1
|
Janosev M, Kosek D, Tekel A, Joshi R, Honzejkova K, Pohl P, Obsil T, Obsilova V. Structural basis of ubiquitin ligase Nedd4-2 autoinhibition and regulation by calcium and 14-3-3 proteins. Nat Commun 2025; 16:4875. [PMID: 40419858 DOI: 10.1038/s41467-025-60207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 05/19/2025] [Indexed: 05/28/2025] Open
Abstract
Nedd4-2 E3 ligase regulates Na+ homeostasis by ubiquitinating various channels and membrane transporters, including the epithelial sodium channel ENaC. In turn, Nedd4-2 dysregulation leads to various conditions, including electrolytic imbalance, respiratory distress, hypertension, and kidney diseases. However, Nedd4-2 regulation remains mostly unclear. The present study aims at elucidating Nedd4-2 regulation by structurally characterizing Nedd4-2 and its complexes using several biophysical techniques. Our cryo-EM reconstruction shows that the C2 domain blocks the E2-binding surface of the HECT domain. This blockage, ubiquitin-binding exosite masking by the WW1 domain, catalytic C922 blockage and HECT domain stabilization provide the structural basis for Nedd4-2 autoinhibition. Furthermore, Ca2+-dependent C2 membrane binding disrupts C2/HECT interactions, but not Ca2+ alone, whereas 14-3-3 protein binds to a flexible region of Nedd4-2 containing the WW2 and WW3 domains, thereby inhibiting its catalytic activity and membrane binding. Overall, our data provide key mechanistic insights into Nedd4-2 regulation toward fostering the development of strategies targeting Nedd4-2 function.
Collapse
Affiliation(s)
- Masa Janosev
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Dalibor Kosek
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Andrej Tekel
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, 128 43, Prague, Czech Republic
| | - Rohit Joshi
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, 128 43, Prague, Czech Republic
| | - Karolina Honzejkova
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, 128 43, Prague, Czech Republic
| | - Pavel Pohl
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Tomas Obsil
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic.
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, 128 43, Prague, Czech Republic.
| | - Veronika Obsilova
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic.
| |
Collapse
|
2
|
Spooner HC, Dixon RE. 14-3-3 proteins: Regulators of cardiac excitation-contraction coupling and stress responses. J Physiol 2025. [PMID: 40349303 DOI: 10.1113/jp288566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025] Open
Abstract
14-3-3 proteins are highly conserved proteins that regulate numerous cellular processes mostly through phosphorylation-dependent protein-protein interactions. In the heart 14-3-3 proteins play critical roles in cardiac conduction pathways, excitation-contraction (EC) coupling, development and stress responses. This review summarizes the current understanding of cardiac 14-3-3 regulation and function, with particular emphasis on its role in ion channel regulation and β-adrenergic signalling. We discuss how 14-3-3 proteins act through three main mechanisms - masking, clamping, and scaffolding - to regulate target proteins, including Cx43, CaV1.2, NaV1.5, and various potassium channels. The seven mammalian 14-3-3 isoforms display distinct but overlapping functions, with tissue-specific expression patterns and isoform-specific regulation through phosphorylation and dimerization. Recent work has revealed 14-3-3's importance in cardiac development and stress responses, where it generally serves a cardioprotective role. However in some pathological contexts such as ischaemia-reperfusion injury, 14-3-3 can be detrimental. We highlight emerging themes in cardiac 14-3-3 biology, including its role in prolonging β-adrenergic signalling. Understanding the complex regulation of cardiac 14-3-3 and its numerous targets presents both opportunities and challenges for therapeutic development.
Collapse
Affiliation(s)
- Heather C Spooner
- Department of Physiology and Membrane Biology, University of California Davis, School of Medicine, Davis, CA, USA
| | - Rose E Dixon
- Department of Physiology and Membrane Biology, University of California Davis, School of Medicine, Davis, CA, USA
| |
Collapse
|
3
|
Náplavová A, Kozeleková A, Crha R, Gronenborn AM, Hritz J. Harnessing the power of 19F NMR for characterizing dimerization and ligand binding of 14-3-3 proteins. Int J Biol Macromol 2025; 305:141253. [PMID: 39978522 DOI: 10.1016/j.ijbiomac.2025.141253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/30/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
The main role of dimeric 14-3-3 proteins is to modulate the activity of several hundred binding partners by interacting with phosphorylated residues of the partner proteins, often located in disordered regions. The inherent flexibility or large size of 14-3-3 complexes hampers their structural characterization by X-ray crystallography, cryo-electron microscopy (EM) and traditional solution nuclear magnetic resonance (NMR) spectroscopy. Here, we employ solution 1D 19F-Trp NMR spectroscopy to characterize substrate binding and dimerization of 14-3-3 proteins, focusing on 14-3-3ζ - an abundant human isoform as an example. Both conserved Trp residues are located in distinct functionally important sites - the dimeric interface and the ligand-binding groove. We substituted them by 5F-Trp, thereby introducing a convenient NMR probe. Fluorination of the two Trp did not impact the stability and interaction properties of 14-3-3ζ in a substantive manner, permitting to carry out 19F NMR experiments to assess 14-3-3's structure and behavior. Importantly, 5F-Trp228 reports on binding of substrates in the amphipathic binding groove of 14-3-3ζ and permitted to distinguish distinct recognition modes. Thus, we established that 19F NMR is a powerful approach to evaluate the binding of partner proteins to 14-3-3 and to characterize the properties of the resulting complexes.
Collapse
Affiliation(s)
- Alexandra Náplavová
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czechia; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czechia
| | - Aneta Kozeleková
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czechia; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czechia
| | - Radek Crha
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czechia; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czechia
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh, School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, USA
| | - Jozef Hritz
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czechia; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czechia; Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czechia.
| |
Collapse
|
4
|
Benarroch E. What Is the Function and Relevance of 14-3-3 Proteins in Neurologic Disease? Neurology 2025; 104:e213418. [PMID: 39889260 DOI: 10.1212/wnl.0000000000213418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 02/02/2025] Open
|
5
|
Han Z, Wang R, Chi P, Zhang Z, Min L, Jiao H, Ou G, Zhou D, Qin D, Xu C, Gao Z, Qi Q, Li J, Lu Y, Wang X, Chen J, Yu X, Hu H, Li L, Deng D. The subcortical maternal complex modulates the cell cycle during early mammalian embryogenesis via 14-3-3. Nat Commun 2024; 15:8887. [PMID: 39406751 PMCID: PMC11480350 DOI: 10.1038/s41467-024-53277-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
The subcortical maternal complex (SCMC) is essential for safeguarding female fertility in mammals. Assembled in oocytes, the SCMC maintains the cleavage of early embryos, but the underlying mechanism remains unclear. Here, we report that 14-3-3, a multifunctional protein, is a component of the SCMC. By resolving the structure of the 14-3-3-containing SCMC, we discover that phosphorylation of TLE6 contributes to the recruitment of 14-3-3. Mechanistically, during maternal-to-embryo transition, the SCMC stabilizes 14-3-3 protein and contributes to the proper control of CDC25B, thus ensuring the activation of the maturation-promoting factor and mitotic entry in mouse zygotes. Notably, the SCMC establishes a conserved molecular link with 14-3-3 and CDC25B in human oocytes/embryos. This study discloses the molecular mechanism through which the SCMC regulates the cell cycle in early embryos and elucidates the function of the SCMC in mammalian early embryogenesis.
Collapse
Affiliation(s)
- Zhuo Han
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Rui Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, UCAS/IOZ/CAS, Beijing, China
- Beijing Institute of Stem Cell and Regenerative Medicine, Beijing, China
- Department of Reproductive Medicine, the First People's Hospital of Yunnan Province, Kunming, China
| | - Pengliang Chi
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zihan Zhang
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ling Min
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Haizhan Jiao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| | - Guojin Ou
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
- Clinical laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dan Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, UCAS/IOZ/CAS, Beijing, China
- Beijing Institute of Stem Cell and Regenerative Medicine, Beijing, China
| | - Dandan Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, UCAS/IOZ/CAS, Beijing, China
- Beijing Institute of Stem Cell and Regenerative Medicine, Beijing, China
| | - Chengpeng Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, UCAS/IOZ/CAS, Beijing, China
- Beijing Institute of Stem Cell and Regenerative Medicine, Beijing, China
| | - Zheng Gao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qianqian Qi
- Clinical laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jialu Li
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuechao Lu
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiang Wang
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
- NHC key Laboratory of Chronobiology, Sichuan University, Chengdu, China
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Jing Chen
- Laboratory of Pediatric Surgery, Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xingjiang Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, UCAS/IOZ/CAS, Beijing, China
- Beijing Institute of Stem Cell and Regenerative Medicine, Beijing, China
| | - Hongli Hu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, UCAS/IOZ/CAS, Beijing, China.
- Beijing Institute of Stem Cell and Regenerative Medicine, Beijing, China.
| | - Dong Deng
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
- NHC key Laboratory of Chronobiology, Sichuan University, Chengdu, China.
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Andlovic B, Valenti D, Centorrino F, Picarazzi F, Hristeva S, Hiltmann M, Wolf A, Cantrelle FX, Mori M, Landrieu I, Levy LM, Klebl B, Tzalis D, Genski T, Eickhoff J, Ottmann C. Fragment-Based Interrogation of the 14-3-3/TAZ Protein-Protein Interaction. Biochemistry 2024; 63:2196-2206. [PMID: 39172504 PMCID: PMC11375770 DOI: 10.1021/acs.biochem.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/16/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
The identification of chemical starting points for the development of molecular glues is challenging. Here, we employed fragment screening and identified an allosteric stabilizer of the complex between 14-3-3 and a TAZ-derived peptide. The fragment binds preferentially to the 14-3-3/TAZ peptide complex and shows moderate stabilization in differential scanning fluorimetry and microscale thermophoresis. The binding site of the fragment was predicted by molecular dynamics calculations to be distant from the 14-3-3/TAZ peptide interface, located between helices 8 and 9 of the 14-3-3 protein. This site was confirmed by nuclear magnetic resonance and X-ray protein crystallography, revealing the first example of an allosteric stabilizer for 14-3-3 protein-protein interactions.
Collapse
Affiliation(s)
- Blaž Andlovic
- Lead
Discovery Center GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Dario Valenti
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
- Taros
Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227 Dortmund, Germany
| | - Federica Centorrino
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Francesca Picarazzi
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Stanimira Hristeva
- Taros
Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227 Dortmund, Germany
| | | | - Alexander Wolf
- Lead
Discovery Center GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | - François-Xavier Cantrelle
- CNRS
EMR9002 Integrative Structural Biology, University of Lille, F-59000 Lille, France
- University
of Lille, Inserm, Institut Pasteur de Lille, U1167—RID-AGE—Risk
Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
| | - Mattia Mori
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Isabelle Landrieu
- CNRS
EMR9002 Integrative Structural Biology, University of Lille, F-59000 Lille, France
- University
of Lille, Inserm, Institut Pasteur de Lille, U1167—RID-AGE—Risk
Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
| | - Laura M. Levy
- Taros
Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227 Dortmund, Germany
| | - Bert Klebl
- Lead
Discovery Center GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | - Dimitrios Tzalis
- Taros
Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227 Dortmund, Germany
| | - Thorsten Genski
- Taros
Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227 Dortmund, Germany
| | - Jan Eickhoff
- Lead
Discovery Center GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | - Christian Ottmann
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
7
|
Datta M, Majumder R, Banerjee A, Bandyopadhyay D, Chattopadhyay A. Melatonin protects against diclofenac induced oxidative stress mediated myocardial toxicity in rats: A mechanistic insight. Food Chem Toxicol 2024; 190:114813. [PMID: 38876380 DOI: 10.1016/j.fct.2024.114813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Diclofenac, a traditional non-steroidal anti-inflammatory drug, is commonly used for treating chronic pain and inflammation. Recently, a number of articles have highlighted the toxicities associated with diclofenac. The current study explores the molecular mechanism of diclofenac induced cardiac toxicity following oxidative stress. Diclofenac inhibits catalase, disrupts the redox balance in cardiac tissue, accelerates the monoamine oxidase induced hydroperoxide generation and eventually inhibits crucial mitochondrial enzyme, viz., aldehyde dehydrogenase, thereby causing myocardial injury. Melatonin, the pineal indoleamine with high antioxidative efficacy, is well known for its cardio-protective properties and its dietary consumption has profound impact on cardiac health. The present study demonstrates perhaps for the first time, that apart from ameliorating oxidative load in the cardiac tissue, melatonin also attenuates the inhibition of catalase and aldehyde dehydrogenase, and prevents stress mediated stimulation of monoamine oxidase. Moreover, favourable binding of diclofenac with melatonin may protect the myocardium from the deleterious effects of this drug. The results indicate toward a novel mechanism of protection by melatonin, having future therapeutic relevance.
Collapse
Affiliation(s)
- Madhuri Datta
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India; Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Romit Majumder
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India; Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Adrita Banerjee
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India; Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India.
| | - Aindrila Chattopadhyay
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India.
| |
Collapse
|
8
|
Somsen BA, Cossar PJ, Arkin MR, Brunsveld L, Ottmann C. 14-3-3 Protein-Protein Interactions: From Mechanistic Understanding to Their Small-Molecule Stabilization. Chembiochem 2024; 25:e202400214. [PMID: 38738787 DOI: 10.1002/cbic.202400214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/14/2024]
Abstract
Protein-protein interactions (PPIs) are of utmost importance for maintenance of cellular homeostasis. Herein, a central role can be found for 14-3-3 proteins. These hub-proteins are known to bind hundreds of interaction partners, thereby regulating their activity, localization, and/or stabilization. Due to their ability to bind a large variety of client proteins, studies of 14-3-3 protein complexes flourished over the last decades, aiming to gain greater molecular understanding of these complexes and their role in health and disease. Because of their crucial role within the cell, 14-3-3 protein complexes are recognized as highly interesting therapeutic targets, encouraging the discovery of small molecule modulators of these PPIs. We discuss various examples of 14-3-3-mediated regulation of its binding partners on a mechanistic level, highlighting the versatile and multi-functional role of 14-3-3 within the cell. Furthermore, an overview is given on the development of stabilizers of 14-3-3 protein complexes, from initially used natural products to fragment-based approaches. These studies show the potential of 14-3-3 PPI stabilizers as novel agents in drug discovery and as tool compounds to gain greater molecular understanding of the role of 14-3-3-based protein regulation.
Collapse
Affiliation(s)
- Bente A Somsen
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, MB Eindhoven, 5600, Eindhoven, The Netherlands
| | - Peter J Cossar
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, MB Eindhoven, 5600, Eindhoven, The Netherlands
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California, 94143, United States
| | - Luc Brunsveld
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, MB Eindhoven, 5600, Eindhoven, The Netherlands
| | - Christian Ottmann
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, MB Eindhoven, 5600, Eindhoven, The Netherlands
| |
Collapse
|
9
|
Obsilova V, Obsil T. The yeast 14-3-3 proteins Bmh1 and Bmh2 regulate key signaling pathways. Front Mol Biosci 2024; 11:1327014. [PMID: 38328397 PMCID: PMC10847541 DOI: 10.3389/fmolb.2024.1327014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Cell signaling regulates several physiological processes by receiving, processing, and transmitting signals between the extracellular and intracellular environments. In signal transduction, phosphorylation is a crucial effector as the most common posttranslational modification. Selectively recognizing specific phosphorylated motifs of target proteins and modulating their functions through binding interactions, the yeast 14-3-3 proteins Bmh1 and Bmh2 are involved in catabolite repression, carbon metabolism, endocytosis, and mitochondrial retrograde signaling, among other key cellular processes. These conserved scaffolding molecules also mediate crosstalk between ubiquitination and phosphorylation, the spatiotemporal control of meiosis, and the activity of ion transporters Trk1 and Nha1. In humans, deregulation of analogous processes triggers the development of serious diseases, such as diabetes, cancer, viral infections, microbial conditions and neuronal and age-related diseases. Accordingly, the aim of this review article is to provide a brief overview of the latest findings on the functions of yeast 14-3-3 proteins, focusing on their role in modulating the aforementioned processes.
Collapse
Affiliation(s)
- Veronika Obsilova
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division, BIOCEV, Vestec, Czechia
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
10
|
Hagemeister M, Hamilton L, Wandrey N, Hill M, Mounce E, Mosel N, Lytle K, Redinger M, Boley J, Fancher N, Haynes A, Fill I, Cole PA, Hill E, Moxley MA, Thomas AA. Evaluation of Rhodanine Indolinones as AANAT Inhibitors. ChemMedChem 2024; 19:e202300567. [PMID: 37984928 PMCID: PMC10843758 DOI: 10.1002/cmdc.202300567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 11/22/2023]
Abstract
Circadian rhythm (CR) dysregulation negatively impacts health and contributes to mental disorders. The role of melatonin, a hormone intricately linked to CR, is still a subject of active study. The enzyme arylalkylamine N-acetyltransferase (AANAT) is responsible for melatonin synthesis, and it is a potential target for disorders that involve abnormally high melatonin levels, such as seasonal affective disorder (SAD). Current AANAT inhibitors suffer from poor cell permeability, selectivity, and/or potency. To address the latter, we have employed an X-ray crystal-based model to guide the modification of a previously described AANAT inhibitor, containing a rhodanine-indolinone core. We made various structural modifications to the core structure, including testing the importance of a carboxylic acid group thought to bind in the CoA site, and we evaluated these changes using MD simulations in conjunction with enzymatic assay data. Additionally, we tested three AANAT inhibitors in a zebrafish locomotion model to determine their effects in vivo. Key discoveries were that potency could be modestly improved by replacing a 5-carbon alkyl chain with rings and that the central rhodanine ring could be replaced by other heterocycles and maintain potency.
Collapse
Affiliation(s)
- Mackenzie Hagemeister
- Department of Psychology, University of Nebraska at Kearney, Kearney, NE, 69949, USA
| | - Luke Hamilton
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, 69949, USA
| | - Nicole Wandrey
- Department of Chemistry, University of Nebraska at Kearney, Kearney, NE, 69949, USA
| | - Mackinzi Hill
- Department of Chemistry, University of Nebraska at Kearney, Kearney, NE, 69949, USA
| | - Emery Mounce
- Department of Psychology, University of Nebraska at Kearney, Kearney, NE, 69949, USA
| | - Noah Mosel
- Department of Psychology, University of Nebraska at Kearney, Kearney, NE, 69949, USA
| | - Katie Lytle
- Department of Chemistry, University of Nebraska at Kearney, Kearney, NE, 69949, USA
| | - Makenna Redinger
- Department of Chemistry, University of Nebraska at Kearney, Kearney, NE, 69949, USA
| | - Jake Boley
- Department of Chemistry, University of Nebraska at Kearney, Kearney, NE, 69949, USA
| | - Nathan Fancher
- Department of Chemistry, University of Nebraska at Kearney, Kearney, NE, 69949, USA
| | - Alexis Haynes
- Department of Chemistry, University of Nebraska at Kearney, Kearney, NE, 69949, USA
| | - Ianna Fill
- Department of Psychology, University of Nebraska at Kearney, Kearney, NE, 69949, USA
| | - Philip A Cole
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Evan Hill
- Department of Psychology, University of Nebraska at Kearney, Kearney, NE, 69949, USA
| | - Michael A Moxley
- Department of Chemistry, University of Nebraska at Kearney, Kearney, NE, 69949, USA
| | - Allen A Thomas
- Department of Chemistry, University of Nebraska at Kearney, Kearney, NE, 69949, USA
| |
Collapse
|
11
|
Petrvalska O, Honzejkova K, Koupilova N, Herman P, Obsilova V, Obsil T. 14-3-3 protein inhibits CaMKK1 by blocking the kinase active site with its last two C-terminal helices. Protein Sci 2023; 32:e4805. [PMID: 37817008 PMCID: PMC10588359 DOI: 10.1002/pro.4805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 10/12/2023]
Abstract
Ca2+ /CaM-dependent protein kinase kinases 1 and 2 (CaMKK1 and CaMKK2) phosphorylate and enhance the catalytic activity of downstream kinases CaMKI, CaMKIV, and protein kinase B. Accordingly, CaMKK1 and CaMKK2 regulate key physiological and pathological processes, such as tumorigenesis, neuronal morphogenesis, synaptic plasticity, transcription factor activation, and cellular energy homeostasis, and promote cell survival. Both CaMKKs are partly inhibited by phosphorylation, which in turn triggers adaptor and scaffolding protein 14-3-3 binding. However, 14-3-3 binding only significantly affects CaMKK1 function. CaMKK2 activity remains almost unchanged after complex formation for reasons still unclear. Here, we aim at structurally characterizing CaMKK1:14-3-3 and CaMKK2:14-3-3 complexes by SAXS, H/D exchange coupled to MS, and fluorescence spectroscopy. The results revealed that complex formation suppresses the interaction of both phosphorylated CaMKKs with Ca2+ /CaM and affects the structure of their kinase domains and autoinhibitory segments. But these effects are much stronger on CaMKK1 than on CaMKK2 because the CaMKK1:14-3-3γ complex has a more compact and rigid structure in which the active site of the kinase domain directly interacts with the last two C-terminal helices of the 14-3-3γ protein, thereby inhibiting CaMKK1. In contrast, the CaMKK2:14-3-3 complex has a looser and more flexible structure, so 14-3-3 binding only negligibly affects the catalytic activity of CaMKK2. Therefore, Ca2+ /CaM binding suppression and the interaction of the kinase active site of CaMKK1 with the last two C-terminal helices of 14-3-3γ protein provide the structural basis for 14-3-3-mediated CaMKK1 inhibition.
Collapse
Affiliation(s)
- Olivia Petrvalska
- Department of Physical and Macromolecular Chemistry, Faculty of ScienceCharles UniversityPragueCzech Republic
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling ProteinsDivision BIOCEVVestecCzech Republic
| | - Karolina Honzejkova
- Department of Physical and Macromolecular Chemistry, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Nicola Koupilova
- Department of Physical and Macromolecular Chemistry, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Petr Herman
- Institute of Physics, Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
| | - Veronika Obsilova
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling ProteinsDivision BIOCEVVestecCzech Republic
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of ScienceCharles UniversityPragueCzech Republic
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling ProteinsDivision BIOCEVVestecCzech Republic
| |
Collapse
|
12
|
Majumder R, Datta M, Banerjee A, Bandyopadhyay D, Chattopadhyay A. Melatonin protects against ketorolac induced gastric mucosal toxic injuries through molecular mechanism associated with the modulation of Arylakylamine N-Acetyltransferase (AANAT) activity. Chem Biol Interact 2023; 382:110611. [PMID: 37348669 DOI: 10.1016/j.cbi.2023.110611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/24/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Ketorolac tromethamine (KT), is a widely used non-steroidal anti-inflammatory drug (NSAID) for treating moderate to severe pain. However, the use of KT has been restricted due to its highly toxic attributes that lead to severe gastric ulceration and bleeding. The protective effects of exogenous melatonin (MT) has been reported in conditions associated with gastro-intestinal disorders. This study aims at exploring the role of gastric endogenous MT level and it's metabolizing enzyme AANAT, at the onset of ketorolac mediated toxicities in the gastric mucosa. Gastric mucosal damage was induced in experimental rats by oral administration of graded doses of KT, where 50 mg/kg b.w. of KT was observed to incur maximum gastric lesions. However, gastric damages were found to be protected in rats, pre-treated with 60 mg/kg b.w. of MT. Post-sacrifice, mean ulcer index, oxidative status, total melatonin levels and enzyme activities associated with MT biosynthesis and catabolism were estimated. The results reveal that KT decreases AANAT activity with a concomitant decline in endogenous MT level which cumulatively aggravates gastric toxicity. Moreover, exogenous MT administration has been found to be protective in ameliorating this ulcerogenic process in rats, challenged with KT. Biochemical and histo-pathological observations revealed the reduction in oxidative stress level and replenishment of depleted gastric MT levels in MT pre-treated animals, which might be the causative factors in conferring protection to the gastric tissues and residing mitochondria. The results revealed a correlation between depleted gastric MT level and ulcer formation, which unveiled a novel ulcerogenic mechanism. This may bring forth future therapeutic relevance for treating patients suffering from KT mediated acute gastric toxicities.
Collapse
Affiliation(s)
- Romit Majumder
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India; Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Madhuri Datta
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India; Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Adrita Banerjee
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India; Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India.
| | - Aindrila Chattopadhyay
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India.
| |
Collapse
|
13
|
Somsen BA, Sijbesma E, Leysen S, Honzejkova K, Visser EJ, Cossar PJ, Obšil T, Brunsveld L, Ottmann C. Molecular basis and dual ligand regulation of tetrameric Estrogen Receptor α/14-3-3ζ protein complex. J Biol Chem 2023:104855. [PMID: 37224961 PMCID: PMC10302166 DOI: 10.1016/j.jbc.2023.104855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
Therapeutic strategies targeting Nuclear Receptors (NRs) beyond their endogenous ligand binding pocket have gained significant scientific interest, driven by a need to circumvent problems associated with drug resistance and pharmacological profile. The hub protein 14-3-3 is an endogenous regulator of various NRs, providing a novel entry point for small molecule modulation of NR activity. Exemplified, 14-3-3 binding to the C-terminal F-domain of the Estrogen Receptor alpha (ERα), and small molecule stabilization of the ERα/14-3-3ζ protein complex by the natural product Fusicoccin A (FC-A), was demonstrated to downregulate ERα-mediated breast cancer proliferation. This presents a novel drug discovery approach to target ERα, however, structural and mechanistic insights into ERα/14-3-3 complex formation are lacking. Here, we provide an in-depth molecular understanding of the ERα/14-3-3ζ complex by isolating 14-3-3ζ in complex with an ERα protein construct comprising its Ligand Binding Domain (LBD) and phosphorylated F-domain. Bacterial co-expression and co-purification of the ERα/14-3-3ζ complex, followed by extensive biophysical and structural characterization, revealed a tetrameric complex between the ERα homodimer and the 14-3-3ζ homodimer. 14-3-3ζ binding to ERα, and ERα/14-3-3ζ complex stabilization by FC-A, appeared to be orthogonal to ERα endogenous agonist (E2) binding, E2-induced conformational changes, and cofactor recruitment. Similarly, the ERα antagonist 4-hydroxytamoxifen inhibited cofactor recruitment to the ERα LBD while ERα was bound to 14-3-3ζ. Furthermore, stabilization of the ERα/14-3-3ζ protein complex by FC-A was not influenced by the disease-associated and 4-hydroxytamoxifen resistant ERα-Y537S mutant. Together, these molecular and mechanistic insights provide direction for targeting ERα via the ERα/14-3-3 complex as an alternative drug discovery approach.
Collapse
Affiliation(s)
- Bente A Somsen
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Eline Sijbesma
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Seppe Leysen
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Karolina Honzejkova
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Emira J Visser
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Peter J Cossar
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Tomáš Obšil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.
| |
Collapse
|
14
|
Wang N, Shi Y, Jiang Q, Li H, Fan W, Feng Y, Li L, Liu B, Lin F, Jing W, Zhang W, Shen L. A 14-3-3 protein positively regulates rice salt tolerance by stabilizing phospholipase C1. PLANT, CELL & ENVIRONMENT 2023; 46:1232-1248. [PMID: 36539986 DOI: 10.1111/pce.14520] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/06/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
The phosphatidylinositol-specific phospholipase Cs (PI-PLCs) catalyze the hydrolysis of phosphatidylinositols, which play crucial roles in signaling transduction during plant development and stress response. However, the regulation of PI-PLC is still poorly understood. A previous study showed that a rice PI-PLC, OsPLC1, was essential to rice salt tolerance. Here, we identified a 14-3-3 protein, OsGF14b, as an interaction partner of OsPLC1. Similar to OsPLC1, OsGF14b also positively regulates rice salt tolerance, and their interaction can be promoted by NaCl stress. OsGF14b also positively regulated the hydrolysis activity of OsPLC1, and is essential to NaCl-induced activation of rice PI-PLCs. We further discovered that OsPLC1 was degraded via ubiquitin-proteasome pathway, and OsGF14b could inhibit the ubiquitination of OsPLC1 to protect OsPLC1 from degradation. Under salt stress, the OsPLC1 protein level in osgf14b was lower than the corresponding value of WT, whereas overexpression of OsGF14b results in a significant increase of OsPLC1 stability. Taken together, we propose that OsGF14b can interact with OsPLC1 and promote its activity and stability, thereby improving rice salt tolerance. This study provides novel insights into the important roles of 14-3-3 proteins in regulating protein stability and function in response to salt stress.
Collapse
Affiliation(s)
- Ningna Wang
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yiyuan Shi
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qun Jiang
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Huan Li
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wenxia Fan
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yu Feng
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Li Li
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Bin Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Feng Lin
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wen Jing
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wenhua Zhang
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Like Shen
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
15
|
Segal D, Maier S, Mastromarco GJ, Qian WW, Nabeel-Shah S, Lee H, Moore G, Lacoste J, Larsen B, Lin ZY, Selvabaskaran A, Liu K, Smibert C, Zhang Z, Greenblatt J, Peng J, Lee HO, Gingras AC, Taipale M. A central chaperone-like role for 14-3-3 proteins in human cells. Mol Cell 2023; 83:974-993.e15. [PMID: 36931259 DOI: 10.1016/j.molcel.2023.02.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/30/2022] [Accepted: 02/15/2023] [Indexed: 03/18/2023]
Abstract
14-3-3 proteins are highly conserved regulatory proteins that interact with hundreds of structurally diverse clients and act as central hubs of signaling networks. However, how 14-3-3 paralogs differ in specificity and how they regulate client protein function are not known for most clients. Here, we map the interactomes of all human 14-3-3 paralogs and systematically characterize the effect of disrupting these interactions on client localization. The loss of 14-3-3 binding leads to the coalescence of a large fraction of clients into discrete foci in a client-specific manner, suggesting a central chaperone-like function for 14-3-3 proteins. Congruently, the engraftment of 14-3-3 binding motifs to nonclients can suppress their aggregation or phase separation. Finally, we show that 14-3-3s negatively regulate the localization of the RNA-binding protein SAMD4A to cytoplasmic granules and inhibit its activity as a translational repressor. Our work suggests that 14-3-3s have a more prominent role as chaperone-like molecules than previously thought.
Collapse
Affiliation(s)
- Dmitri Segal
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Stefan Maier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | | | - Wesley Wei Qian
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Syed Nabeel-Shah
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Hyunmin Lee
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Gaelen Moore
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jessica Lacoste
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Brett Larsen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Abeeshan Selvabaskaran
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Karen Liu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Craig Smibert
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zhaolei Zhang
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Jack Greenblatt
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jian Peng
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada.
| | - Mikko Taipale
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
16
|
Zhu P, Nguyen KT, Estelle AB, Sluchanko NN, Mehl RA, Cooley RB. Genetic encoding of 3-nitro-tyrosine reveals the impacts of 14-3-3 nitration on client binding and dephosphorylation. Protein Sci 2023; 32:e4574. [PMID: 36691781 PMCID: PMC9926477 DOI: 10.1002/pro.4574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023]
Abstract
14-3-3 proteins are central hub regulators of hundreds of phosphorylated "client" proteins. They are subject to over 60 post-translational modifications (PTMs), yet little is known how these PTMs alter 14-3-3 function and its ability to regulate downstream signaling pathways. An often neglected, but well-documented 14-3-3 PTM found under physiological and immune-stimulatory conditions is the conversion of tyrosine to 3-nitro-tyrosine at several Tyr sites, two of which are located at sites considered important for 14-3-3 function: Y130 (β-isoform numbering) is located in the primary phospho-client peptide-binding groove, while Y213 is found on a secondary binding site that engages with clients for full 14-3-3/client complex formation and client regulation. By genetically encoding 3-nitro-tyrosine, we sought to understand if nitration at Y130 and Y213 effectively modulated 14-3-3 structure, function, and client complexation. The 1.5 Å resolution crystal structure of 14-3-3 nitrated at Y130 showed the nitro group altered the conformation of key residues in the primary binding site, while functional studies confirmed client proteins failed to bind this variant of 14-3-3. But, in contrast to other client-binding deficient variants, it did not localize to the nucleus. The 1.9 Å resolution structure of 14-3-3 nitrated at Y213 revealed unusual flexibility of its C-terminal α-helix resulting in domain swapping, suggesting additional structural plasticity though its relevance is not clear as this nitrated form retained its ability to bind clients. Collectively, our data suggest that nitration of 14-3-3 will alter downstream signaling systems, and if uncontrolled could result in global dysregulation of the 14-3-3 interactome.
Collapse
Affiliation(s)
- Phillip Zhu
- Department of Biochemistry and Biophysics, 2011 Agricultural and Life SciencesOregon State UniversityCorvallisOregonUSA
| | - Kyle T. Nguyen
- Department of Biochemistry and Biophysics, 2011 Agricultural and Life SciencesOregon State UniversityCorvallisOregonUSA
| | - Aidan B. Estelle
- Department of Biochemistry and Biophysics, 2011 Agricultural and Life SciencesOregon State UniversityCorvallisOregonUSA
| | - Nikolai N. Sluchanko
- Federal Research Center of Biotechnology of the Russian Academy of SciencesA.N. Bach Institute of BiochemistryMoscowRussia
| | - Ryan A. Mehl
- Department of Biochemistry and Biophysics, 2011 Agricultural and Life SciencesOregon State UniversityCorvallisOregonUSA
| | - Richard B. Cooley
- Department of Biochemistry and Biophysics, 2011 Agricultural and Life SciencesOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
17
|
Chiang DC, Teh AH, Yap BK. Identification of peptide binding sequence of TRIM25 on 14-3-3σ by bioinformatics and biophysical techniques. J Biomol Struct Dyn 2023; 41:13260-13270. [PMID: 36724456 DOI: 10.1080/07391102.2023.2172458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
14-3-3σ protein is one of the seven isoforms from the highly conserved eukaryotic 14-3-3 protein family. Downregulation of 14-3-3σ expression has been observed in various tumors. TRIM25 is responsible for the proteolytic degradation of 14-3-3σ, in which abrogation of TRIM25 suppressed tumor growth through 14-3-3σ upregulation. However, to date, the exact 14-3-3σ interacting residues of TRIM25 have yet to be resolved. Thus, this study attempts to identify the peptide binding sequence of TRIM25 on 14-3-3σ via both bioinformatics and biophysical techniques. Multiple sequence alignment of the CC domain of TRIM25 revealed five potential peptide binding sequences (Peptide 1-5). Nuclear magnetic resonance (NMR) assay (1H CPMG) identified Peptide 1 as an important sequence for binding to 14-3-3σ. Competition NMR assay suggested that Peptide 1 binds to the amphipathic pocket of 14-3-3σ with an estimated KD of 116.4 µM by isothermal titration calorimetry. Further in silico docking and molecular dynamics simulations studies proposed that Peptide 1 is likely to interact with Lys49, Arg56, Arg129, and Tyr130 residues at the amphipathic pocket of 14-3-3σ. These results suggest that Peptide 1 may serve as a biological probe or a template to design inhibitors of TRIM25-14-3-3σ interaction as a potentially novel class of anticancer agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- De Chen Chiang
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM, Penang, Malaysia
| | - Aik-Hong Teh
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Penang, Malaysia
| | - Beow Keat Yap
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM, Penang, Malaysia
| |
Collapse
|
18
|
Egbert CM, Warr LR, Pennington KL, Thornton MM, Vaughan AJ, Ashworth SW, Heaton MJ, English N, Torres MP, Andersen JL. The Integration of Proteome-Wide PTM Data with Protein Structural and Sequence Features Identifies Phosphorylations that Mediate 14-3-3 Interactions. J Mol Biol 2023; 435:167890. [PMID: 36402225 PMCID: PMC10099770 DOI: 10.1016/j.jmb.2022.167890] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
14-3-3s are abundant proteins that regulate essentially all aspects of cell biology, including cell cycle, motility, metabolism, and cell death. 14-3-3s work by docking to phosphorylated Ser/Thr residues on a large network of client proteins and modulating client protein function in a variety of ways. In recent years, aided by improvements in proteomics, the discovery of 14-3-3 client proteins has far outpaced our ability to understand the biological impact of individual 14-3-3 interactions. The rate-limiting step in this process is often the identification of the individual phospho-serines/threonines that mediate 14-3-3 binding, which are difficult to distinguish from other phospho-sites by sequence alone. Furthermore, trial-and-error molecular approaches to identify these phosphorylations are costly and can take months or years to identify even a single 14-3-3 docking site phosphorylation. To help overcome this challenge, we used machine learning to analyze predictive features of 14-3-3 binding sites. We found that accounting for intrinsic protein disorder and the unbiased mass spectrometry identification rate of a given phosphorylation significantly improves the identification of 14-3-3 docking site phosphorylations across the proteome. We incorporated these features, coupled with consensus sequence prediction, into a publicly available web app, called "14-3-3 site-finder". We demonstrate the strength of this approach through its ability to identify 14-3-3 binding sites that do not conform to the loose consensus sequence of 14-3-3 docking phosphorylations, which we validate with 14-3-3 client proteins, including TNK1, CHEK1, MAPK7, and others. In addition, by using this approach, we identify a phosphorylation on A-kinase anchor protein-13 (AKAP13) at Ser2467 that dominantly controls its interaction with 14-3-3.
Collapse
Affiliation(s)
- C M Egbert
- Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - L R Warr
- Department of Statistics, Brigham Young University, Provo, UT, USA
| | - K L Pennington
- Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA; Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - M M Thornton
- Department of Computer Science, Brigham Young University, Provo, UT, USA
| | - A J Vaughan
- Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - S W Ashworth
- Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - M J Heaton
- Department of Statistics, Brigham Young University, Provo, UT, USA
| | - N English
- Quantitative Bioscience Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - M P Torres
- Quantitative Bioscience Program, Georgia Institute of Technology, Atlanta, GA, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - J L Andersen
- Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
19
|
Qu JH, Tarasov KV, Chakir K, Tarasova YS, Riordon DR, Lakatta EG. Proteomic Landscape and Deduced Functions of the Cardiac 14-3-3 Protein Interactome. Cells 2022; 11:cells11213496. [PMID: 36359893 PMCID: PMC9654263 DOI: 10.3390/cells11213496] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Rationale: The 14-3-3 protein family is known to interact with many proteins in non-cardiac cell types to regulate multiple signaling pathways, particularly those relating to energy and protein homeostasis; and the 14-3-3 network is a therapeutic target of critical metabolic and proteostatic signaling in cancer and neurological diseases. Although the heart is critically sensitive to nutrient and energy alterations, and multiple signaling pathways coordinate to maintain the cardiac cell homeostasis, neither the structure of cardiac 14-3-3 protein interactome, nor potential functional roles of 14-3-3 protein–protein interactions (PPIs) in heart has been explored. Objective: To establish the comprehensive landscape and characterize the functional role of cardiac 14-3-3 PPIs. Methods and Results: We evaluated both RNA expression and protein abundance of 14-3-3 isoforms in mouse heart, followed by co-immunoprecipitation of 14-3-3 proteins and mass spectrometry in left ventricle. We identified 52 proteins comprising the cardiac 14-3-3 interactome. Multiple bioinformatic analyses indicated that more than half of the proteins bound to 14-3-3 are related to mitochondria; and the deduced functions of the mitochondrial 14-3-3 network are to regulate cardiac ATP production via interactions with mitochondrial inner membrane proteins, especially those in mitochondrial complex I. Binding to ribosomal proteins, 14-3-3 proteins likely coordinate protein synthesis and protein quality control. Localizations of 14-3-3 proteins to mitochondria and ribosome were validated via immunofluorescence assays. The deduced function of cardiac 14-3-3 PPIs is to regulate cardiac metabolic homeostasis and proteostasis. Conclusions: Thus, the cardiac 14-3-3 interactome may be a potential therapeutic target in cardiovascular metabolic and proteostatic disease states, as it already is in cancer therapy.
Collapse
|
20
|
Obsilova V, Obsil T. Structural insights into the functional roles of 14-3-3 proteins. Front Mol Biosci 2022; 9:1016071. [PMID: 36188227 PMCID: PMC9523730 DOI: 10.3389/fmolb.2022.1016071] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Signal transduction cascades efficiently transmit chemical and/or physical signals from the extracellular environment to intracellular compartments, thereby eliciting an appropriate cellular response. Most often, these signaling processes are mediated by specific protein-protein interactions involving hundreds of different receptors, enzymes, transcription factors, and signaling, adaptor and scaffolding proteins. Among them, 14-3-3 proteins are a family of highly conserved scaffolding molecules expressed in all eukaryotes, where they modulate the function of other proteins, primarily in a phosphorylation-dependent manner. Through these binding interactions, 14-3-3 proteins participate in key cellular processes, such as cell-cycle control, apoptosis, signal transduction, energy metabolism, and protein trafficking. To date, several hundreds of 14-3-3 binding partners have been identified, including protein kinases, phosphatases, receptors and transcription factors, which have been implicated in the onset of various diseases. As such, 14-3-3 proteins are promising targets for pharmaceutical interventions. However, despite intensive research into their protein-protein interactions, our understanding of the molecular mechanisms whereby 14-3-3 proteins regulate the functions of their binding partners remains insufficient. This review article provides an overview of the current state of the art of the molecular mechanisms whereby 14-3-3 proteins regulate their binding partners, focusing on recent structural studies of 14-3-3 protein complexes.
Collapse
Affiliation(s)
- Veronika Obsilova
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division BIOCEV, Vestec, Czechia
- *Correspondence: Veronika Obsilova, ; Tomas Obsil,
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czechia
- *Correspondence: Veronika Obsilova, ; Tomas Obsil,
| |
Collapse
|
21
|
Kapitonova AA, Tugaeva KV, Varfolomeeva LA, Boyko KM, Cooley RB, Sluchanko NN. Structural basis for the recognition by 14-3-3 proteins of a conditional binding site within the oligomerization domain of human nucleophosmin. Biochem Biophys Res Commun 2022; 627:176-183. [PMID: 36041327 DOI: 10.1016/j.bbrc.2022.08.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022]
Abstract
Nucleophosmin 1 (NPM1) is a multifunctional protein regulating ribosome biogenesis, centrosome duplication and chromatin remodeling. Being a major nucleolar protein, NPM1 can migrate to the nucleus and the cytoplasm, which is controlled by changes of NPM1 oligomerization and interaction with other cell factors. NPM1 forms a stable pentamer with its N-terminal structured domain, where two nuclear export signals and several phosphorylation sites reside. This domain undergoes dissociation and disordering upon Ser48 phosphorylation in the subunit interface. Recent studies indicated that Ser48 is important for NPM1 interaction with other proteins including 14-3-3, the well-known phosphoserine/phosphothreonine binders, but the structural basis for 14-3-3/NPM1 interaction remained unaddressed. By fusing human 14-3-3ζ with an NPM1 segment surrounding Ser48, which was phosphorylated inside Escherichia coli cells by co-expressed protein kinase A, here we obtained the desired protein/phosphopeptide complex and determined its crystal structure. While biochemical data indicated that the interaction is driven by Ser48 phosphorylation, the crystallographic 14-3-3/phosphopeptide interface reveals an NPM1 conformation distinctly different from that in the NPM1 pentamer. Given the canonical phosphopeptide-binding mode observed in our crystal structure, Ser48 emerges as a conditional binding site whose recognition by 14-3-3 proteins is enabled by NPM1 phosphorylation, disassembly and disordering under physiological circumstances.
Collapse
Affiliation(s)
- Anna A Kapitonova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Kristina V Tugaeva
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Larisa A Varfolomeeva
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Konstantin M Boyko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Richard B Cooley
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia.
| |
Collapse
|
22
|
Sun S, Qiao B, Han Y, Wang B, Wei S, Chen Y. Posttranslational modifications of platelet adhesion receptors. Pharmacol Res 2022; 183:106413. [PMID: 36007773 DOI: 10.1016/j.phrs.2022.106413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 10/15/2022]
Abstract
Platelets play a key role in normal hemostasis, whereas pathological platelet adhesion is involved in various cardiovascular events. The underlying cause in cardiovascular events involves plaque rupture leading to subsequent platelet adhesion, activation, release, and eventual thrombosis. Traditional antithrombotic drugs often target the signal transduction process of platelet adhesion receptors by influencing the synthesis of some key molecules, and their effects are limited. Posttranslational modifications (PTMs) of platelet adhesion receptors increase the functional diversity of the receptors and affect platelet physiological and pathological processes. Antithrombotic drugs targeting PTMs of platelet adhesion receptors may represent a new therapeutic idea. In this review, various PTMs, including phosphorylation, glycosylation, ubiquitination, nitrosylation, methylation, lipidation, and proteolysis, of three platelet adhesion receptors, glycoprotein Ib-IX-V (GPIb-IX-V), glycoprotein VI (GPVI), and integrin αIIbβ3, are reviewed. It is important to comprehensively understand the PTMs process of platelet adhesion receptors.
Collapse
Affiliation(s)
- Shukun Sun
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Bao Qiao
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Yu Han
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Bailu Wang
- Clinical Trial Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Shujian Wei
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| | - Yuguo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
23
|
Sluchanko NN. Recent advances in structural studies of 14-3-3 protein complexes. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:289-324. [PMID: 35534110 DOI: 10.1016/bs.apcsb.2021.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Being phosphopeptide-binding hubs, 14-3-3 proteins coordinate multiple cellular processes in eukaryotes, including the regulation of apoptosis, cell cycle, ion channels trafficking, transcription, signal transduction, and hormone biosynthesis. Forming constitutive α-helical dimers, 14-3-3 proteins predominantly recognize specifically phosphorylated Ser/Thr sites within their partners; this generally stabilizes phosphotarget conformation and affects its activity, intracellular distribution, dephosphorylation, degradation and interactions with other proteins. Not surprisingly, 14-3-3 complexes are involved in the development of a range of diseases and are considered promising drug targets. The wide interactome of 14-3-3 proteins encompasses hundreds of different phosphoproteins, for many of which the interaction is well-documented in vitro and in vivo but lack the structural data that would help better understand underlying regulatory mechanisms and develop new drugs. Despite obtaining structural information on 14-3-3 complexes is still lagging behind the research of 14-3-3 interactions on a proteome-wide scale, recent works provided some advances, including methodological improvements and accumulation of new interesting structural data, that are discussed in this review.
Collapse
Affiliation(s)
- Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russian Federation.
| |
Collapse
|
24
|
Herod SG, Dyatel A, Hodapp S, Jovanovic M, Berchowitz LE. Clearance of an amyloid-like translational repressor is governed by 14-3-3 proteins. Cell Rep 2022; 39:110753. [PMID: 35508136 PMCID: PMC9156962 DOI: 10.1016/j.celrep.2022.110753] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/24/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Amyloids are fibrous protein aggregates associated with age-related diseases. While these aggregates are typically described as irreversible and pathogenic, some cells use reversible amyloid-like structures that serve important functions. The RNA-binding protein Rim4 forms amyloid-like assemblies that are essential for translational control during Saccharomyces cerevisiae meiosis. Rim4 amyloid-like assemblies are disassembled in a phosphorylation-dependent manner at meiosis II onset. By investigating Rim4 clearance, we elucidate co-factors that mediate clearance of amyloid-like assemblies in a physiological setting. We demonstrate that yeast 14-3-3 proteins bind to Rim4 assemblies and facilitate their subsequent phosphorylation and timely clearance. Furthermore, distinct 14-3-3 proteins play non-redundant roles in facilitating phosphorylation and clearance of amyloid-like Rim4. Additionally, we find that 14-3-3 proteins contribute to global protein aggregate homeostasis. Based on the role of 14-3-3 proteins in aggregate homeostasis and their interactions with disease-associated assemblies, we propose that these proteins may protect against pathological protein aggregates.
Collapse
Affiliation(s)
- S Grace Herod
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY, USA; Taub Institute for Research on Alzheimer's and the Aging Brain, New York, NY, USA
| | - Annie Dyatel
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Stefanie Hodapp
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Luke E Berchowitz
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY, USA; Taub Institute for Research on Alzheimer's and the Aging Brain, New York, NY, USA.
| |
Collapse
|
25
|
T. S. S, Dalvi S, Venkatraman P, Vemparala S. Structural insights on the effects of mutation of a charged binding pocket residue on phosphopeptide binding to 14‐3‐3ζ protein. Proteins 2022; 90:1179-1189. [DOI: 10.1002/prot.26300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
Affiliation(s)
- Sreevidya T. S.
- The Institute of Mathematical Sciences Chennai India
- Homi Bhabha National Institute Mumbai India
| | - Somavally Dalvi
- Protein Interactome Lab for Structural and Functional Biology Advanced Centre for Treatment, Research and Education in Cancer Navi Mumbai India
| | - Prasanna Venkatraman
- Homi Bhabha National Institute Mumbai India
- Protein Interactome Lab for Structural and Functional Biology Advanced Centre for Treatment, Research and Education in Cancer Navi Mumbai India
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences Chennai India
- Homi Bhabha National Institute Mumbai India
| |
Collapse
|
26
|
Gavade JN, Puccia CM, Herod SG, Trinidad JC, Berchowitz LE, Lacefield S. Identification of 14-3-3 proteins, Polo kinase, and RNA-binding protein Pes4 as key regulators of meiotic commitment in budding yeast. Curr Biol 2022; 32:1534-1547.e9. [PMID: 35240051 PMCID: PMC9007917 DOI: 10.1016/j.cub.2022.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/04/2022] [Accepted: 02/04/2022] [Indexed: 01/25/2023]
Abstract
The initiation of the cell division process of meiosis requires exogenous signals that activate internal gene regulatory networks. Meiotic commitment ensures the irreversible continuation of meiosis, even upon withdrawal of the meiosis-inducing signals. A loss of meiotic commitment can cause highly abnormal polyploid cells and can ultimately lead to germ cell tumors. Despite the importance of meiotic commitment, only a few genes involved in commitment are known. In this study, we have discovered six new regulators of meiotic commitment in budding yeast: the Bcy1 protein involved in nutrient sensing, the meiosis-specific kinase Ime2, Polo kinase Cdc5, RNA-binding protein Pes4, and the 14-3-3 proteins Bmh1 and Bmh2. Decreased levels of these proteins cause a failure to establish or maintain meiotic commitment. Importantly, we found that Bmh1 and Bmh2 are involved in multiple processes throughout meiosis and in meiotic commitment. First, cells depleted of both Bmh1 and Bmh2 trigger the pachytene checkpoint, likely due to a role in DNA double-strand break repair. Second, Bmh1 interacts directly with the middle meiosis transcription factor Ndt80, and both Bmh1 and Bmh2 maintain Ndt80 levels. Third, Bmh1 and Bmh2 bind to Cdc5 and enhance its kinase activity. Finally, Bmh1 binds to Pes4, which regulates the timing of the translation of several mRNAs in meiosis II and is required to maintain meiotic commitment. Our results demonstrate that meiotic commitment is actively maintained throughout meiosis, with the 14-3-3 proteins and Polo kinase serving as key regulators of this developmental program.
Collapse
Affiliation(s)
| | - Chris M Puccia
- Indiana University, Department of Biology, Bloomington, IN, USA
| | - S Grace Herod
- Columbia University Irving Medical Center, Department of Genetics and Development, Hammer Health Sciences Center, New York, NY, USA
| | | | - Luke E Berchowitz
- Columbia University Irving Medical Center, Department of Genetics and Development, Hammer Health Sciences Center, New York, NY, USA
| | - Soni Lacefield
- Indiana University, Department of Biology, Bloomington, IN, USA.
| |
Collapse
|
27
|
Huang Y, Wang W, Yu H, Peng J, Hu Z, Chen L. The role of 14-3-3 proteins in plant growth and response to abiotic stress. PLANT CELL REPORTS 2022; 41:833-852. [PMID: 34773487 DOI: 10.1007/s00299-021-02803-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
The 14-3-3 proteins widely exist in almost all plant species. They specifically recognize and interact with phosphorylated target proteins, including protein kinases, phosphatases, transcription factors and functional proteins, offering an array of opportunities for 14-3-3s to participate in the signal transduction processes. 14-3-3s are multigene families and can form homo- and heterodimers, which confer functional specificity of 14-3-3 proteins. They are widely involved in regulating biochemical and cellular processes and plant growth and development, including cell elongation and division, seed germination, vegetative and reproductive growth, and seed dormancy. They mediate plant response to environmental stresses such as salt, alkaline, osmotic, drought, cold and other abiotic stresses, partially via hormone-related signalling pathways. Although many studies have reviewed the function of 14-3-3 proteins, recent research on plant 14-3-3s has achieved significant advances. Here, we provide a comprehensive overview of the fundamental properties of 14-3-3 proteins and systematically summarize and dissect the emerging advances in understanding the roles of 14-3-3s in plant growth and development and abiotic stress responses. Some ambiguous questions about the roles of 14-3-3s under environmental stresses are reviewed. Interesting questions related to plant 14-3-3 functions that remain to be elucidated are also discussed.
Collapse
Affiliation(s)
- Ye Huang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenshu Wang
- Institute of Crop Science of Wuhan Academy of Agriculture Science, Wuhan, 430345, China
| | - Hua Yu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junhua Peng
- Huazhi Biotech Co., Ltd., Changsha, 410125, China
| | - Zhengrong Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
28
|
Autophagic dysfunction in the liver enhances the expression of insoluble nuclear proteins 14-3-3ζ and importin α4. Life Sci 2022; 298:120491. [PMID: 35339509 DOI: 10.1016/j.lfs.2022.120491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 11/23/2022]
Abstract
AIMS Autophagic dysfunction is associated with the progression of various liver diseases, including nonalcoholic fatty liver disease (NAFLD). However, serum markers for evaluating autophagic function have not been reported. Highly insoluble nuclear proteins participate in many cellular functions and are potential diagnostic markers for cancer. We performed a proteomic analysis of the hepatic nuclear insoluble fraction to identify novel autophagy-related diagnostic biomarkers. MAIN METHODS The insoluble nuclear protein fraction was extracted from the livers of Atg7F/F, Atg7F/F:alb-Cre (hepatocyte-specific autophagy-deficient mice), C57BL/6 J, and KKAy (NAFLD model) mice. Proteins were separated by two-dimensional electrophoresis and visualized by silver staining. Protein spots were identified using mass spectrometry. The localization of proteins in hepatocytes was verified by immunofluorescence using a confocal microscope. KEY FINDINGS The levels of insoluble nuclear proteins 14-3-3ζ and importin α4 were upregulated following hepatic autophagy dysfunction and were detectable in serum. Under normal conditions, these proteins are mainly distributed in the cytoplasm, whereas autophagic dysfunction induces their translocation to the nucleus. Incubation with an autophagy inhibitor up-regulated these proteins expression in the insoluble nuclear fraction of primary hepatocytes. Treatment with EGF or insulin enhanced 14-3-3ζ expression in the nuclear insoluble fraction; in contrast, the addition of rapamycin downregulated 14-3-3ζ expression. Importin α4 expression was increased in the nuclear insoluble fraction after incubation with tunicamycin or hydrogen peroxide. SIGNIFICANCE Accumulation of 14-3-3ζ and importin α4 as nuclear-insoluble proteins may be associated with autophagic dysfunction. Our findings indicate that these proteins might be useful diagnostic biomarkers for liver diseases with autophagic disorders.
Collapse
|
29
|
Abstract
The 14-3-3 family proteins are vital scaffold proteins that ubiquitously expressed in various tissues. They interact with numerous protein targets and mediate many cellular signaling pathways. The 14-3-3 binding motifs are often embedded in intrinsically disordered regions which are closely associated with liquid-liquid phase separation (LLPS). In the past ten years, LLPS has been observed for a variety of proteins and biological processes, indicating that LLPS plays a fundamental role in the formation of membraneless organelles and cellular condensates. While extensive investigations have been performed on 14-3-3 proteins, its involvement in LLPS is overlooked. To date, 14-3-3 proteins have not been reported to undergo LLPS alone or regulate LLPS of their binding partners. To reveal the potential involvement of 14-3-3 proteins in LLPS, in this review, we summarized the LLPS propensity of 14-3-3 binding partners and found that about one half of them may undergo LLPS spontaneously. We further analyzed the phase separation behavior of representative 14-3-3 binders and discussed how 14-3-3 proteins may be involved. By modulating the conformation and valence of interactions and recruiting other molecules, we speculate that 14-3-3 proteins can efficiently regulate the functions of their targets in the context of LLPS. Considering the critical roles of 14-3-3 proteins, there is an urgent need for investigating the involvement of 14-3-3 proteins in the phase separation process of their targets and the underling mechanisms.
Collapse
|
30
|
Trošanová Z, Louša P, Kozeleková A, Brom T, Gašparik N, Tungli J, Weisová V, Župa E, Žoldák G, Hritz J. Quantitation of human 14-3-3ζ dimerization and the effect of phosphorylation on dimer-monomer equilibria. J Mol Biol 2022; 434:167479. [DOI: 10.1016/j.jmb.2022.167479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
|
31
|
Joshi R, Pohl P, Strachotova D, Herman P, Obsil T, Obsilova V. Nedd4-2 binding to 14-3-3 modulates the accessibility of its catalytic site and WW domains. Biophys J 2022; 121:1299-1311. [PMID: 35189105 PMCID: PMC9034186 DOI: 10.1016/j.bpj.2022.02.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/30/2021] [Accepted: 02/15/2022] [Indexed: 11/02/2022] Open
Abstract
Neural precursor cells expressed developmentally downregulated protein 4-2 (Nedd4-2), a homologous to the E6-AP carboxyl terminus (HECT) ubiquitin ligase, triggers the endocytosis and degradation of its downstream target molecules by regulating signal transduction through interactions with other targets, including 14-3-3 proteins. In our previous study, we found that 14-3-3 binding induces a structural rearrangement of Nedd4-2 by inhibiting interactions between its structured domains. Here, we used time-resolved fluorescence intensity and anisotropy decay measurements, together with fluorescence quenching and mass spectrometry, to further characterize interactions between Nedd4-2 and 14-3-3 proteins. The results showed that 14-3-3 binding affects the emission properties of AEDANS-labeled WW3, WW4, and, to a lesser extent, WW2 domains, and reduces their mobility, but not those of the WW1 domain, which remains mobile. In contrast, 14-3-3 binding has the opposite effect on the active site of the HECT domain, which is more solvent exposed and mobile in the complexed form than in the apo form of Nedd4-2. Overall, our results suggest that steric hindrance of the WW3 and WW4 domains combined with conformational changes in the catalytic domain may account for the 14-3-3 binding-mediated regulation of Nedd4-2.
Collapse
|
32
|
Antunes ASLM, Saia-Cereda VM, Crunfli F, Martins-de-Souza D. 14-3-3 proteins at the crossroads of neurodevelopment and schizophrenia. World J Biol Psychiatry 2022; 23:14-32. [PMID: 33952049 DOI: 10.1080/15622975.2021.1925585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The 14-3-3 family comprises multifunctional proteins that play a role in neurogenesis, neuronal migration, neuronal differentiation, synaptogenesis and dopamine synthesis. 14-3-3 members function as adaptor proteins and impact a wide variety of cellular and physiological processes involved in the pathophysiology of neurological disorders. Schizophrenia is a psychiatric disorder and knowledge about its pathophysiology is still limited. 14-3-3 have been proven to be linked with the dopaminergic, glutamatergic and neurodevelopmental hypotheses of schizophrenia. Further, research using genetic models has demonstrated the role played by 14-3-3 proteins in neurodevelopment and neuronal circuits, however a more integrative and comprehensive approach is needed for a better understanding of their role in schizophrenia. For instance, we still lack an integrated assessment of the processes affected by 14-3-3 proteins in the dopaminergic and glutamatergic systems. In this context, it is also paramount to understand their involvement in the biology of brain cells other than neurons. Here, we present previous and recent research that has led to our current understanding of the roles 14-3-3 proteins play in brain development and schizophrenia, perform an assessment of their functional protein association network and discuss the use of protein-protein interaction modulators to target 14-3-3 as a potential therapeutic strategy.
Collapse
Affiliation(s)
- André S L M Antunes
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Verônica M Saia-Cereda
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil.,Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil.,D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| |
Collapse
|
33
|
Yin SJ, Qian GY, Yang JM, Lee J, Park YD. Detection of melanogenesis- and anti-apoptosis-associated melanoma factors: Array CGH and PPI mapping integrating study. Protein Pept Lett 2021; 28:1408-1424. [PMID: 34749602 DOI: 10.2174/0929866528666211105112927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/02/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND We investigated melanogenesis- and anti-apoptosis-related melanoma factors in melanoma cells (TXM1, TXM18, A375P, and A375SM). OBJECTIVE To find melanoma associated hub factor, high-throughput screening-based techniques integrating with bioinformatics were investigated. METHODS Array CGH analysis was conducted with a commercial system. Total genomic DNAs prepared individually from each cell line with control DNA were properly labeled with Cy3-dCTP and Cy5-dCTP and hybridizations and subsequently performed data treatment by the log2 green (G; test) to red (R; reference) fluorescence ratios (G/R). Gain or loss of copy number was judged by spots with log2-transformed ratios. PPI mapping analysis of detected candidate genes based on the array CGH results was conducted using the human interactome in the STRING database. Energy minimization and a short molecular dynamics (MD) simulation using the implicit solvation model in CHARMM were performed to analyze the interacting residues between YWHAZ and YWHAB. RESULTS Three genes (BMP-4, BFGF, LEF-1) known to be involved in melanogenesis were found to lose chromosomal copy numbers, and Chr. 6q23.3 was lost in all tested cell lines. Ten hub genes (CTNNB1, PEX13, PEX14, PEX5, IFNG, EXOSC3, EXOSC1, EXOSC8, UBC, and PEX10) were predicted to be functional interaction factors in the network of the 6q23.3 locus. The apoptosis-associated genes E2F1, p50, BCL2L1, and BIRC7 gained, and FGF2 lost chromosomal copy numbers in the tested melanoma cell lines. YWHAB, which gained chromosomal copy numbers, was predicted to be the most important hub protein in melanoma cells. Molecular dynamics simulations for binding YWHAB and YWHAZ were conducted, and the complex was predicted to be energetically and structurally stable through its 3 hydrogen-bond patterns. The number of interacting residues is 27. CONCLUSION Our study compares genome-wide screening interactomics predictions for melanoma factors and offers new information for understanding melanogenesis- and anti-apoptosis-associated mechanisms in melanoma. Especially, YWHAB was newly detected as a core factor in melanoma cells.
Collapse
Affiliation(s)
- Shang-Jun Yin
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100. China
| | - Guo-Ying Qian
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100. China
| | - Jun-Mo Yang
- Department of Dermatology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul 135-710. Korea
| | - Jinhyuk Lee
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro, Yuseong-gu, Daejeon, 34141. Korea
| | - Yong-Doo Park
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100. China
| |
Collapse
|
34
|
Tilwani S, Gandhi K, Narayan S, Ainavarapu SRK, Dalal SN. Disruption of desmosome function leads to increased centrosome clustering in 14-3-3γ-knockout cells with supernumerary centrosomes. FEBS Lett 2021; 595:2675-2690. [PMID: 34626438 DOI: 10.1002/1873-3468.14204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/09/2021] [Accepted: 10/04/2021] [Indexed: 01/02/2023]
Abstract
14-3-3 proteins are conserved, dimeric, acidic proteins that regulate multiple cellular pathways. Loss of either 14-3-3ε or 14-3-3γ leads to centrosome amplification. However, we find that while the knockout of 14-3-3ε leads to multipolar mitoses, the knockout of 14-3-3γ results in centrosome clustering and pseudo-bipolar mitoses. 14-3-3γ knockouts demonstrate compromised desmosome function and a decrease in keratin levels, leading to decreased cell stiffness and an increase in centrosome clustering. Restoration of desmosome function increased multipolar mitoses, whereas knockdown of either plakoglobin or keratin 5 led to decreased cell stiffness and increased pseudo-bipolar mitoses. These results suggest that the ability of the desmosome to anchor keratin filaments maintains cell stiffness, thus inhibiting centrosome clustering, and that phenotypes observed upon 14-3-3 loss reflect the dysregulation of multiple pathways.
Collapse
Affiliation(s)
- Sarika Tilwani
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Karan Gandhi
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Satya Narayan
- Department of Chemical Sciences, TIFR, Mumbai, India
| | | | - Sorab Nariman Dalal
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| |
Collapse
|
35
|
Sluchanko NN, Tugaeva KV, Gushchin I, Remeeva A, Kovalev K, Cooley RB. Crystal structure of human 14-3-3ζ complexed with the noncanonical phosphopeptide from proapoptotic BAD. Biochem Biophys Res Commun 2021; 583:100-105. [PMID: 34735870 DOI: 10.1016/j.bbrc.2021.10.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022]
Abstract
Several signaling pathways control phosphorylation of the proapoptotic protein BAD and its phosphorylation-dependent association with 14-3-3 proteins in the cytoplasm. The stability of the 14-3-3/BAD complex determines the cell fate: unphosphorylated BAD escapes from 14-3-3, migrates to the mitochondria and initiates apoptosis. While the 14-3-3/BAD interaction represents a promising drug target, it lacks structural characterization. Among several phosphosites identified in vivo, Ser75 and Ser99 of human BAD match the consensus sequence RXXpSXP recognized by 14-3-3 and, therefore, represent canonical 14-3-3-binding sites. Yet, BAD contains other serines phosphorylatable in vivo, whose role is less understood. Here, we report a 2.36 Å crystal structure of 14-3-3ζ complexed with a BAD fragment which includes residues Ser74 and Ser75, both being substrates for protein kinases. While the BAD peptide is anchored to 14-3-3 by phosphoserine as expected, the BAD peptide was unexpectedly phosphorylated at Ser74 instead of Ser75, revealing noncanonical binding within the amphipathic groove and leading to a one-step positional shift and reorganization of the interface. This observation exemplifies plasticity of the amphipathic 14-3-3 groove in accommodating various peptides and suggests the redundancy of Ser74 and Ser75 phosphosites with respect to binding of BAD to 14-3-3.
Collapse
Affiliation(s)
- Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia.
| | - Kristina V Tugaeva
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | - Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | - Kirill Kovalev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia; European Molecular Biology Laboratory, 22607, Hamburg, Germany
| | - Richard B Cooley
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
36
|
Pathways to Parkinson's disease: a spotlight on 14-3-3 proteins. NPJ Parkinsons Dis 2021; 7:85. [PMID: 34548498 PMCID: PMC8455551 DOI: 10.1038/s41531-021-00230-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/23/2021] [Indexed: 02/08/2023] Open
Abstract
14-3-3s represent a family of highly conserved 30 kDa acidic proteins. 14-3-3s recognize and bind specific phospho-sequences on client partners and operate as molecular hubs to regulate their activity, localization, folding, degradation, and protein-protein interactions. 14-3-3s are also associated with the pathogenesis of several diseases, among which Parkinson's disease (PD). 14-3-3s are found within Lewy bodies (LBs) in PD patients, and their neuroprotective effects have been demonstrated in several animal models of PD. Notably, 14-3-3s interact with some of the major proteins known to be involved in the pathogenesis of PD. Here we first provide a detailed overview of the molecular composition and structural features of 14-3-3s, laying significant emphasis on their peculiar target-binding mechanisms. We then briefly describe the implication of 14-3-3s in the central nervous system and focus on their interaction with LRRK2, α-Synuclein, and Parkin, three of the major players in PD onset and progression. We finally discuss how different types of small molecules may interfere with 14-3-3s interactome, thus representing a valid strategy in the future of drug discovery.
Collapse
|
37
|
Leysen S, Burnley RJ, Rodriguez E, Milroy LG, Soini L, Adamski CJ, Nitschke L, Davis R, Obsil T, Brunsveld L, Crabbe T, Zoghbi HY, Ottmann C, Davis JM. A Structural Study of the Cytoplasmic Chaperone Effect of 14-3-3 Proteins on Ataxin-1. J Mol Biol 2021; 433:167174. [PMID: 34302818 PMCID: PMC8505757 DOI: 10.1016/j.jmb.2021.167174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022]
Abstract
Expansion of the polyglutamine tract in the N terminus of Ataxin-1 is the main cause of the neurodegenerative disease, spinocerebellar ataxia type 1 (SCA1). However, the C-terminal part of the protein - including its AXH domain and a phosphorylation on residue serine 776 - also plays a crucial role in disease development. This phosphorylation event is known to be crucial for the interaction of Ataxin-1 with the 14-3-3 adaptor proteins and has been shown to indirectly contribute to Ataxin-1 stability. Here we show that 14-3-3 also has a direct anti-aggregation or "chaperone" effect on Ataxin-1. Furthermore, we provide structural and biophysical information revealing how phosphorylated S776 in the intrinsically disordered C terminus of Ataxin-1 mediates the cytoplasmic interaction with 14-3-3 proteins. Based on these findings, we propose that 14-3-3 exerts the observed chaperone effect by interfering with Ataxin-1 dimerization through its AXH domain, reducing further self-association. The chaperone effect is particularly important in the context of SCA1, as it was previously shown that a soluble form of mutant Ataxin-1 is the major driver of pathology.
Collapse
Affiliation(s)
- Seppe Leysen
- Global Chemistry, UCB Biopharma UK, Slough SL1 3WE, UK
| | | | | | - Lech-Gustav Milroy
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Eindhoven 5600 MB, the Netherlands
| | - Lorenzo Soini
- Global Chemistry, UCB Biopharma UK, Slough SL1 3WE, UK; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Eindhoven 5600 MB, the Netherlands
| | - Carolyn J Adamski
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Larissa Nitschke
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rachel Davis
- Global Chemistry, UCB Biopharma UK, Slough SL1 3WE, UK
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague 12843, Czech Republic
| | - Lucas Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Eindhoven 5600 MB, the Netherlands
| | - Tom Crabbe
- Immuno-Bone Discovery, UCB Biopharma UK, Slough SL1 3WE, UK
| | - Huda Yahya Zoghbi
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Eindhoven 5600 MB, the Netherlands
| | | |
Collapse
|
38
|
Horvath M, Petrvalska O, Herman P, Obsilova V, Obsil T. 14-3-3 proteins inactivate DAPK2 by promoting its dimerization and protecting key regulatory phosphosites. Commun Biol 2021; 4:986. [PMID: 34413451 PMCID: PMC8376927 DOI: 10.1038/s42003-021-02518-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/03/2021] [Indexed: 01/05/2023] Open
Abstract
Death-associated protein kinase 2 (DAPK2) is a CaM-regulated Ser/Thr protein kinase, involved in apoptosis, autophagy, granulocyte differentiation and motility regulation, whose activity is controlled by autoinhibition, autophosphorylation, dimerization and interaction with scaffolding proteins 14-3-3. However, the structural basis of 14-3-3-mediated DAPK2 regulation remains unclear. Here, we structurally and biochemically characterize the full-length human DAPK2:14-3-3 complex by combining several biophysical techniques. The results from our X-ray crystallographic analysis revealed that Thr369 phosphorylation at the DAPK2 C terminus creates a high-affinity canonical mode III 14-3-3-binding motif, further enhanced by the diterpene glycoside Fusicoccin A. Moreover, concentration-dependent DAPK2 dimerization is disrupted by Ca2+/CaM binding and stabilized by 14-3-3 binding in solution, thereby protecting the DAPK2 inhibitory autophosphorylation site Ser318 against dephosphorylation and preventing Ca2+/CaM binding. Overall, our findings provide mechanistic insights into 14-3-3-mediated DAPK2 inhibition and highlight the potential of the DAPK2:14-3-3 complex as a target for anti‐inflammatory therapies. Horvath et al. structurally and biochemically characterize the full-length human DAPK2-14-3-3 complex to investigate the effects of binding to DAPK2 on its dimerization, activation by dephosphorylation of Ser318, and Ca2+/calmodulin binding. Their results provide mechanistic insights into 14- 3-3-mediated DAPK2 inhibition and highlight the potential of the DAPK2:14-3-3 complex as a target for anti-inflammatory therapies.
Collapse
Affiliation(s)
- Matej Horvath
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic.,Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Olivia Petrvalska
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic.,Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Petr Herman
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Veronika Obsilova
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic.
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic. .,Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic.
| |
Collapse
|
39
|
14-3-3-protein regulates Nedd4-2 by modulating interactions between HECT and WW domains. Commun Biol 2021; 4:899. [PMID: 34294877 PMCID: PMC8298602 DOI: 10.1038/s42003-021-02419-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
Neural precursor cell expressed developmentally down-regulated 4 ligase (Nedd4-2) is an E3 ubiquitin ligase that targets proteins for ubiquitination and endocytosis, thereby regulating numerous ion channels, membrane receptors and tumor suppressors. Nedd4-2 activity is regulated by autoinhibition, calcium binding, oxidative stress, substrate binding, phosphorylation and 14-3-3 protein binding. However, the structural basis of 14-3-3-mediated Nedd4-2 regulation remains poorly understood. Here, we combined several techniques of integrative structural biology to characterize Nedd4-2 and its complex with 14-3-3. We demonstrate that phosphorylated Ser342 and Ser448 are the key residues that facilitate 14-3-3 protein binding to Nedd4-2 and that 14-3-3 protein binding induces a structural rearrangement of Nedd4-2 by inhibiting interactions between its structured domains. Overall, our findings provide the structural glimpse into the 14-3-3-mediated Nedd4-2 regulation and highlight the potential of the Nedd4-2:14-3-3 complex as a pharmacological target for Nedd4-2-associated diseases such as hypertension, epilepsy, kidney disease and cancer. Pohl et al. investigated the structural basis of Nedd4-2 regulation by 14-3-3 and found that phosphorylated Ser342 and Ser448 are the main residues that facilitate 14-3-3 binding to Nedd4-2. The authors propose that the Nedd4-2:14-3-3 complex then stimulates a structural rearrangement of Nedd4-2 through inhibiting interaction of its structured domains.
Collapse
|
40
|
Bose A, Modi K, Dey S, Dalvi S, Nadkarni P, Sudarshan M, Kundu TK, Venkatraman P, Dalal SN. 14-3-3γ prevents centrosome duplication by inhibiting NPM1 function. Genes Cells 2021; 26:426-446. [PMID: 33813791 DOI: 10.1111/gtc.12848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 11/29/2022]
Abstract
14-3-3 proteins bind to ligands via phospho-serine containing consensus motifs. However, the molecular mechanisms underlying complex formation and dissociation between 14-3-3 proteins and their ligands remain unclear. We identified two conserved acidic residues in the 14-3-3 peptide-binding pocket (D129 and E136) that potentially regulate complex formation and dissociation. Altering these residues to alanine led to opposing effects on centrosome duplication. D129A inhibited centrosome duplication, whereas E136A stimulated centrosome amplification. These results were due to the differing abilities of these mutant proteins to form a complex with NPM1. Inhibiting complex formation between NPM1 and 14-3-3γ led to an increase in centrosome duplication and over-rode the ability of D129A to inhibit centrosome duplication. We identify a novel role of 14-3-3γ in regulating centrosome licensing and a novel mechanism underlying the formation and dissociation of 14-3-3 ligand complexes dictated by conserved residues in the 14-3-3 family.
Collapse
Affiliation(s)
- Arunabha Bose
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Kruti Modi
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Suchismita Dey
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Somavally Dalvi
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Prafful Nadkarni
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Mukund Sudarshan
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Prasanna Venkatraman
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Sorab N Dalal
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
41
|
Dumas G, Goubran‐Botros H, Matondo M, Pagan C, Boulègue C, Chaze T, Chamot‐Rooke J, Maronde E, Bourgeron T. Mass-spectrometry analysis of the human pineal proteome during night and day and in autism. J Pineal Res 2021; 70:e12713. [PMID: 33368564 PMCID: PMC8047921 DOI: 10.1111/jpi.12713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022]
Abstract
The human pineal gland regulates day-night dynamics of multiple physiological processes, especially through the secretion of melatonin. Using mass-spectrometry-based proteomics and dedicated analysis tools, we identify proteins in the human pineal gland and analyze systematically their variation throughout the day and compare these changes in the pineal proteome between control specimens and donors diagnosed with autism. Results reveal diverse regulated clusters of proteins with, among others, catabolic carbohydrate process and cytoplasmic membrane-bounded vesicle-related proteins differing between day and night and/or control versus autism pineal glands. These data show novel and unexpected processes happening in the human pineal gland during the day/night rhythm as well as specific differences between autism donor pineal glands and those from controls.
Collapse
Affiliation(s)
- Guillaume Dumas
- Human Genetics and Cognitive FunctionsInstitut PasteurUMR 3571 CNRSUniversity Paris DiderotParisFrance
- Precision Psychiatry and Social Physiology laboratoryCHU Ste‐Justine Research CenterDepartment of PsychiatryUniversity of MontrealQuebecQCCanada
| | - Hany Goubran‐Botros
- Human Genetics and Cognitive FunctionsInstitut PasteurUMR 3571 CNRSUniversity Paris DiderotParisFrance
| | - Mariette Matondo
- Institut PasteurUnité de Spectrométrie de Masse pour la Biologie (MSBio)Centre de Ressources et Recherches Technologiques (C2RT)USR 2000 CNRSParisFrance
| | - Cécile Pagan
- Paris Descartes UniversityParisFrance
- Service de Biochimie et Biologie MoléculaireINSERM U942Hôpital LariboisièreAPHPParisFrance
| | - Cyril Boulègue
- Institut PasteurUnité de Spectrométrie de Masse pour la Biologie (MSBio)Centre de Ressources et Recherches Technologiques (C2RT)USR 2000 CNRSParisFrance
| | - Thibault Chaze
- Institut PasteurUnité de Spectrométrie de Masse pour la Biologie (MSBio)Centre de Ressources et Recherches Technologiques (C2RT)USR 2000 CNRSParisFrance
| | - Julia Chamot‐Rooke
- Institut PasteurUnité de Spectrométrie de Masse pour la Biologie (MSBio)Centre de Ressources et Recherches Technologiques (C2RT)USR 2000 CNRSParisFrance
| | - Erik Maronde
- Institute for Anatomy IIFaculty of MedicineGoethe UniversityFrankfurtGermany
| | - Thomas Bourgeron
- Human Genetics and Cognitive FunctionsInstitut PasteurUMR 3571 CNRSUniversity Paris DiderotParisFrance
| |
Collapse
|
42
|
Munier CC, De Maria L, Edman K, Gunnarsson A, Longo M, MacKintosh C, Patel S, Snijder A, Wissler L, Brunsveld L, Ottmann C, Perry MWD. Glucocorticoid receptor Thr524 phosphorylation by MINK1 induces interactions with 14-3-3 protein regulators. J Biol Chem 2021; 296:100551. [PMID: 33744286 PMCID: PMC8080530 DOI: 10.1016/j.jbc.2021.100551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 01/10/2023] Open
Abstract
The glucocorticoid receptor (GR) is a ligand-dependent transcription factor that plays a central role in inflammation. The GR activity is also modulated via protein–protein interactions, including binding of 14-3-3 proteins induced by GR phosphorylation. However, the specific phosphorylation sites on the GR that trigger these interactions and their functional consequences are less clear. Hence, we sought to examine this system in more detail. We used phosphorylated GR peptides, biophysical studies, and X-ray crystallography to identify key residues within the ligand-binding domain of the GR, T524 and S617, whose phosphorylation results in binding of the representative 14-3-3 protein 14-3-3ζ. A kinase screen identified misshapen-like kinase 1 (MINK1) as responsible for phosphorylating T524 and Rho-associated protein kinase 1 for phosphorylating S617; cell-based approaches confirmed the importance of both GR phosphosites and MINK1 but not Rho-associated protein kinase 1 alone in inducing GR–14-3-3 binding. Together our results provide molecular-level insight into 14-3-3-mediated regulation of the GR and highlight both MINK1 and the GR–14-3-3 axis as potential targets for future therapeutic intervention.
Collapse
Affiliation(s)
- Claire C Munier
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Eindhoven, The Netherlands
| | - Leonardo De Maria
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Karl Edman
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anders Gunnarsson
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Marianna Longo
- Division of Cell and Developmental Biology (C.M.), College of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Carol MacKintosh
- Division of Cell and Developmental Biology (C.M.), College of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Saleha Patel
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Arjan Snijder
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lisa Wissler
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Eindhoven, The Netherlands
| | - Matthew W D Perry
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
43
|
Lorsung E, Karthikeyan R, Cao R. Biological Timing and Neurodevelopmental Disorders: A Role for Circadian Dysfunction in Autism Spectrum Disorders. Front Neurosci 2021; 15:642745. [PMID: 33776640 PMCID: PMC7994532 DOI: 10.3389/fnins.2021.642745] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/03/2021] [Indexed: 01/07/2023] Open
Abstract
Autism spectrum disorders (ASDs) are a spectrum of neurodevelopmental disorders characterized by impaired social interaction and communication, as well as stereotyped and repetitive behaviors. ASDs affect nearly 2% of the United States child population and the worldwide prevalence has dramatically increased in recent years. The etiology is not clear but ASD is thought to be caused by a combination of intrinsic and extrinsic factors. Circadian rhythms are the ∼24 h rhythms driven by the endogenous biological clock, and they are found in a variety of physiological processes. Growing evidence from basic and clinical studies suggest that the dysfunction of the circadian timing system may be associated with ASD and its pathogenesis. Here we review the findings that link circadian dysfunctions to ASD in both experimental and clinical studies. We first introduce the organization of the circadian system and ASD. Next, we review physiological indicators of circadian rhythms that are found disrupted in ASD individuals, including sleep-wake cycles, melatonin, cortisol, and serotonin. Finally, we review evidence in epidemiology, human genetics, and biochemistry that indicates underlying associations between circadian regulation and the pathogenesis of ASD. In conclusion, we propose that understanding the functional importance of the circadian clock in normal and aberrant neurodevelopmental processes may provide a novel perspective to tackle ASD, and clinical treatments for ASD individuals should comprise an integrative approach considering the dynamics of daily rhythms in physical, mental, and social processes.
Collapse
Affiliation(s)
- Ethan Lorsung
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| | - Ramanujam Karthikeyan
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
44
|
Molecular dynamics simulations and biochemical characterization of Pf14-3-3 and PfCDPK1 interaction towards its role in growth of human malaria parasite. Biochem J 2020; 477:2153-2177. [PMID: 32484216 DOI: 10.1042/bcj20200145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 11/17/2022]
Abstract
Scaffold proteins play pivotal role as modulators of cellular processes by operating as multipurpose conformation clamps. 14-3-3 proteins are gold-standard scaffold modules that recognize phosphoSer/Thr (pS/pT) containing conserved motifs, and confer conformational changes leading to modulation of functional parameters of their target proteins. Modulation in functional activity of kinases has been attributed to their interaction with 14-3-3 proteins. Herein, we have annotated and characterized PF3D7_0818200 as 14-3-3 isoform I in Plasmodium falciparum 3D7, and its interaction with one of the key kinases of the parasite, Calcium-Dependent Protein Kinase 1 (CDPK1) by performing various analytical biochemistry and biophysical assays. Molecular dynamics simulation studies indicated that CDPK1 polypeptide sequence (61KLGpS64) behaves as canonical Mode I-type (RXXpS/pT) consensus 14-3-3 binding motif, mediating the interaction. The 14-3-3I/CDPK1 interaction was validated in vitro with ELISA and SPR, which confirmed that the interaction is phosphorylation dependent, with binding affinity constant of 670 ± 3.6 nM. The interaction of 14-3-3I with CDPK1 was validated with well characterized optimal 14-3-3 recognition motifs: Mode I-type ARSHpSYPA and Mode II-type RLYHpSLPA, by simulation studies and ITC. This interaction was found to marginally enhance CDPK1 functional activity. Furthermore, interaction antagonizing peptidomimetics showed growth inhibitory impact on the parasite indicating crucial physiological role of 14-3-3/CDPK1 interaction. Overall, this study characterizes 14-3-3I as a scaffold protein in the malaria parasite and unveils CDPK1 as its previously unidentified target. This sets a precedent for the rational design of 14-3-3 based PPI inhibitors by utilizing 14-3-3 recognition motif peptides, as a potential antimalarial strategy.
Collapse
|
45
|
Krtenic B, Drazic A, Arnesen T, Reuter N. Classification and phylogeny for the annotation of novel eukaryotic GNAT acetyltransferases. PLoS Comput Biol 2020; 16:e1007988. [PMID: 33362253 PMCID: PMC7790372 DOI: 10.1371/journal.pcbi.1007988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 01/07/2021] [Accepted: 10/16/2020] [Indexed: 11/19/2022] Open
Abstract
The enzymes of the GCN5-related N-acetyltransferase (GNAT) superfamily count more than 870 000 members through all kingdoms of life and share the same structural fold. GNAT enzymes transfer an acyl moiety from acyl coenzyme A to a wide range of substrates including aminoglycosides, serotonin, glucosamine-6-phosphate, protein N-termini and lysine residues of histones and other proteins. The GNAT subtype of protein N-terminal acetyltransferases (NATs) alone targets a majority of all eukaryotic proteins stressing the omnipresence of the GNAT enzymes. Despite the highly conserved GNAT fold, sequence similarity is quite low between members of this superfamily even when substrates are similar. Furthermore, this superfamily is phylogenetically not well characterized. Thus functional annotation based on sequence similarity is unreliable and strongly hampered for thousands of GNAT members that remain biochemically uncharacterized. Here we used sequence similarity networks to map the sequence space and propose a new classification for eukaryotic GNAT acetyltransferases. Using the new classification, we built a phylogenetic tree, representing the entire GNAT acetyltransferase superfamily. Our results show that protein NATs have evolved more than once on the GNAT acetylation scaffold. We use our classification to predict the function of uncharacterized sequences and verify by in vitro protein assays that two fungal genes encode NAT enzymes targeting specific protein N-terminal sequences, showing that even slight changes on the GNAT fold can lead to change in substrate specificity. In addition to providing a new map of the relationship between eukaryotic acetyltransferases the classification proposed constitutes a tool to improve functional annotation of GNAT acetyltransferases. Enzymes of the GCN5-related N-acetyltransferase (GNAT) superfamily transfer an acetyl group from one molecule to another. This reaction is called acetylation and is one of the most common reactions inside the cell. The GNAT superfamily counts more than 870 000 members through all kingdoms of life. Despite sharing the same fold the GNAT superfamily is very diverse in terms of amino acid sequence and substrates. The eight N-terminal acetyltransferases (NatA, NatB, etc.. to NatH) are a GNAT subtype which acetylates the free amine group of polypeptide chains. This modification is called N-terminal acetylation and is one of the most abundant protein modifications in eukaryotic cells. This subtype is also characterized by a high sequence diversity even though they share the same substrate. In addition, the phylogeny of the superfamily is not characterized. This hampers functional annotation based on sequence similarity, and discovery of novel NATs. In this work we set out to solve the problem of the classification of eukaryotic GCN5-related acetyltransferases and report the first classification framework of the superfamily. This framework can be used as a tool for annotation of all GCN5-related acetyltransferases. As an example of what can be achieved we report in this paper the computational prediction and in vitro verification of the function of two previously uncharacterized N-terminal acetyltransferases. We also report the first acetyltransferase phylogenetic tree of the GCN5 superfamily. It indicates that N-terminal acetyltransferases do not constitute one homogeneous protein family, but that the ability to bind and acetylate protein N-termini had evolved more than once on the same acetylation scaffold. We also show that even small changes in key positions can lead to altered enzyme specificity.
Collapse
Affiliation(s)
- Bojan Krtenic
- Department of Biological Sciences, University of Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Norway
- * E-mail: (BK); (NR)
| | - Adrian Drazic
- Department of Biomedicine, University of Bergen, Norway
| | - Thomas Arnesen
- Department of Biological Sciences, University of Bergen, Norway
- Department of Biomedicine, University of Bergen, Norway
- Department of Surgery, Haukeland University Hospital, Norway
| | - Nathalie Reuter
- Computational Biology Unit, Department of Informatics, University of Bergen, Norway
- Department of Chemistry, University of Bergen, Norway
- * E-mail: (BK); (NR)
| |
Collapse
|
46
|
Jain N, Janning P, Neumann H. 14-3-3 Protein Bmh1 triggers short-range compaction of mitotic chromosomes by recruiting sirtuin deacetylase Hst2. J Biol Chem 2020; 296:100078. [PMID: 33187982 PMCID: PMC7948448 DOI: 10.1074/jbc.ac120.014758] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
During mitosis, chromosomes are compacted in length by more than 100-fold into rod-shaped forms. In yeast, this process depends on the presence of a centromere, which promotes condensation in cis by recruiting mitotic kinases such as Aurora B kinase. This licensing mechanism enables the cell to discriminate chromosomal from noncentromeric DNA and to prohibit the propagation of the latter. Aurora B kinase elicits a cascade of events starting with phosphorylation of histone H3 serine 10 (H3S10ph), which signals the recruitment of lysine deacetylase Hst2 and the removal of lysine 16 acetylation in histone 4. The unmasked histone 4 tails interact with the acidic patch of neighboring nucleosomes to drive short-range compaction of chromatin, but the mechanistic details surrounding the Hst2 activity remain unclear. Using in vitro and in vivo assays, we demonstrate that the interaction of Hst2 with H3S10ph is mediated by the yeast 14-3-3 protein Bmh1. As a homodimer, Bmh1 binds simultaneously to H3S10ph and the phosphorylated C-terminus of Hst2. Our pull-down experiments with extracts of synchronized cells show that the Hst2–Bmh1 interaction is cell cycle dependent, peaking in the M phase. Furthermore, we show that phosphorylation of C-terminal residues of Hst2, introduced by genetic code expansion, stimulates its deacetylase activity. Hence, the data presented here identify Bmh1 as a key player in the mechanism of licensing of chromosome compaction in mitosis.
Collapse
Affiliation(s)
- Neha Jain
- Department of Structural Biochemistry, Max-Planck-Institute of Molecular Physiology, Dortmund, Germany
| | - Petra Janning
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Dortmund, Germany
| | - Heinz Neumann
- Department of Structural Biochemistry, Max-Planck-Institute of Molecular Physiology, Dortmund, Germany; Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Darmstadt, Germany.
| |
Collapse
|
47
|
The 14-3-3 Proteins as Important Allosteric Regulators of Protein Kinases. Int J Mol Sci 2020; 21:ijms21228824. [PMID: 33233473 PMCID: PMC7700312 DOI: 10.3390/ijms21228824] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
Phosphorylation by kinases governs many key cellular and extracellular processes, such as transcription, cell cycle progression, differentiation, secretion and apoptosis. Unsurprisingly, tight and precise kinase regulation is a prerequisite for normal cell functioning, whereas kinase dysregulation often leads to disease. Moreover, the functions of many kinases are regulated through protein–protein interactions, which in turn are mediated by phosphorylated motifs and often involve associations with the scaffolding and chaperon protein 14-3-3. Therefore, the aim of this review article is to provide an overview of the state of the art on 14-3-3-mediated kinase regulation, focusing on the most recent mechanistic insights into these important protein–protein interactions and discussing in detail both their structural aspects and functional consequences.
Collapse
|
48
|
Lentini Santo D, Petrvalska O, Obsilova V, Ottmann C, Obsil T. Stabilization of Protein-Protein Interactions between CaMKK2 and 14-3-3 by Fusicoccins. ACS Chem Biol 2020; 15:3060-3071. [PMID: 33146997 DOI: 10.1021/acschembio.0c00821] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) regulates several key physiological and pathophysiological processes, and its dysregulation has been implicated in obesity, diabetes, and cancer. CaMKK2 is inhibited through phosphorylation in a process involving binding to the scaffolding 14-3-3 protein, which maintains CaMKK2 in the phosphorylation-mediated inhibited state. The previously reported structure of the N-terminal CaMKK2 14-3-3-binding motif bound to 14-3-3 suggested that the interaction between 14-3-3 and CaMKK2 could be stabilized by small-molecule compounds. Thus, we investigated the stabilization of interactions between CaMKK2 and 14-3-3γ by Fusicoccin A and other fusicoccanes-diterpene glycosides that bind at the interface between the 14-3-3 ligand binding groove and the 14-3-3 binding motif of the client protein. Our data reveal that two of five tested fusicoccanes considerably increase the binding of phosphopeptide representing the 14-3-3 binding motif of CaMKK2 to 14-3-3γ. Crystal structures of two ternary complexes suggest that the steric contacts between the C-terminal part of the CaMKK2 14-3-3 binding motif and the adjacent fusicoccane molecule are responsible for differences in stabilization potency between the study compounds. Moreover, our data also show that fusicoccanes enhance the binding affinity of phosphorylated full-length CaMKK2 to 14-3-3γ, which in turn slows down CaMKK2 dephosphorylation, thus keeping this protein in its phosphorylation-mediated inhibited state. Therefore, targeting the fusicoccin binding cavity of 14-3-3 by small-molecule compounds may offer an alternative strategy to suppress CaMKK2 activity by stabilizing its phosphorylation-mediated inhibited state.
Collapse
Affiliation(s)
- Domenico Lentini Santo
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Olivia Petrvalska
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | - Veronika Obsilova
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | - Christian Ottmann
- Department of Biomedical Engineering, Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| |
Collapse
|
49
|
Reading the phosphorylation code: binding of the 14-3-3 protein to multivalent client phosphoproteins. Biochem J 2020; 477:1219-1225. [PMID: 32271882 DOI: 10.1042/bcj20200084] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/24/2022]
Abstract
Many major protein-protein interaction networks are maintained by 'hub' proteins with multiple binding partners, where interactions are often facilitated by intrinsically disordered protein regions that undergo post-translational modifications, such as phosphorylation. Phosphorylation can directly affect protein function and control recognition by proteins that 'read' the phosphorylation code, re-wiring the interactome. The eukaryotic 14-3-3 proteins recognizing multiple phosphoproteins nicely exemplify these concepts. Although recent studies established the biochemical and structural basis for the interaction of the 14-3-3 dimers with several phosphorylated clients, understanding their assembly with partners phosphorylated at multiple sites represents a challenge. Suboptimal sequence context around the phosphorylated residue may reduce binding affinity, resulting in quantitative differences for distinct phosphorylation sites, making hierarchy and priority in their binding rather uncertain. Recently, Stevers et al. [Biochemical Journal (2017) 474: 1273-1287] undertook a remarkable attempt to untangle the mechanism of 14-3-3 dimer binding to leucine-rich repeat kinase 2 (LRRK2) that contains multiple candidate 14-3-3-binding sites and is mutated in Parkinson's disease. By using the protein-peptide binding approach, the authors systematically analyzed affinities for a set of LRRK2 phosphopeptides, alone or in combination, to a 14-3-3 protein and determined crystal structures for 14-3-3 complexes with selected phosphopeptides. This study addresses a long-standing question in the 14-3-3 biology, unearthing a range of important details that are relevant for understanding binding mechanisms of other polyvalent proteins.
Collapse
|
50
|
Li Y, Lv Y, Bian C, You X, Shi Q. Molecular evolution of melatonin receptor genes (mtnr) in vertebrates and its shedding light on mtnr1c. Gene 2020; 769:145256. [PMID: 33164759 DOI: 10.1016/j.gene.2020.145256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/05/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
Melatonin receptors (MTNRs) play important roles in regulation of circadian rhythms and seasonal reproduction. However, their origin and evolution in vertebrates have not been investigated. Here, we performed a comprehensive examination by comparative genome mining of MTNRs in vertebrates. We successfully extracted 164 putative encoding sequences for MTNRs (including 57 mtnr1a, 59 mtnr1b and 48 mtnr1c) from 45 high-quality representative genomes. Interestingly, the putative expansions of mtnr1a and mtnr1b in zebrafish were also identified in other Cyprinifomes, but not in other orders of teleost. Using phylogenetic interference, we observed this expansion to be clustered into a primitive position of the Actinopterygii, which may be resulted from teleost-specific genome duplication. The C-terminal extension of MTNR1C, predicted to be proteoglycan 4 (PRG4), originated after the speciation of Monotremata or Marsupialia. Our present genomics survey provides novel insights into the evolution of MTNRs in vertebrates and updates our understanding of these proteins.
Collapse
Affiliation(s)
- Yanping Li
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang 641100, China; Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Yunyun Lv
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang 641100, China
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| |
Collapse
|