YM, Lencer WI, Massol R. Insights on the trafficking and retro-translocation of glycosphingolipid-binding bacterial toxins. Front Cell Infect Microbiol 2012; 2:51. [PMID: 22919642 PMCID: PMC3417474 DOI: 10.3389/fcimb.2012.00051] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 03/24/2012] [Indexed: 01/01/2023] Open
Abstract
Some bacterial toxins and viruses have evolved the capacity to bind mammalian glycosphingolipids to gain access to the cell interior, where they can co-opt the endogenous mechanisms of cellular trafficking and protein translocation machinery to cause toxicity. Cholera toxin (CT) is one of the best-studied examples, and is the virulence factor responsible for massive secretory diarrhea seen in cholera. CT enters host cells by binding to monosialotetrahexosylganglioside (GM1 gangliosides) at the plasma membrane where it is transported retrograde through the trans-Golgi network (TGN) into the endoplasmic reticulum (ER). In the ER, a portion of CT, the CT-A1 polypeptide, is unfolded and then “retro-translocated” to the cytosol by hijacking components of the ER associated degradation pathway (ERAD) for misfolded proteins. CT-A1 rapidly refolds in the cytosol, thus avoiding degradation by the proteasome and inducing toxicity. Here, we highlight recent advances in our understanding of how the bacterial AB5 toxins induce disease. We highlight the molecular mechanisms by which these toxins use glycosphingolipid to traffic within cells, with special attention to how the cell senses and sorts the lipid receptors. We also discuss several new studies that address the mechanisms of toxin unfolding in the ER and the mechanisms of CT A1-chain retro-translocation to the cytosol.
Collapse
Affiliation(s)
- Jin A Cho
- Division of Gastroenterology and Nutrition, Department of Medicine, Children's Hospital Boston, Boston MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
37
|
Merstorf C, Cressiot B, Pastoriza-Gallego M, Oukhaled AG, Bacri L, Gierak J, Pelta J, Auvray L, Mathé J. DNA unzipping and protein unfolding using nanopores. Methods Mol Biol 2012; 870:55-75. [PMID: 22528258 DOI: 10.1007/978-1-61779-773-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We present here an overview on unfolding of biomolecular structures as DNA double strands or protein folds. After some theoretical considerations giving orders of magnitude about transport timescales through pores, forces involved in unzipping processes … we present our experiments on DNA unzipping or protein unfolding using a nanopore. We point out the difficulties that can be encountered during these experiments, such as the signal analysis problems, noise issues, or experimental limitations of such system.
Collapse
Affiliation(s)
- Céline Merstorf
- Laboratoire LAMBE (Equipe MPI) CNRS UMR 8587, Université d'Evry-val d'Essonne, Evry, France
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chakrabarti A, Chen AW, Varner JD. A review of the mammalian unfolded protein response. Biotechnol Bioeng 2011; 108:2777-93. [PMID: 21809331 PMCID: PMC3193940 DOI: 10.1002/bit.23282] [Citation(s) in RCA: 316] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 06/21/2011] [Accepted: 07/15/2011] [Indexed: 12/14/2022]
Abstract
Proteins requiring post-translational modifications such as N-linked glycosylation are processed in the endoplasmic reticulum (ER). A diverse array of cellular stresses can lead to dysfunction of the ER and ultimately to an imbalance between protein-folding capacity and protein-folding load. Cells monitor protein folding by an inbuilt quality control system involving both the ER and the Golgi apparatus. Unfolded or misfolded proteins are tagged for degradation via ER-associated degradation (ERAD) or sent back through the folding cycle. Continued accumulation of incorrectly folded proteins can also trigger the unfolded protein response (UPR). In mammalian cells, UPR is a complex signaling program mediated by three ER transmembrane receptors: activating transcription factor 6 (ATF6), inositol requiring kinase 1 (IRE1) and double-stranded RNA-activated protein kinase (PKR)-like endoplasmic reticulum kinase (PERK). UPR performs three functions, adaptation, alarm, and apoptosis. During adaptation, the UPR tries to reestablish folding homeostasis by inducing the expression of chaperones that enhance protein folding. Simultaneously, global translation is attenuated to reduce the ER folding load while the degradation rate of unfolded proteins is increased. If these steps fail, the UPR induces a cellular alarm and mitochondrial mediated apoptosis program. UPR malfunctions have been associated with a wide range of disease states including tumor progression, diabetes, as well as immune and inflammatory disorders. This review describes recent advances in understanding the molecular structure of UPR in mammalian cells, its functional role in cellular stress, and its pathophysiology.
Collapse
Affiliation(s)
- Anirikh Chakrabarti
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca NY 14853
| | - Aaron W. Chen
- Polymer Science and Engineering, University of Massachusetts Amherst, Amherst MA 01003
| | - Jeffrey D. Varner
- Corresponding author: Jeffrey D. Varner, Assistant Professor, School of Chemical and Biomolecular Engineering, 244 Olin Hall, Cornell University, Ithaca NY, 14853, , Phone: (607) 255 -4258, Fax: (607) 255 -9166
| |
Collapse
|
39
|
Yu W, Luo K. Chaperone-Assisted Translocation of a Polymer through a Nanopore. J Am Chem Soc 2011; 133:13565-70. [DOI: 10.1021/ja204892z] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wancheng Yu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
| | - Kaifu Luo
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
| |
Collapse
|
40
|
Ushioda R, Nagata K. The endoplasmic reticulum-associated degradation and disulfide reductase ERdj5. Methods Enzymol 2011; 490:235-58. [PMID: 21266254 DOI: 10.1016/b978-0-12-385114-7.00014-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The endoplasmic reticulum (ER) is an organelle where secretory or membrane proteins are correctly folded with the aid of various molecular chaperones and oxidoreductases. Only correctly folded and assembled proteins are enabled to reach their final destinations, which are called as ER quality control (ERQC) mechanisms. ER-associated degradation (ERAD) is one of the ERQC mechanisms for maintaining the ER homeostasis and facilitates the elimination of misfolded or malfolded proteins accumulated in the ER. ERAD is mainly consisting of three processes: recognition of misfolded proteins for degradation in the ER, retrotranslocation of (possibly) unfolded substrates from the ER to the cytosol through dislocation channel, and their degradation in the cytosol via ubiquitin-protesome system. After briefly mentioned on productive folding of nascent polypeptides in the ER, we here overview the above three processes in ERAD system by highlighting on novel ERAD factors such as EDEM and ERdj5 in mammals and yeasts.
Collapse
Affiliation(s)
- Ryo Ushioda
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | | |
Collapse
|
41
|
Fujimoto M, Hayashi T. New Insights into the Role of Mitochondria-Associated Endoplasmic Reticulum Membrane. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 292:73-117. [DOI: 10.1016/b978-0-12-386033-0.00002-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Beddoe T, Paton AW, Le Nours J, Rossjohn J, Paton JC. Structure, biological functions and applications of the AB5 toxins. Trends Biochem Sci 2010; 35:411-8. [PMID: 20202851 PMCID: PMC2929601 DOI: 10.1016/j.tibs.2010.02.003] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/04/2010] [Accepted: 02/04/2010] [Indexed: 02/07/2023]
Abstract
AB(5) toxins are important virulence factors for several major bacterial pathogens, including Bordetella pertussis, Vibrio cholerae, Shigella dysenteriae and at least two distinct pathotypes of Escherichia coli. The AB(5) toxins are so named because they comprise a catalytic A-subunit, which is responsible for disruption of essential host functions, and a pentameric B-subunit that binds to specific glycan receptors on the target cell surface. The molecular mechanisms by which the AB(5) toxins cause disease have been largely unravelled, including recent insights into a novel AB(5) toxin family, subtilase cytotoxin (SubAB). Furthermore, AB(5) toxins have become a valuable tool for studying fundamental cellular functions, and are now being investigated for potential applications in the clinical treatment of human diseases.
Collapse
Affiliation(s)
- Travis Beddoe
- The Protein Crystallography Unit, ARC Centre of Excellence in Structural and Functional Microbial Genomics, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Adrienne W. Paton
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, South Australia 5005, Australia
| | - Jérôme Le Nours
- The Protein Crystallography Unit, ARC Centre of Excellence in Structural and Functional Microbial Genomics, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Jamie Rossjohn
- The Protein Crystallography Unit, ARC Centre of Excellence in Structural and Functional Microbial Genomics, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - James C. Paton
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, South Australia 5005, Australia
| |
Collapse
|
43
|
Calo D, Eichler J. Crossing the membrane in Archaea, the third domain of life. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:885-91. [PMID: 20347718 DOI: 10.1016/j.bbamem.2010.03.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/18/2010] [Accepted: 03/18/2010] [Indexed: 11/16/2022]
Abstract
Many of the recent advancements in the field of protein translocation, particularly from the structural perspective, have relied on Archaea. For instance, the solved structures of the translocon from the methanoarchaeon Methanocaldococcus jannaschii of the ribosomal large subunit from the haloarchaeon Haloarcula marismortui and of components of the SRP pathway from several archaeal species have provided novel insight into various aspects of the translocation event. Given the major contribution that Archaea have made to our understanding of how proteins enter and traverse membranes, it is surprising that relatively little is known of protein translocation in Archaea in comparison to the well-defined translocation pathways of Eukarya and Bacteria. What is known, however, points to archaeal translocation as comprising a mosaic of eukaryal and bacterial traits together with aspects of the process seemingly unique to this, the third domain of life. Here, current understanding of archaeal protein translocation is considered. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
Affiliation(s)
- Doron Calo
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva 84105, Israel
| | | |
Collapse
|
44
|
van Dongen SFM, de Hoog HPM, Peters RJRW, Nallani M, Nolte RJM, van Hest JCM. Biohybrid Polymer Capsules. Chem Rev 2009; 109:6212-74. [DOI: 10.1021/cr900072y] [Citation(s) in RCA: 318] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stijn F. M. van Dongen
- Department of Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands, and Institute of Materials Research & Engineering (IMRE), Research Link 3, Singapore 117602, Singapore
| | - Hans-Peter M. de Hoog
- Department of Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands, and Institute of Materials Research & Engineering (IMRE), Research Link 3, Singapore 117602, Singapore
| | - Ruud J. R. W. Peters
- Department of Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands, and Institute of Materials Research & Engineering (IMRE), Research Link 3, Singapore 117602, Singapore
| | - Madhavan Nallani
- Department of Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands, and Institute of Materials Research & Engineering (IMRE), Research Link 3, Singapore 117602, Singapore
| | - Roeland J. M. Nolte
- Department of Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands, and Institute of Materials Research & Engineering (IMRE), Research Link 3, Singapore 117602, Singapore
| | - Jan C. M. van Hest
- Department of Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands, and Institute of Materials Research & Engineering (IMRE), Research Link 3, Singapore 117602, Singapore
| |
Collapse
|
45
|
De Haan L, Hirst TR. Cholera toxin: A paradigm for multi-functional engagement of cellular mechanisms (Review). Mol Membr Biol 2009; 21:77-92. [PMID: 15204437 DOI: 10.1080/09687680410001663267] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cholera toxin (Ctx) from Vibrio cholerae and its closely related homologue, heat-labile enterotoxin (Etx) from Escherichia coli have become superb tools for illuminating pathways of cellular trafficking and immune cell function. These bacterial protein toxins should be viewed as conglomerates of highly evolved, multi-functional elements equipped to engage the trafficking and signalling machineries of cells. Ctx and Etx are members of a larger family of A-B toxins of bacterial (and plant) origin that are comprised of structurally and functionally distinct enzymatically active A and receptor-binding B sub-units or domains. Intoxication of mammalian cells by Ctx and Etx involves B pentamer-mediated receptor binding and entry into a vesicular pathway, followed by translocation of the enzymatic A1 domain of the A sub-unit into the target cell cytosol, where covalent modification of intracellular targets leads to activation of adenylate cyclase and a sequence of events culminating in life-threatening diarrhoeal disease. Importantly, Ctx and Etx also have the capacity to induce a wide spectrum of remarkable immunological processes. With respect to the latter, it has been found that these toxins activate signalling pathways that modulate the immune system. This review explores the complexities of the cellular interactions that are engaged by these bacterial protein toxins, and highlights some of the new insights to have recently emerged.
Collapse
Affiliation(s)
- Lolke De Haan
- Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, United Kingdom
| | | |
Collapse
|
46
|
Schaheen B, Dang H, Fares H. Derlin-dependent accumulation of integral membrane proteins at cell surfaces. J Cell Sci 2009; 122:2228-39. [PMID: 19509052 DOI: 10.1242/jcs.048892] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quality-control mechanisms of protein folding of transmembrane and secreted proteins is mediated by endoplasmic-reticulum-associated degradation (ERAD), which is used to detect and to degrade misfolded proteins in the ER. The ERAD machinery consists of chaperones, transmembrane proteins and ubiquitin-associated enzymes that detect, modify, and retro-translocate the misfolded proteins to the cytoplasm for degradation by the proteasome. In contrast to ERAD, little is known about the fates of integral membrane and secreted proteins that become misfolded at the plasma membrane or in the extracellular space. Derlin proteins are a family of proteins that are conserved in all eukaryotes, where they function in ERAD. Here, we show that loss of Derlin function in Caenorhabditis elegans and in mouse macrophages results in the accumulation of integral membrane proteins at the plasma membrane. Induction of LDL receptor misfolding at the plasma membrane results in a sharp decrease in its half-life, which can be rescued by proteasomal inhibitors or by reduction of Derlin-1 levels. We also show that Derlin proteins localize to endosomes as well as to the ER. Our data are consistent with a model where Derlin proteins function in a spatially segregated quality control pathway that is used for the recognition and degradation of transmembrane proteins that become misfolded at the plasma membrane and/or in endosomes.
Collapse
Affiliation(s)
- Basil Schaheen
- Department of Molecular and Cellular Biology, Life Sciences South Room 531, University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
47
|
Kutik S, Stroud DA, Wiedemann N, Pfanner N. Evolution of mitochondrial protein biogenesis. Biochim Biophys Acta Gen Subj 2009; 1790:409-15. [DOI: 10.1016/j.bbagen.2009.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 04/02/2009] [Accepted: 04/06/2009] [Indexed: 02/08/2023]
|
48
|
Rigat B, Mahuran D. Diltiazem, a L-type Ca(2+) channel blocker, also acts as a pharmacological chaperone in Gaucher patient cells. Mol Genet Metab 2009; 96:225-32. [PMID: 19167257 PMCID: PMC2910750 DOI: 10.1016/j.ymgme.2008.12.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 12/11/2008] [Accepted: 12/11/2008] [Indexed: 12/27/2022]
Abstract
Recently, inhibition of L-type Ca(2+) channels, using either Diltiazem or Verapamil, has been reported to partially restore mutant glucocerebrosidase activity in cells from patients with Gaucher disease homozygous for the N370S or L444P alleles, as well as cells from patients with two other lysosomal storage diseases. It was hypothesized that these drugs act on the endoplasmic reticulum, increasing its folding efficiency, inhibited due to altered calcium homeostasis. Several other laboratories have reported that cells carrying either the N370S or the F213I alleles are amenable to enzyme enhancement therapy with pharmacological chaperones, whereas cells homozygous for L444P respond poorly. We found that Verapamil treatment does not enhance mutant enzyme activity in any of the cell lines tested, while Diltiazem moderately increases activity in normal cells, and in N370S/N370S and F213I/L444P, but not in L444P/L444P Gaucher cells, or in either of two adult Tay-Sachs disease cell lines. Since the mode of action of pharmacological chaperones and Diltiazem are believed to be different, we examined the possibility that they could act in concert. Diltiazem co-administered with known chaperones failed to increase enzyme activities above that reached by chaperone-treatment alone in any of the patient cell lines. Thus, we re-examined the possibility that Diltiazem acts as a pharmacological chaperone. We found that, at the acidic pH of lysosomes, Diltiazem was not an inhibitor, nor did its presence increase the heat stability of glucocerebrosidase. However, at neutral pH, found in the endoplasmic reticulum, Diltiazem exhibited both of these properties. Thus Diltiazem exhibits the biochemical characteristics of a glucocerebrosidase pharmacological chaperone.
Collapse
Affiliation(s)
- Brigitte Rigat
- Genetics & Genome Biology Program, Research Institute, The Hospital for Sick Children, 555 University Ave, Toronto, Ont., Canada M5G 1X8
| | - Don Mahuran
- Genetics & Genome Biology Program, Research Institute, The Hospital for Sick Children, 555 University Ave, Toronto, Ont., Canada M5G 1X8
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Banting Institute, 100 College St., Toronto, Ont., Canada M5G 1L5
| |
Collapse
|
49
|
Multiple conformational switches in a GTPase complex control co-translational protein targeting. Proc Natl Acad Sci U S A 2009; 106:1754-9. [PMID: 19174514 DOI: 10.1073/pnas.0808573106] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The "GTPase switch" paradigm, in which a GTPase switches between an active, GTP-bound state and an inactive, GDP-bound state through the recruitment of nucleotide exchange factors (GEFs) or GTPase activating proteins (GAPs), has been used to interpret the regulatory mechanism of many GTPases. A notable exception to this paradigm is provided by two GTPases in the signal recognition particle (SRP) and the SRP receptor (SR) that control the co-translational targeting of proteins to cellular membranes. Instead of the classical "GTPase switch," both the SRP and SR undergo a series of discrete conformational rearrangements during their interaction with one another, culminating in their reciprocal GTPase activation. Here, we show that this series of rearrangements during SRP-SR binding and activation provide important control points to drive and regulate protein targeting. Using real-time fluorescence, we showed that the cargo for SRP--ribosomes translating nascent polypeptides with signal sequences--accelerates SRP.SR complex assembly over 100-fold, thereby driving rapid delivery of cargo to the membrane. A series of subsequent rearrangements in the SRP x SR GTPase complex provide important driving forces to unload the cargo during late stages of protein targeting. Further, the cargo delays GTPase activation in the SRP.SR complex by 8-12 fold, creating an important time window that could further improve the efficiency and fidelity of protein targeting. Thus, the SRP and SR GTPases, without recruiting external regulatory factors, constitute a self-sufficient system that provides exquisite spatial and temporal control of a complex cellular process.
Collapse
|
50
|
A single Sec61-complex functions as a protein-conducting channel. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2375-83. [DOI: 10.1016/j.bbamcr.2008.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 08/06/2008] [Accepted: 08/06/2008] [Indexed: 12/30/2022]
|