1
|
Terada N, Saitoh Y, Saito M, Yamada T, Kamijo A, Yoshizawa T, Sakamoto T. Recent Progress on Genetically Modified Animal Models for Membrane Skeletal Proteins: The 4.1 and MPP Families. Genes (Basel) 2023; 14:1942. [PMID: 37895291 PMCID: PMC10606877 DOI: 10.3390/genes14101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The protein 4.1 and membrane palmitoylated protein (MPP) families were originally found as components in the erythrocyte membrane skeletal protein complex, which helps maintain the stability of erythrocyte membranes by linking intramembranous proteins and meshwork structures composed of actin and spectrin under the membranes. Recently, it has been recognized that cells and tissues ubiquitously use this membrane skeletal system. Various intramembranous proteins, including adhesion molecules, ion channels, and receptors, have been shown to interact with the 4.1 and MPP families, regulating cellular and tissue dynamics by binding to intracellular signal transduction proteins. In this review, we focus on our previous studies regarding genetically modified animal models, especially on 4.1G, MPP6, and MPP2, to describe their functional roles in the peripheral nervous system, the central nervous system, the testis, and bone formation. As the membrane skeletal proteins are located at sites that receive signals from outside the cell and transduce signals inside the cell, it is necessary to elucidate their molecular interrelationships, which may broaden the understanding of cell and tissue functions.
Collapse
Affiliation(s)
- Nobuo Terada
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
| | - Yurika Saitoh
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
- Center for Medical Education, Teikyo University of Science, Adachi-ku, Tokyo 120-0045, Japan
| | - Masaki Saito
- School of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan;
| | - Tomoki Yamada
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
| | - Akio Kamijo
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
- Division of Basic & Clinical Medicine, Nagano College of Nursing, Komagane City, Nagano 399-4117, Japan
| | - Takahiro Yoshizawa
- Division of Animal Research, Research Center for Advanced Science and Technology, Shinshu University, Matsumoto City, Nagano 390-8621, Japan
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata City, Osaka 573-1010, Japan
| |
Collapse
|
2
|
Hara T, Saeki K, Jinnouchi H, Kazuno S, Miura Y, Yokomizo T. The c-terminal region of BLT2 restricts its localization to the lateral membrane in a LIN7C-dependent manner. FASEB J 2021; 35:e21364. [PMID: 33481310 DOI: 10.1096/fj.202002640r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 11/11/2022]
Abstract
Leukotriene B4 receptor type 2 (BLT2) is a G protein-coupled receptor (GPCR) mainly expressed in epithelial cells, where it enhances barrier function. A unique characteristic of BLT2 is its restricted localization to the lateral membrane. However, the molecular mechanism underlying the localization of BLT2 to the lateral membrane and the physiological roles of laterally localized BLT2 are unknown. BLT1 is the most homologous GPCR to BLT2 and localizes to both the apical and lateral membranes. In this study, we generated chimeric receptors of BLT2 and BLT1 as well as deletion mutants of BLT2 to determine the region(s) of BLT2 responsible for its localization. Chimeric receptors containing the C-terminal domain of BLT2 localized only to the lateral membrane, and the C-terminal deletion mutant of BLT2 accumulated at the Golgi apparatus. Furthermore, the middle and C-terminal regions of BLT2 were important for maintaining epithelial barrier function. Proteomics analysis using the chimeric BLT-ascorbate peroxidase 2 biotinylation method showed that some proteins involved in intracellular protein transport, cell-cell junctions, and actin filament binding were located very close to the C-terminal domain of BLT2. Knockdown of lin-7 homolog C (LIN7C), a membrane trafficking protein, led to accumulation of BLT2 in the Golgi apparatus, resulting in diminished epithelial barrier function. These results suggest that the C-terminal region of BLT2 plays an important role in the transport of BLT2 from the Golgi apparatus to the plasma membrane in a LIN7C-dependent manner.
Collapse
Affiliation(s)
- Takuya Hara
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan.,Fuji Research Laboratories, Kowa Co., Ltd, Shizuoka, Japan
| | - Kazuko Saeki
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiromi Jinnouchi
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Saiko Kazuno
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshiki Miura
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Gauthier KD, Rocheleau CE. Golgi localization of the LIN-2/7/10 complex points to a role in basolateral secretion of LET-23 EGFR in the Caenorhabditiselegans vulval precursor cells. Development 2021; 148:dev194167. [PMID: 33526581 PMCID: PMC10692275 DOI: 10.1242/dev.194167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/25/2021] [Indexed: 12/28/2022]
Abstract
The evolutionarily conserved LIN-2 (CASK)/LIN-7 (Lin7A-C)/LIN-10 (APBA1) complex plays an important role in regulating spatial organization of membrane proteins and signaling components. In Caenorhabditiselegans, the complex is essential for the development of the vulva by promoting the localization of the sole Epidermal growth factor receptor (EGFR) ortholog LET-23 to the basolateral membrane of the vulva precursor cells where it can specify the vulval cell fate. To understand how the LIN-2/7/10 complex regulates receptor localization, we determined its expression and localization during vulva development. We found that LIN-7 colocalizes with LET-23 EGFR at the basolateral membrane, whereas the LIN-2/7/10 complex colocalizes with LET-23 EGFR at cytoplasmic punctae that mostly overlap with the Golgi. Furthermore, LIN-10 recruits LIN-2, which in turn recruits LIN-7. We demonstrate that the complex forms in vivo with a particularly strong interaction and colocalization between LIN-2 and LIN-7, consistent with them forming a subcomplex. Thus, the LIN-2/7/10 complex forms on the Golgi on which it likely targets LET-23 EGFR trafficking to the basolateral membrane rather than functioning as a tether.
Collapse
Affiliation(s)
- Kimberley D Gauthier
- Division of Endocrinology and Metabolism, Department of Medicine, and Department of Anatomy and Cell Biology, McGill University; and the Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Christian E Rocheleau
- Division of Endocrinology and Metabolism, Department of Medicine, and Department of Anatomy and Cell Biology, McGill University; and the Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
4
|
Gauthier KD, Rocheleau CE. LIN-10 can promote LET-23 EGFR signaling and trafficking independently of LIN-2 and LIN-7. Mol Biol Cell 2021; 32:788-799. [PMID: 33566630 PMCID: PMC8108513 DOI: 10.1091/mbc.e20-07-0490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
During Caenorhabditis elegans larval development, an inductive signal mediated by the LET-23 EGFR (epidermal growth factor receptor), specifies three of six vulva precursor cells (VPCs) to adopt vulval cell fates. An evolutionarily conserved complex consisting of PDZ domain-containing scaffold proteins LIN-2 (CASK), LIN-7 (Lin7 or Veli), and LIN-10 (APBA1 or Mint1) (LIN-2/7/10) mediates basolateral LET-23 EGFR localization in the VPCs to permit signal transmission and development of the vulva. We recently found that the LIN-2/7/10 complex likely forms at Golgi ministacks; however, the mechanism through which the complex targets the receptor to the basolateral membrane remains unknown. Here we found that overexpression of LIN-10 or LIN-7 can compensate for loss of their complex components by promoting LET-23 EGFR signaling through previously unknown complex-independent and receptor-dependent pathways. In particular, LIN-10 can independently promote basolateral LET-23 EGFR localization, and its complex-independent function uniquely requires its PDZ domains that also regulate its localization to Golgi. These studies point to a novel complex-independent function for LIN-7 and LIN-10 that broadens our understanding of how this complex regulates targeted sorting of membrane proteins.
Collapse
Affiliation(s)
- Kimberley D Gauthier
- Division of Endocrinology and Metabolism, Department of Medicine, and Department of Anatomy and Cell Biology, McGill University, Montreal, QC H4A 3J1, Canada.,Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Christian E Rocheleau
- Division of Endocrinology and Metabolism, Department of Medicine, and Department of Anatomy and Cell Biology, McGill University, Montreal, QC H4A 3J1, Canada.,Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
5
|
Sala AJ, Bott LC, Brielmann RM, Morimoto RI. Embryo integrity regulates maternal proteostasis and stress resilience. Genes Dev 2020; 34:678-687. [PMID: 32217667 PMCID: PMC7197353 DOI: 10.1101/gad.335422.119] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/10/2020] [Indexed: 12/22/2022]
Abstract
The proteostasis network is regulated by transcellular communication to promote health and fitness in metazoans. In Caenorhabditis elegans, signals from the germline initiate the decline of proteostasis and repression of cell stress responses at reproductive maturity, indicating that commitment to reproduction is detrimental to somatic health. Here we show that proteostasis and stress resilience are also regulated by embryo-to-mother communication in reproductive adults. To identify genes that act directly in the reproductive system to regulate somatic proteostasis, we performed a tissue targeted genetic screen for germline modifiers of polyglutamine aggregation in muscle cells. We found that inhibiting the formation of the extracellular vitelline layer of the fertilized embryo inside the uterus suppresses aggregation, improves stress resilience in an HSF-1-dependent manner, and restores the heat-shock response in the somatic tissues of the parent. This pathway relies on DAF-16/FOXO activation in vulval tissues to maintain stress resilience in the mother, suggesting that the integrity of the embryo is monitored by the vulva to detect damage and initiate an organismal protective response. Our findings reveal a previously undescribed transcellular pathway that links the integrity of the developing progeny to proteostasis regulation in the parent.
Collapse
Affiliation(s)
- Ambre J Sala
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA
| | - Laura C Bott
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA
| | - Renee M Brielmann
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA
| | - Richard I Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
6
|
Haag A, Walser M, Henggeler A, Hajnal A. The CHORD protein CHP-1 regulates EGF receptor trafficking and signaling in C. elegans and in human cells. eLife 2020; 9:e50986. [PMID: 32053105 PMCID: PMC7062474 DOI: 10.7554/elife.50986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/12/2020] [Indexed: 11/13/2022] Open
Abstract
The intracellular trafficking of growth factor receptors determines the activity of their downstream signaling pathways. Here, we show that the putative HSP-90 co-chaperone CHP-1 acts as a regulator of EGFR trafficking in C. elegans. Loss of chp-1 causes the retention of the EGFR in the ER and decreases MAPK signaling. CHP-1 is specifically required for EGFR trafficking, as the localization of other transmembrane receptors is unaltered in chp-1(lf) mutants, and the inhibition of hsp-90 or other co-chaperones does not affect EGFR localization. The role of the CHP-1 homolog CHORDC1 during EGFR trafficking is conserved in human cells. Analogous to C. elegans, the response of CHORDC1-deficient A431 cells to EGF stimulation is attenuated, the EGFR accumulates in the ER and ERK2 activity decreases. Although CHP-1 has been proposed to act as a co-chaperone for HSP90, our data indicate that CHP-1 plays an HSP90-independent function in controlling EGFR trafficking through the ER.
Collapse
Affiliation(s)
- Andrea Haag
- Institute of Molecular Life Sciences, University of ZürichWinterthurerstrasseSwitzerland
- Molecular Life Science Zürich PhD ProgramZürichSwitzerland
| | - Michael Walser
- Institute of Molecular Life Sciences, University of ZürichWinterthurerstrasseSwitzerland
| | - Adrian Henggeler
- Institute of Molecular Life Sciences, University of ZürichWinterthurerstrasseSwitzerland
| | - Alex Hajnal
- Institute of Molecular Life Sciences, University of ZürichWinterthurerstrasseSwitzerland
| |
Collapse
|
7
|
Necessity and Contingency in Developmental Genetic Screens: EGF, Wnt, and Semaphorin Pathways in Vulval Induction of the Nematode Oscheius tipulae. Genetics 2019; 211:1315-1330. [PMID: 30700527 PMCID: PMC6456316 DOI: 10.1534/genetics.119.301970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/27/2019] [Indexed: 02/06/2023] Open
Abstract
Genetic screens in the nematode Caenorhabditis elegans have identified EGF and Notch pathways as key for vulval precursor cell fate patterning. Here, Vargas-Velazquez, Besnard, and Félix report on the molecular identification of... Genetic screens in the nematode Caenorhabditis elegans identified the EGF/Ras and Notch pathways as central for vulval precursor cell fate patterning. Schematically, the anchor cell secretes EGF, inducing the P6.p cell to a primary (1°) vulval fate; P6.p in turn induces its neighbors to a secondary (2°) fate through Delta-Notch signaling and represses Ras signaling. In the nematode Oscheius tipulae, the anchor cell successively induces 2° then 1° vulval fates. Here, we report on the molecular identification of mutations affecting vulval induction in O. tipulae. A single Induction Vulvaless mutation was found, which we identify as a cis-regulatory deletion in a tissue-specific enhancer of the O. tipulae lin-3 homolog, confirmed by clustered regularly interspaced short palindromic repeats/Cas9 mutation. In contrast to this predictable Vulvaless mutation, mutations resulting in an excess of 2° fates unexpectedly correspond to the plexin/semaphorin pathway. Hyperinduction of P4.p and P8.p in these mutants likely results from mispositioning of these cells due to a lack of contact inhibition. The third signaling pathway found by forward genetics in O. tipulae is the Wnt pathway; a decrease in Wnt pathway activity results in loss of vulval precursor competence and induction, and 1° fate miscentering on P5.p. Our results suggest that the EGF and Wnt pathways have qualitatively similar activities in vulval induction in C. elegans and O. tipulae, albeit with quantitative differences in the effects of mutation. Thus, the derived induction process in C. elegans with an early induction of the 1° fate appeared during evolution, after the recruitment of the EGF pathway for vulval induction.
Collapse
|
8
|
Shin H, Reiner DJ. The Signaling Network Controlling C. elegans Vulval Cell Fate Patterning. J Dev Biol 2018; 6:E30. [PMID: 30544993 PMCID: PMC6316802 DOI: 10.3390/jdb6040030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022] Open
Abstract
EGF, emitted by the Anchor Cell, patterns six equipotent C. elegans vulval precursor cells to assume a precise array of three cell fates with high fidelity. A group of core and modulatory signaling cascades forms a signaling network that demonstrates plasticity during the transition from naïve to terminally differentiated cells. In this review, we summarize the history of classical developmental manipulations and molecular genetics experiments that led to our understanding of the signals governing this process, and discuss principles of signal transduction and developmental biology that have emerged from these studies.
Collapse
Affiliation(s)
- Hanna Shin
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
| | - David J Reiner
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
- College of Medicine, Texas A & M University, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Abstract
The extracellular signal-regulated kinase (ERK) pathway leads to activation of the effector molecule ERK, which controls downstream responses by phosphorylating a variety of substrates, including transcription factors. Crucial insights into the regulation and function of this pathway came from studying embryos in which specific phenotypes arise from aberrant ERK activation. Despite decades of research, several important questions remain to be addressed for deeper understanding of this highly conserved signaling system and its function. Answering these questions will require quantifying the first steps of pathway activation, elucidating the mechanisms of transcriptional interpretation and measuring the quantitative limits of ERK signaling within which the system must operate to avoid developmental defects.
Collapse
Affiliation(s)
- Aleena L Patel
- Lewis Sigler Institute for Integrative Genomics, Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Stanislav Y Shvartsman
- Lewis Sigler Institute for Integrative Genomics, Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
10
|
Philbrook A, Ramachandran S, Lambert CM, Oliver D, Florman J, Alkema MJ, Lemons M, Francis MM. Neurexin directs partner-specific synaptic connectivity in C. elegans. eLife 2018; 7:35692. [PMID: 30039797 PMCID: PMC6057746 DOI: 10.7554/elife.35692] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/21/2018] [Indexed: 01/14/2023] Open
Abstract
In neural circuits, individual neurons often make projections onto multiple postsynaptic partners. Here, we investigate molecular mechanisms by which these divergent connections are generated, using dyadic synapses in C. elegans as a model. We report that C. elegans nrx-1/neurexin directs divergent connectivity through differential actions at synapses with partnering neurons and muscles. We show that cholinergic outputs onto neurons are, unexpectedly, located at previously undefined spine-like protrusions from GABAergic dendrites. Both these spine-like features and cholinergic receptor clustering are strikingly disrupted in the absence of nrx-1. Excitatory transmission onto GABAergic neurons, but not neuromuscular transmission, is also disrupted. Our data indicate that NRX-1 located at presynaptic sites specifically directs postsynaptic development in GABAergic neurons. Our findings provide evidence that individual neurons can direct differential patterns of connectivity with their post-synaptic partners through partner-specific utilization of synaptic organizers, offering a novel view into molecular control of divergent connectivity. Nervous systems are complex networks of interconnected cells called neurons. These networks vary in size from a few hundred cells in worms, to tens of billions in the human brain. Within these networks, each individual neuron forms connections – called synapses – with many others. But these partner neurons are not necessarily alike. In fact, they may be different cell types. How neurons form distinct connections with different partner cells remains unclear. Part of the answer may lie in specialized proteins called cell adhesion molecules. These proteins occur on the cell surface and enable neurons to recognize one another. This helps ensure that the cells form appropriate connections via synapses. Cell adhesion molecules are therefore also known as synaptic organizers. Philbrook et al. have now examined the role of synaptic organizers in wiring up the nervous system of the nematode worm and model organism Caenorhabditis elegans. Motor neurons form connections with two types of partner cell: muscle cells and neurons. Philbrook et al. screened C. elegans that have mutations in genes encoding various synaptic organizers. This revealed that a protein called neurexin must be present for motor neurons to form synapses with other neurons. By contrast, neurexin is not required for the same neurons to establish synapses with muscles. Philbrook et al. found that neuron-to-neuron synapses arise at specialized finger-like projections. These resemble the dendritic spines at which synapses form in the brains of mammals, and had not been previously identified in C. elegans. In worms that lack neurexin, these spine-like structures do not form correctly, disrupting the formation of neuron-to-neuron connections. Previous work has implicated neurexin in synapse formation in the mammalian brain. But this is the first study to reveal a role for neurexin in establishing partner-specific synaptic connections. Mutations in synaptic organizers, including neurexin, contribute to disorders of brain development. These include schizophrenia and autism spectrum disorders. Learning more about how neurexin helps establish specific synaptic connections may help us understand how these disorders arise.
Collapse
Affiliation(s)
- Alison Philbrook
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | - Shankar Ramachandran
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | - Christopher M Lambert
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | - Devyn Oliver
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | - Jeremy Florman
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | - Mark J Alkema
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | - Michele Lemons
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States.,Department of Natural Sciences, Assumption College, Worcester, United States
| | - Michael M Francis
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
11
|
Functions of Rhotekin, an Effector of Rho GTPase, and Its Binding Partners in Mammals. Int J Mol Sci 2018; 19:ijms19072121. [PMID: 30037057 PMCID: PMC6073136 DOI: 10.3390/ijms19072121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/26/2022] Open
Abstract
Rhotekin is an effector protein for small GTPase Rho. This protein consists of a Rho binding domain (RBD), a pleckstrin homology (PH) domain, two proline-rich regions and a C-terminal PDZ (PSD-95, Discs-large, and ZO-1)-binding motif. We, and other groups, have identified various binding partners for Rhotekin and carried out biochemical and cell biological characterization. However, the physiological functions of Rhotekin, per se, are as of yet largely unknown. In this review, we summarize known features of Rhotekin and its binding partners in neuronal tissues and cancer cells.
Collapse
|
12
|
Chiasson-MacKenzie C, McClatchey AI. Cell-Cell Contact and Receptor Tyrosine Kinase Signaling. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029215. [PMID: 28716887 DOI: 10.1101/cshperspect.a029215] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The behavior of cells within tissues is governed by the activities of adhesion receptors that provide spatial cues and transmit forces through intercellular junctions, and by growth-factor receptors, particularly receptor tyrosine kinases (RTKs), that respond to biochemical signals from the environment. Coordination of these two activities is essential for the patterning and polarized migration of cells during morphogenesis and for homeostasis in mature tissues; loss of this coordination is a hallmark of developing cancer and driver of metastatic progression. Although much is known about the individual functions of adhesion and growth factor receptors, we have a surprisingly superficial understanding of the mechanisms by which their activities are coordinated.
Collapse
Affiliation(s)
- Christine Chiasson-MacKenzie
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Departments of Pathology, Charlestown, Massachusetts 02129
| | - Andrea I McClatchey
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Departments of Pathology, Charlestown, Massachusetts 02129
| |
Collapse
|
13
|
Gauthier K, Rocheleau CE. C. elegans Vulva Induction: An In Vivo Model to Study Epidermal Growth Factor Receptor Signaling and Trafficking. Methods Mol Biol 2017; 1652:43-61. [PMID: 28791633 DOI: 10.1007/978-1-4939-7219-7_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epidermal growth factor receptor (EGFR)-mediated activation of the canonical Ras/MAPK signaling cascade is responsible for cell proliferation and cell growth. This signaling pathway is frequently overactivated in epithelial cancers; therefore, studying regulation of this pathway is crucial not only for our fundamental understanding of cell biology but also for our ability to treat EGFR-related disease. Genetic model organisms such as Caenorhabditis elegans, a hermaphroditic nematode, played a vital role in identifying components of the EGFR/Ras/MAPK pathway and delineating their order of function, and continues to play a role in identifying novel regulators of the pathway. Polarized activation of LET-23, the C. elegans homolog of EGFR, is responsible for induction of the vulval cell fate; perturbations in this signaling pathway produce either a vulvaless or multivulva phenotype. The translucent cuticle of the nematode facilitates in vivo visualization of the receptor, revealing that localization of LET-23 EGFR is tightly regulated and linked to its function. In this chapter, we review the methods used to harness vulva development as a tool for studying EGFR signaling and trafficking in C. elegans.
Collapse
Affiliation(s)
- Kimberley Gauthier
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
- Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Christian E Rocheleau
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada.
- Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada.
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, Canada.
| |
Collapse
|
14
|
Walser M, Umbricht CA, Fröhli E, Nanni P, Hajnal A. β-Integrin de-phosphorylation by the Density-Enhanced Phosphatase DEP-1 attenuates EGFR signaling in C. elegans. PLoS Genet 2017; 13:e1006592. [PMID: 28135265 PMCID: PMC5305270 DOI: 10.1371/journal.pgen.1006592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/13/2017] [Accepted: 01/20/2017] [Indexed: 11/19/2022] Open
Abstract
Density-Enhanced Phosphatase-1 (DEP-1) de-phosphorylates various growth factor receptors and adhesion proteins to regulate cell proliferation, adhesion and migration. Moreover, dep-1/scc1 mutations have been detected in various types of human cancers, indicating a broad tumor suppressor activity. During C. elegans development, DEP-1 mediates binary cell fate decisions by negatively regulating EGFR signaling. Using a substrate-trapping DEP-1 mutant in a proteomics approach, we have identified the C. elegans β-integrin subunit PAT-3 as a specific DEP-1 substrate. DEP-1 selectively de-phosphorylates tyrosine 792 in the membrane-proximal NPXY motif to promote integrin activation via talin recruitment. The non-phosphorylatable β-integrin mutant pat-3(Y792F) partially suppresses the hyperactive EGFR signaling phenotype caused by loss of dep-1 function. Thus, DEP-1 attenuates EGFR signaling in part by de-phosphorylating Y792 in the β-integrin cytoplasmic tail, besides the direct de-phosphorylation of the EGFR. Furthermore, in vivo FRAP analysis indicates that the αβ-integrin/talin complex attenuates EGFR signaling by restricting receptor mobility on the basolateral plasma membrane. We propose that DEP-1 regulates EGFR signaling via two parallel mechanisms, by direct receptor de-phosphorylation and by restricting receptor mobility through αβ-integrin activation.
Collapse
Affiliation(s)
- Michael Walser
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstr. 190, University of Zürich, Zürich, Switzerland
- Molecular Life Science Zürich PhD program, Zürich, Switzerland
| | - Christoph Alois Umbricht
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstr. 190, University of Zürich, Zürich, Switzerland
| | - Erika Fröhli
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstr. 190, University of Zürich, Zürich, Switzerland
| | - Paolo Nanni
- Functional Genomics Center Zürich, University of Zürich/ETH Zürich, Winterthurerstr. 190, Zürich, Switzerland
| | - Alex Hajnal
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstr. 190, University of Zürich, Zürich, Switzerland
| |
Collapse
|
15
|
Flibotte S, Kim BR, Van de Laar E, Brown L, Moghal N. The SWI/SNF chromatin remodeling complex exerts both negative and positive control over LET-23/EGFR-dependent vulval induction in Caenorhabditis elegans. Dev Biol 2016; 415:46-63. [PMID: 27207389 DOI: 10.1016/j.ydbio.2016.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 05/05/2016] [Accepted: 05/09/2016] [Indexed: 11/19/2022]
Abstract
Signaling by the epidermal growth factor receptor (EGFR) generates diverse developmental patterns. This requires precise control over the location and intensity of signaling. Elucidation of these regulatory mechanisms is important for understanding development and disease pathogenesis. In Caenorhabditis elegans, LIN-3/EGF induces vulval formation in the mid-body, which requires LET-23/EGFR activation only in P6.p, the vulval progenitor nearest the LIN-3 source. To identify mechanisms regulating this signaling pattern, we screened for mutations that cooperate with a let-23 gain-of-function allele to cause ectopic vulval induction. Here, we describe a dominant gain-of-function mutation in swsn-4, a component of SWI/SNF chromatin remodeling complexes. Loss-of-function mutations in multiple SWI/SNF components reveal that weak reduction in SWI/SNF activity causes ectopic vulval induction, while stronger reduction prevents adoption of vulval fates, a phenomenon also observed with increasing loss of LET-23 activity. High levels of LET-23 expression in P6.p are thought to locally sequester LIN-3, thereby preventing ectopic vulval induction, with slight reductions in its expression interfering with LIN-3 sequestration, but not vulval fate signaling. We find that SWI/SNF positively regulates LET-23 expression in P6.p descendants, providing an explanation for the similarities between let-23 and SWI/SNF mutant phenotypes. However, SWI/SNF regulation of LET-23 expression is cell-specific, with SWI/SNF repressing its expression in the ALA neuron. The swsn-4 gain-of-function mutation affects the PTH domain, and provides the first evidence that its auto-inhibitory function in yeast Sth1p is conserved in metazoan chromatin remodelers. Finally, our work supports broad use of SWI/SNF in regulating EGFR signaling during development, and suggests that dominant SWI/SNF mutations in certain human congenital anomaly syndromes may be gain-of-functions.
Collapse
Affiliation(s)
- Stephane Flibotte
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4.
| | - Bo Ram Kim
- Princess Margaret Cancer Centre/University Health Network, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 1L7.
| | - Emily Van de Laar
- Princess Margaret Cancer Centre/University Health Network, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 1L7.
| | - Louise Brown
- Samuel Lunenfeld Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5.
| | - Nadeem Moghal
- Princess Margaret Cancer Centre/University Health Network, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 1L7.
| |
Collapse
|
16
|
Tong XJ, Hu Z, Liu Y, Anderson D, Kaplan JM. A network of autism linked genes stabilizes two pools of synaptic GABA(A) receptors. eLife 2015; 4:e09648. [PMID: 26575289 PMCID: PMC4642926 DOI: 10.7554/elife.09648] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/15/2015] [Indexed: 01/24/2023] Open
Abstract
Changing receptor abundance at synapses is an important mechanism for regulating synaptic strength. Synapses contain two pools of receptors, immobilized and diffusing receptors, both of which are confined to post-synaptic elements. Here we show that immobile and diffusing GABAA receptors are stabilized by distinct synaptic scaffolds at C. elegans neuromuscular junctions. Immobilized GABAA receptors are stabilized by binding to FRM-3/EPB4.1 and LIN-2A/CASK. Diffusing GABAA receptors are stabilized by the synaptic adhesion molecules Neurexin and Neuroligin. Inhibitory post-synaptic currents are eliminated in double mutants lacking both scaffolds. Neurexin, Neuroligin, and CASK mutations are all linked to Autism Spectrum Disorders (ASD). Our results suggest that these mutations may directly alter inhibitory transmission, which could contribute to the developmental and cognitive deficits observed in ASD. DOI:http://dx.doi.org/10.7554/eLife.09648.001 Behaviors ranging from movement to memory are dependent on the activity of extensive networks of cells called neurons. Within these networks, neurons communicate across junctions called synapses. The arrival of an electrical signal called an action potential at the ‘presynaptic’ neuron on one side of the synapse triggers the neuron to release chemical neurotransmitter molecules into the synapse. These molecules then bind to receptors on the ‘postsynaptic’ cell on the other side of the synapse. At excitatory synapses, the binding of neurotransmitter to postsynaptic receptors increases the likelihood that the postsynaptic cell will fire its own action potential. By contrast, at inhibitory synapses the binding of neurotransmitters reduces the chances of the postsynaptic cell firing. Most inhibitory synapses use a type of neurotransmitter called GABA, which exerts its effects mainly by binding to a class of receptors called GABA-activated chloride channels (also known as GABAA receptors). GABAA receptors at inhibitory synapses can themselves be divided into two groups: ‘mobile’ receptors, which can move within the cell membrane that surrounds the postsynaptic cell; and ‘immobilized’ receptors that form clusters and cannot move. Recent work in mammalian cells identified a protein complex that anchors GABAA receptors to the cell's internal skeleton to immobilize the receptors. However, there is evidence to suggest that these are not the only proteins that control the location of the receptors. By studying the inhibitory synapses formed between neurons and body muscles in the roundworm species Caenorhabditis elegans, Tong, Hu et al. now show that different groups of proteins maintain the positioning of immobilized and mobile receptors. Specifically, proteins called LIN-2A (a component of the cell's internal skeleton) and FRM-3 (which joins receptors to the cell's skeleton) immobilize GABAA receptors, whilst the proteins Neuroligin and Neurexin ensure that mobile GABAA receptors remain within the synapse. Disturbances to the activity of inhibitory synapses are often seen in autism spectrum disorders, and so too are mutations in the genes that encode the mammalian equivalents of Neuroligin, Neurexin and LIN-2A. The work of Tong, Hu et al. thus suggests a mechanism by which these mutations might contribute to information processing impairments in people with autism. Further research could now investigate if (and how) other genes linked to autism spectrum disorders alter inhibitory synapses. DOI:http://dx.doi.org/10.7554/eLife.09648.002
Collapse
Affiliation(s)
- Xia-Jing Tong
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Zhitao Hu
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Yu Liu
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Dorian Anderson
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Joshua M Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
17
|
Schmid T, Hajnal A. Signal transduction during C. elegans vulval development: a NeverEnding story. Curr Opin Genet Dev 2015; 32:1-9. [DOI: 10.1016/j.gde.2015.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 11/16/2022]
|
18
|
Functions of kinesin superfamily proteins in neuroreceptor trafficking. BIOMED RESEARCH INTERNATIONAL 2015; 2015:639301. [PMID: 26075252 PMCID: PMC4449888 DOI: 10.1155/2015/639301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/22/2015] [Accepted: 04/27/2015] [Indexed: 11/18/2022]
Abstract
Synaptic plasticity is widely regarded as the cellular basis of learning and memory. Understanding the molecular mechanism of synaptic plasticity has been one of center pieces of neuroscience research for more than three decades. It has been well known that the trafficking of α-amino-3-hydroxy-5-methylisoxazoloe-4-propionic acid- (AMPA-) type, N-methyl-D-aspartate- (NMDA-) type glutamate receptors to and from synapses is a key molecular event underlying many forms of synaptic plasticity. Kainate receptors are another type of glutamate receptors playing important roles in synaptic transmission. In addition, GABA receptors also play important roles in modulating the synaptic plasticity. Kinesin superfamily proteins (also known as KIFs) transport various cargos in both anterograde and retrograde directions through the interaction with different adaptor proteins. Recent studies indicate that KIFs regulate the trafficking of NMDA receptors, AMPA receptors, kainate receptors, and GABA receptors and thus play important roles in neuronal activity. Here we review the essential functions of KIFs in the trafficking of neuroreceptor and synaptic plasticity.
Collapse
|
19
|
van Zon JS, Kienle S, Huelsz-Prince G, Barkoulas M, van Oudenaarden A. Cells change their sensitivity to an EGF morphogen gradient to control EGF-induced gene expression. Nat Commun 2015; 6:7053. [PMID: 25958991 PMCID: PMC4438782 DOI: 10.1038/ncomms8053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/26/2015] [Indexed: 11/09/2022] Open
Abstract
How cells in developing organisms interpret the quantitative information contained in morphogen gradients is an open question. Here we address this question using a novel integrative approach that combines quantitative measurements of morphogen-induced gene expression at single-mRNA resolution with mathematical modelling of the induction process. We focus on the induction of Notch ligands by the LIN-3/EGF morphogen gradient during vulva induction in Caenorhabditis elegans. We show that LIN-3/EGF-induced Notch ligand expression is highly dynamic, exhibiting an abrupt transition from low to high expression. Similar transitions in Notch ligand expression are observed in two highly divergent wild C. elegans isolates. Mathematical modelling and experiments show that this transition is driven by a dynamic increase in the sensitivity of the induced cells to external LIN-3/EGF. Furthermore, this increase in sensitivity is independent of the presence of LIN-3/EGF. Our integrative approach might be useful to study induction by morphogen gradients in other systems.
Collapse
Affiliation(s)
- Jeroen Sebastiaan van Zon
- Departments of Physics and Biology and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Simone Kienle
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | | | - Michalis Barkoulas
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS-Inserm-ENS, 46 rue d'Ulm, 75230 Paris cedex 05, France
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Alexander van Oudenaarden
- Departments of Physics and Biology and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
20
|
Waaijers S, Ramalho JJ, Koorman T, Kruse E, Boxem M. The C. elegans Crumbs family contains a CRB3 homolog and is not essential for viability. Biol Open 2015; 4:276-84. [PMID: 25661870 PMCID: PMC4359734 DOI: 10.1242/bio.201410744] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Crumbs proteins are important regulators of epithelial polarity. In C. elegans, no essential role for the two described Crumbs homologs has been uncovered. Here, we identify and characterize an additional Crumbs family member in C. elegans, which we termed CRB-3 based on its similarity in size and sequence to mammalian CRB3. We visualized CRB-3 subcellular localization by expressing a translational GFP fusion. CRB-3::GFP was expressed in several polarized tissues in the embryo and larval stages, and showed apical localization in the intestine and pharynx. To identify the function of the Crumbs family in C. elegans development, we generated a triple Crumbs deletion mutant by sequentially removing the entire coding sequence for each crumbs homolog using a CRISPR/Cas9-based approach. Remarkably, animals lacking all three Crumbs homologs are viable and show normal epithelial polarity. Thus, the three C. elegans Crumbs family members do not appear to play an essential role in epithelial polarity establishment.
Collapse
Affiliation(s)
- Selma Waaijers
- Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - João Jacob Ramalho
- Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Thijs Koorman
- Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Elisabeth Kruse
- Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Mike Boxem
- Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
21
|
Parry JM, Sundaram MV. A non-cell-autonomous role for Ras signaling in C. elegans neuroblast delamination. Development 2015; 141:4279-84. [PMID: 25371363 DOI: 10.1242/dev.112045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Receptor tyrosine kinase (RTK) signaling through Ras influences many aspects of normal cell behavior, including epithelial-to-mesenchymal transition, and aberrant signaling promotes both tumorigenesis and metastasis. Although many such effects are cell-autonomous, here we show a non-cell-autonomous role for RTK-Ras signaling in the delamination of a neuroblast from an epithelial organ. The C. elegans renal-like excretory organ is initially composed of three unicellular epithelial tubes, namely the canal, duct and G1 pore cells; however, the G1 cell later delaminates from the excretory system to become a neuroblast and is replaced by the G2 cell. G1 delamination and G2 intercalation involve cytoskeletal remodeling, interconversion of autocellular and intercellular junctions and migration over a luminal extracellular matrix, followed by G1 junction loss. LET-23/EGFR and SOS-1, an exchange factor for Ras, are required for G1 junction loss but not for initial cytoskeletal or junction remodeling. Surprisingly, expression of activated LET-60/Ras in the neighboring duct cell, but not in the G1 or G2 cells, is sufficient to rescue sos-1 delamination defects, revealing that Ras acts non-cell-autonomously to permit G1 delamination. We suggest that, similarly, oncogenic mutations in cells within a tumor might help create a microenvironment that is permissive for other cells to detach and ultimately metastasize.
Collapse
Affiliation(s)
- Jean M Parry
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104, USA Department of Biology, Georgian Court University, 900 Lakewood Avenue, Lakewood, NJ 08701, USA
| | - Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Escobar-Restrepo JM, Hajnal A. An intimate look at LET-23 EGFR trafficking in the vulval cells of live C. elegans larvae. WORM 2014; 3:e965605. [PMID: 26430550 PMCID: PMC4588154 DOI: 10.4161/21624046.2014.965605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/09/2014] [Indexed: 01/07/2023]
Abstract
Precise cell fate specification is essential for organ formation. A simple view is that one or several signal sending cells emit a ligand to a group of signal receiving cells that express the corresponding receptor, which transduces the signal through intracellular enzyme pathways. All these events must be spatio-temporally regulated to achieve the proper strength, duration and output of the signaling pathways. In particular, the production and secretion of the ligand has to be coordinated with the expression and accessibility of the receptor in the signal receiving cells. Furthermore, removal of the ligand or receptor is key to achieve proper signal termination and prevent excess cell differentiation and proliferation. Improper regulation of any of these events may cause developmental defects and human disease. C. elegans is an excellent model to systematically identify genes that control the localization and activity of the Epidermal Growth Factor Receptor (EGFR) homolog LET-23. To identify regulators of LET-23 trafficking, Haag et al. observed LET-23 localization in the vulva precursor cells (VPCs) of RNAi treated larvae by live fluorescent microscopy. In this comment, we provide an overview of the newly identified regulators of LET-23 trafficking and discuss the role of the Ezrin/Radixin/Moesin homolog ERM-1 as a temporal regulator of EGFR signaling.
Collapse
Affiliation(s)
- Juan M Escobar-Restrepo
- University of Zurich; Institute of Molecular Life Sciences; Winterthurerstrasse; Zurich, Switzerland
| | - Alex Hajnal
- University of Zurich; Institute of Molecular Life Sciences; Winterthurerstrasse; Zurich, Switzerland
| |
Collapse
|
23
|
Polarized Wnt Signaling Regulates Ectodermal Cell Fate in Xenopus. Dev Cell 2014; 29:250-7. [DOI: 10.1016/j.devcel.2014.03.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 03/05/2014] [Accepted: 03/21/2014] [Indexed: 11/21/2022]
|
24
|
Bai X, Adams BJ, Ciche TA, Clifton S, Gaugler R, Kim KS, Spieth J, Sternberg PW, Wilson RK, Grewal PS. A lover and a fighter: the genome sequence of an entomopathogenic nematode Heterorhabditis bacteriophora. PLoS One 2013; 8:e69618. [PMID: 23874975 PMCID: PMC3715494 DOI: 10.1371/journal.pone.0069618] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 06/12/2013] [Indexed: 11/19/2022] Open
Abstract
Heterorhabditis bacteriophora are entomopathogenic nematodes that have evolved a mutualism with Photorhabdus luminescens bacteria to function as highly virulent insect pathogens. The nematode provides a safe harbor for intestinal symbionts in soil and delivers the symbiotic bacteria into the insect blood. The symbiont provides virulence and toxins, metabolites essential for nematode reproduction, and antibiotic preservation of the insect cadaver. Approximately half of the 21,250 putative protein coding genes identified in the 77 Mbp high quality draft H. bacteriophora genome sequence were novel proteins of unknown function lacking homologs in Caenorhabditis elegans or any other sequenced organisms. Similarly, 317 of the 603 predicted secreted proteins are novel with unknown function in addition to 19 putative peptidases, 9 peptidase inhibitors and 7 C-type lectins that may function in interactions with insect hosts or bacterial symbionts. The 134 proteins contained mariner transposase domains, of which there are none in C. elegans, suggesting an invasion and expansion of mariner transposons in H. bacteriophora. Fewer Kyoto Encyclopedia of Genes and Genomes Orthologies in almost all metabolic categories were detected in the genome compared with 9 other sequenced nematode genomes, which may reflect dependence on the symbiont or insect host for these functions. The H. bacteriophora genome sequence will greatly facilitate genetics, genomics and evolutionary studies to gain fundamental knowledge of nematode parasitism and mutualism. It also elevates the utility of H. bacteriophora as a bridge species between vertebrate parasitic nematodes and the C. elegans model.
Collapse
Affiliation(s)
- Xiaodong Bai
- Department of Entomology, The Ohio State University - OARDC, Wooster, Ohio, United States of America
| | - Byron J. Adams
- Department of Biology and Evolutionary Ecology Laboratories, Brigham Young University, Provo, Utah, United States of America
| | - Todd A. Ciche
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Sandra Clifton
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America
- Genome Institute, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Randy Gaugler
- Department of Entomology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Kwi-suk Kim
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - John Spieth
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America
- Genome Institute, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Paul W. Sternberg
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Richard K. Wilson
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America
- Genome Institute, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Parwinder S. Grewal
- Department of Entomology, The Ohio State University - OARDC, Wooster, Ohio, United States of America
- * E-mail:
| |
Collapse
|
25
|
Abstract
Receptor Tyrosine Kinase (RTK)-Ras-Extracellular signal-regulated kinase (ERK) signaling pathways control many aspects of C. elegans development and behavior. Studies in C. elegans helped elucidate the basic framework of the RTK-Ras-ERK pathway and continue to provide insights into its complex regulation, its biological roles, how it elicits cell-type appropriate responses, and how it interacts with other signaling pathways to do so. C. elegans studies have also revealed biological contexts in which alternative RTK- or Ras-dependent pathways are used instead of the canonical pathway.
Collapse
Affiliation(s)
- Meera V Sundaram
- Dept. of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6145, USA.
| |
Collapse
|
26
|
Weinstein N, Mendoza L. A network model for the specification of vulval precursor cells and cell fusion control in Caenorhabditis elegans. Front Genet 2013; 4:112. [PMID: 23785384 PMCID: PMC3682179 DOI: 10.3389/fgene.2013.00112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/28/2013] [Indexed: 01/21/2023] Open
Abstract
The vulva of Caenorhabditis elegans has been long used as an experimental model of cell differentiation and organogenesis. While it is known that the signaling cascades of Wnt, Ras/MAPK, and NOTCH interact to form a molecular network, there is no consensus regarding its precise topology and dynamical properties. We inferred the molecular network, and developed a multivalued synchronous discrete dynamic model to study its behavior. The model reproduces the patterns of activation reported for the following types of cell: vulval precursor, first fate, second fate, second fate with reversed polarity, third fate, and fusion fate. We simulated the fusion of cells, the determination of the first, second, and third fates, as well as the transition from the second to the first fate. We also used the model to simulate all possible single loss- and gain-of-function mutants, as well as some relevant double and triple mutants. Importantly, we associated most of these simulated mutants to multivulva, vulvaless, egg-laying defective, or defective polarity phenotypes. The model shows that it is necessary for RAL-1 to activate NOTCH signaling, since the repression of LIN-45 by RAL-1 would not suffice for a proper second fate determination in an environment lacking DSL ligands. We also found that the model requires the complex formed by LAG-1, LIN-12, and SEL-8 to inhibit the transcription of eff-1 in second fate cells. Our model is the largest reconstruction to date of the molecular network controlling the specification of vulval precursor cells and cell fusion control in C. elegans. According to our model, the process of fate determination in the vulval precursor cells is reversible, at least until either the cells fuse with the ventral hypoderm or divide, and therefore the cell fates must be maintained by the presence of extracellular signals.
Collapse
Affiliation(s)
| | - Luis Mendoza
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de MéxicoMexico City, México
| |
Collapse
|
27
|
Barry J, Gu C. Coupling mechanical forces to electrical signaling: molecular motors and the intracellular transport of ion channels. Neuroscientist 2013; 19:145-59. [PMID: 22910031 PMCID: PMC3625366 DOI: 10.1177/1073858412456088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proper localization of various ion channels is fundamental to neuronal functions, including postsynaptic potential plasticity, dendritic integration, action potential initiation and propagation, and neurotransmitter release. Microtubule-based forward transport mediated by kinesin motors plays a key role in placing ion channel proteins to correct subcellular compartments. PDZ- and coiled-coil-domain proteins function as adaptor proteins linking ionotropic glutamate and GABA receptors to various kinesin motors, respectively. Recent studies show that several voltage-gated ion channel/transporter proteins directly bind to kinesins during forward transport. Three major regulatory mechanisms underlying intracellular transport of ion channels are also revealed. These studies contribute to understanding how mechanical forces are coupled to electrical signaling and illuminating pathogenic mechanisms in neurodegenerative diseases.
Collapse
Affiliation(s)
- Joshua Barry
- The Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Chen Gu
- The Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
28
|
Sem X, Kreisberg JF, Kawli T, Tan MW, Rhen M, Tan P. Modulation of Caenorhabditis elegans infection sensitivity by the LIN-7 cell junction protein. Cell Microbiol 2012; 14:1584-99. [PMID: 22672310 PMCID: PMC3470699 DOI: 10.1111/j.1462-5822.2012.01824.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/23/2012] [Accepted: 05/26/2012] [Indexed: 12/03/2022]
Abstract
In Caenorhabditis elegans, the LIN-2/7/10 protein complex regulates the activity of signalling proteins. We found that inhibiting lin-7 function, and also lin-2 and lin-10, resulted in enhanced C. elegans survival after infection by Burkholderia spp., implicating a novel role for these genes in modulating infection outcomes. Genetic experiments suggested that this infection phenotype is likely caused by modulation of the DAF-2 insulin/IGF-1 signalling pathway. Supporting these observations, yeast two-hybrid assays confirmed that the LIN-2 PDZ domain can physically bind to the DAF-2 C-terminus. Loss of lin-7 activity also altered DAF-16 nuclear localization kinetics, indicating an additional contribution by hsf-1. Unexpectedly, silencing lin-7 in the hypodermis, but not the intestine, was protective against infection, implicating the hypodermis as a key tissue in this phenomenon. Finally, consistent with lin-7 acting as a general host infection factor, lin-7 mutants also exhibited enhanced survival upon infectionby two other Gram-negative pathogens, Pseudomonas and Salmonella spp.
Collapse
Affiliation(s)
- Xiaohui Sem
- Genome Institute of Singapore, Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
During development and tissue homeostasis, patterns of cellular organization, proliferation and movement are highly choreographed. Receptor tyrosine kinases (RTKs) have a crucial role in establishing these patterns. Individual cells and tissues exhibit tight spatial control of the RTKs that they express, enabling tissue morphogenesis and function, while preventing unwarranted cell division and migration that can contribute to tumorigenesis. Indeed, RTKs are deregulated in most human cancers and are a major focus of targeted therapeutics. A growing appreciation of the essential role of spatial RTK regulation during development prompts the realization that spatial deregulation of RTKs is likely to contribute broadly to cancer development and may affect the sensitivity and resistance of cancer to pharmacological RTK inhibitors.
Collapse
Affiliation(s)
- Jessica B. Casaletto
- MGH Center for Cancer Research and Harvard Medical School Department of Pathology, 149 13th Street Charlestown, MA 02129 United States
| | - Andrea I. McClatchey
- MGH Center for Cancer Research and Harvard Medical School Department of Pathology, 149 13th Street Charlestown, MA 02129 United States
- To whom correspondence should be addressed:
| |
Collapse
|
30
|
Skorobogata O, Rocheleau CE. RAB-7 antagonizes LET-23 EGFR signaling during vulva development in Caenorhabditis elegans. PLoS One 2012; 7:e36489. [PMID: 22558469 PMCID: PMC3340361 DOI: 10.1371/journal.pone.0036489] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 04/07/2012] [Indexed: 12/20/2022] Open
Abstract
The Rab7 GTPase regulates late endosome trafficking of the Epidermal Growth Factor Receptor (EGFR) to the lysosome for degradation. However, less is known about how Rab7 activity, functioning late in the endocytic pathway, affects EGFR signaling. Here we used Caenorhabditis elegans vulva cell fate induction, a paradigm for genetic analysis of EGFR/Receptor Tyrosine Kinase (RTK) signaling, to assess the genetic requirements for rab-7. Using a rab-7 deletion mutant, we demonstrate that rab-7 antagonizes LET-23 EGFR signaling to a similar extent, but in a distinct manner, as previously described negative regulators such as sli-1 c-Cbl. Epistasis analysis places rab-7 upstream of or in parallel to lin-3 EGF and let-23 EGFR. However, expression of gfp::rab-7 in the Vulva Presursor Cells (VPCs) is sufficient to rescue the rab-7(-) VPC induction phenotypes indicating that RAB-7 functions in the signal receiving cell. We show that components of the Endosomal Sorting Complex Required for Transport (ESCRT)-0, and -I, complexes, hgrs-1 Hrs, and vps-28, also antagonize signaling, suggesting that LET-23 EGFR likely transits through Multivesicular Bodies (MVBs) en route to the lysosome. Consistent with RAB-7 regulating LET-23 EGFR trafficking, rab-7 mutants have increased number of LET-23::GFP-positive endosomes. Our data imply that Rab7, by mediating EGFR trafficking and degradation, plays an important role in downregulation of EGFR signaling. Failure to downregulate EGFR signaling contributes to oncogenesis, and thus Rab7 could possess tumor suppressor activity in humans.
Collapse
Affiliation(s)
- Olga Skorobogata
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Christian E. Rocheleau
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| |
Collapse
|
31
|
|
32
|
Pellegrino MW, Farooqui S, Fröhli E, Rehrauer H, Kaeser-Pebernard S, Müller F, Gasser RB, Hajnal A. LIN-39 and the EGFR/RAS/MAPK pathway regulate C. elegans vulval morphogenesis via the VAB-23 zinc finger protein. Development 2011; 138:4649-60. [PMID: 21989912 DOI: 10.1242/dev.071951] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Morphogenesis represents a phase of development during which cell fates are executed. The conserved hox genes are key cell fate determinants during metazoan development, but their role in controlling organ morphogenesis is less understood. Here, we show that the C. elegans hox gene lin-39 regulates epidermal morphogenesis via its novel target, the essential zinc finger protein VAB-23. During the development of the vulva, the egg-laying organ of the hermaphrodite, the EGFR/RAS/MAPK signaling pathway activates, together with LIN-39 HOX, the expression of VAB-23 in the primary cell lineage to control the formation of the seven vulval toroids. VAB-23 regulates the formation of homotypic contacts between contralateral pairs of cells with the same sub-fates at the vulval midline by inducing smp-1 (semaphorin) transcription. In addition, VAB-23 prevents ectopic vulval cell fusions by negatively regulating expression of the fusogen eff-1. Thus, LIN-39 and the EGFR/RAS/MAPK signaling pathway, which specify cell fates earlier during vulval induction, continue to act during the subsequent phase of cell fate execution by regulating various aspects of epidermal morphogenesis. Vulval cell fate specification and execution are, therefore, tightly coupled processes.
Collapse
Affiliation(s)
- Mark W Pellegrino
- The University of Melbourne, Department of Veterinary Science, Werribee, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abdus-Saboor I, Mancuso VP, Murray JI, Palozola K, Norris C, Hall DH, Howell K, Huang K, Sundaram MV. Notch and Ras promote sequential steps of excretory tube development in C. elegans. Development 2011; 138:3545-55. [PMID: 21771815 PMCID: PMC3143567 DOI: 10.1242/dev.068148] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2011] [Indexed: 12/31/2022]
Abstract
Receptor tyrosine kinases and Notch are crucial for tube formation and branching morphogenesis in many systems, but the specific cellular processes that require signaling are poorly understood. Here we describe sequential roles for Notch and Epidermal growth factor (EGF)-Ras-ERK signaling in the development of epithelial tube cells in the C. elegans excretory (renal-like) organ. This simple organ consists of three tandemly connected unicellular tubes: the excretory canal cell, duct and G1 pore. lin-12 and glp-1/Notch are required to generate the canal cell, which is a source of LIN-3/EGF ligand and physically attaches to the duct during de novo epithelialization and tubulogenesis. Canal cell asymmetry and let-60/Ras signaling influence which of two equivalent precursors will attach to the canal cell. Ras then specifies duct identity, inducing auto-fusion and a permanent epithelial character; the remaining precursor becomes the G1 pore, which eventually loses epithelial character and withdraws from the organ to become a neuroblast. Ras continues to promote subsequent aspects of duct morphogenesis and differentiation, and acts primarily through Raf-ERK and the transcriptional effectors LIN-1/Ets and EOR-1. These results reveal multiple genetically separable roles for Ras signaling in tube development, as well as similarities to Ras-mediated control of branching morphogenesis in more complex organs, including the mammalian kidney. The relative simplicity of the excretory system makes it an attractive model for addressing basic questions about how cells gain or lose epithelial character and organize into tubular networks.
Collapse
Affiliation(s)
- Ishmail Abdus-Saboor
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Vincent P. Mancuso
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - John I. Murray
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Katherine Palozola
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Carolyn Norris
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - David H. Hall
- Department of Neuroscience, Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kelly Howell
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Kai Huang
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Meera V. Sundaram
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
Abstract
Cerebral cortical progenitor cells can be classified into several different types, and each progenitor type integrates cell-intrinsic and cell-extrinsic cues to regulate neurogenesis. On one hand, cell-intrinsic mechanisms that depend upon appropriate apical-basal polarity are established by adherens junctions and apical complex proteins and are particularly important in progenitors with apical processes contacting the lateral ventricle. The apical protein complexes themselves are concentrated at the ventricular surface, and apical complex proteins regulate mitotic spindle orientation and cell fate. On the other hand, remarkably little is known about how cell-extrinsic cues signal to progenitors and couple with cell-intrinsic mechanisms to instruct neurogenesis. Recent research shows that the cerebrospinal fluid, which contacts apical progenitors at the ventricular surface and bathes the apical complex of these cells, provides growth- and survival-promoting cues for neural progenitor cells in developing and adult brain. This review addresses how the apical-basal polarity of progenitor cells regulates cell fate and allows progenitors to sample diffusible signals distributed by the cerebrospinal fluid. We also review several classes of signaling factors that the cerebrospinal fluid distributes to the developing brain to instruct neurogenesis.
Collapse
Affiliation(s)
- Maria K Lehtinen
- Division of Genetics, Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
35
|
Xiao F, Weng J, Fan K, Wang W. Detailed regulatory mechanism of the interaction between ZO-1 PDZ2 and connexin43 revealed by MD simulations. PLoS One 2011; 6:e21527. [PMID: 21731774 PMCID: PMC3121883 DOI: 10.1371/journal.pone.0021527] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 06/01/2011] [Indexed: 11/18/2022] Open
Abstract
The gap junction protein connexin43 (Cx43) binds to the second PDZ domain of Zonula occludens-1 (ZO-1) through its C-terminal tail, mediating the regulation of gap junction plaque size and dynamics. Biochemical study demonstrated that the very C-terminal 12 residues of Cx43 are necessary and sufficient for ZO-1 PDZ2 binding and phosphorylation at residues Ser (-9) and Ser (-10) of the peptide can disrupt the association. However, only a crystal structure of ZO-1 PDZ2 in complex with a shorter 9 aa peptide of connexin43 was solved experimentally. Here, the interactions between ZO-1 PDZ2 and the short, long and phosphorylated Cx43 peptides were studied using molecular dynamics (MD) simulations and free energy calculation. The short peptide bound to PDZ2 exhibits large structural variations, while the extension of three upstream residues stabilizes the peptide conformation and enhanced the interaction. Phosphorylation at Ser(-9) significantly weakens the binding and results in conformational flexibility of the peptide. Glu210 of ZO-1 PDZ2 was found to be a key regulatory point in Cx43 binding and phosphorylation induced dissociation.
Collapse
Affiliation(s)
- Fei Xiao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, People's Republic of China
| | - Jingwei Weng
- Institute of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Kangnian Fan
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, People's Republic of China
| | - Wenning Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, People's Republic of China
- Institute of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
36
|
Yang X, Xie X, Chen L, Zhou H, Wang Z, Zhao W, Tian R, Zhang R, Tian C, Long J, Shen Y. Structural basis for tandem L27 domain‐mediated polymerization. FASEB J 2010. [DOI: 10.1096/fj.10.163857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xue Yang
- Tianjin Key Laboratory of Protein Science, College of Life Science, Nankai University Tianjin China
| | - Xingqiao Xie
- Tianjin Key Laboratory of Protein Science, College of Life Science, Nankai University Tianjin China
| | - Liu Chen
- School of Life Science, University of Science and Technology China Anhui China
| | - Hao Zhou
- Tianjin Key Laboratory of Protein Science, College of Life Science, Nankai University Tianjin China
| | - Zheng Wang
- Tianjin Key Laboratory of Protein Science, College of Life Science, Nankai University Tianjin China
| | - Weijing Zhao
- Tianjin Key Laboratory of Protein Science, College of Life Science, Nankai University Tianjin China
| | - Ran Tian
- Tianjin Key Laboratory of Protein Science, College of Life Science, Nankai University Tianjin China
| | - Rongguang Zhang
- Institute of BiophysicsChinese Academy of Science Beijing China
| | - Changlin Tian
- School of Life Science, University of Science and Technology China Anhui China
| | - Jiafu Long
- Tianjin Key Laboratory of Protein Science, College of Life Science, Nankai University Tianjin China
| | - Yuequan Shen
- Tianjin Key Laboratory of Protein Science, College of Life Science, Nankai University Tianjin China
| |
Collapse
|
37
|
Yang X, Xie X, Chen L, Zhou H, Wang Z, Zhao W, Tian R, Zhang R, Tian C, Long J, Shen Y. Structural basis for tandem L27 domain-mediated polymerization. FASEB J 2010; 24:4806-15. [PMID: 20702775 DOI: 10.1096/fj.10-163857] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The establishment of epithelial cell polarity requires the assembly of multiprotein complexes and is crucial during epithelial morphogenesis. Three scaffolding proteins, Dlg1, MPP7, and Mals3, can be assembled to form a complex that functions in the establishment and maintenance of apicobasal polarity in epithelial tissues through their L27 domains. Here we report the crystal structure of a 4-L27-domain complex derived from the human tripartite complex Dlg1-MPP7-Mals3 in combination with paramagnetic relaxation enhancement measurements. The heterotrimer consists of 2 pairs of heterodimeric L27 domains. These 2 dimers are asymmetric due to the large difference between the N- and C-terminal tandem L27 domain of MPP7. Structural analysis combined with biochemical experiments further reveals that the loop αA-αB and helix αB of the C-terminal L27 domain of MPP7 play a critical role in assembling the entire tripartite complex, suggesting a synergistic tandem L27-mediated assembling event.
Collapse
Affiliation(s)
- Xue Yang
- Tianjin Key Laboratory of Protein Science, College of Life Science, Nankai University, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Choi MS, Yoo AS, Greenwald I. sel-11 and cdc-42, two negative modulators of LIN-12/Notch activity in C. elegans. PLoS One 2010; 5:e11885. [PMID: 20686701 PMCID: PMC2912376 DOI: 10.1371/journal.pone.0011885] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 07/06/2010] [Indexed: 11/25/2022] Open
Abstract
Background LIN-12/Notch signaling is important for cell-cell interactions during development, and mutations resulting in constitutive LIN-12/Notch signaling can cause cancer. Loss of negative regulators of lin-12/Notch activity has the potential for influencing cell fate decisions during development and the genesis or aggressiveness of cancer. Methodology/Principal Findings We describe two negative modulators of lin-12 activity in C. elegans. One gene, sel-11, was initially defined as a suppressor of a lin-12 hypomorphic allele; the other gene, cdc-42, is a well-studied Rho GTPase. Here, we show that SEL-11 corresponds to yeast Hrd1p and mammalian Synoviolin. We also show that cdc-42 has the genetic properties consistent with negative regulation of lin-12 activity during vulval precursor cell fate specification. Conclusions/Significance Our results underscore the multiplicity of negative regulatory mechanisms that impact on lin-12/Notch activity and suggest novel mechanisms by which constitutive lin-12/Notch activity might be exacerbated in cancer.
Collapse
Affiliation(s)
- Min Sung Choi
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Andrew S. Yoo
- Integrated Program in Cellular, Molecular, and Biophysical Studies, Howard Hughes Medical Institute, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Iva Greenwald
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
39
|
Sun X, Hong P. Automatic inference of multicellular regulatory networks using informative priors. INTERNATIONAL JOURNAL OF COMPUTATIONAL BIOLOGY AND DRUG DESIGN 2010; 2:115-33. [PMID: 20090166 DOI: 10.1504/ijcbdd.2009.028820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To fully understand the mechanisms governing animal development, computational models and algorithms are needed to enable quantitative studies of the underlying regulatory networks. We developed a mathematical model based on dynamic Bayesian networks to model multicellular regulatory networks that govern cell differentiation processes. A machine-learning method was developed to automatically infer such a model from heterogeneous data. We show that the model inference procedure can be greatly improved by incorporating interaction data across species. The proposed approach was applied to C. elegans vulval induction to reconstruct a model capable of simulating C. elegans vulval induction under 73 different genetic conditions.
Collapse
Affiliation(s)
- Xiaoyun Sun
- Department of Computer Science, Brandeis University, Waltham, MA 02454, USA.
| | | |
Collapse
|
40
|
AQP1 is not only a water channel: it contributes to cell migration through Lin7/beta-catenin. PLoS One 2009; 4:e6167. [PMID: 19584911 PMCID: PMC2701997 DOI: 10.1371/journal.pone.0006167] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 05/28/2009] [Indexed: 12/21/2022] Open
Abstract
Background AQP1 belongs to aquaporins family, water-specific, membrane-channel proteins expressed in diverse tissues. Recent papers showed that during angiogenesis, AQP1 is expressed preferentially by microvessels, favoring angiogenesis via the increase of permeability In particular, in AQP1 null mice, endothelial cell migration is impaired without altering their proliferation or adhesion. Therefore, AQP1 has been proposed as a novel promoter of tumor angiogenesis. Methods/Findings Using targeted silencing of AQP1 gene expression, an impairment in the organization of F-actin and a reduced migration capacity was demonstrated in human endothelial and melanoma cell lines. Interestingly, we showed, for the first time, that AQP1 co-immunoprecipitated with Lin-7. Lin7-GFP experiments confirmed co-immunoprecipitation. In addition, the knock down of AQP1 decreased the level of expression of Lin-7 and β-catenin and the inhibition of proteasome contrasted partially such a decrease. Conclusions/Significance All together, our findings show that AQP1 plays a role inside the cells through Lin-7/β-catenin interaction. Such a role of AQP1 is the same in human melanoma and endothelial cells, suggesting that AQP1 plays a global physiological role. A model is presented.
Collapse
|
41
|
Tonikian R, Zhang Y, Sazinsky SL, Currell B, Yeh JH, Reva B, Held HA, Appleton BA, Evangelista M, Wu Y, Xin X, Chan AC, Seshagiri S, Lasky LA, Sander C, Boone C, Bader GD, Sidhu SS. A specificity map for the PDZ domain family. PLoS Biol 2008; 6:e239. [PMID: 18828675 PMCID: PMC2553845 DOI: 10.1371/journal.pbio.0060239] [Citation(s) in RCA: 380] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 08/19/2008] [Indexed: 12/25/2022] Open
Abstract
PDZ domains are protein–protein interaction modules that recognize specific C-terminal sequences to assemble protein complexes in multicellular organisms. By scanning billions of random peptides, we accurately map binding specificity for approximately half of the over 330 PDZ domains in the human and Caenorhabditis elegans proteomes. The domains recognize features of the last seven ligand positions, and we find 16 distinct specificity classes conserved from worm to human, significantly extending the canonical two-class system based on position −2. Thus, most PDZ domains are not promiscuous, but rather are fine-tuned for specific interactions. Specificity profiling of 91 point mutants of a model PDZ domain reveals that the binding site is highly robust, as all mutants were able to recognize C-terminal peptides. However, many mutations altered specificity for ligand positions both close and far from the mutated position, suggesting that binding specificity can evolve rapidly under mutational pressure. Our specificity map enables the prediction and prioritization of natural protein interactions, which can be used to guide PDZ domain cell biology experiments. Using this approach, we predicted and validated several viral ligands for the PDZ domains of the SCRIB polarity protein. These findings indicate that many viruses produce PDZ ligands that disrupt host protein complexes for their own benefit, and that highly pathogenic strains target PDZ domains involved in cell polarity and growth. The PDZ domain is a structural domain that functions as a protein–protein interaction module that recognizes specific C-terminal peptide sequences to assemble intracellular complexes important in signaling pathways of multicellular organisms. These modules are associated with human disease and are targets of viruses and other pathogens. By examining peptide specificity and substrate diversity of roughly one half of the PDZ domains known to exist in human and the nematode Caenorhabditis elegans, we were able to show that PDZ domains are more specific than previously appreciated. PDZ domains also remain functional under high mutational pressure, and only a few of the vast number of possible PDZ domain specificities are utilized in nature. These PDZ domain specificities are conserved from human to worm, implying that the specificities evolved early and were reused over evolution instead of being reshaped. The specificity map generated here was used to predict and experimentally confirm new viral PDZ-binding motifs. We present evidence that pathogenic viruses, including avian influenza, bind host PDZ domains via these motifs, thereby competing with signaling by host complexes, which leads to disruption of growth and polarity of the host cells. A genome-scale specificity map for PDZ domains reveals how family members recognize ligands to assemble signaling complexes and also reveals how viruses target these domains to subvert host cell function.
Collapse
Affiliation(s)
- Raffi Tonikian
- Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Yingnan Zhang
- Department of Protein Engineering, Genentech, South San Francisco, California, United States of America
| | - Stephen L Sazinsky
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Bridget Currell
- Department of Molecular Biology, Genentech, South San Francisco, California, United States of America
| | - Jung-Hua Yeh
- Department of Immunology, Genentech South San Francisco, California, United States of America
| | - Boris Reva
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Heike A Held
- Department of Protein Engineering, Genentech, South San Francisco, California, United States of America
| | - Brent A Appleton
- Department of Protein Engineering, Genentech, South San Francisco, California, United States of America
| | - Marie Evangelista
- Department of Molecular Biology, Genentech, South San Francisco, California, United States of America
| | - Yan Wu
- Department of Antibody Engineering, Genentech, South San Francisco, California, United States of America
| | - Xiaofeng Xin
- Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Andrew C Chan
- Department of Immunology, Genentech South San Francisco, California, United States of America
| | - Somasekar Seshagiri
- Department of Molecular Biology, Genentech, South San Francisco, California, United States of America
| | - Laurence A Lasky
- Department of Protein Engineering, Genentech, South San Francisco, California, United States of America
| | - Chris Sander
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Charles Boone
- Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * To whom correspondence should be addressed. E-mail: (SSS); (GDB); (CB)
| | - Gary D Bader
- Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail: (SSS); (GDB); (CB)
| | - Sachdev S Sidhu
- Department of Protein Engineering, Genentech, South San Francisco, California, United States of America
- * To whom correspondence should be addressed. E-mail: (SSS); (GDB); (CB)
| |
Collapse
|
42
|
Disclosing JAK/STAT links to cell adhesion and cell polarity. Semin Cell Dev Biol 2008; 19:370-8. [DOI: 10.1016/j.semcdb.2008.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 06/05/2008] [Accepted: 06/06/2008] [Indexed: 12/27/2022]
|
43
|
A scaffold protein, AHNAK1, is required for calcium signaling during T cell activation. Immunity 2008; 28:64-74. [PMID: 18191595 PMCID: PMC2350190 DOI: 10.1016/j.immuni.2007.11.020] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 10/18/2007] [Accepted: 11/12/2007] [Indexed: 11/20/2022]
Abstract
Engagement of the T cell antigen receptor (TCR) during antigen presentation initiates a coordinated action of a large number of signaling proteins and ion channels. AHNAK1 is a scaffold protein, highly expressed by CD4+ T cells, and is a critical component for calcium signaling. We showed that AHNAK1-deficient mice were highly susceptible to Leishmania major infection. AHNAK1-deficient CD4+ T cells responded poorly to TCR stimulation in vitro with low proliferation and low Interleukin-2 production. Furthermore, AHNAK1 deficiency resulted in a reduced calcium influx upon TCR crosslinking and subsequent poor activation of the transcription factor NFAT. AHNAK1 was required for plasma membrane expression of L-type calcium channels alpha 1S (Cav1.1), probably through its interaction with the beta regulatory subunit. Thus, AHNAK1 plays an essential role in T cell Ca2+ signaling through Cav1 channels, triggered via TCR activation; therefore, AHNAK1 is a potential target for therapeutic intervention.
Collapse
|
44
|
Samuels BA, Hsueh YP, Shu T, Liang H, Tseng HC, Hong CJ, Su SC, Volker J, Neve RL, Yue DT, Tsai LH. Cdk5 promotes synaptogenesis by regulating the subcellular distribution of the MAGUK family member CASK. Neuron 2008; 56:823-37. [PMID: 18054859 PMCID: PMC2151975 DOI: 10.1016/j.neuron.2007.09.035] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 06/08/2007] [Accepted: 09/26/2007] [Indexed: 10/22/2022]
Abstract
Synaptogenesis is a highly regulated process that underlies formation of neural circuitry. Considerable work has demonstrated the capability of some adhesion molecules, such as SynCAM and Neurexins/Neuroligins, to induce synapse formation in vitro. Furthermore, Cdk5 gain of function results in an increased number of synapses in vivo. To gain a better understanding of how Cdk5 might promote synaptogenesis, we investigated potential crosstalk between Cdk5 and the cascade of events mediated by synapse-inducing proteins. One protein recruited to developing terminals by SynCAM and Neurexins/Neuroligins is the MAGUK family member CASK. We found that Cdk5 phosphorylates and regulates CASK distribution to membranes. In the absence of Cdk5-dependent phosphorylation, CASK is not recruited to developing synapses and thus fails to interact with essential presynaptic components. Functional consequences include alterations in calcium influx. Mechanistically, Cdk5 regulates the interaction between CASK and liprin-alpha. These results provide a molecular explanation of how Cdk5 can promote synaptogenesis.
Collapse
Affiliation(s)
- Benjamin Adam Samuels
- Howard Hughes Medical Institute, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bachmann A, Grawe F, Johnson K, Knust E. Drosophila Lin-7 is a component of the Crumbs complex in epithelia and photoreceptor cells and prevents light-induced retinal degeneration. Eur J Cell Biol 2008; 87:123-36. [PMID: 18177979 DOI: 10.1016/j.ejcb.2007.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 11/11/2007] [Accepted: 11/13/2007] [Indexed: 11/27/2022] Open
Abstract
The Drosophila Crumbs protein complex is required to maintain epithelial cell polarity in the embryo, to ensure proper morphogenesis of photoreceptor cells and to prevent light-dependent retinal degeneration. In Drosophila, the core components of the complex are the transmembrane protein Crumbs, the membrane-associated guanylate kinase (MAGUK) Stardust and the scaffolding protein DPATJ. The composition of the complex and some of its functions are conserved in mammalian epithelial and photoreceptor cells. Here, we report that Drosophila Lin-7, a scaffolding protein with one Lin-2/Lin-7 (L27) domain and one PSD-95/Dlg/ZO-1 (PDZ) domain, is associated with the Crumbs complex in the subapical region of embryonic and follicle epithelia and at the stalk membrane of adult photoreceptor cells. DLin-7 loss-of-function mutants are viable and fertile. While DLin-7 localization depends on Crumbs, neither Crumbs, Stardust nor DPATJ require DLin-7 for proper accumulation in the subapical region. Unlike other components of the Crumbs complex, DLin-7 is also enriched in the first optic ganglion, the lamina, where it co-localizes with Discs large, another member of the MAGUK family. In contrast to crumbs mutant photoreceptor cells, those mutant for DLin-7 do not display any morphogenetic abnormalities. Similar to crumbs mutant eyes, however, DLin-7 mutant photoreceptors undergo progressive, light-dependent degeneration. These results support the previous conclusions that the function of the Crumbs complex in cell survival is independent from its function in photoreceptor morphogenesis.
Collapse
Affiliation(s)
- André Bachmann
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
46
|
Olsen O, Funke L, Long JF, Fukata M, Kazuta T, Trinidad JC, Moore KA, Misawa H, Welling PA, Burlingame AL, Zhang M, Bredt DS. Renal defects associated with improper polarization of the CRB and DLG polarity complexes in MALS-3 knockout mice. ACTA ACUST UNITED AC 2008; 179:151-64. [PMID: 17923534 PMCID: PMC2064744 DOI: 10.1083/jcb.200702054] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Kidney development and physiology require polarization of epithelia that line renal tubules. Genetic studies show that polarization of invertebrate epithelia requires the crumbs, partition-defective-3, and discs large complexes. These evolutionarily conserved protein complexes occur in mammalian kidney; however, their role in renal development remains poorly defined. Here, we find that mice lacking the small PDZ protein mammalian LIN-7c (MALS-3) have hypomorphic, cystic, and fibrotic kidneys. Proteomic analysis defines MALS-3 as the only known core component of both the crumbs and discs large cell polarity complexes. MALS-3 mediates stable assembly of the crumbs tight junction complex and the discs large basolateral complex, and these complexes are disrupted in renal epithelia from MALS-3 knockout mice. Interestingly, MALS-3 controls apico-basal polarity preferentially in epithelia derived from metanephric mesenchyme, and defects in kidney architecture owe solely to MALS expression in these epithelia. These studies demonstrate that defects in epithelial cell polarization can cause cystic and fibrotic renal disease.
Collapse
Affiliation(s)
- Olav Olsen
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Alewine C, Kim BY, Hegde V, Welling PA. Lin-7 targets the Kir 2.3 channel on the basolateral membrane via a L27 domain interaction with CASK. Am J Physiol Cell Physiol 2007; 293:C1733-41. [PMID: 17913842 DOI: 10.1152/ajpcell.00323.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Polarized expression of the Kir 2.3 channel in renal epithelial cells is influenced by the opposing activities of two different PDZ proteins. Mammalian Lin-7 (mLin-7) directly interacts with Kir 2.3 to coordinate basolateral membrane expression, whereas the tax interacting protein 1 (TIP-1), composed of a single PDZ domain, competes for interaction with mLin-7 and drives Kir 2.3 into the endocytic pathway. Here we show that the basolateral targeting function of mLin-7 depends on its L27 domain, which directs interaction with a cognate L27 domain in the basolateral membrane-anchoring protein, calcium/calmodulin-dependent serine protein kinase (CASK). In MDCK cells, the expression of an mLin-7 mutant that lacks the L27 domain displaced Kir 2.3 from the mLin-7/CASK complex and caused the channel to accumulate into large intracellular vesicles that partially colocalized with Rab-11. Conversely, transplantation of the mLin-7 L27 domain to TIP-1 conferred CASK interaction and basolateral targeting of Kir 2.3. Expression of the CASK L27 domain redistributed endogenous mLin-7 to an intracellular compartment and caused Kir 2.3 to accumulate in subapical endosomes. Taken together, these data support a model whereby mLin-7 acts as a PDZ-to-L27 adapter, mediating indirect association of Kir 2.3 with a basolateral membrane scaffold and thereby stabilizing Kir 2.3 at the basolateral membrane.
Collapse
Affiliation(s)
- Christine Alewine
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
48
|
Van Buskirk C, Sternberg PW. Epidermal growth factor signaling induces behavioral quiescence in Caenorhabditis elegans. Nat Neurosci 2007; 10:1300-7. [PMID: 17891142 DOI: 10.1038/nn1981] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 08/17/2007] [Indexed: 01/12/2023]
Abstract
The epidermal growth factor receptor (EGFR)/ErbB receptor tyrosine kinases regulate several aspects of development, including the development of the mammalian nervous system. ErbB signaling also has physiological effects on neuronal function, with influences on synaptic plasticity and daily cycles of activity. However, little is known about the effectors of EGFR activation in neurons. Here we show that EGF signaling has a nondevelopmental effect on behavior in Caenorhabditis elegans. Ectopic expression of the EGF-like ligand LIN-3 at any stage induces a reversible cessation of feeding and locomotion. These effects are mediated by neuronal EGFR (also called LET-23) and phospholipase C-gamma (PLC-gamma), diacylglycerol-binding proteins, and regulators of synaptic vesicle release. Activation of EGFR within a single neuron, ALA, is sufficient to induce a quiescent state. This pathway modulates the cessation of pharyngeal pumping and locomotion that normally occurs during the lethargus period that precedes larval molting. Our results reveal an evolutionarily conserved role for EGF signaling in the regulation of behavioral quiescence.
Collapse
Affiliation(s)
- Cheryl Van Buskirk
- Howard Hughes Medical Institute, Division of Biology 156-29, California Institute of Technology, 1200 E. California Blvd. Pasadena, California 91125, USA
| | | |
Collapse
|
49
|
Abstract
MOTIVATION Caenorhabditis elegans vulval development is a paradigmatic example of animal organogenesis with extensive experimental data. During vulval induction, each of the six multipotent vulval precursor cells (VPCs) commits to one of three fates (primary, secondary, tertiary). The precise primary-secondary-tertiary formation of VPC fates is controlled by a network of intercellular signaling, intracellular signal transduction and transcriptional regulation. The construction of mathematical models for this network will enable hypothesis generation, biological mechanism discovery and system behavior analysis. RESULTS We have developed a mathematical model based on dynamic Bayesian networks to model the biological network that governs the VPC primary-secondary-tertiary pattern formation process. Our model has six interconnected subnetworks corresponding to six VPCs. Each VPC subnetwork contains 20 components. The causal relationships among network components are quantitatively encoded in the structure and parameters of the model. Statistical machine learning techniques were developed to automatically learn both the structure and parameters of the model from data collected from literatures. The learned model is capable of simulating vulval induction under 36 different genetic conditions. Our model also contains a few hypothetical causal relationships between network components, and hence can serve as guidance for designing future experiments. The statistical learning nature of our methodology makes it easy to not only handle noise in data but also automatically incorporate new experimental data to refine the model. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Xiaoyun Sun
- Department of Computer Science, National Center of Behavioral Genomics, 415 South Street, Waltham, MA 02454, USA
| | | |
Collapse
|
50
|
Bohl J, Brimer N, Lyons C, Vande Pol SB. The stardust family protein MPP7 forms a tripartite complex with LIN7 and DLG1 that regulates the stability and localization of DLG1 to cell junctions. J Biol Chem 2007; 282:9392-9400. [PMID: 17237226 DOI: 10.1074/jbc.m610002200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MPP7, a previously uncharacterized member of the p55 Stardust family of membrane-associated guanylate kinase (MAGUK) proteins, was found in a tripartite complex with DLG1 and LIN7A or LIN7C. MPP7 dimerizes with all three LIN7 family members (LIN7A, -B, and -C) through interaction of the single L27 domain of LIN7 with the carboxyl-terminal L27 domain of MPP7, thereby stabilizing both proteins. The dimer of MPP7 with LIN7A or LIN7C associates with DLG1 through an interaction requiring the amino-terminal L27 domain of MPP7. The amino-terminal L27 domain of MPP7 is not sufficient for interaction with DLG1 but interacts efficiently only if MPP7 is in a complex with LIN7A or -C. Thus the specificity of interaction of DLG1 with the LIN7-MPP7 complex is determined by L27 interactions with both MPP7 and LIN7. The tripartite complex forms in a ratio of 1:1:1 and localizes to epithelial adherens junctions in a manner dependent upon MPP7. Expression of MPP7 stabilizes DLG1 in an insoluble compartment. Expression of MPP7 deleted of the PDZ or Src homology 3 domain redistributes MPP7, DLG1, and LIN7 out of adherens junctions and into the soluble cytoplasmic fraction without changing the localization of E-cadherin. Thus, the stability and localization of DLG1 to cell-cell junctions are complex functions determined by the expression and association of particular Stardust family members together with particular LIN7 family members.
Collapse
Affiliation(s)
- Joanna Bohl
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Nicole Brimer
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Charles Lyons
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Scott B Vande Pol
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia 22908.
| |
Collapse
|