1
|
van Breugel ME, Gerber A, van Leeuwen F. The choreography of chromatin in RNA polymerase III regulation. Biochem Soc Trans 2024; 52:1173-1189. [PMID: 38666598 PMCID: PMC11346459 DOI: 10.1042/bst20230770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/27/2024]
Abstract
Regulation of eukaryotic gene expression involves a dynamic interplay between the core transcriptional machinery, transcription factors, and chromatin organization and modification. While this applies to transcription by all RNA polymerase complexes, RNA polymerase III (RNAPIII) seems to be atypical with respect to its mechanisms of regulation. One distinctive feature of most RNAPIII transcribed genes is that they are devoid of nucleosomes, which relates to the high levels of transcription. Moreover, most of the regulatory sequences are not outside but within the transcribed open chromatin regions. Yet, several lines of evidence suggest that chromatin factors affect RNAPIII dynamics and activity and that gene sequence alone does not explain the observed regulation of RNAPIII. Here we discuss the role of chromatin modification and organization of RNAPIII transcribed genes and how they interact with the core transcriptional RNAPIII machinery and regulatory DNA elements in and around the transcribed genes.
Collapse
Affiliation(s)
- Maria Elize van Breugel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Alan Gerber
- Department of Neurosurgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam 1081HV, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
2
|
Rey F, Esposito L, Maghraby E, Mauri A, Berardo C, Bonaventura E, Tonduti D, Carelli S, Cereda C. Role of epigenetics and alterations in RNA metabolism in leukodystrophies. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1854. [PMID: 38831585 DOI: 10.1002/wrna.1854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 06/05/2024]
Abstract
Leukodystrophies are a class of rare heterogeneous disorders which affect the white matter of the brain, ultimately leading to a disruption in brain development and a damaging effect on cognitive, motor and social-communicative development. These disorders present a great clinical heterogeneity, along with a phenotypic overlap and this could be partially due to contributions from environmental stimuli. It is in this context that there is a great need to investigate what other factors may contribute to both disease insurgence and phenotypical heterogeneity, and novel evidence are raising the attention toward the study of epigenetics and transcription mechanisms that can influence the disease phenotype beyond genetics. Modulation in the epigenetics machinery including histone modifications, DNA methylation and non-coding RNAs dysregulation, could be crucial players in the development of these disorders, and moreover an aberrant RNA maturation process has been linked to leukodystrophies. Here, we provide an overview of these mechanisms hoping to supply a closer step toward the analysis of leukodystrophies not only as genetically determined but also with an added level of complexity where epigenetic dysregulation is of key relevance. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNA RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Federica Rey
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi," Department of Biomedical and Clinical Sciences, University of Milano, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | - Letizia Esposito
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi," Department of Biomedical and Clinical Sciences, University of Milano, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | - Erika Maghraby
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
- Department of Biology and Biotechnology "L. Spallanzani" (DBB), University of Pavia, Pavia, Italy
| | - Alessia Mauri
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi," Department of Biomedical and Clinical Sciences, University of Milano, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | - Clarissa Berardo
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi," Department of Biomedical and Clinical Sciences, University of Milano, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | - Eleonora Bonaventura
- Unit of Pediatric Neurology, COALA Center for Diagnosis and Treatment of Leukodystrophies, V. Buzzi Children's Hospital, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Davide Tonduti
- Unit of Pediatric Neurology, COALA Center for Diagnosis and Treatment of Leukodystrophies, V. Buzzi Children's Hospital, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Stephana Carelli
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi," Department of Biomedical and Clinical Sciences, University of Milano, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | - Cristina Cereda
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| |
Collapse
|
3
|
Jarrous N, Mani D. Transcription complexes recruit a chaperone to perform cotranscriptional processing of tRNA. Mol Cell 2024; 84:619-620. [PMID: 38364780 DOI: 10.1016/j.molcel.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 02/18/2024]
Abstract
Leone et al.1 reveal that Pol III transcription complexes recruit a chaperone, HSP70, to execute cotranscriptional cleavage of precursor tRNA. HSP70 binds to the polymerase and translocates to nascent precursor tRNA and then tRNA. The last complex facilitates Pol III to engage in a new, efficient transcription cycle with another HSP70.
Collapse
Affiliation(s)
- Nayef Jarrous
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 9112010, Israel.
| | - Dhivakar Mani
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 9112010, Israel
| |
Collapse
|
4
|
Unti MJ, Jaffrey SR. Highly efficient cellular expression of circular mRNA enables prolonged protein expression. Cell Chem Biol 2024; 31:163-176.e5. [PMID: 37883972 PMCID: PMC10841545 DOI: 10.1016/j.chembiol.2023.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/25/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
A major problem with mRNA therapeutics is that mRNA is usually degraded within a few hours after entering the cytosol. New approaches for in vitro synthesis of circular mRNA have allowed increased levels and duration of protein synthesis from mRNA therapeutics due to the long half-life of circular mRNA. However, it remains difficult to genetically encode circular mRNAs in mammalian cells. Here, we describe the adaptation of the Tornado (Twister-optimized RNA for durable overexpression) system to achieve in-cell synthesis of circular mRNAs. We screen different promoters and internal ribosomal entry sites (IRESs) and identify combinations that result in high levels of circular mRNA and protein expression. We show that these circular mRNAs can be packaged into virus-like particles (VLPs), thus enabling prolonged protein expression. Overall, these data describe a platform for synthesis of circular mRNAs and how these circular mRNAs can improve VLP therapeutics.
Collapse
Affiliation(s)
- Mildred J Unti
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
5
|
Dremel SE, Jimenez AR, Tucker JM. "Transfer" of power: The intersection of DNA virus infection and tRNA biology. Semin Cell Dev Biol 2023; 146:31-39. [PMID: 36682929 PMCID: PMC10101907 DOI: 10.1016/j.semcdb.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Transfer RNAs (tRNAs) are at the heart of the molecular biology central dogma, functioning to decode messenger RNAs into proteins. As obligate intracellular parasites, viruses depend on the host translation machinery, including host tRNAs. Thus, the ability of a virus to fine-tune tRNA expression elicits the power to impact the outcome of infection. DNA viruses commonly upregulate the output of RNA polymerase III (Pol III)-dependent transcripts, including tRNAs. Decades after these initial discoveries we know very little about how mature tRNA pools change during viral infection, as tRNA sequencing methodology has only recently reached proficiency. Here, we review perturbation of tRNA biogenesis by DNA virus infection, including an emerging player called tRNA-derived fragments (tRFs). We discuss how tRNA dysregulation shifts the power landscape between the host and virus, highlighting the potential for tRNA-based antivirals as a future therapeutic.
Collapse
Affiliation(s)
- Sarah E Dremel
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ariana R Jimenez
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - Jessica M Tucker
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
6
|
Unti MJ, Jaffrey SR. Highly efficient cellular expression of circular mRNA enables prolonged protein expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.11.548538. [PMID: 37503010 PMCID: PMC10369907 DOI: 10.1101/2023.07.11.548538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A major problem with mRNA therapeutics is the limited duration of protein expression due to the short half-life of mRNA. New approaches for generating highly stable circular mRNA in vitro have allowed increased duration of protein expression. However, it remains difficult to genetically encode circular mRNAs in mammalian cells, which limits the use of circular mRNA in cell-derived therapeutics. Here we describe the adaptation of the Tornado (Twister-optimized RNA for durable overexpression) system to achieve in-cell synthesis of circular mRNAs. We identify the promoter and internal ribosomal entry site (IRES) that result in high levels of protein expression in cells. We then show that these circular mRNAs can be packaged into virus-like particles (VLPs) thus enabling prolonged protein expression. Overall, these data describe a platform for synthesis of circular mRNAs and how these circular mRNAs can markedly enhance the ability of VLPs to function as a mRNA delivery tool.
Collapse
|
7
|
Shekhar AC, Wu WJ, Chen HT. Mutational and biophysical analyses reveal a TFIIIC binding region in the TFIIF-related Rpc53 subunit of RNA polymerase III. J Biol Chem 2023; 299:104859. [PMID: 37230389 PMCID: PMC10404625 DOI: 10.1016/j.jbc.2023.104859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
The TFIIF-like Rpc53/Rpc37 heterodimer of RNA polymerase (pol) III is involved in various stages of transcription. The C-terminal region of Rpc53 dimerizes with Rpc37 to anchor on the lobe domain of the pol III cleft. However, structural and functional features of the Rpc53 N-terminal region had not been characterized previously. Here, we conducted site-directed alanine replacement mutagenesis on the Rpc53 N-terminus, generating yeast strains that exhibited a cold-sensitive growth defect and severely compromised pol III transcriptional activity. Circular dichroism and NMR spectroscopy revealed a highly disordered 57-amino acid polypeptide in the Rpc53 N-terminus. This polypeptide is a versatile protein-binding module displaying nanomolar-level binding affinities for Rpc37 and the Tfc4 subunit of the transcription initiation factor TFIIIC. Accordingly, we denote this Rpc53 N-terminus polypeptide as the TFIIIC-binding region or CBR. Alanine replacements in the CBR significantly reduced its binding affinity for Tfc4, highlighting its functional importance to cell growth and transcription in vitro. Our study reveals the functional basis for Rpc53's CBR in assembly of the pol III transcription initiation complex.
Collapse
Affiliation(s)
- Arvind Chandra Shekhar
- Molecular and Cell Biology, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C.; Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Hung-Ta Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, R.O.C..
| |
Collapse
|
8
|
Girbig M, Xie J, Grötsch H, Libri D, Porrua O, Müller CW. Architecture of the yeast Pol III pre-termination complex and pausing mechanism on poly(dT) termination signals. Cell Rep 2022; 40:111316. [PMID: 36070694 DOI: 10.1016/j.celrep.2022.111316] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 12/20/2022] Open
Abstract
RNA polymerase (Pol) III is specialized to transcribe short, abundant RNAs, for which it terminates transcription on polythymine (dT) stretches on the non-template (NT) strand. When Pol III reaches the termination signal, it pauses and forms the pre-termination complex (PTC). Here, we report cryoelectron microscopy (cryo-EM) structures of the yeast Pol III PTC and complementary functional states at resolutions of 2.7-3.9 Å. Pol III recognizes the poly(dT) termination signal with subunit C128 that forms a hydrogen-bond network with the NT strand and, thereby, induces pausing. Mutating key interacting residues interferes with transcription termination in vitro, impairs yeast growth, and causes global termination defects in vivo, confirming our structural results. Additional cryo-EM analysis reveals that C53-C37, a Pol III subcomplex and key termination factor, participates indirectly in Pol III termination. We propose a mechanistic model of Pol III transcription termination and rationalize why Pol III, unlike Pol I and Pol II, terminates on poly(dT) signals.
Collapse
Affiliation(s)
- Mathias Girbig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Juanjuan Xie
- Université de Paris, CNRS, Institut Jacques Monod, 75006 Paris, France
| | - Helga Grötsch
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Domenico Libri
- Université de Paris, CNRS, Institut Jacques Monod, 75006 Paris, France
| | - Odil Porrua
- Université de Paris, CNRS, Institut Jacques Monod, 75006 Paris, France
| | - Christoph W Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
9
|
Structural insights into nuclear transcription by eukaryotic DNA-dependent RNA polymerases. Nat Rev Mol Cell Biol 2022; 23:603-622. [PMID: 35505252 DOI: 10.1038/s41580-022-00476-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
The eukaryotic transcription apparatus synthesizes a staggering diversity of RNA molecules. The labour of nuclear gene transcription is, therefore, divided among multiple DNA-dependent RNA polymerases. RNA polymerase I (Pol I) transcribes ribosomal RNA, Pol II synthesizes messenger RNAs and various non-coding RNAs (including long non-coding RNAs, microRNAs and small nuclear RNAs) and Pol III produces transfer RNAs and other short RNA molecules. Pol I, Pol II and Pol III are large, multisubunit protein complexes that associate with a multitude of additional factors to synthesize transcripts that largely differ in size, structure and abundance. The three transcription machineries share common characteristics, but differ widely in various aspects, such as numbers of RNA polymerase subunits, regulatory elements and accessory factors, which allows them to specialize in transcribing their specific RNAs. Common to the three RNA polymerases is that the transcription process consists of three major steps: transcription initiation, transcript elongation and transcription termination. In this Review, we outline the common principles and differences between the Pol I, Pol II and Pol III transcription machineries and discuss key structural and functional insights obtained into the three stages of their transcription processes.
Collapse
|
10
|
Enserink JM, Chymkowitch P. Cell Cycle-Dependent Transcription: The Cyclin Dependent Kinase Cdk1 Is a Direct Regulator of Basal Transcription Machineries. Int J Mol Sci 2022; 23:ijms23031293. [PMID: 35163213 PMCID: PMC8835803 DOI: 10.3390/ijms23031293] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/22/2022] [Accepted: 01/22/2022] [Indexed: 12/21/2022] Open
Abstract
The cyclin-dependent kinase Cdk1 is best known for its function as master regulator of the cell cycle. It phosphorylates several key proteins to control progression through the different phases of the cell cycle. However, studies conducted several decades ago with mammalian cells revealed that Cdk1 also directly regulates the basal transcription machinery, most notably RNA polymerase II. More recent studies in the budding yeast Saccharomyces cerevisiae have revisited this function of Cdk1 and also revealed that Cdk1 directly controls RNA polymerase III activity. These studies have also provided novel insight into the physiological relevance of this process. For instance, cell cycle-stage-dependent activity of these complexes may be important for meeting the increased demand for various proteins involved in housekeeping, metabolism, and protein synthesis. Recent work also indicates that direct regulation of the RNA polymerase II machinery promotes cell cycle entry. Here, we provide an overview of the regulation of basal transcription by Cdk1, and we hypothesize that the original function of the primordial cell-cycle CDK was to regulate RNAPII and that it later evolved into specialized kinases that govern various aspects of the transcription machinery and the cell cycle.
Collapse
Affiliation(s)
- Jorrit M. Enserink
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
- Correspondence: (J.M.E.); (P.C.)
| | - Pierre Chymkowitch
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
- Department of Microbiology, Oslo University Hospital, 0372 Oslo, Norway
- Correspondence: (J.M.E.); (P.C.)
| |
Collapse
|
11
|
Transcription recycling assays identify PAF1 as a driver for RNA Pol II recycling. Nat Commun 2021; 12:6318. [PMID: 34732721 PMCID: PMC8566496 DOI: 10.1038/s41467-021-26604-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/17/2021] [Indexed: 11/20/2022] Open
Abstract
RNA Polymerase II (Pol II) transcriptional recycling is a mechanism for which the required factors and contributions to overall gene expression levels are poorly understood. We describe an in vitro methodology facilitating unbiased identification of putative RNA Pol II transcriptional recycling factors and quantitative measurement of transcriptional output from recycled transcriptional components. Proof-of-principle experiments identified PAF1 complex components among recycling factors and detected defective transcriptional output from Pol II recycling following PAF1 depletion. Dynamic ChIP-seq confirmed PAF1 silencing triggered defective Pol II recycling in human cells. Prostate tumors exhibited enhanced transcriptional recycling, which was attenuated by antibody-based PAF1 depletion. These findings identify Pol II recycling as a potential target in cancer and demonstrate the applicability of in vitro and cellular transcription assays to characterize Pol II recycling in other disease states. RNA Polymerase II (Pol II) recycling can influence transcription efficiency. Here the authors describe an approach aimed at facilitating the identification of factors involved in Pol II recycling and identify PAF1 complex components as mediators of recycling.
Collapse
|
12
|
Hou H, Li Y, Wang M, Liu A, Yu Z, Chen K, Zhao D, Xu Y. Structural insights into RNA polymerase III-mediated transcription termination through trapping poly-deoxythymidine. Nat Commun 2021; 12:6135. [PMID: 34675218 PMCID: PMC8531034 DOI: 10.1038/s41467-021-26402-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/24/2021] [Indexed: 01/11/2023] Open
Abstract
Termination of the RNA polymerase III (Pol III)-mediated transcription requires the conversion of an elongation complex (EC) to a pre-termination complex (PTC) on poly-deoxythymidine (dT)-containing non-template strand, a mechanism distinct from Pol I and Pol II. Here, our in vitro transcription elongation assay showed that 5-7 dT-containing DNA template led to transcription termination of Pol III, but not Pol I or Pol II. We assembled human Pol III PTC on a 7 dT-containing DNA template and determined the structure at 3.6 Å resolution. The structure reveals that poly-dT are trapped in a narrow exit tunnel formed by RPC2. A hydrophobic gate of the exit tunnel separates the bases of two connected deoxythymidines and may prevent translocation of the non-template strand. The fork loop 2 stabilizes both template and non-template strands around the transcription fork, and may further prevent strand translocation. Our study shows that the Pol III-specific exit tunnel and FL2 allow for efficient translocation of non-poly-dT sequence during transcription elongation but trap poly-dT to promote DNA retention of Pol III, revealing molecular mechanism of poly-dT-dependent transcription termination of Pol III.
Collapse
Affiliation(s)
- Haifeng Hou
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Yan Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Mo Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Aijun Liu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Zishuo Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Ke Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Dan Zhao
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
- Human Phenome Institute, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China.
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock School of Life Sciences, Inner Mongolia University, Hohhot, 010070, P. R. China.
| |
Collapse
|
13
|
Mishra S, Hasan SH, Sakhawala RM, Chaudhry S, Maraia RJ. Mechanism of RNA polymerase III termination-associated reinitiation-recycling conferred by the essential function of the N terminal-and-linker domain of the C11 subunit. Nat Commun 2021; 12:5900. [PMID: 34625550 PMCID: PMC8501072 DOI: 10.1038/s41467-021-26080-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/17/2021] [Indexed: 01/06/2023] Open
Abstract
RNA polymerase III achieves high level tRNA synthesis by termination-associated reinitiation-recycling that involves the essential C11 subunit and heterodimeric C37/53. The C11-CTD (C-terminal domain) promotes Pol III active center-intrinsic RNA 3'-cleavage although deciphering function for this activity has been complicated. We show that the isolated NTD (N-terminal domain) of C11 stimulates Pol III termination by C37/53 but not reinitiation-recycling which requires the NTD-linker (NTD-L). By an approach different from what led to current belief that RNA 3'-cleavage activity is essential, we show that NTD-L can provide the essential function of Saccharomyces cerevisiae C11 whereas classic point mutations that block cleavage, interfere with active site function and are toxic to growth. Biochemical and in vivo analysis including of the C11 invariant central linker led to a model for Pol III termination-associated reinitiation-recycling. The C11 NTD and CTD stimulate termination and RNA 3'-cleavage, respectively, whereas reinitiation-recycling activity unique to Pol III requires only the NTD-linker. RNA 3'-cleavage activity increases growth rate but is nonessential.
Collapse
Affiliation(s)
- Saurabh Mishra
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Department of Biochemistry, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Shaina H Hasan
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Mayo Clinic Alix School of Medicine, Scottsdale, AZ, USA
| | - Rima M Sakhawala
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Section on Regulatory RNA, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Shereen Chaudhry
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Pfizer (Pearl River Site), 401 N Middletown Rd, Pearl River, NY, USA
| | - Richard J Maraia
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
14
|
Lata E, Choquet K, Sagliocco F, Brais B, Bernard G, Teichmann M. RNA Polymerase III Subunit Mutations in Genetic Diseases. Front Mol Biosci 2021; 8:696438. [PMID: 34395528 PMCID: PMC8362101 DOI: 10.3389/fmolb.2021.696438] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
RNA polymerase (Pol) III transcribes small untranslated RNAs such as 5S ribosomal RNA, transfer RNAs, and U6 small nuclear RNA. Because of the functions of these RNAs, Pol III transcription is best known for its essential contribution to RNA maturation and translation. Surprisingly, it was discovered in the last decade that various inherited mutations in genes encoding nine distinct subunits of Pol III cause tissue-specific diseases rather than a general failure of all vital functions. Mutations in the POLR3A, POLR3C, POLR3E and POLR3F subunits are associated with susceptibility to varicella zoster virus-induced encephalitis and pneumonitis. In addition, an ever-increasing number of distinct mutations in the POLR3A, POLR3B, POLR1C and POLR3K subunits cause a spectrum of neurodegenerative diseases, which includes most notably hypomyelinating leukodystrophy. Furthermore, other rare diseases are also associated with mutations in genes encoding subunits of Pol III (POLR3H, POLR3GL) and the BRF1 component of the TFIIIB transcription initiation factor. Although the causal relationship between these mutations and disease development is widely accepted, the exact molecular mechanisms underlying disease pathogenesis remain enigmatic. Here, we review the current knowledge on the functional impact of specific mutations, possible Pol III-related disease-causing mechanisms, and animal models that may help to better understand the links between Pol III mutations and disease.
Collapse
Affiliation(s)
- Elisabeth Lata
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| | - Karine Choquet
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Francis Sagliocco
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| | - Bernard Brais
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Geneviève Bernard
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, QC, Canada
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Martin Teichmann
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| |
Collapse
|
15
|
Structure of human RNA polymerase III elongation complex. Cell Res 2021; 31:791-800. [PMID: 33674783 PMCID: PMC8249397 DOI: 10.1038/s41422-021-00472-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/06/2021] [Indexed: 01/31/2023] Open
Abstract
RNA polymerase III (Pol III) transcribes essential structured small RNAs, such as tRNAs, 5S rRNA and U6 snRNA. The transcriptional activity of Pol III is tightly controlled and its dysregulation is associated with human diseases, such as cancer. Human Pol III has two isoforms with difference only in one of its subunits RPC7 (α and β). Despite structural studies of yeast Pol III, structure of human Pol III remains unsolved. Here, we determined the structures of 17-subunit human Pol IIIα complex in the backtracked and post-translocation states, respectively. Human Pol III contains a generally conserved catalytic core, similar to that of yeast counterpart, and structurally unique RPC3-RPC6-RPC7 heterotrimer and RPC10. The N-ribbon of TFIIS-like RPC10 docks on the RPC4-RPC5 heterodimer and the C-ribbon inserts into the funnel of Pol III in the backtracked state but is more flexible in the post-translocation state. RPC7 threads through the heterotrimer and bridges the stalk and Pol III core module. The winged helix 1 domain of RPC6 and the N-terminal region of RPC7α stabilize each other and may prevent Maf1-mediated repression of Pol III activity. The C-terminal FeS cluster of RPC6 coordinates a network of interactions that mediate core-heterotrimer contacts and stabilize Pol III. Our structural analysis sheds new light on the molecular mechanism of human Pol IIIα-specific transcriptional regulation and provides explanations for upregulated Pol III activity in RPC7α-dominant cancer cells.
Collapse
|
16
|
Dwyer K, Agarwal N, Pile L, Ansari A. Gene Architecture Facilitates Intron-Mediated Enhancement of Transcription. Front Mol Biosci 2021; 8:669004. [PMID: 33968994 PMCID: PMC8097089 DOI: 10.3389/fmolb.2021.669004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/31/2021] [Indexed: 12/28/2022] Open
Abstract
Introns impact several vital aspects of eukaryotic organisms like proteomic plasticity, genomic stability, stress response and gene expression. A role for introns in the regulation of gene expression at the level of transcription has been known for more than thirty years. The molecular basis underlying the phenomenon, however, is still not entirely clear. An important clue came from studies performed in budding yeast that indicate that the presence of an intron within a gene results in formation of a multi-looped gene architecture. When looping is defective, these interactions are abolished, and there is no enhancement of transcription despite normal splicing. In this review, we highlight several potential mechanisms through which looping interactions may enhance transcription. The promoter-5′ splice site interaction can facilitate initiation of transcription, the terminator-3′ splice site interaction can enable efficient termination of transcription, while the promoter-terminator interaction can enhance promoter directionality and expedite reinitiation of transcription. Like yeast, mammalian genes also exhibit an intragenic interaction of the promoter with the gene body, especially exons. Such promoter-exon interactions may be responsible for splicing-dependent transcriptional regulation. Thus, the splicing-facilitated changes in gene architecture may play a critical role in regulation of transcription in yeast as well as in higher eukaryotes.
Collapse
Affiliation(s)
- Katherine Dwyer
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| | - Neha Agarwal
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| | - Lori Pile
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| |
Collapse
|
17
|
|
18
|
Berg MD, Brandl CJ. Transfer RNAs: diversity in form and function. RNA Biol 2021; 18:316-339. [PMID: 32900285 PMCID: PMC7954030 DOI: 10.1080/15476286.2020.1809197] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022] Open
Abstract
As the adaptor that decodes mRNA sequence into protein, the basic aspects of tRNA structure and function are central to all studies of biology. Yet the complexities of their properties and cellular roles go beyond the view of tRNAs as static participants in protein synthesis. Detailed analyses through more than 60 years of study have revealed tRNAs to be a fascinatingly diverse group of molecules in form and function, impacting cell biology, physiology, disease and synthetic biology. This review analyzes tRNA structure, biosynthesis and function, and includes topics that demonstrate their diversity and growing importance.
Collapse
Affiliation(s)
- Matthew D. Berg
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | | |
Collapse
|
19
|
Cryo-EM structures of human RNA polymerase III in its unbound and transcribing states. Nat Struct Mol Biol 2021; 28:210-219. [PMID: 33558764 PMCID: PMC7610652 DOI: 10.1038/s41594-020-00555-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023]
Abstract
RNA polymerase III (Pol III) synthesizes transfer RNAs and other short, essential RNAs. Human Pol III misregulation is linked to tumor transformation, neurodegenerative and developmental disorders, and increased sensitivity to viral infections. Here, we present cryo-electron microscopy structures at 2.8 to 3.3 Å resolution of transcribing and unbound human Pol III. We observe insertion of the TFIIS-like subunit RPC10 into the polymerase funnel, providing insights into how RPC10 triggers transcription termination. Our structures resolve elements absent from Saccharomyces cerevisiae Pol III such as the winged-helix domains of RPC5 and an iron-sulfur cluster, which tethers the heterotrimer subcomplex to the core. The cancer-associated RPC7α isoform binds the polymerase clamp, potentially interfering with Pol III inhibition by tumor suppressor MAF1, which may explain why overexpressed RPC7α enhances tumor transformation. Finally, the human Pol III structure allows mapping of disease-related mutations and may contribute to the development of inhibitors that selectively target Pol III for therapeutic interventions.
Collapse
|
20
|
Shukla A, Bhalla P, Potdar PK, Jampala P, Bhargava P. Transcription-dependent enrichment of the yeast FACT complex influences nucleosome dynamics on the RNA polymerase III-transcribed genes. RNA (NEW YORK, N.Y.) 2020; 27:rna.077974.120. [PMID: 33277439 PMCID: PMC7901838 DOI: 10.1261/rna.077974.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/30/2020] [Indexed: 05/04/2023]
Abstract
The FACT (FAcilitates Chromatin Transactions) complex influences transcription initiation and enables passage of RNA polymerase (pol) II through gene body nucleosomes during elongation. In the budding yeast, ~280 non-coding RNA genes highly transcribed in vivo by pol III are found in the nucleosome-free regions bordered by positioned nucleosomes. The downstream nucleosome dynamics was found to regulate transcription via controlling the gene terminator accessibility and hence, terminator-dependent pol III recycling. As opposed to the enrichment at the 5'-ends of pol II-transcribed genes, our genome-wide mapping found transcription-dependent enrichment of the FACT subunit Spt16 near the 3'-end of all pol III-transcribed genes. Spt16 physically associates with the pol III transcription complex and shows gene-specific occupancy levels on the individual genes. On the non-tRNA pol III-transcribed genes, Spt16 facilitates transcription by reducing the nucleosome occupany on the gene body. On the tRNA genes, it maintains the position of the nucleosome at the 3' gene-end and affects transcription in gene-specific manner. Under nutritional stress, Spt16 enrichment is abolished in the gene downstream region of all pol III-transcribed genes and reciprocally changed on the induced or repressed pol II-transcribed ESR genes. Under the heat and replicative stress, its occupancy on the pol III-transcribed genes increases significantly. Our results show that Spt16 elicits a differential, gene-specific and stress-responsive dynamics, which provides a novel stress-sensor mechanism of regulating transcription against external stress. By primarily influencing the nucleosomal organization, FACT links the downstream nucleosome dynamics to transcription and environmental stress on the pol III-transcribed genes.
Collapse
|
21
|
Al-Husini N, Medler S, Ansari A. Crosstalk of promoter and terminator during RNA polymerase II transcription cycle. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194657. [PMID: 33246184 DOI: 10.1016/j.bbagrm.2020.194657] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022]
Abstract
The transcription cycle of RNAPII is comprised of three consecutive steps; initiation, elongation and termination. It has been assumed that the initiation and termination steps occur in spatial isolation, essentially as independent events. A growing body of evidence, however, has challenged this dogma. First, factors involved in initiation and termination exhibit both a genetic and a physical interaction during transcription. Second, the initiation and termination factors have been found to occupy both ends of a transcribing gene. Third, physical interaction of initiation and termination factors occupying distal ends of a gene sometime results in the entire terminator region of a genes looping back and contact its cognate promoter, thereby forming a looped gene architecture during transcription. A logical interpretation of these findings is that the initiation and termination steps of transcription do not occur in isolation. There is extensive communication of factors occupying promoter and terminator ends of a gene during transcription cycle. This review entails a discussion of the promoter-terminator crosstalk and its implication in the context of transcription.
Collapse
Affiliation(s)
- Nadra Al-Husini
- Department of Biological Science, Wayne State University, Detroit, MI, United States of America
| | - Scott Medler
- Department of Biological Science, Wayne State University, Detroit, MI, United States of America
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, United States of America.
| |
Collapse
|
22
|
Kramm K, Schröder T, Gouge J, Vera AM, Gupta K, Heiss FB, Liedl T, Engel C, Berger I, Vannini A, Tinnefeld P, Grohmann D. DNA origami-based single-molecule force spectroscopy elucidates RNA Polymerase III pre-initiation complex stability. Nat Commun 2020; 11:2828. [PMID: 32504003 PMCID: PMC7275037 DOI: 10.1038/s41467-020-16702-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 05/13/2020] [Indexed: 01/03/2023] Open
Abstract
The TATA-binding protein (TBP) and a transcription factor (TF) IIB-like factor are important constituents of all eukaryotic initiation complexes. The reason for the emergence and strict requirement of the additional initiation factor Bdp1 in the RNA polymerase (RNAP) III system, however, remained elusive. A poorly studied aspect in this context is the effect of DNA strain arising from DNA compaction and transcriptional activity on initiation complex formation. We made use of a DNA origami-based force clamp to follow the assembly of human initiation complexes in the RNAP II and RNAP III systems at the single-molecule level under piconewton forces. We demonstrate that TBP-DNA complexes are force-sensitive and TFIIB is sufficient to stabilise TBP on a strained promoter. In contrast, Bdp1 is the pivotal component that ensures stable anchoring of initiation factors, and thus the polymerase itself, in the RNAP III system. Thereby, we offer an explanation for the crucial role of Bdp1 for the high transcriptional output of RNAP III.
Collapse
Affiliation(s)
- Kevin Kramm
- Single-Molecule Biochemistry Lab, Institute of Microbiology and Archaea Centre, University of Regensburg, 93053, Regensburg, Germany
| | - Tim Schröder
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Jerome Gouge
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Andrés Manuel Vera
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Kapil Gupta
- Bristol Synthetic Biology Centre BrisSynBio, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Clifton, BS8 1TD, UK
| | - Florian B Heiss
- Regensburg Center of Biochemistry (RCB), University of Regensburg, 93053, Regensburg, Germany
| | - Tim Liedl
- Faculty of Physics and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Christoph Engel
- Regensburg Center of Biochemistry (RCB), University of Regensburg, 93053, Regensburg, Germany
| | - Imre Berger
- Bristol Synthetic Biology Centre BrisSynBio, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Clifton, BS8 1TD, UK
| | - Alessandro Vannini
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
- Human Technopole Foundation, Centre of Structural Biology, 20157, Milan, Italy
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Dina Grohmann
- Single-Molecule Biochemistry Lab, Institute of Microbiology and Archaea Centre, University of Regensburg, 93053, Regensburg, Germany.
- Regensburg Center of Biochemistry (RCB), University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
23
|
Gene-Specific Control of tRNA Expression by RNA Polymerase II. Mol Cell 2020; 78:765-778.e7. [PMID: 32298650 DOI: 10.1016/j.molcel.2020.03.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/12/2020] [Accepted: 03/13/2020] [Indexed: 12/20/2022]
Abstract
Increasing evidence suggests that tRNA levels are dynamically and specifically regulated in response to internal and external cues to modulate the cellular translational program. However, the molecular players and the mechanisms regulating the gene-specific expression of tRNAs are still unknown. Using an inducible auxin-degron system to rapidly deplete RPB1 (the largest subunit of RNA Pol II) in living cells, we identified Pol II as a direct gene-specific regulator of tRNA transcription. Our data suggest that Pol II transcription robustly interferes with Pol III function at specific tRNA genes. This activity was further found to be essential for MAF1-mediated repression of a large set of tRNA genes during serum starvation, indicating that repression of tRNA genes by Pol II is dynamically regulated. Hence, Pol II plays a direct and central role in the gene-specific regulation of tRNA expression.
Collapse
|
24
|
Campbell M, Izumiya Y. PAN RNA: transcriptional exhaust from a viral engine. J Biomed Sci 2020; 27:41. [PMID: 32143650 PMCID: PMC7060532 DOI: 10.1186/s12929-020-00637-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/03/2020] [Indexed: 02/06/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV), also designated human herpesvirus 8 (HHV-8), has been linked to Kaposi’s sarcoma, as well as to primary effusion lymphoma (PEL), and a subset of multicentric Castleman’s disease. KSHV genomes are maintained as episomes within infected cells and the virus exhibits a biphasic life cycle consisting of a life-long latent phase during which only a few viral genes are expressed and no viral progeny are produced and a transient lytic reactivation phase, in which a full repertoire of ~ 80 lytic genes are activated in a temporally regulated manner culminating in the release of new virions. Lytic replication is initiated by a single viral protein, K-Rta (ORF50), which activates more than 80 viral genes from multiple resident viral episomes (i.e., viral chromosomes). One of the major targets of K-Rta is a long non-coding nuclear RNA, PAN RNA (polyadenylated nuclear RNA), a lncRNA that accumulates to exceedingly high levels in the nucleus during viral reactivation. K-Rta directly binds to the PAN RNA promoter and robustly activates PAN RNA expression. Although PAN RNA has been known for over 20 years, its role in viral replication is still incompletely understood. In this perspective, we will briefly review the current understanding of PAN RNA and then describe our current working model of this RNA. The model is based on our observations concerning events that occur during KSHV lytic reactivation including (i) a marked accumulation of RNA Pol II at the PAN promoter, (ii) genomic looping emanating from the PAN locus, (iii) interaction of a second viral lytic protein (ORF57) with K-Rta, PAN RNA and RNA Pol II, (iv) the essential requirement for PAN RNA expression in cis for optimal transcriptional execution needed for the entire lytic program, and (v) ORF57 recruitment of RNA Pol II to the PAN genomic locus. Together our results generate a model in which the PAN locus serves as a hub for sequestration/trapping of the cellular transcriptional machinery proximal to viral episomes. Sequestration at the PAN locus facilitates high levels of viral transcription throughout the viral genome during lytic replication. ORF57 acts as a transcription-dependent transactivator at the PAN locus by binding to both Rta and PAN to locally trap RNA Pol II. The resulting accumulation of high levels of nuclear PAN RNA created by this process is an inducible enhancer-derived (eRNA) by-product that litters the infected cell nucleus.
Collapse
Affiliation(s)
- Mel Campbell
- Department of Dermatology and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, 4645 2nd Avenue Research III Room 3100, Sacramento, CA, 95817, USA.
| | - Yoshihiro Izumiya
- Department of Dermatology and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, 4645 2nd Avenue Research III Room 3100, Sacramento, CA, 95817, USA.
| |
Collapse
|
25
|
Harden TT, Herlambang KS, Chamberlain M, Lalanne JB, Wells CD, Li GW, Landick R, Hochschild A, Kondev J, Gelles J. Alternative transcription cycle for bacterial RNA polymerase. Nat Commun 2020; 11:448. [PMID: 31974358 PMCID: PMC6978322 DOI: 10.1038/s41467-019-14208-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/10/2019] [Indexed: 11/18/2022] Open
Abstract
RNA polymerases (RNAPs) transcribe genes through a cycle of recruitment to promoter DNA, initiation, elongation, and termination. After termination, RNAP is thought to initiate the next round of transcription by detaching from DNA and rebinding a new promoter. Here we use single-molecule fluorescence microscopy to observe individual RNAP molecules after transcript release at a terminator. Following termination, RNAP almost always remains bound to DNA and sometimes exhibits one-dimensional sliding over thousands of basepairs. Unexpectedly, the DNA-bound RNAP often restarts transcription, usually in reverse direction, thus producing an antisense transcript. Furthermore, we report evidence of this secondary initiation in live cells, using genome-wide RNA sequencing. These findings reveal an alternative transcription cycle that allows RNAP to reinitiate without dissociating from DNA, which is likely to have important implications for gene regulation.
Collapse
Affiliation(s)
- Timothy T Harden
- Department of Physics, Brandeis University, Waltham, MA, 02454, USA
| | | | | | - Jean-Benoît Lalanne
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Christopher D Wells
- Department of Microbiology, Blavatnick Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Gene-Wei Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Robert Landick
- Department of Biochemistry and Department of Bacteriology, University of Wisconsin, Madison, WI, 53706, USA
| | - Ann Hochschild
- Department of Microbiology, Blavatnick Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, MA, 02454, USA.
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA, 02454, USA.
| |
Collapse
|
26
|
Yeast PAF1 complex counters the pol III accumulation and replication stress on the tRNA genes. Sci Rep 2019; 9:12892. [PMID: 31501524 PMCID: PMC6733944 DOI: 10.1038/s41598-019-49316-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/21/2019] [Indexed: 12/13/2022] Open
Abstract
The RNA polymerase (pol) III transcribes mostly short, house-keeping genes, which produce stable, non-coding RNAs. The tRNAs genes, highly transcribed by pol III in vivo are known replication fork barriers. One of the transcription factors, the PAF1C (RNA polymerase II associated factor 1 complex) is reported to associate with pol I and pol II and influence their transcription. We found low level PAF1C occupancy on the yeast pol III-transcribed genes, which is not correlated with nucleosome positions, pol III occupancy and transcription. PAF1C interacts with the pol III transcription complex and causes pol III loss from the genes under replication stress. Genotoxin exposure causes pol III but not Paf1 loss from the genes. In comparison, Paf1 deletion leads to increased occupancy of pol III, γ-H2A and DNA pol2 in gene-specific manner. Paf1 restricts the accumulation of pol III by influencing the pol III pause on the genes, which reduces the pol III barrier to the replication fork progression.
Collapse
|
27
|
Rivosecchi J, Larochelle M, Teste C, Grenier F, Malapert A, Ricci EP, Bernard P, Bachand F, Vanoosthuyse V. Senataxin homologue Sen1 is required for efficient termination of RNA polymerase III transcription. EMBO J 2019; 38:e101955. [PMID: 31294478 DOI: 10.15252/embj.2019101955] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 01/13/2023] Open
Abstract
R-loop disassembly by the human helicase Senataxin contributes to genome integrity and to proper transcription termination at a subset of RNA polymerase II genes. Whether Senataxin also contributes to transcription termination at other classes of genes has remained unclear. Here, we show that Sen1, one of two fission yeast homologues of Senataxin, promotes efficient termination of RNA polymerase III (RNAP3) transcription in vivo. In the absence of Sen1, RNAP3 accumulates downstream of RNAP3-transcribed genes and produces long exosome-sensitive 3'-extended transcripts. Importantly, neither of these defects was affected by the removal of R-loops. The finding that Sen1 acts as an ancillary factor for RNAP3 transcription termination in vivo challenges the pre-existing view that RNAP3 terminates transcription autonomously. We propose that Sen1 is a cofactor for transcription termination that has been co-opted by different RNA polymerases in the course of evolution.
Collapse
Affiliation(s)
- Julieta Rivosecchi
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, CNRS, UMR 5239, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Marc Larochelle
- Département de Biochimie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Camille Teste
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, CNRS, UMR 5239, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Frédéric Grenier
- Département de Biochimie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Amélie Malapert
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, CNRS, UMR 5239, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Emiliano P Ricci
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, CNRS, UMR 5239, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Pascal Bernard
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, CNRS, UMR 5239, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - François Bachand
- Département de Biochimie, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Vincent Vanoosthuyse
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, CNRS, UMR 5239, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
28
|
Herrera MC, Chymkowitch P, Robertson JM, Eriksson J, Bøe SO, Alseth I, Enserink JM. Cdk1 gates cell cycle-dependent tRNA synthesis by regulating RNA polymerase III activity. Nucleic Acids Res 2019; 46:11698-11711. [PMID: 30247619 PMCID: PMC6294503 DOI: 10.1093/nar/gky846] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/10/2018] [Indexed: 01/14/2023] Open
Abstract
tRNA genes are transcribed by RNA polymerase III (RNAPIII). During recent years it has become clear that RNAPIII activity is strictly regulated by the cell in response to environmental cues and the homeostatic status of the cell. However, the molecular mechanisms that control RNAPIII activity to regulate the amplitude of tDNA transcription in normally cycling cells are not well understood. Here, we show that tRNA levels fluctuate during the cell cycle and reveal an underlying molecular mechanism. The cyclin Clb5 recruits the cyclin dependent kinase Cdk1 to tRNA genes to boost tDNA transcription during late S phase. At tDNA genes, Cdk1 promotes the recruitment of TFIIIC, stimulates the interaction between TFIIIB and TFIIIC, and increases the dynamics of RNA polymerase III in vivo. Furthermore, we identified Bdp1 as a putative Cdk1 substrate in this process. Preventing Bdp1 phosphorylation prevented cell cycle-dependent recruitment of TFIIIC and abolished the cell cycle-dependent increase in tDNA transcription. Our findings demonstrate that under optimal growth conditions Cdk1 gates tRNA synthesis in S phase by regulating the RNAPIII machinery, revealing a direct link between the cell cycle and RNAPIII activity.
Collapse
Affiliation(s)
- Maria C Herrera
- Department of Molecular Cell Biology, Institute for Cancer Research, the Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway.,Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,The Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371, Norway
| | - Pierre Chymkowitch
- Department of Molecular Cell Biology, Institute for Cancer Research, the Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway
| | - Joseph M Robertson
- Department of Molecular Cell Biology, Institute for Cancer Research, the Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway.,Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jens Eriksson
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Stig Ove Bøe
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Ingrun Alseth
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Jorrit M Enserink
- Department of Molecular Cell Biology, Institute for Cancer Research, the Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway.,Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,The Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371, Norway
| |
Collapse
|
29
|
Mishra S, Maraia RJ. RNA polymerase III subunits C37/53 modulate rU:dA hybrid 3' end dynamics during transcription termination. Nucleic Acids Res 2019; 47:310-327. [PMID: 30407541 PMCID: PMC6326807 DOI: 10.1093/nar/gky1109] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/22/2018] [Indexed: 12/18/2022] Open
Abstract
RNA polymerase (RNAP) III synthesizes tRNAs and other transcripts, and mutations to its subunits cause human disorders. The RNAP III subunit-heterodimer C37/53 functions in initiation, elongation and in termination-associated reinitiation with subunit C11. C37/53 is related to heterodimers associated with RNAPs I and II, and C11 is related to TFIIS and Rpa12.2, the active site RNA 3' cleavage factors for RNAPs II and I. Critical to termination is stability of the RNA:DNA hybrid bound in the active center, which is loose for RNAP III relative to other RNAPs. Here, we examined RNAP III lacking C37/53/C11 and various reconstituted forms during termination. First, we established a minimal terminator as 5T and 3A on the non-template and template DNA strands, respectively. We demonstrate that C11 stimulates termination, and does so independently of its RNA cleavage activity. We found that C37/53 sensitizes RNAP III termination to RNA:DNA hybrid strength and promotes RNA 3' end pairing/annealing with the template. The latter counteracts C11-insensitive arrest in the proximal part of the oligo(T)-tract, promoting oligo(rU:dA) extension toward greater hybrid instability and RNA release. The data also indicate that RNA 3' end engagement with the active site is a determinant of termination. Broader implications are also discussed.
Collapse
Affiliation(s)
- Saurabh Mishra
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard J Maraia
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- Commissioned Corps, U.S. Public Health Service, Rockville, MD 20852, USA
| |
Collapse
|
30
|
Greber BJ, Nogales E. The Structures of Eukaryotic Transcription Pre-initiation Complexes and Their Functional Implications. Subcell Biochem 2019; 93:143-192. [PMID: 31939151 DOI: 10.1007/978-3-030-28151-9_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcription is a highly regulated process that supplies living cells with coding and non-coding RNA molecules. Failure to properly regulate transcription is associated with human pathologies, including cancers. RNA polymerase II is the enzyme complex that synthesizes messenger RNAs that are then translated into proteins. In spite of its complexity, RNA polymerase requires a plethora of general transcription factors to be recruited to the transcription start site as part of a large transcription pre-initiation complex, and to help it gain access to the transcribed strand of the DNA. This chapter reviews the structure and function of these eukaryotic transcription pre-initiation complexes, with a particular emphasis on two of its constituents, the multisubunit complexes TFIID and TFIIH. We also compare the overall architecture of the RNA polymerase II pre-initiation complex with those of RNA polymerases I and III, involved in transcription of ribosomal RNA and non-coding RNAs such as tRNAs and snRNAs, and discuss the general, conserved features that are applicable to all eukaryotic RNA polymerase systems.
Collapse
Affiliation(s)
- Basil J Greber
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Eva Nogales
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
31
|
Bhalla P, Vernekar DV, Gilquin B, Couté Y, Bhargava P. Interactome of the yeast RNA polymerase III transcription machinery constitutes several chromatin modifiers and regulators of the genes transcribed by RNA polymerase II. Gene 2018; 702:205-214. [PMID: 30593915 DOI: 10.1016/j.gene.2018.12.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023]
Abstract
Eukaryotic transcription is a highly regulated fundamental life process. A large number of regulatory proteins and complexes, many of them with sequence-specific DNA-binding activity are known to influence transcription by RNA polymerase (pol) II with a fine precision. In comparison, only a few regulatory proteins are known for pol III, which transcribes genes encoding small, stable, non-translated RNAs. The pol III transcription is precisely regulated under various stress conditions. We used pol III transcription complex (TC) components TFIIIC (Tfc6), pol III (Rpc128) and TFIIIB (Brf1) as baits and mass spectrometry to identify their potential interactors in vivo. A large interactome constituting chromatin modifiers, regulators and factors of transcription by pol I and pol II supports the possibility of a crosstalk between the three transcription machineries. The association of proteins and complexes involved in various basic life processes like ribogenesis, RNA processing, protein folding and degradation, DNA damage response, replication and transcription underscores the possibility of the pol III TC serving as a signaling hub for communication between the transcription and other cellular physiological activities under normal growth conditions. We also found an equally large number of proteins and complexes interacting with the TC under nutrient starvation condition, of which at least 25% were non-identical under the two conditions. The data reveal the possibility of a large number of signaling cues for pol III transcription against adverse conditions, necessary for an efficient co-ordination of various cellular functions.
Collapse
Affiliation(s)
- Pratibha Bhalla
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Hyderabad, India
| | - Dipti Vinayak Vernekar
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Hyderabad, India
| | - Benoit Gilquin
- Univ. Grenoble Alpes, CEA, INSERM, BIG-BGE, Grenoble, France
| | - Yohann Couté
- Univ. Grenoble Alpes, CEA, INSERM, BIG-BGE, Grenoble, France
| | - Purnima Bhargava
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Hyderabad, India.
| |
Collapse
|
32
|
Thornlow BP, Hough J, Roger JM, Gong H, Lowe TM, Corbett-Detig RB. Transfer RNA genes experience exceptionally elevated mutation rates. Proc Natl Acad Sci U S A 2018; 115:8996-9001. [PMID: 30127029 PMCID: PMC6130373 DOI: 10.1073/pnas.1801240115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Transfer RNAs (tRNAs) are a central component for the biological synthesis of proteins, and they are among the most highly conserved and frequently transcribed genes in all living things. Despite their clear significance for fundamental cellular processes, the forces governing tRNA evolution are poorly understood. We present evidence that transcription-associated mutagenesis and strong purifying selection are key determinants of patterns of sequence variation within and surrounding tRNA genes in humans and diverse model organisms. Remarkably, the mutation rate at broadly expressed cytosolic tRNA loci is likely between 7 and 10 times greater than the nuclear genome average. Furthermore, evolutionary analyses provide strong evidence that tRNA genes, but not their flanking sequences, experience strong purifying selection acting against this elevated mutation rate. We also find a strong correlation between tRNA expression levels and the mutation rates in their immediate flanking regions, suggesting a simple method for estimating individual tRNA gene activity. Collectively, this study illuminates the extreme competing forces in tRNA gene evolution and indicates that mutations at tRNA loci contribute disproportionately to mutational load and have unexplored fitness consequences in human populations.
Collapse
Affiliation(s)
- Bryan P Thornlow
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064
| | - Josh Hough
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064
| | - Jacquelyn M Roger
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064
| | - Henry Gong
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064
| | - Todd M Lowe
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064;
- Genomics Institute, University of California, Santa Cruz, CA 95064
| | - Russell B Corbett-Detig
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064;
- Genomics Institute, University of California, Santa Cruz, CA 95064
| |
Collapse
|
33
|
Structural visualization of RNA polymerase III transcription machineries. Cell Discov 2018; 4:40. [PMID: 30083386 PMCID: PMC6066478 DOI: 10.1038/s41421-018-0044-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 12/19/2022] Open
Abstract
RNA polymerase III (Pol III) transcription initiation requires the action of the transcription factor IIIB (TFIIIB) and is highly regulated. Here, we determine the structures of Pol III pre-initiation complexes (PICs) using single particle cryo-electron microscopy (cryo-EM). We observe stable Pol III-TFIIIB complexes using nucleic acid scaffolds mimicking various functional states, in which TFIIIB tightly encircles the upstream promoter DNA. There is an intricate interaction between TFIIIB and Pol III, which stabilizes the winged-helix domains of the C34 subunit of Pol III over the active site cleft. The architecture of Pol III PIC more resembles that of the Pol II PIC than the Pol I PIC. In addition, we also obtain a 3D reconstruction of Pol III in complex with TFIIIB using the elongation complex (EC) scaffold, shedding light on the mechanism of facilitated recycling of Pol III prior to transcription re-initiation.
Collapse
|
34
|
Molecular mechanism of promoter opening by RNA polymerase III. Nature 2018; 553:295-300. [PMID: 29345638 PMCID: PMC5777638 DOI: 10.1038/nature25440] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/08/2017] [Indexed: 01/03/2023]
Abstract
RNA polymerase III (Pol III) assembles together with transcription factor IIIB (TFIIIB) on different promoter types to initiate the transcription of small, structured RNAs. Here, we present structures of Pol III pre-initiation complexes comprising the 17-subunit Pol III and hetero-trimeric transcription factor TFIIIB with subunits TATA-binding protein (TBP), B-related factor 1 (Brf1) and B double prime 1 (Bdp1) bound to a natural promoter in different functional states. Electron cryo-microscopy (cryo-EM) reconstructions varying from 3.7 Å to 5.5 Å resolution include two early intermediates in which the DNA duplex is closed, an open DNA complex and an initially transcribing complex with RNA in the active site. Our structures reveal an extremely tight and multivalent interaction of TFIIIB with promoter DNA and explain how TFIIIB recruits Pol III. TFIIIB and Pol III subunit C37 together activate the intrinsic transcription factor-like activity of the Pol III-specific heterotrimer to initiate melting of double-stranded DNA in a mechanism similar as used in the Pol II system.
Collapse
|
35
|
Ramsay EP, Vannini A. Structural rearrangements of the RNA polymerase III machinery during tRNA transcription initiation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:285-294. [PMID: 29155071 DOI: 10.1016/j.bbagrm.2017.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/07/2017] [Accepted: 11/11/2017] [Indexed: 01/03/2023]
Abstract
RNA polymerase III catalyses the synthesis of tRNAs in eukaryotic organisms. Through combined biochemical and structural characterisation, multiple auxiliary factors have been identified alongside RNA Polymerase III as critical in both facilitating and regulating transcription. Together, this machinery forms dynamic multi-protein complexes at tRNA genes which are required for polymerase recruitment, DNA opening and initiation and elongation of the tRNA transcripts. Central to the function of these complexes is their ability to undergo multiple conformational changes and rearrangements that regulate each step. Here, we discuss the available biochemical and structural data on the structural plasticity of multi-protein complexes involved in RNA Polymerase III transcriptional initiation and facilitated re-initiation during tRNA synthesis. Increasingly, structural information is becoming available for RNA polymerase III and its functional complexes, allowing for a deeper understanding of tRNA transcriptional initiation. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
MESH Headings
- Animals
- Eukaryotic Cells/metabolism
- Humans
- Models, Genetic
- Multiprotein Complexes/metabolism
- Promoter Regions, Genetic/genetics
- Protein Subunits
- RNA Polymerase III/chemistry
- RNA Polymerase III/metabolism
- RNA, Transfer/biosynthesis
- RNA, Transfer/genetics
- RNA, Transfer, Amino Acid-Specific/biosynthesis
- RNA, Transfer, Amino Acid-Specific/genetics
- Transcription Elongation, Genetic
- Transcription Factors/genetics
- Transcription Initiation, Genetic
Collapse
|
36
|
Arimbasseri GA. Interactions between RNAP III transcription machinery and tRNA processing factors. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:354-360. [PMID: 29428193 DOI: 10.1016/j.bbagrm.2018.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 10/18/2022]
Abstract
Eukaryotes have at least three nuclear RNA polymerases to carry out transcription. While RNA polymerases I and II are responsible for ribosomal RNA transcription and messenger RNA transcription, respectively, RNA Polymerase III transcribes approximately up to 300 nt long noncoding RNAs, including tRNA. For all three RNAPs, the nascent transcripts generated undergo extensive post-transcriptional processing. Transcription of mRNAs by RNAP II and their processing are coupled with the aid of the C-terminal domain of the RNAP II. RNAP I transcription and the processing of its transcripts are co-localized to the nucleolus and to some extent, rRNA processing occurs co-transcriptionally. Here, I review the current evidence for the interaction between tRNA processing factors and RNA polymerase III. These interactions include the moonlighting functions of tRNA processing factors in RNAP III transcription and the indirect effect of tRNA transcription levels on tRNA modification machinery.
Collapse
Affiliation(s)
- G Aneeshkumar Arimbasseri
- Molecular Genetics Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
37
|
Willis IM, Moir RD. Signaling to and from the RNA Polymerase III Transcription and Processing Machinery. Annu Rev Biochem 2018; 87:75-100. [PMID: 29328783 DOI: 10.1146/annurev-biochem-062917-012624] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA polymerase (Pol) III has a specialized role in transcribing the most abundant RNAs in eukaryotic cells, transfer RNAs (tRNAs), along with other ubiquitous small noncoding RNAs, many of which have functions related to the ribosome and protein synthesis. The high energetic cost of producing these RNAs and their central role in protein synthesis underlie the robust regulation of Pol III transcription in response to nutrients and stress by growth regulatory pathways. Downstream of Pol III, signaling impacts posttranscriptional processes affecting tRNA function in translation and tRNA cleavage into smaller fragments that are increasingly attributed with novel cellular activities. In this review, we consider how nutrients and stress control Pol III transcription via its factors and its negative regulator, Maf1. We highlight recent work showing that the composition of the tRNA population and the function of individual tRNAs is dynamically controlled and that unrestrained Pol III transcription can reprogram central metabolic pathways.
Collapse
Affiliation(s)
- Ian M Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA; , .,Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Robyn D Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA; ,
| |
Collapse
|
38
|
Willis IM. Maf1 phenotypes and cell physiology. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:330-337. [PMID: 29248739 DOI: 10.1016/j.bbagrm.2017.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/27/2017] [Indexed: 01/16/2023]
Abstract
As a master regulator of transcription by RNA polymerase (Pol) III, Maf1 represses the synthesis of highly abundant non-coding RNAs as anabolic signals dissipate, as the quality or quantity of nutrients decreases, and under a wide range of cellular and environmental stress conditions. Thus, Maf1 responds to changes in cell physiology to conserve metabolic energy and to help maintain appropriate levels of tRNAs and other essential non-coding RNAs. Studies in different model organisms and cell-based systems show that perturbations of Maf1 can also impact cell physiology and metabolism. These effects are mediated by changes in Pol III transcription and/or by effects of Maf1 on the expression of select Pol II-transcribed genes. Maf1 phenotypes can vary between different systems and are sometimes conflicting as in comparisons between Maf1 KO mice and cultured mammalian cells. These studies are reviewed in an effort to better appreciate the relationship between Maf1 function and cell physiology. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Ian M Willis
- Departments of Biochemistry and Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
39
|
Shukla A, Bhargava P. Regulation of tRNA gene transcription by the chromatin structure and nucleosome dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:295-309. [PMID: 29313808 DOI: 10.1016/j.bbagrm.2017.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 01/19/2023]
Abstract
The short, non-coding genes transcribed by the RNA polymerase (pol) III, necessary for survival of a cell, need to be repressed under the stress conditions in vivo. The pol III-transcribed genes have adopted several novel chromatin-based regulatory mechanisms to their advantage. In the budding yeast, the sub-nucleosomal size tRNA genes are found in the nucleosome-free regions, flanked by positioned nucleosomes at both the ends. With their chromosomes-wide distribution, all tRNA genes have a different chromatin context. A single nucleosome dynamics controls the accessibility of the genes for transcription. This dynamics operates under the influence of several chromatin modifiers in a gene-specific manner, giving the scope for differential regulation of even the isogenes within a tRNA gene family. The chromatin structure around the pol III-transcribed genes provides a context conducive for steady-state transcription as well as gene-specific transcriptional regulation upon signaling from the environmental cues. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Ashutosh Shukla
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500007, India
| | - Purnima Bhargava
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500007, India.
| |
Collapse
|
40
|
Chymkowitch P, Enserink JM. Regulation of tRNA synthesis by posttranslational modifications of RNA polymerase III subunits. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:310-319. [PMID: 29127063 DOI: 10.1016/j.bbagrm.2017.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/18/2022]
Abstract
RNA polymerase III (RNAPIII) transcribes tRNA genes, 5S RNA as well as a number of other non-coding RNAs. Because transcription by RNAPIII is an energy-demanding process, its activity is tightly linked to the stress levels and nutrient status of the cell. Multiple signaling pathways control RNAPIII activity in response to environmental cues, but exactly how these pathways regulate RNAPIII is still poorly understood. One major target of these pathways is the transcriptional repressor Maf1, which inhibits RNAPIII activity under conditions that are detrimental to cell growth. However, recent studies have found that the cell can also directly regulate the RNAPIII machinery through phosphorylation and sumoylation of RNAPIII subunits. In this review we summarize post-translational modifications of RNAPIII subunits that mainly have been identified in large-scale proteomics studies, and we highlight several examples to discuss their relevance for regulation of RNAPIII.
Collapse
Affiliation(s)
- Pierre Chymkowitch
- Department of Microbiology, Oslo University Hospital, NO-0027 Oslo, Norway.
| | - Jorrit M Enserink
- Department of Molecular Cell Biology, Institute for Cancer Research, the Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway; Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371, Norway.
| |
Collapse
|
41
|
RNA-Based Fluorescent Biosensors for Detecting Metabolites in vitro and in Living Cells. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 82:187-203. [PMID: 29413520 DOI: 10.1016/bs.apha.2017.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Genetically encoded sensors are important tools for measuring metabolites and other small molecules in vitro and in live cells. Until recently, genetically encoded sensors exclusively comprised fluorescent proteins that undergo changes in Förster resonance energy transfer upon binding a target analyte. However, recently a new class of fluorescent sensor has been developed composed of RNA. These RNA-based sensors rely on Spinach and other RNA mimics of green fluorescent protein. In each case, the RNA-based sensors contain an analyte-binding aptamer domain which transduces binding of the analyte into a conformational change in Spinach. Two types of sensors have been developed: allosteric Spinach sensors and Spinach riboswitches. Allosteric Spinach sensors exhibit metabolite-induced folding and subsequent fluorescence. Spinach riboswitches are naturally occurring riboswitches that have been modified to contain the Spinach aptamer. The resulting RNA is a fluorogenic riboswitch, and produces fluorescence upon binding its cognate analyte. We describe the development of this new technology, its uses, and future directions to facilitate the use of this assay technology in mammalian cells and in high-throughput applications.
Collapse
|
42
|
Khatter H, Vorländer MK, Müller CW. RNA polymerase I and III: similar yet unique. Curr Opin Struct Biol 2017; 47:88-94. [PMID: 28743025 DOI: 10.1016/j.sbi.2017.05.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/22/2017] [Indexed: 01/03/2023]
Abstract
The majority of non-protein-coding RNAs present in eukaryotic cells comprises rRNAs, tRNAs and U6 snRNA that are involved in protein biosynthesis and are synthesized by DNA-dependent-RNA polymerase I and III. The transcription cycle (initiation, elongation and termination) has similar principles in all three nuclear RNA polymerases with specific features that are reflected back in their structures. Recently, owing to the 'resolution revolution' in electron cryo-microscopy, there has been a significant advancement in the understanding of these molecular machines. Here, we highlight the structure-function adaptation in specificity and activity of these molecular machines and present parallels and distinctions between their transcription mechanisms.
Collapse
Affiliation(s)
- Heena Khatter
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Matthias K Vorländer
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christoph W Müller
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
43
|
Transcription by RNA polymerase III: insights into mechanism and regulation. Biochem Soc Trans 2017; 44:1367-1375. [PMID: 27911719 PMCID: PMC5095917 DOI: 10.1042/bst20160062] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 07/07/2016] [Accepted: 07/13/2016] [Indexed: 12/13/2022]
Abstract
The highly abundant, small stable RNAs that are synthesized by RNA polymerase III (RNAPIII) have key functional roles, particularly in the protein synthesis apparatus. Their expression is metabolically demanding, and is therefore coupled to changing demands for protein synthesis during cell growth and division. Here, we review the regulatory mechanisms that control the levels of RNAPIII transcripts and discuss their potential physiological relevance. Recent analyses have revealed differential regulation of tRNA expression at all steps on its biogenesis, with significant deregulation of mature tRNAs in cancer cells.
Collapse
|
44
|
Helbo AS, Lay FD, Jones PA, Liang G, Grønbæk K. Nucleosome Positioning and NDR Structure at RNA Polymerase III Promoters. Sci Rep 2017; 7:41947. [PMID: 28176797 PMCID: PMC5296907 DOI: 10.1038/srep41947] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/03/2017] [Indexed: 12/20/2022] Open
Abstract
Chromatin is structurally involved in the transcriptional regulation of all genes. While the nucleosome positioning at RNA polymerase II (pol II) promoters has been extensively studied, less is known about the chromatin structure at pol III promoters in human cells. We use a high-resolution analysis to show substantial differences in chromatin structure of pol II and pol III promoters, and between subtypes of pol III genes. Notably, the nucleosome depleted region at the transcription start site of pol III genes extends past the termination sequences, resulting in nucleosome free gene bodies. The +1 nucleosome is located further downstream than at pol II genes and furthermore displays weak positioning. The variable position of the +1 location is seen not only within individual cell populations and between cell types, but also between different pol III promoter subtypes, suggesting that the +1 nucleosome may be involved in the transcriptional regulation of pol III genes. We find that expression and DNA methylation patterns correlate with distinct accessibility patterns, where DNA methylation associates with the silencing and inaccessibility at promoters. Taken together, this study provides the first high-resolution map of nucleosome positioning and occupancy at human pol III promoters at specific loci and genome wide.
Collapse
Affiliation(s)
- Alexandra Søgaard Helbo
- Department of Hematology, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Fides D Lay
- Department of Urology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, 90089, USA
| | - Peter A Jones
- Department of Urology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, 90089, USA.,Van Andel Research Institute, Grand Rapids, 49503, USA
| | - Gangning Liang
- Department of Urology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, 90089, USA
| | - Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, 2100, Denmark
| |
Collapse
|
45
|
Abstract
The known diversity of metabolic strategies and physiological adaptations of archaeal species to extreme environments is extraordinary. Accurate and responsive mechanisms to ensure that gene expression patterns match the needs of the cell necessitate regulatory strategies that control the activities and output of the archaeal transcription apparatus. Archaea are reliant on a single RNA polymerase for all transcription, and many of the known regulatory mechanisms employed for archaeal transcription mimic strategies also employed for eukaryotic and bacterial species. Novel mechanisms of transcription regulation have become apparent by increasingly sophisticated in vivo and in vitro investigations of archaeal species. This review emphasizes recent progress in understanding archaeal transcription regulatory mechanisms and highlights insights gained from studies of the influence of archaeal chromatin on transcription.
Collapse
|
46
|
Reuter LM, Sträßer K. Falling for the dark side of transcription: Nab2 fosters RNA polymerase III transcription. Transcription 2016; 7:69-74. [PMID: 27049816 PMCID: PMC4984684 DOI: 10.1080/21541264.2016.1170252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RNA polymerase III (RNAPIII) synthesizes diverse, small, non-coding RNAs with many important roles in the cellular metabolism. One of the open questions of RNAPIII transcription is whether and how additional factors are involved. Recently, Nab2 was identified as the first messenger ribonucleoprotein particle (mRNP) biogenesis factor with a function in RNAPIII transcription.
Collapse
Affiliation(s)
- L Maximilian Reuter
- a Institute of Biochemistry, Justus Liebig University Giessen , Giessen , Germany
| | - Katja Sträßer
- a Institute of Biochemistry, Justus Liebig University Giessen , Giessen , Germany
| |
Collapse
|
47
|
Hoffmann NA, Jakobi AJ, Vorländer MK, Sachse C, Müller CW. Transcribing RNA polymerase III observed by electron cryomicroscopy. FEBS J 2016; 283:2811-9. [PMID: 27059519 PMCID: PMC5053293 DOI: 10.1111/febs.13732] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/26/2016] [Accepted: 04/04/2016] [Indexed: 12/21/2022]
Abstract
Electron cryomicroscopy reconstructions of elongating RNA polymerase (Pol) III at 3.9 Å resolution and of unbound Pol III (apo Pol III) in two distinct conformations at 4.6 Å and 4.7 Å resolution allow the construction of complete atomic models of Pol III and provide new functional insights into the adaption of Pol III to fulfill its specific transcription tasks.
Collapse
Affiliation(s)
- Niklas A Hoffmann
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Arjen J Jakobi
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Matthias K Vorländer
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Carsten Sachse
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Christoph W Müller
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| |
Collapse
|
48
|
Arimbasseri AG, Rijal K, Maraia RJ. Comparative overview of RNA polymerase II and III transcription cycles, with focus on RNA polymerase III termination and reinitiation. Transcription 2015; 5:e27639. [PMID: 25764110 DOI: 10.4161/trns.27369] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In eukaryotes, RNA polymerase (RNAP) III transcribes hundreds of genes for tRNAs and 5S rRNA, among others, which share similar promoters and stable transcription initiation complexes (TIC), which support rapid RNAP III recycling. In contrast, RNAP II transcribes a large number of genes with highly variable promoters and interacting factors, which exert fine regulatory control over TIC lability and modifications of RNAP II at different transitional points in the transcription cycle. We review data that illustrate a relatively smooth continuity of RNAP III initiation-elongation-termination and reinitiation toward its function to produce high levels of tRNAs and other RNAs that support growth and development.
Collapse
Affiliation(s)
- Aneeshkumar G Arimbasseri
- a Intramural Research Program; Eunice Kennedy Shriver National Institute of Child Health and Human Development; National Institutes of Health; Bethesda, MD USA
| | | | | |
Collapse
|
49
|
Dieci G, Fermi B, Bosio MC. Investigating transcription reinitiation through in vitro approaches. Transcription 2015; 5:e27704. [PMID: 25764113 DOI: 10.4161/trns.27704] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
By influencing the number of RNA molecules repeatedly synthesized from the same gene, the control of transcription reinitiation has the potential to shape the transcriptome. Transcription reinitiation mechanisms have been mainly addressed in vitro, through approaches based on both crude and reconstituted systems. These studies support the notion that transcription reinitiation and its regulation rely on dedicated networks of molecular interactions within transcription machineries. At the same time, comparison with in vivo transcription rates suggests that additional mechanisms, factors and conditions must exist in the nucleus, whose biochemical elucidation is a fascinating challenge for future in vitro transcription studies.
Collapse
Affiliation(s)
- Giorgio Dieci
- a Dipartimento di Bioscienze; Università degli Studi di Parma; Parma, Italy
| | | | | |
Collapse
|
50
|
Charton R, Guintini L, Peyresaubes F, Conconi A. Repair of UV induced DNA lesions in ribosomal gene chromatin and the role of "Odd" RNA polymerases (I and III). DNA Repair (Amst) 2015; 36:49-58. [PMID: 26411875 DOI: 10.1016/j.dnarep.2015.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In fast growing eukaryotic cells, a subset of rRNA genes are transcribed at very high rates by RNA polymerase I (RNAPI). Nuclease digestion-assays and psoralen crosslinking have shown that they are open; that is, largely devoid of nucleosomes. In the yeast Saccharomyces cerevisae, nucleotide excision repair (NER) and photolyase remove UV photoproducts faster from open rRNA genes than from closed and nucleosome-loaded inactive rRNA genes. After UV irradiation, rRNA transcription declines because RNAPI halt at UV photoproducts and are then displaced from the transcribed strand. When the DNA lesion is quickly recognized by NER, it is the sub-pathway transcription-coupled TC-NER that removes the UV photoproduct. If dislodged RNAPI are replaced by nucleosomes before NER recognizes the lesion, then it is the sub-pathway global genome GG-NER that removes the UV photoproducts from the transcribed strand. Also, GG-NER maneuvers in the non-transcribed strand of open genes and in both strands of closed rRNA genes. After repair, transcription resumes and elongating RNAPI reopen the rRNA gene. In higher eukaryotes, NER in rRNA genes is inefficient and there is no evidence for TC-NER. Moreover, TC-NER does not occur in RNA polymerase III transcribed genes of both, yeast and human fibroblast.
Collapse
Affiliation(s)
- Romain Charton
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Laetitia Guintini
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - François Peyresaubes
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Antonio Conconi
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| |
Collapse
|