1
|
Corrales D, Alcántara C, Vélez D, Devesa V, Monedero V, Zúñiga M. Unveiling the role of the PhoP master regulator in arsenite resistance through ackA downregulation in Lacticaseibacillus paracasei. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100357. [PMID: 40027449 PMCID: PMC11870197 DOI: 10.1016/j.crmicr.2025.100357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
In bacteria, the two-component system PhoPR plays an important role in regulating many genes related to phosphate uptake and metabolism. In Lacticaseibacillus paracasei inactivation of the response regulator PhoP results in increased resistance to arsenite [As(III)]. A comparative transcriptomic analysis revealed that the absence of PhoP has a strong effect on the transcriptome, with about 57.5 % of Lc. paracasei genes being differentially expressed, although only 92 of the upregulated genes and 23 of the downregulated genes reached a fold change greater than 2. Among them, the phnDCEB cluster, encoding a putative ABC phosphonate transporter and the acetate kinase encoding gene ackA (LCABL_01600) were downregulated tenfold and sevenfold, respectively. In vitro binding assays with selected PhoP-regulated genes showed that phosphorylation of PhoP stimulated its binding to the promoter regions of pstS (phosphate ABC transporter binding subunit), phnD and glnA glutamine synthetase) whereas no binding to the poxL (pyruvate oxidase) or ackA putative promoter regions was detected. This result identified for the first time three genes/operons belonging to the Pho regulon in a Lactobacillaceae species. Mapping of the reads obtained in the transcriptomic analysis revealed that transcription of ackA was severely diminished in the PhoP mutant after a hairpin structure located within the ackA coding region. Inactivation of phnD did not affect As(III) resistance whereas inactivation of ackA resulted in the same level of resistance as that observed in the PhoP mutant. These finding strongly suggests that PhoP mutant As(III) resistance is due to downregulation of ackA. Possible mechanisms of action are discussed.
Collapse
Affiliation(s)
- Daniela Corrales
- Lactic Acid Bacteria and Probiotics Laboratory, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Av. Agustín Escardino 7, 46980 Paterna, Spain
| | - Cristina Alcántara
- Lactic Acid Bacteria and Probiotics Laboratory, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Av. Agustín Escardino 7, 46980 Paterna, Spain
| | - Dinoraz Vélez
- Next-generation Approaches for Integrative Food Toxicology group, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Av. Catedràtic Agustín Escardino 7, 46980 Paterna, Spain
| | - Vicenta Devesa
- Next-generation Approaches for Integrative Food Toxicology group, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Av. Catedràtic Agustín Escardino 7, 46980 Paterna, Spain
| | - Vicente Monedero
- Lactic Acid Bacteria and Probiotics Laboratory, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Av. Agustín Escardino 7, 46980 Paterna, Spain
| | - Manuel Zúñiga
- Lactic Acid Bacteria and Probiotics Laboratory, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Av. Agustín Escardino 7, 46980 Paterna, Spain
| |
Collapse
|
2
|
Chiou JG, Chou TKT, Garcia-Ojalvo J, Süel GM. Intrinsically robust and scalable biofilm segmentation under diverse physical growth conditions. iScience 2024; 27:111386. [PMID: 39669429 PMCID: PMC11635021 DOI: 10.1016/j.isci.2024.111386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/09/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Developmental patterning is a shared feature across biological systems ranging from vertebrates to bacterial biofilms. While vertebrate patterning benefits from well-controlled homeostatic environments, bacterial biofilms can grow in diverse physical contexts. What mechanisms provide developmental robustness under diverse environments remains an open question. We show that a native clock-and-wavefront mechanism robustly segments biofilms in both solid-air and solid-liquid interfaces. Biofilms grown under these distinct physical conditions differ 4-fold in size yet exhibit robust segmentation. The segmentation pattern scaled with biofilm growth rate in a mathematically predictable manner independent of habitat conditions. We show that scaling arises from the coupling between wavefront speed and biofilm growth rate. In contrast to the complexity of scaling mechanisms in vertebrates, our data suggests that the minimal bacterial clock-and-wavefront mechanism is intrinsically robust and scales in real time. Consequently, bacterial biofilms robustly segment under diverse conditions without requiring cell-to-cell signaling to track system size.
Collapse
Affiliation(s)
- Jian-geng Chiou
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093 USA
| | - Todd Kwang-Tao Chou
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093 USA
| | - Jordi Garcia-Ojalvo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Gürol M. Süel
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093 USA
| |
Collapse
|
3
|
Berzina I, Kalnins M, Geiba Z, Raita S, Palcevska J, Mika T, Spalvins K. Creating Single-Cell Protein-Producing Bacillus subtilis Mutants Using Chemical Mutagen and Amino Acid Inhibitors. SCIENTIFICA 2024; 2024:8968295. [PMID: 39649941 PMCID: PMC11623996 DOI: 10.1155/sci5/8968295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/12/2024] [Indexed: 12/11/2024]
Abstract
Due to population growth and climate changes, there is a rising need for alternative food and protein sources to reduce protein scarcity and the environmental impact of food industries. Single-cell proteins (SCPs) have the potential to partially or fully substitute plant- and animal-derived dietary proteins. Bacillus subtilis is an appealing bacterium for SCP production because of its fast growth and ability to obtain high protein and essential amino acid (AA) content in its biomass. It is also capable of utilizing a wide range of substrates. B. subtilis attractiveness and efficiency can be further enhanced using mutagenesis. In this study, a novel approach to creating mutant strains with enhanced protein and AA content was experimentally validated. The method is based on the application of AA inhibitors for selective pressure to ensure the growth of mutants with enhanced protein and/or AA synthesis capacity. For AA inhibitors, three herbicides were used: glufosinate-ammonium (GA), L-methionine sulfoximine (MSO), and S-(2-aminoethyl)-L-cysteine (AEC). Initially, AA inhibitor doses for the complete inhibition of wild-type (WT) B. subtilis strain were determined. Then, B. subtilis was treated with EMS chemical mutagen and created mutants were cultivated on a medium containing inhibitory dose of AA inhibitors. Growing samples were selected, analyzed, and compared. The optimal inhibitory concentrations of herbicides for mutant selection were 0.05-0.4 M for GA, 0.01-0.05 M for MSO, and 0.2 M for AEC. The best-performing mutants were selected when using GA-improvement of 7.1 times higher biomass content, 1.5 times higher protein concentration, 1.2 times higher AA content, and 1.2 times higher essential AA index was achieved in comparison with WT B. subtilis. Enhanced mutants were also successfully selected when using MSO and AEC. This study demonstrates the potential of using AA inhibitors for the selection of mutants with improved protein and AA profiles.
Collapse
Affiliation(s)
- Indra Berzina
- Institute of Energy Systems and Environment, Riga Technical University, Azenes Street 12/1, LV 1048, Riga, Latvia
| | - Martins Kalnins
- Institute of Energy Systems and Environment, Riga Technical University, Azenes Street 12/1, LV 1048, Riga, Latvia
| | - Zane Geiba
- Institute of Energy Systems and Environment, Riga Technical University, Azenes Street 12/1, LV 1048, Riga, Latvia
| | - Svetlana Raita
- Institute of Energy Systems and Environment, Riga Technical University, Azenes Street 12/1, LV 1048, Riga, Latvia
| | - Jelizaveta Palcevska
- Institute of Energy Systems and Environment, Riga Technical University, Azenes Street 12/1, LV 1048, Riga, Latvia
| | - Taras Mika
- Institute of Energy Systems and Environment, Riga Technical University, Azenes Street 12/1, LV 1048, Riga, Latvia
| | - Kriss Spalvins
- Institute of Energy Systems and Environment, Riga Technical University, Azenes Street 12/1, LV 1048, Riga, Latvia
| |
Collapse
|
4
|
Liu C, Xia M, Fang H, Xu F, Wang S, Zhang D. De novo engineering riboflavin production Bacillus subtilis by overexpressing the downstream genes in the purine biosynthesis pathway. Microb Cell Fact 2024; 23:159. [PMID: 38822377 PMCID: PMC11141002 DOI: 10.1186/s12934-024-02426-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/16/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Bacillus subtilis is widely used in industrial-scale riboflavin production. Previous studies have shown that targeted mutagenesis of the ribulose 5-phosphate 3-epimerase in B. subtilis can significantly enhance riboflavin production. This modification also leads to an increase in purine intermediate concentrations in the medium. Interestingly, B. subtilis exhibits remarkable efficiency in purine nucleoside synthesis, often exceeding riboflavin yields. These observations highlight the importance of the conversion steps from inosine-5'-monophosphate (IMP) to 2,5-diamino-6-ribosylamino-4(3 H)-pyrimidinone-5'-phosphate (DARPP) in riboflavin production by B. subtilis. However, research elucidating the specific impact of these reactions on riboflavin production remains limited. RESULT We expressed the genes encoding enzymes involved in these reactions (guaB, guaA, gmk, ndk, ribA) using a synthetic operon. Introduction of the plasmid carrying this synthetic operon led to a 3.09-fold increase in riboflavin production compared to the control strain. Exclusion of gmk from the synthetic operon resulted in a 36% decrease in riboflavin production, which was further reduced when guaB and guaA were not co-expressed. By integrating the synthetic operon into the genome and employing additional engineering strategies, we achieved riboflavin production levels of 2702 mg/L. Medium optimization further increased production to 3477 mg/L, with a yield of 0.0869 g riboflavin per g of sucrose. CONCLUSION The conversion steps from IMP to DARPP play a critical role in riboflavin production by B. subtilis. Our overexpression strategies have demonstrated their effectiveness in overcoming these limiting factors and enhancing riboflavin production.
Collapse
Affiliation(s)
- Chuan Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Miaomiao Xia
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Xu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
- School of Chemical Engineering, Hebei University of Technology, Tianjin, 300131, China
| | - Sijia Wang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Zhao X, Song Y, Wang T, Hua C, Hu R, Shang Y, Shi H, Chen S. Glutamine synthetase and GlnR regulate nitrogen metabolism in Paenibacillus polymyxa WLY78. Appl Environ Microbiol 2023; 89:e0013923. [PMID: 37668407 PMCID: PMC10537745 DOI: 10.1128/aem.00139-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/12/2023] [Indexed: 09/06/2023] Open
Abstract
Paenibacillus polymyxa WLY78, a N2-fixing bacterium, has great potential use as a biofertilizer in agriculture. Recently, we have revealed that GlnR positively and negatively regulates the transcription of the nif (nitrogen fixation) operon (nifBHDKENXhesAnifV) in P. polymyxa WLY78 by binding to two loci of the nif promoter according to nitrogen availability. However, the regulatory mechanisms of nitrogen metabolism mediated by GlnR in the Paenibacillus genus remain unclear. In this study, we have revealed that glutamine synthetase (GS) and GlnR in P. polymyxa WLY78 play a key role in the regulation of nitrogen metabolism. P. polymyxa GS (encoded by glnA within glnRA) and GS1 (encoded by glnA1) belong to distinct groups: GSI-α and GSI-β. Both GS and GS1 have the enzyme activity to convert NH4+ and glutamate into glutamine, but only GS is involved in the repression by GlnR. GlnR represses transcription of glnRA under excess nitrogen, while it activates the expression of glnA1 under nitrogen limitation. GlnR simultaneously activates and represses the expression of amtBglnK and gcvH in response to nitrogen availability. Also, GlnR regulates the expression of nasA, nasD1D2, nasT, glnQHMP, and glnS. IMPORTANCE In this study, we have revealed that Paenibacillus polymyxa GlnR uses multiple mechanisms to regulate nitrogen metabolism. GlnR activates or represses or simultaneously activates and inhibits the transcription of nitrogen metabolism genes in response to nitrogen availability. The multiple regulation mechanisms employed by P. polymyxa GlnR are very different from Bacillus subtilis GlnR which represses nitrogen metabolism under excess nitrogen. Both GS encoded by glnA within the glnRA operon and GS1 encoded by glnA1 in P. polymyxa WLY78 are involved in ammonium assimilation, but only GS is required for regulating GlnR activity. The work not only provides significant insight into understanding the interplay of GlnR and GS in nitrogen metabolism but also provides guidance for improving nitrogen fixation efficiency by modulating nitrogen metabolism.
Collapse
Affiliation(s)
- Xiyun Zhao
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yi Song
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tianshu Wang
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chongchong Hua
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Rui Hu
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yimin Shang
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Haowen Shi
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sanfeng Chen
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Ogura M, Matsutani M, Asai K, Suzuki M. Glucose controls manganese homeostasis through transcription factors regulating known and newly identified manganese transporter genes in Bacillus subtilis. J Biol Chem 2023; 299:105069. [PMID: 37468100 PMCID: PMC10448178 DOI: 10.1016/j.jbc.2023.105069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Mn2+ is an essential nutrient whose concentration is tightly controlled in bacteria. In Bacillus subtilis, the Mn2+-activated transcription factor MntR controls Mn2+ transporter genes. However, factors regulating intracellular Mn2+ concentration are incompletely understood. Here, we found that glucose addition induces an increase in intracellular Mn2+ concentration. We determined this upshift was mediated by glucose induction of the major Mn2+ importer gene mntH by the transcription factor AhrC, which is known to be involved in arginine metabolism and to be indirectly induced by glucose. In addition, we identified novel AhrC-regulated genes encoding the Mn2+ importer YcsG and the ABC-type exporter YknUV. We found the expression of these genes was also regulated by glucose and contributes to the glucose induction of Mn2+ concentrations. ycsG expression is regulated by MntR as well. Furthermore, we analyzed the interaction of AhrC and MntR with the promoter driving ycsG expression and examined the Mn2+-dependent induction of this promoter to identify the transcription factors responsible for the Mn2+ induction. RNA-Seq revealed that disruption of ahrC and mntR affected the expression of 502 and 478 genes, respectively (false discovery rate, <0.001, log2[fold change] ≥ |2|. The AhrC- and/or MntR-dependent expression of twenty promoters was confirmed by LacZ analysis, and AhrC or MntR binding to some of these promoters was observed via EMSA. The finding that glucose promotes an increase in intracellular Mn2+ levels without changes in extracellular Mn2+ concentrations is reasonable for the bacterium, as intracellular Mn2+ is required for enzymes and pathways mediating glucose metabolism.
Collapse
Affiliation(s)
- Mitsuo Ogura
- Institute of Oceanic Research and Development, Tokai University, Shizuoka, Japan.
| | | | - Kei Asai
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Michio Suzuki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Yoon CK, Lee SH, Zhang J, Lee HY, Kim MK, Seok YJ. HPr prevents FruR-mediated facilitation of RNA polymerase binding to the fru promoter in Vibrio cholerae. Nucleic Acids Res 2023; 51:5432-5448. [PMID: 36987873 PMCID: PMC10287919 DOI: 10.1093/nar/gkad220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/17/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Phosphorylation state-dependent interactions of the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) components with transcription factors play a key role in carbon catabolite repression (CCR) by glucose in bacteria. Glucose inhibits the PTS-dependent transport of fructose and is preferred over fructose in Vibrio cholerae, but the mechanism is unknown. We have recently shown that, contrary to Escherichia coli, the fructose-dependent transcriptional regulator FruR acts as an activator of the fru operon in V. cholerae and binding of the FruR-fructose 1-phosphate (F1P) complex to an operator facilitates RNA polymerase (RNAP) binding to the fru promoter. Here we show that, in the presence of glucose, dephosphorylated HPr, a general PTS component, binds to FruR. Whereas HPr does not affect DNA-binding affinity of FruR, regardless of the presence of F1P, it prevents the FruR-F1P complex from facilitating the binding of RNAP to the fru promoter. Structural and biochemical analyses of the FruR-HPr complex identify key residues responsible for the V. cholerae-specific FruR-HPr interaction not observed in E. coli. Finally, we reveal how the dephosphorylated HPr interacts with FruR in V. cholerae, whereas the phosphorylated HPr binds to CcpA, which is a global regulator of CCR in Bacillus subtilis and shows structural similarity to FruR.
Collapse
Affiliation(s)
- Chang-Kyu Yoon
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Korea
- Research Institute of Basic Science, Seoul National University, Seoul, 08826, Korea
| | - Seung-Hwan Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Korea
| | - Jing Zhang
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Korea
| | - Hye-Young Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Korea
- Research Institute of Basic Science, Seoul National University, Seoul, 08826, Korea
| | - Min-Kyu Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Korea
| | - Yeong-Jae Seok
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
8
|
Genome-wide mapping of GlnR-binding sites reveals the global regulatory role of GlnR in controlling the metabolism of nitrogen and carbon in Paenibacillus polymyxa WLY78. BMC Genomics 2023; 24:85. [PMID: 36823556 PMCID: PMC9948412 DOI: 10.1186/s12864-023-09147-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/23/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Paenibacillus polymyxa WLY78 is a Gram-positive, endospore-forming and N2-fixing bacterium. Our previous study has demonstrated that GlnR acts as both an activator and a repressor to regulate the transcription of the nif (nitrogen fixation) operon (nifBHDKENXhesAnifV) according to nitrogen availability, which is achieved by binding to the two GlnR-binding sites located in the nif promoter region. However, further study on the GlnR-mediated global regulation in this bacterium is still needed. RESULTS In this study, global identification of the genes directly under GlnR control is determined by using chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) and electrophoretic mobility shift assays (EMSA). Our results reveal that GlnR directly regulates the transcription of 17 genes/operons, including a nif operon, 14 nitrogen metabolism genes/operons (glnRA, amtBglnK, glnA1, glnK1, glnQHMP, nasA, nasD1, nasD2EF, gcvH, ansZ, pucR, oppABC, appABCDF and dppABC) and 2 carbon metabolism genes (ldh3 and maeA1). Except for the glnRA and nif operon, the other 15 genes/operons are newly identified targets of GlnR. Furthermore, genome-wide transcription analyses reveal that GlnR not only directly regulates the expression of these 17 genes/operons, but also indirectly controls the expression of some other genes/operons involved in nitrogen fixation and the metabolisms of nitrogen and carbon. CONCLUSION This study provides a GlnR-mediated regulation network of nitrogen fixation and the metabolisms of nitrogen and carbon.
Collapse
|
9
|
Yadav P, Singh R, Sur S, Bansal S, Chaudhry U, Tandon V. Moonlighting proteins: beacon of hope in era of drug resistance in bacteria. Crit Rev Microbiol 2023; 49:57-81. [PMID: 35220864 DOI: 10.1080/1040841x.2022.2036695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Moonlighting proteins (MLPs) are ubiquitous and provide a unique advantage to bacteria performing multiple functions using the same genomic content. Targeting MLPs can be considered as a futuristic approach in fighting drug resistance problem. This review follows the MLP trail from its inception to the present-day state, describing a few bacterial MLPs, viz., glyceraldehyde 3'-phosphate dehydrogenase, phosphoglucose isomerase glutamate racemase (GR), and DNA gyrase. Here, we carve out that targeting MLPs are the beacon of hope in an era of increasing drug resistance in bacteria. Evolutionary stability, structure-functional relationships, protein diversity, possible drug targets, and identification of new drugs against bacterial MLP are given due consideration. Before the final curtain calls, we provide a comprehensive list of small molecules that inhibit the biochemical activity of MLPs, which can aid the development of novel molecules to target MLPs for therapeutic applications.
Collapse
Affiliation(s)
- Pramod Yadav
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.,Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Raja Singh
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Souvik Sur
- Research and Development Center, Teerthanker Mahaveer University, Uttar Pradesh, India
| | - Sandhya Bansal
- Norton Thoracic Institute, St. Joseph's Hospital, and Medical Center, Phoenix, AZ, USA
| | - Uma Chaudhry
- Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Vibha Tandon
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
10
|
Dalal V, Kumari R. Screening and Identification of Natural Product‐Like Compounds as Potential Antibacterial Agents Targeting FemC of
Staphylococcus aureus
: An in‐Silico Approach. ChemistrySelect 2022. [DOI: 10.1002/slct.202201728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Vikram Dalal
- Department of Anesthesiology Washington University in St. Louis Missouri 63110 USA
| | - Reena Kumari
- Department of Mathematics and Statistics Swami Vivekanand Subharti University Meerut 250005 India
| |
Collapse
|
11
|
He H, Li Y, Zhang L, Ding Z, Shi G. Understanding and application of Bacillus nitrogen regulation: A synthetic biology perspective. J Adv Res 2022:S2090-1232(22)00205-3. [PMID: 36103961 DOI: 10.1016/j.jare.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022] Open
Abstract
BACKGROUND Nitrogen sources play an essential role in maintaining the physiological and biochemical activity of bacteria. Nitrogen metabolism, which is the core of microorganism metabolism, makes bacteria able to autonomously respond to different external nitrogen environments by exercising complex internal regulatory networks to help them stay in an ideal state. Although various studies have been put forth to better understand this regulation in Bacillus, and many valuable viewpoints have been obtained, these views need to be presented systematically and their possible applications need to be specified. AIM OF REVIEW The intention is to provide a deep and comprehensive understanding of nitrogen metabolism in Bacillus, an important industrial microorganism, and thereby apply this regulatory logic to synthetic biology to improve biosynthesis competitiveness. In addition, the potential researches in the future are also discussed. KEY SCIENTIFIC CONCEPT OF REVIEW Understanding the meticulous regulation process of nitrogen metabolism in Bacillus not only could facilitate research on metabolic engineering but also could provide constructive insights and inspiration for studies of other microorganisms.
Collapse
Affiliation(s)
- Hehe He
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China.
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Zhongyang Ding
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China.
| |
Collapse
|
12
|
Iskhakova ZI, Zhuravleva DE, Heim C, Hartmann MD, Laykov AV, Forchhammer K, Kayumov AR. PotN represents a novel energy‐state sensing PII subfamily, occurring in firmicutes. FEBS J 2022; 289:5305-5321. [DOI: 10.1111/febs.16431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 02/19/2022] [Accepted: 03/10/2022] [Indexed: 01/19/2023]
Affiliation(s)
| | | | - Christopher Heim
- Department of Protein Evolution Max Planck Institute for Developmental Biology Tübingen Germany
| | - Marcus D. Hartmann
- Department of Protein Evolution Max Planck Institute for Developmental Biology Tübingen Germany
| | | | - Karl Forchhammer
- Institut für Mikrobiologie Eberhard‐Karls‐Universität Tübingen Germany
| | | |
Collapse
|
13
|
Travis BA, Peck JV, Salinas R, Dopkins B, Lent N, Nguyen VD, Borgnia MJ, Brennan RG, Schumacher MA. Molecular dissection of the glutamine synthetase-GlnR nitrogen regulatory circuitry in Gram-positive bacteria. Nat Commun 2022; 13:3793. [PMID: 35778410 PMCID: PMC9249791 DOI: 10.1038/s41467-022-31573-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022] Open
Abstract
How bacteria sense and respond to nitrogen levels are central questions in microbial physiology. In Gram-positive bacteria, nitrogen homeostasis is controlled by an operon encoding glutamine synthetase (GS), a dodecameric machine that assimilates ammonium into glutamine, and the GlnR repressor. GlnR detects nitrogen excess indirectly by binding glutamine-feedback-inhibited-GS (FBI-GS), which activates its transcription-repression function. The molecular mechanisms behind this regulatory circuitry, however, are unknown. Here we describe biochemical and structural analyses of GS and FBI-GS-GlnR complexes from pathogenic and non-pathogenic Gram-positive bacteria. The structures show FBI-GS binds the GlnR C-terminal domain within its active-site cavity, juxtaposing two GlnR monomers to form a DNA-binding-competent GlnR dimer. The FBI-GS-GlnR interaction stabilizes the inactive GS conformation. Strikingly, this interaction also favors a remarkable dodecamer to tetradecamer transition in some GS, breaking the paradigm that all bacterial GS are dodecamers. These data thus unveil unique structural mechanisms of transcription and enzymatic regulation.
Collapse
Affiliation(s)
- Brady A Travis
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Jared V Peck
- Cryo-EM core, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Raul Salinas
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Brandon Dopkins
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Nicholas Lent
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Viet D Nguyen
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Richard G Brennan
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Maria A Schumacher
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
14
|
Fernandes GDC, Turchetto‐Zolet AC, Passaglia LMP. Glutamine synthetase evolutionary history revisited: tracing back beyond the Last Universal Common Ancestor. Evolution 2022; 76:605-622. [DOI: 10.1111/evo.14434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Gabriela de Carvalho Fernandes
- Departamento de Genética and Programa de Pós‐graduação em Genética e Biologia Molecular Universidade Federal do Rio Grande do Sul (UFRGS) Av. Bento Gonçalves, 9500, Prédio 43312, Mailbox 15053 Porto Alegre RS 91‐501‐970 Brazil
| | - Andreia Carina Turchetto‐Zolet
- Departamento de Genética and Programa de Pós‐graduação em Genética e Biologia Molecular Universidade Federal do Rio Grande do Sul (UFRGS) Av. Bento Gonçalves, 9500, Prédio 43312, Mailbox 15053 Porto Alegre RS 91‐501‐970 Brazil
| | - Luciane Maria Pereira Passaglia
- Departamento de Genética and Programa de Pós‐graduação em Genética e Biologia Molecular Universidade Federal do Rio Grande do Sul (UFRGS) Av. Bento Gonçalves, 9500, Prédio 43312, Mailbox 15053 Porto Alegre RS 91‐501‐970 Brazil
| |
Collapse
|
15
|
Chou KT, Lee DYD, Chiou JG, Galera-Laporta L, Ly S, Garcia-Ojalvo J, Süel GM. A segmentation clock patterns cellular differentiation in a bacterial biofilm. Cell 2022; 185:145-157.e13. [PMID: 34995513 PMCID: PMC8754390 DOI: 10.1016/j.cell.2021.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/13/2021] [Accepted: 11/30/2021] [Indexed: 01/09/2023]
Abstract
Contrary to multicellular organisms that display segmentation during development, communities of unicellular organisms are believed to be devoid of such sophisticated patterning. Unexpectedly, we find that the gene expression underlying the nitrogen stress response of a developing Bacillus subtilis biofilm becomes organized into a ring-like pattern. Mathematical modeling and genetic probing of the underlying circuit indicate that this patterning is generated by a clock and wavefront mechanism, similar to that driving vertebrate somitogenesis. We experimentally validated this hypothesis by showing that predicted nutrient conditions can even lead to multiple concentric rings, resembling segments. We additionally confirmed that this patterning mechanism is driven by cell-autonomous oscillations. Importantly, we show that the clock and wavefront process also spatially patterns sporulation within the biofilm. Together, these findings reveal a biofilm segmentation clock that organizes cellular differentiation in space and time, thereby challenging the paradigm that such patterning mechanisms are exclusive to plant and animal development.
Collapse
Affiliation(s)
- Kwang-Tao Chou
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Dong-Yeon D Lee
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jian-Geng Chiou
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Leticia Galera-Laporta
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - San Ly
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jordi Garcia-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Gürol M Süel
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; San Diego Center for Systems Biology, University of California San Diego, La Jolla, CA 92093-0380, USA; Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093-0380, USA.
| |
Collapse
|
16
|
Aron O, Wang M, Lin L, Batool W, Lin B, Shabbir A, Wang Z, Tang W. MoGLN2 Is Important for Vegetative Growth, Conidiogenesis, Maintenance of Cell Wall Integrity and Pathogenesis of Magnaporthe oryzae. J Fungi (Basel) 2021; 7:463. [PMID: 34201222 PMCID: PMC8229676 DOI: 10.3390/jof7060463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 11/17/2022] Open
Abstract
Glutamine is a non-essential amino acid that acts as a principal source of nitrogen and nucleic acid biosynthesis in living organisms. In Saccharomyces cerevisiae, glutamine synthetase catalyzes the synthesis of glutamine. To determine the role of glutamine synthetase in the development and pathogenicity of plant fungal pathogens, we used S. cerevisiae Gln1 amino acid sequence to identify its orthologs in Magnaporthe oryzae and named them MoGln1, MoGln2, and MoGln3. Deletion of MoGLN1 and MoGLN3 showed that they are not involved in the development and pathogenesis of M. oryzae. Conversely, ΔMogln2 was reduced in vegetative growth, experienced attenuated growth on Minimal Medium (MM), and exhibited hyphal autolysis on oatmeal and straw decoction and corn media. Exogenous l-glutamine rescued the growth of ΔMogln2 on MM. The ΔMogln2 mutant failed to produce spores and was nonpathogenic on barley leaves, as it was unable to form an appressorium-like structure from its hyphal tips. Furthermore, deletion of MoGLN2 altered the fungal cell wall integrity, with the ΔMogln2 mutant being hypersensitive to H2O2. MoGln1, MoGln2, and MoGln3 are located in the cytoplasm. Taken together, our results shows that MoGLN2 is important for vegetative growth, conidiation, appressorium formation, maintenance of cell wall integrity, oxidative stress tolerance and pathogenesis of M. oryzae.
Collapse
Affiliation(s)
- Osakina Aron
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (O.A.); (L.L.); (W.B.); (A.S.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (B.L.)
| | - Min Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (B.L.)
| | - Lianyu Lin
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (O.A.); (L.L.); (W.B.); (A.S.)
| | - Wajjiha Batool
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (O.A.); (L.L.); (W.B.); (A.S.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (B.L.)
| | - Birong Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (B.L.)
| | - Ammarah Shabbir
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (O.A.); (L.L.); (W.B.); (A.S.)
| | - Zonghua Wang
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (O.A.); (L.L.); (W.B.); (A.S.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (B.L.)
- Marine and Agricultural Biotechnology Center, Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Wei Tang
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (O.A.); (L.L.); (W.B.); (A.S.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (B.L.)
| |
Collapse
|
17
|
Moonlighting in Bacillus subtilis: The Small Proteins SR1P and SR7P Regulate the Moonlighting Activity of Glyceraldehyde 3-Phosphate Dehydrogenase A (GapA) and Enolase in RNA Degradation. Microorganisms 2021; 9:microorganisms9051046. [PMID: 34066298 PMCID: PMC8152036 DOI: 10.3390/microorganisms9051046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/21/2022] Open
Abstract
Moonlighting proteins are proteins with more than one function. During the past 25 years, they have been found to be rather widespread in bacteria. In Bacillus subtilis, moonlighting has been disclosed to occur via DNA, protein or RNA binding or protein phosphorylation. In addition, two metabolic enzymes, enolase and phosphofructokinase, were localized in the degradosome-like network (DLN) where they were thought to be scaffolding components. The DLN comprises the major endoribonuclease RNase Y, 3'-5' exoribonuclease PnpA, endo/5'-3' exoribonucleases J1/J2 and helicase CshA. We have ascertained that the metabolic enzyme GapA is an additional component of the DLN. In addition, we identified two small proteins that bind scaffolding components of the degradosome: SR1P encoded by the dual-function sRNA SR1 binds GapA, promotes the GapA-RNase J1 interaction and increases the RNase J1 activity. SR7P encoded by the dual-function antisense RNA SR7 binds to enolase thereby enhancing the enzymatic activity of enolase bound RNase Y. We discuss the role of small proteins in modulating the activity of two moonlighting proteins.
Collapse
|
18
|
Richts B, Lentes S, Poehlein A, Daniel R, Commichau FM. A Bacillus subtilis ΔpdxT mutant suppresses vitamin B6 limitation by acquiring mutations enhancing pdxS gene dosage and ammonium assimilation. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:218-233. [PMID: 33559288 DOI: 10.1111/1758-2229.12936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Pyridoxal-5'-phosphate (PLP), the biologically active form of vitamin B6, serves as a cofactor for many enzymes. The Gram-positive model bacterium Bacillus subtilis synthesizes PLP via the PdxST enzyme complex, consisting of the PdxT glutaminase and the PdxS PLP synthase subunits, respectively. PdxT converts glutamine to glutamate and ammonia of which the latter is channelled to PdxS. At high extracellular ammonium concentrations, the PdxS PLP synthase subunit does not depend on PdxT. Here, we assessed the potential of a B. subtilis ΔpdxT mutant to adapt to PLP limitation at the genome level. The majority of ΔpdxT suppressors had amplified a genomic region containing the pdxS gene. We also identified mutants having acquired as yet undescribed mutations in ammonium assimilation genes, indicating that the overproduction of PdxS and the NrgA ammonium transporter partially relieve vitamin B6 limitation in a ΔpdxT mutant when extracellular ammonium is scarce. Furthermore, we found that PdxS positively affects complex colony formation in B. subtilis. The catalytic mechanism of the PdxS PLP synthase subunit could be the reason for the limited evolution of the enzyme and why we could not identify a PdxS variant producing PLP independently of PdxT at low ammonium concentrations.
Collapse
Affiliation(s)
- Björn Richts
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, 37077, Germany
| | - Sabine Lentes
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, 37077, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, 37077, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, 37077, Germany
| | - Fabian M Commichau
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
| |
Collapse
|
19
|
Role of GlnR in Controlling Expression of Nitrogen Metabolism Genes in Listeria monocytogenes. J Bacteriol 2020; 202:JB.00209-20. [PMID: 32690554 DOI: 10.1128/jb.00209-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/10/2020] [Indexed: 01/27/2023] Open
Abstract
Listeria monocytogenes is a fastidious bacterial pathogen that can utilize only a limited number of nitrogen sources for growth. Both glutamine and ammonium are common nitrogen sources used in listerial defined growth media, but little is known about the regulation of their uptake or utilization. The functional role of L. monocytogenes GlnR, the transcriptional regulator of nitrogen metabolism genes in low-G+C Gram-positive bacteria, was determined using transcriptome sequencing and real-time reverse transcription-PCR experiments. The GlnR regulon included transcriptional units involved in ammonium transport (amtB glnK) and biosynthesis of glutamine (glnRA) and glutamate (gdhA) from ammonium. As in other bacteria, GlnR proved to be an autoregulatory repressor of the glnRA operon. Unexpectedly, GlnR was most active during growth with ammonium as the nitrogen source and less active in the glutamine medium, apparently because listerial cells perceive growth with glutamine as a nitrogen-limiting condition. Therefore, paradoxically, expression of the glnA gene, encoding glutamine synthetase, was highest in the glutamine medium. For the amtB glnK operon, GlnR served as both a negative regulator in the presence of ammonium and a positive regulator in the glutamine medium. The gdhA gene was subject to a third mode of regulation that apparently required an elevated level of GlnR for repression. Finally, activity of glutamate dehydrogenase encoded by the gdhA gene appeared to correlate inversely with expression of gltAB, the operon that encodes the other major glutamate-synthesizing enzyme, glutamate synthase. Both gdhA and amtB were also regulated, in a negative manner, by the global transcriptional regulator CodY.IMPORTANCE L. monocytogenes is a widespread foodborne pathogen. Nitrogen-containing compounds, such as the glutamate-containing tripeptide, glutathione, and glutamine, have been shown to be important for expression of L. monocytogenes virulence genes. In this work, we showed that a transcriptional regulator, GlnR, controls expression of critical listerial genes of nitrogen metabolism that are involved in ammonium uptake and biosynthesis of glutamine and glutamate. A different mode of GlnR-mediated regulation was found for each of these three pathways.
Collapse
|
20
|
Liu G, Vijayaraman SB, Dong Y, Li X, Andongmaa BT, Zhao L, Tu J, He J, Lin L. Bacillus velezensis LG37: transcriptome profiling and functional verification of GlnK and MnrA in ammonia assimilation. BMC Genomics 2020; 21:215. [PMID: 32143571 PMCID: PMC7060608 DOI: 10.1186/s12864-020-6621-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 02/25/2020] [Indexed: 11/14/2022] Open
Abstract
Background In recent years, interest in Bacillus velezensis has increased significantly due to its role in many industrial water bioremediation processes. In this study, we isolated and assessed the transcriptome of Bacillus velezensis LG37 (from an aquaculture pond) under different nitrogen sources. Since Bacillus species exhibit heterogeneity, it is worth investigating the molecular mechanism of LG37 through ammonia nitrogen assimilation, where nitrogen in the form of molecular ammonia is considered toxic to aquatic organisms. Results Here, a total of 812 differentially expressed genes (DEGs) from the transcriptomic sequencing of LG37 grown in minimal medium supplemented with ammonia (treatment) or glutamine (control) were obtained, from which 56 had Fold Change ≥2. BLAST-NCBI and UniProt databases revealed 27 out of the 56 DEGs were potentially involved in NH4+ assimilation. Among them, 8 DEGs together with the two-component regulatory system GlnK/GlnL were randomly selected for validation by quantitative real-time RT-PCR, and the results showed that expression of all the 8 DEGs are consistent with the RNA-seq data. Moreover, the transcriptome and relative expression analysis were consistent with the transporter gene amtB and it is not involved in ammonia transport, even in the highest ammonia concentrations. Besides, CRISPR-Cas9 knockout and overexpression glnK mutants further evidenced the exclusion of amtB regulation, suggesting the involvement of alternative transporter. Additionally, in the transcriptomic data, a novel ammonium transporter mnrA was expressed significantly in increased ammonia concentrations. Subsequently, OEmnrA and ΔmnrA LG37 strains showed unique expression pattern of specific genes compared to that of wild-LG37 strain. Conclusion Based on the transcriptome data, regulation of nitrogen related genes was determined in the newly isolated LG37 strain to analyse the key regulating factors during ammonia assimilation. Using genomics tools, the novel MnrA transporter of LG37 became apparent in ammonia transport instead of AmtB, which transports ammonium nitrogen in other Bacillus strains. Collectively, this study defines heterogeneity of B. velezensis LG37 through comprehensive transcriptome analysis and subsequently, by genome editing techniques, sheds light on the enigmatic mechanisms controlling the functional genes under different nitrogen sources also reveals the need for further research.
Collapse
Affiliation(s)
- Guangxin Liu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries and College of Life Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.,Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Sarath Babu Vijayaraman
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Yanjun Dong
- State Key Laboratory of Agricultural Microbiology, College of Fisheries and College of Life Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Xinfeng Li
- State Key Laboratory of Agricultural Microbiology, College of Fisheries and College of Life Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Binda Tembeng Andongmaa
- State Key Laboratory of Agricultural Microbiology, College of Fisheries and College of Life Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Lijuan Zhao
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Jiagang Tu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries and College of Life Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Fisheries and College of Life Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| | - Li Lin
- State Key Laboratory of Agricultural Microbiology, College of Fisheries and College of Life Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China. .,Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China. .,Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, 266071, Shandong, China.
| |
Collapse
|
21
|
Halmschlag B, Putri SP, Fukusaki E, Blank LM. Identification of Key Metabolites in Poly-γ-Glutamic Acid Production by Tuning γ-PGA Synthetase Expression. Front Bioeng Biotechnol 2020; 8:38. [PMID: 32083073 PMCID: PMC7002566 DOI: 10.3389/fbioe.2020.00038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/16/2020] [Indexed: 11/13/2022] Open
Abstract
Poly-γ-glutamic acid (γ-PGA) production is commonly achieved using glycerol, citrate, and L-glutamic acid as substrates. The constitutive expression of the γ-PGA synthetase enabled γ-PGA production with Bacillus subtilis from glucose only. The precursors for γ-PGA synthesis, D- and L-glutamate, are ubiquitous metabolites. Hence, the metabolic flux toward γ-PGA directly depends on the concentration and activity of the synthetase and thereby on its expression. To identify pathway bottlenecks and important metabolites that are highly correlated with γ-PGA production from glucose, we engineered B. subtilis strains with varying γ-PGA synthesis rates. To alter the rate of γ-PGA synthesis, the expression level was controlled by two approaches: (1) Using promoter variants from the constitutive promoter P veg and (2) Varying induction strength of the xylose inducible promoter P xyl . The variation in the metabolism caused by γ-PGA production was investigated using metabolome analysis. The xylose-induction strategy revealed that the γ-PGA production rate increased the total fluxes through metabolism indicating a driven by demand adaption of the metabolism. Metabolic bottlenecks during γ-PGA from glucose were identified by generation of a model that correlates γ-PGA production rate with intracellular metabolite levels. The generated model indicates the correlation of certain metabolites such as phosphoenolpyruvate with γ-PGA production. The identified metabolites are targets for strain improvement to achieve high level γ-PGA production from glucose.
Collapse
Affiliation(s)
- Birthe Halmschlag
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Aachen, Germany
| | - Sastia P. Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Lars M. Blank
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
22
|
Alvarado A, Behrens W, Josenhans C. Protein Activity Sensing in Bacteria in Regulating Metabolism and Motility. Front Microbiol 2020; 10:3055. [PMID: 32010106 PMCID: PMC6978683 DOI: 10.3389/fmicb.2019.03055] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/18/2019] [Indexed: 01/24/2023] Open
Abstract
Bacteria have evolved complex sensing and signaling systems to react to their changing environments, most of which are present in all domains of life. Canonical bacterial sensing and signaling modules, such as membrane-bound ligand-binding receptors and kinases, are very well described. However, there are distinct sensing mechanisms in bacteria that are less studied. For instance, the sensing of internal or external cues can also be mediated by changes in protein conformation, which can either be implicated in enzymatic reactions, transport channel formation or other important cellular functions. These activities can then feed into pathways of characterized kinases, which translocate the information to the DNA or other response units. This type of bacterial sensory activity has previously been termed protein activity sensing. In this review, we highlight the recent findings about this non-canonical sensory mechanism, as well as its involvement in metabolic functions and bacterial motility. Additionally, we explore some of the specific proteins and protein-protein interactions that mediate protein activity sensing and their downstream effects. The complex sensory activities covered in this review are important for bacterial navigation and gene regulation in their dynamic environment, be it host-associated, in microbial communities or free-living.
Collapse
Affiliation(s)
- Alejandra Alvarado
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Infection Research (DZIF) Partner Site Munich, Munich, Germany
| | - Wiebke Behrens
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hanover, Germany
| | - Christine Josenhans
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Infection Research (DZIF) Partner Site Munich, Munich, Germany.,Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
23
|
Dormeyer M, Lentes S, Richts B, Heermann R, Ischebeck T, Commichau FM. Variants of the Bacillus subtilis LysR-Type Regulator GltC With Altered Activator and Repressor Function. Front Microbiol 2019; 10:2321. [PMID: 31649652 PMCID: PMC6794564 DOI: 10.3389/fmicb.2019.02321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/23/2019] [Indexed: 11/20/2022] Open
Abstract
The Gram-positive soil bacterium Bacillus subtilis relies on the glutamine synthetase and the glutamate synthase for glutamate biosynthesis from ammonium and 2-oxoglutarate. During growth with the carbon source glucose, the LysR-type transcriptional regulator GltC activates the expression of the gltAB glutamate synthase genes. With excess of intracellular glutamate, the gltAB genes are not transcribed because the glutamate-degrading glutamate dehydrogenases (GDHs) inhibit GltC. Previous in vitro studies revealed that 2-oxoglutarate and glutamate stimulate the activator and repressor function, respectively, of GltC. Here, we have isolated GltC variants with enhanced activator or repressor function. The majority of the GltC variants with enhanced activator function differentially responded to the GDHs and to glutamate. The GltC variants with enhanced repressor function were still capable of activating the PgltA promoter in the absence of a GDH. Using PgltA promoter variants (PgltA∗) that are active independent of GltC, we show that the wild type GltC and the GltC variants with enhanced repressor function inactivate PgltA∗ promoters in the presence of the native GDHs. These findings suggest that GltC may also act as a repressor of the gltAB genes in vivo. We discuss a model combining previous models that were derived from in vivo and in vitro experiments.
Collapse
Affiliation(s)
- Miriam Dormeyer
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Sabine Lentes
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Björn Richts
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Ralf Heermann
- Institut für Molekulare Physiologie, Mikrobiologie und Weinforschung, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Till Ischebeck
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Fabian M Commichau
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| |
Collapse
|
24
|
Klähn S, Bolay P, Wright PR, Atilho RM, Brewer KI, Hagemann M, Breaker RR, Hess WR. A glutamine riboswitch is a key element for the regulation of glutamine synthetase in cyanobacteria. Nucleic Acids Res 2019; 46:10082-10094. [PMID: 30085248 PMCID: PMC6212724 DOI: 10.1093/nar/gky709] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/25/2018] [Indexed: 12/19/2022] Open
Abstract
As the key enzyme of bacterial nitrogen assimilation, glutamine synthetase (GS) is tightly regulated. In cyanobacteria, GS activity is controlled by the interaction with inactivating protein factors IF7 and IF17 encoded by the genes gifA and gifB, respectively. We show that a glutamine-binding aptamer within the gifB 5′ UTR of Synechocystis sp. PCC 6803 is critical for the expression of IF17. Binding of glutamine induced structural re-arrangements in this RNA element leading to enhanced protein synthesis in vivo and characterizing it as a riboswitch. Mutagenesis showed the riboswitch mechanism to contribute at least as much to the control of gene expression as the promoter-mediated transcriptional regulation. We suggest this and a structurally related but distinct element, to be designated type 1 and type 2 glutamine riboswitches. Extended biocomputational searches revealed that glutamine riboswitches are exclusively but frequently found in cyanobacterial genomes, where they are primarily associated with gifB homologs. Hence, this RNA-based sensing mechanism is common in cyanobacteria and establishes a regulatory feedback loop that couples the IF17-mediated GS inactivation to the intracellular glutamine levels. Together with the previously described sRNA NsiR4, these results show that non-coding RNA is an indispensable component in the control of nitrogen assimilation in cyanobacteria.
Collapse
Affiliation(s)
- Stephan Klähn
- Genetics & Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.,Department of Solar Materials, Helmholtz-Centre for Environmental Research, Leipzig, Germany
| | - Paul Bolay
- Genetics & Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Patrick R Wright
- Bioinformatics, Technical Faculty, University of Freiburg, Freiburg, Germany
| | - Ruben M Atilho
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Kenneth I Brewer
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Martin Hagemann
- Department of Plant Physiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Ronald R Breaker
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.,Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| | - Wolfgang R Hess
- Genetics & Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Freiburg Institute for Advanced Studies, University of Freiburg, Germany
| |
Collapse
|
25
|
Bolay P, Muro-Pastor MI, Florencio FJ, Klähn S. The Distinctive Regulation of Cyanobacterial Glutamine Synthetase. Life (Basel) 2018; 8:E52. [PMID: 30373240 PMCID: PMC6316151 DOI: 10.3390/life8040052] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 12/02/2022] Open
Abstract
Glutamine synthetase (GS) features prominently in bacterial nitrogen assimilation as it catalyzes the entry of bioavailable nitrogen in form of ammonium into cellular metabolism. The classic example, the comprehensively characterized GS of enterobacteria, is subject to exquisite regulation at multiple levels, among them gene expression regulation to control GS abundance, as well as feedback inhibition and covalent modifications to control enzyme activity. Intriguingly, the GS of the ecologically important clade of cyanobacteria features fundamentally different regulatory systems to those of most prokaryotes. These include the interaction with small proteins, the so-called inactivating factors (IFs) that inhibit GS linearly with their abundance. In addition to this protein interaction-based regulation of GS activity, cyanobacteria use alternative elements to control the synthesis of GS and IFs at the transcriptional level. Moreover, cyanobacteria evolved unique RNA-based regulatory mechanisms such as glutamine riboswitches to tightly tune IF abundance. In this review, we aim to outline the current knowledge on the distinctive features of the cyanobacterial GS encompassing the overall control of its activity, sensing the nitrogen status, transcriptional and post-transcriptional regulation, as well as strain-specific differences.
Collapse
Affiliation(s)
- Paul Bolay
- Helmholtz Centre for Environmental Research, Department of Solar Materials, Permoserstrasse 15, D-04318 Leipzig, Germany.
| | - M Isabel Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Américo Vespucio 49, E-41092 Seville, Spain.
| | - Francisco J Florencio
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Américo Vespucio 49, E-41092 Seville, Spain.
| | - Stephan Klähn
- Helmholtz Centre for Environmental Research, Department of Solar Materials, Permoserstrasse 15, D-04318 Leipzig, Germany.
| |
Collapse
|
26
|
Wang T, Zhao X, Shi H, Sun L, Li Y, Li Q, Zhang H, Chen S, Li J. Positive and negative regulation of transferred nif genes mediated by indigenous GlnR in Gram-positive Paenibacillus polymyxa. PLoS Genet 2018; 14:e1007629. [PMID: 30265664 PMCID: PMC6191146 DOI: 10.1371/journal.pgen.1007629] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 10/16/2018] [Accepted: 08/14/2018] [Indexed: 12/29/2022] Open
Abstract
Ammonia is a major signal that regulates nitrogen fixation in most diazotrophs. Regulation of nitrogen fixation by ammonia in the Gram-negative diazotrophs is well-characterized. In these bacteria, this regulation occurs mainly at the level of nif (nitrogen fixation) gene transcription, which requires a nif-specific activator, NifA. Although Gram-positive and diazotrophic Paenibacilli have been extensively used as a bacterial fertilizer in agriculture, how nitrogen fixation is regulated in response to nitrogen availability in these bacteria remains unclear. An indigenous GlnR and GlnR/TnrA-binding sites in the promoter region of the nif cluster are conserved in these strains, indicating the role of GlnR as a regulator of nitrogen fixation. In this study, we for the first time reveal that GlnR of Paenibacillus polymyxa WLY78 is essentially required for nif gene transcription under nitrogen limitation, whereas both GlnR and glutamine synthetase (GS) encoded by glnA within glnRA operon are required for repressing nif expression under excess nitrogen. Dimerization of GlnR is necessary for binding of GlnR to DNA. GlnR in P. polymyxa WLY78 exists in a mixture of dimers and monomers. The C-terminal region of GlnR monomer is an autoinhibitory domain that prevents GlnR from binding DNA. Two GlnR-biding sites flank the -35/-10 regions of the nif promoter of the nif operon (nifBHDKENXhesAnifV). The GlnR-binding site Ⅰ (located upstream of -35/-10 regions of the nif promoter) is specially required for activating nif transcription, while GlnR-binding siteⅡ (located downstream of -35/-10 regions of the nif promoter) is for repressing nif expression. Under nitrogen limitation, GlnR dimer binds to GlnR-binding siteⅠ in a weak and transient association way and then activates nif transcription. During excess nitrogen, glutamine binds to and feedback inhibits GS by forming the complex FBI-GS. The FBI-GS interacts with the C-terminal domain of GlnR and stabilizes the binding affinity of GlnR to GlnR-binding site Ⅱ and thus represses nif transcription. GlnR is a global transcription regulator of nitrogen metabolism in Bacillus and other Gram-positive bacteria. GlnR generally functions as repressor and inhibits gene transcription under excess nitrogen. Our study for the first time reveals that GlnR simultaneously acted as an activator and a repressor for nitrogen fixation of Paenibacillus by binding to different loci of the single nif promoter region according to nitrogen availability. In excess glutamine, the feedback inhibited form of glutamine synthetase (GS) encoded by glnA within glnRA operon directly interacts with the C-terminal domain of GlnR and then controls the GlnR activity. Also, overexpression of glnR or deletion of glnA or mutagenesis of GlnR-binding site Ⅱ led to constitutive nif expression in the absence or presence of high (100 mM) concentration of ammonia. This work represents the first instance of a dual positive and negative regulatory mechanism of nitrogen fixation.
Collapse
Affiliation(s)
- Tianshu Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Xiyun Zhao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Haowen Shi
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Li Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Yongbin Li
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Qin Li
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Haowei Zhang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Sanfeng Chen
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
- * E-mail:
| | - Jilun Li
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
27
|
Randazzo P, Aucouturier A, Delumeau O, Auger S. Revisiting the in vivo GlnR-binding sites at the genome scale in Bacillus subtilis. BMC Res Notes 2017; 10:422. [PMID: 28835263 PMCID: PMC5569456 DOI: 10.1186/s13104-017-2703-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/29/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND In Bacillus subtilis, two major transcriptional factors, GlnR and TnrA, are involved in a sophisticated network of adaptive responses to nitrogen availability. GlnR was reported to repress the transcription of the glnRA, tnrA and ureABC operons under conditions of excess nitrogen. As GlnR and TnrA regulators share the same DNA binding motifs, a genome-wide mapping of in vivo GlnR-binding sites was still needed to clearly define the set of GlnR/TnrA motifs directly bound by GlnR. METHODS We used chromatin immunoprecipitation coupled with hybridization to DNA tiling arrays (ChIP-on-chip) to identify the GlnR DNA-binding sites, in vivo, at the genome scale. RESULTS We provide evidence that GlnR binds reproducibly to 61 regions on the chromosome. Among those, 20 regions overlap the previously defined in vivo TnrA-binding sites. In combination with real-time in vivo transcriptional profiling using firefly luciferase, we identified the alsT gene as a new member of the GlnR regulon. Additionally, we characterized the GlnR secondary regulon, which is composed of promoter regions harboring a GlnR/TnrA box and bound by GlnR in vivo. However, the growth conditions revealing a GlnR-dependent regulation for this second category of genes are still unknown. CONCLUSIONS Our findings show an extended overlap between the GlnR and TnrA in vivo binding sites. This could allow efficient and fine tuning of gene expression in response to nitrogen availability. GlnR appears to be part of complex transcriptional regulatory networks, which involves interactions between different regulatory proteins.
Collapse
Affiliation(s)
- Paola Randazzo
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Anne Aucouturier
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Olivier Delumeau
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Sandrine Auger
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
28
|
Rydzak T, Garcia D, Stevenson DM, Sladek M, Klingeman DM, Holwerda EK, Amador-Noguez D, Brown SD, Guss AM. Deletion of Type I glutamine synthetase deregulates nitrogen metabolism and increases ethanol production in Clostridium thermocellum. Metab Eng 2017; 41:182-191. [PMID: 28400329 DOI: 10.1016/j.ymben.2017.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/27/2017] [Accepted: 04/07/2017] [Indexed: 12/25/2022]
Abstract
Clostridium thermocellum rapidly deconstructs cellulose and ferments resulting hydrolysis products into ethanol and other products, and is thus a promising platform organism for the development of cellulosic biofuel production via consolidated bioprocessing. While recent metabolic engineering strategies have targeted eliminating canonical fermentation products (acetate, lactate, formate, and H2), C. thermocellum also secretes amino acids, which has limited ethanol yields in engineered strains to approximately 70% of the theoretical maximum. To investigate approaches to decrease amino acid secretion, we attempted to reduce ammonium assimilation by deleting the Type I glutamine synthetase (glnA) in an essentially wild type strain of C. thermocellum. Deletion of glnA reduced levels of secreted valine and total amino acids by 53% and 44% respectively, and increased ethanol yields by 53%. RNA-seq analysis revealed that genes encoding the RNF-complex were more highly expressed in ΔglnA and may have a role in improving NADH-availability for ethanol production. While a significant up-regulation of genes involved in nitrogen assimilation and urea uptake suggested that deletion of glnA induces a nitrogen starvation response, metabolomic analysis showed an increase in intracellular glutamine levels indicative of nitrogen-rich conditions. We propose that deletion of glnA causes deregulation of nitrogen metabolism, leading to overexpression of nitrogen metabolism genes and, in turn, elevated glutamine levels. Here we demonstrate that perturbation of nitrogen assimilation is a promising strategy to redirect flux from the production of nitrogenous compounds toward biofuels in C. thermocellum.
Collapse
Affiliation(s)
- Thomas Rydzak
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - David Garcia
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - David M Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Margaret Sladek
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Dawn M Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Evert K Holwerda
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States; Thayer School of Engineering at Dartmouth College, Hanover, NH, United States
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Steven D Brown
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Adam M Guss
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States.
| |
Collapse
|
29
|
Fernandes GDC, Hauf K, Sant'Anna FH, Forchhammer K, Passaglia LMP. Glutamine synthetase stabilizes the binding of GlnR to nitrogen fixation gene operators. FEBS J 2017; 284:903-918. [DOI: 10.1111/febs.14021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/22/2016] [Accepted: 01/18/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Gabriela de C. Fernandes
- Departamento de Genética Instituto de Biociências Universidade Federal do Rio Grande do Sul Porto Alegre RS Brazil
- Interfaculty Institute for Microbiology and Infection Medicine University of Tuebingen Germany
| | - Ksenia Hauf
- Interfaculty Institute for Microbiology and Infection Medicine University of Tuebingen Germany
| | - Fernando H. Sant'Anna
- Departamento de Genética Instituto de Biociências Universidade Federal do Rio Grande do Sul Porto Alegre RS Brazil
| | - Karl Forchhammer
- Interfaculty Institute for Microbiology and Infection Medicine University of Tuebingen Germany
| | - Luciane M. P. Passaglia
- Departamento de Genética Instituto de Biociências Universidade Federal do Rio Grande do Sul Porto Alegre RS Brazil
| |
Collapse
|
30
|
Bloom-Ackermann Z, Steinberg N, Rosenberg G, Oppenheimer-Shaanan Y, Pollack D, Ely S, Storzi N, Levy A, Kolodkin-Gal I. Toxin-Antitoxin systems eliminate defective cells and preserve symmetry in Bacillus subtilis biofilms. Environ Microbiol 2016; 18:5032-5047. [PMID: 27450630 DOI: 10.1111/1462-2920.13471] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/07/2016] [Accepted: 07/20/2016] [Indexed: 01/02/2023]
Abstract
Toxin-antitoxin modules are gene pairs encoding a toxin and its antitoxin, and are found on the chromosomes of many bacteria, including pathogens. Here, we characterize the specific contribution of the TxpA and YqcG toxins in elimination of defective cells from developing Bacillus subtilis biofilms. On nutrient limitation, defective cells accumulated in the biofilm breaking its symmetry. Deletion of the toxins resulted in accumulation of morphologically abnormal cells, and interfered with the proper development of the multicellular community. Dual physiological responses are of significance for TxpA and YqcG activation: nitrogen deprivation enhances the transcription of both TxpA and YqcG toxins, and simultaneously sensitizes the biofilm cells to their activity. Furthermore, we demonstrate that while both toxins when overexpressed affect the morphology of the developing biofilm, the toxin TxpA can act to lyse and dissolve pre-established B. subtilis biofilms.
Collapse
Affiliation(s)
- Zohar Bloom-Ackermann
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Nitai Steinberg
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Gili Rosenberg
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | - Dan Pollack
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Shir Ely
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Nimrod Storzi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Asaf Levy
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
31
|
Chen YYM, Chen YY, Hung JL, Chen PM, Chia JS. The GlnR Regulon in Streptococcus mutans Is Differentially Regulated by GlnR and PmrA. PLoS One 2016; 11:e0159599. [PMID: 27454482 PMCID: PMC4959772 DOI: 10.1371/journal.pone.0159599] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/30/2016] [Indexed: 12/13/2022] Open
Abstract
GlnR-mediated repression of the GlnR regulon at acidic pH is required for optimal acid tolerance in Streptococcus mutans, the etiologic agent for dental caries. Unlike most streptococci, the GlnR regulon is also regulated by newly identified PmrA (SMUGS5_RS05810) at the transcriptional level in S. mutans GS5. Results from gel mobility shift assays confirmed that both GlnR and PmrA recognized the putative GlnR box in the promoter regions of the GlnR regulon genes. By using a chemostat culture system, we found that PmrA activated the expression of the GlnR regulon at pH 7, and that this activation was enhanced by excess glucose. Deletion of pmrA (strain ΔPmrA) reduced the survival rate of S. mutans GS5 at pH 3 moderately, whereas the GlnR mutant (strain ΔGlnR) exhibited an acid-sensitive phenotype in the acid killing experiments. Elevated biofilm formation in both ΔGlnR and ΔPmrA mutant strains is likely a result of indirect regulation of the GlnR regulon since GlnR and PmrA regulate the regulon differently. Taken together, it is suggested that activation of the GlnR regulon by PmrA at pH 7 ensures adequate biosynthesis of amino acid precursor, whereas repression by GlnR at acidic pH allows greater ATP generation for acid tolerance. The tight regulation of the GlnR regulon in response to pH provides an advantage for S. mutans to better survive in its primary niche, the oral cavity.
Collapse
Affiliation(s)
- Yi-Ywan M. Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- * E-mail:
| | - Yueh-Ying Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jui-Lung Hung
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Min Chen
- Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jean-San Chia
- Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
32
|
Sirtuin-dependent reversible lysine acetylation of glutamine synthetases reveals an autofeedback loop in nitrogen metabolism. Proc Natl Acad Sci U S A 2016; 113:6653-8. [PMID: 27247389 DOI: 10.1073/pnas.1525654113] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In cells of all domains of life, reversible lysine acetylation modulates the function of proteins involved in central cellular processes such as metabolism. In this study, we demonstrate that the nitrogen regulator GlnR of the actinomycete Saccharopolyspora erythraea directly regulates transcription of the acuA gene (SACE_5148), which encodes a Gcn5-type lysine acetyltransferase. We found that AcuA acetylates two glutamine synthetases (GlnA1 and GlnA4) and that this lysine acetylation inactivated GlnA4 (GSII) but had no significant effect on GlnA1 (GSI-β) activity under the conditions tested. Instead, acetylation of GlnA1 led to a gain-of-function that modulated its interaction with the GlnR regulator and enhanced GlnR-DNA binding. It was observed that this regulatory function of acetylated GSI-β enzymes is highly conserved across actinomycetes. In turn, GlnR controls the catalytic and regulatory activities (intracellular acetylation levels) of glutamine synthetases at the transcriptional and posttranslational levels, indicating an autofeedback loop that regulates nitrogen metabolism in response to environmental change. Thus, this GlnR-mediated acetylation pathway provides a signaling cascade that acts from nutrient sensing to acetylation of proteins to feedback regulation. This work presents significant new insights at the molecular level into the mechanisms underlying the regulation of protein acetylation and nitrogen metabolism in actinomycetes.
Collapse
|
33
|
Abstract
Virulence gene expression serves two main functions, growth in/on the host, and the acquisition of nutrients. Therefore, it is obvious that nutrient availability is important to control expression of virulence genes. In any cell, enzymes are the components that are best informed about the availability of their respective substrates and products. It is thus not surprising that bacteria have evolved a variety of strategies to employ this information in the control of gene expression. Enzymes that have a second (so-called moonlighting) function in the regulation of gene expression are collectively referred to as trigger enzymes. Trigger enzymes may have a second activity as a direct regulatory protein that can bind specific DNA or RNA targets under particular conditions or they may affect the activity of transcription factors by covalent modification or direct protein-protein interaction. In this chapter, we provide an overview on these mechanisms and discuss the relevance of trigger enzymes for virulence gene expression in bacterial pathogens.
Collapse
|
34
|
Han YC, Song JM, Wang L, Shu CC, Guo J, Chen LL. Prediction and characterization of protein-protein interaction network in Bacillus licheniformis WX-02. Sci Rep 2016; 6:19486. [PMID: 26782814 PMCID: PMC4726086 DOI: 10.1038/srep19486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/09/2015] [Indexed: 01/22/2023] Open
Abstract
In this study, we constructed a protein-protein interaction (PPI) network of B. licheniformis strain WX-02 with interolog method and domain-based method, which contained 15,864 edges and 2,448 nodes. Although computationally predicted networks have relatively low coverage and high false-positive rate, our prediction was confirmed from three perspectives: local structural features, functional similarities and transcriptional correlations. Further analysis of the COG heat map showed that protein interactions in B. licheniformis WX-02 mainly occurred in the same functional categories. By incorporating the transcriptome data, we found that the topological properties of the PPI network were robust under normal and high salt conditions. In addition, 267 different protein complexes were identified and 117 poorly characterized proteins were annotated with certain functions based on the PPI network. Furthermore, the sub-network showed that a hub protein CcpA jointed directly or indirectly many proteins related to γ-PGA synthesis and regulation, such as PgsB, GltA, GltB, ProB, ProJ, YcgM and two signal transduction systems ComP-ComA and DegS-DegU. Thus, CcpA might play an important role in the regulation of γ-PGA synthesis. This study therefore will facilitate the understanding of the complex cellular behaviors and mechanisms of γ-PGA synthesis in B. licheniformis WX-02.
Collapse
Affiliation(s)
- Yi-Chao Han
- College of Informatics, Agricultural Bioinformatics Key Laboratory of Hubei Province, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Jia-Ming Song
- College of Informatics, Agricultural Bioinformatics Key Laboratory of Hubei Province, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Long Wang
- College of Informatics, Agricultural Bioinformatics Key Laboratory of Hubei Province, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Cheng-Cheng Shu
- College of Informatics, Agricultural Bioinformatics Key Laboratory of Hubei Province, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Jing Guo
- College of Informatics, Agricultural Bioinformatics Key Laboratory of Hubei Province, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Ling-Ling Chen
- College of Informatics, Agricultural Bioinformatics Key Laboratory of Hubei Province, Huazhong Agricultural University, Wuhan 430070, P.R. China
| |
Collapse
|
35
|
Hauf K, Kayumov A, Gloge F, Forchhammer K. The Molecular Basis of TnrA Control by Glutamine Synthetase in Bacillus subtilis. J Biol Chem 2015; 291:3483-95. [PMID: 26635369 DOI: 10.1074/jbc.m115.680991] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 12/16/2022] Open
Abstract
TnrA is a master regulator of nitrogen assimilation in Bacillus subtilis. This study focuses on the mechanism of how glutamine synthetase (GS) inhibits TnrA function in response to key metabolites ATP, AMP, glutamine, and glutamate. We suggest a model of two mutually exclusive GS conformations governing the interaction with TnrA. In the ATP-bound state (A-state), GS is catalytically active but unable to interact with TnrA. This conformation was stabilized by phosphorylated L-methionine sulfoximine (MSX), fixing the enzyme in the transition state. When occupied by glutamine (or its analogue MSX), GS resides in a conformation that has high affinity for TnrA (Q-state). The A- and Q-state are mutually exclusive, and in agreement, ATP and glutamine bind to GS in a competitive manner. At elevated concentrations of glutamine, ATP is no longer able to bind GS and to bring it into the A-state. AMP efficiently competes with ATP and prevents formation of the A-state, thereby favoring GS-TnrA interaction. Surface plasmon resonance analysis shows that TnrA bound to a positively regulated promoter fragment binds GS in the Q-state, whereas it rapidly dissociates from a negatively regulated promoter fragment. These data imply that GS controls TnrA activity at positively controlled promoters by shielding the transcription factor in the DNA-bound state. According to size exclusion and multiangle light scattering analysis, the dodecameric GS can bind three TnrA dimers. The highly interdependent ligand binding properties of GS reveal this enzyme as a sophisticated sensor of the nitrogen and energy state of the cell to control the activity of DNA-bound TnrA.
Collapse
Affiliation(s)
- Ksenia Hauf
- From the Interfaculty Institute for Microbiology and Infection Medicine, University of Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | - Airat Kayumov
- the Department of Genetics, Kazan Federal University, Kremlevskaya 18, 420008, Kazan, Russia, and
| | - Felix Gloge
- Wyatt Technology Europe, Hochstrasse 12a, 56307 Dernbach, Germany
| | - Karl Forchhammer
- From the Interfaculty Institute for Microbiology and Infection Medicine, University of Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany,
| |
Collapse
|
36
|
Schumacher MA, Chinnam NB, Cuthbert B, Tonthat NK, Whitfill T. Structures of regulatory machinery reveal novel molecular mechanisms controlling B. subtilis nitrogen homeostasis. Genes Dev 2015; 29:451-64. [PMID: 25691471 PMCID: PMC4335299 DOI: 10.1101/gad.254714.114] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In Bacillus subtilis, nitrogen homeostasis is controlled by a unique circuitry composed of the regulator TnrA and the repressor GlnR. Here, Schumacher et al. describe a comprehensive molecular dissection of this network that reveals novel mechanisms, including oligomeric transformations, by which their inducible signal transduction domains are employed to provide a readout of nitrogen levels. All cells must sense and adapt to changing nutrient availability. However, detailed molecular mechanisms coordinating such regulatory pathways remain poorly understood. In Bacillus subtilis, nitrogen homeostasis is controlled by a unique circuitry composed of the regulator TnrA, which is deactivated by feedback-inhibited glutamine synthetase (GS) during nitrogen excess and stabilized by GlnK upon nitrogen depletion, and the repressor GlnR. Here we describe a complete molecular dissection of this network. TnrA and GlnR, the global nitrogen homeostatic transcription regulators, are revealed as founders of a new structural family of dimeric DNA-binding proteins with C-terminal, flexible, effector-binding sensors that modulate their dimerization. Remarkably, the TnrA sensor domains insert into GS intersubunit catalytic pores, destabilizing the TnrA dimer and causing an unprecedented GS dodecamer-to-tetradecamer conversion, which concomitantly deactivates GS. In contrast, each subunit of the GlnK trimer “templates” active TnrA dimers. Unlike TnrA, GlnR sensors mediate an autoinhibitory dimer-destabilizing interaction alleviated by GS, which acts as a GlnR chaperone. Thus, these studies unveil heretofore unseen mechanisms by which inducible sensor domains drive metabolic reprograming in the model Gram-positive bacterium B. subtilis.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Naga Babu Chinnam
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Bonnie Cuthbert
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Nam K Tonthat
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Travis Whitfill
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
37
|
Mirouze N, Bidnenko E, Noirot P, Auger S. Genome-wide mapping of TnrA-binding sites provides new insights into the TnrA regulon in Bacillus subtilis. Microbiologyopen 2015; 4:423-35. [PMID: 25755103 PMCID: PMC4475385 DOI: 10.1002/mbo3.249] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/22/2015] [Accepted: 02/02/2015] [Indexed: 01/13/2023] Open
Abstract
Under nitrogen limitation conditions, Bacillus subtilis induces a sophisticated network of adaptation responses. More precisely, the B. subtilis TnrA regulator represses or activates directly or indirectly the expression of a hundred genes in response to nitrogen availability. The global TnrA regulon have already been identified among which some directly TnrA-regulated genes have been characterized. However, a genome-wide mapping of in vivo TnrA-binding sites was still needed to clearly define the set of genes directly regulated by TnrA. Using chromatin immunoprecipitation coupled with hybridization to DNA tiling arrays (ChIP-on-chip), we now provide in vivo evidence that TnrA reproducibly binds to 42 regions on the chromosome. Further analysis with real-time in vivo transcriptional profiling, combined with results from previous reports, allowed us to define the TnrA primary regulon. We identified 35 promoter regions fulfilling three criteria necessary to be part of this primary regulon: (i) TnrA binding in ChIP-on-chip experiments and/or in previous in vitro studies; (ii) the presence of a TnrA box; (iii) TnrA-dependent expression regulation. In addition, the TnrA primary regulon delimitation allowed us to improve the TnrA box consensus. Finally, our results reveal new interconnections between the nitrogen regulatory network and other cellular processes.
Collapse
Affiliation(s)
- Nicolas Mirouze
- UMR1319 Micalis, INRA, F-78352, Jouy-en-Josas, France.,UMR Micalis, AgroParisTech, F-78352, Jouy-en-Josas, France
| | - Elena Bidnenko
- UMR1319 Micalis, INRA, F-78352, Jouy-en-Josas, France.,UMR Micalis, AgroParisTech, F-78352, Jouy-en-Josas, France
| | - Philippe Noirot
- UMR1319 Micalis, INRA, F-78352, Jouy-en-Josas, France.,UMR Micalis, AgroParisTech, F-78352, Jouy-en-Josas, France
| | - Sandrine Auger
- UMR1319 Micalis, INRA, F-78352, Jouy-en-Josas, France.,UMR Micalis, AgroParisTech, F-78352, Jouy-en-Josas, France
| |
Collapse
|
38
|
Saelices L, Robles-Rengel R, Florencio FJ, Muro-Pastor MI. A core of three amino acids at the carboxyl-terminal region of glutamine synthetase defines its regulation in cyanobacteria. Mol Microbiol 2015; 96:483-96. [PMID: 25626767 DOI: 10.1111/mmi.12950] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2015] [Indexed: 11/28/2022]
Abstract
Glutamine synthetase (GS) type I is a key enzyme in nitrogen metabolism, and its activity is finely controlled by cellular carbon/nitrogen balance. In cyanobacteria, a reversible process that involves protein-protein interaction with two proteins, the inactivating factors IF7 and IF17, regulates GS. Previously, we showed that three arginine residues of IFs are critical for binding and inhibition of GS. In this work, taking advantage of the specificity of GS/IFs interaction in the model cyanobacteria Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120, we have constructed a different chimeric GSs from these two cyanobacteria. Analysis of these proteins, together with a site-directed mutagenesis approach, indicates that a core of three residues (E419, N456 and R459) is essential for the inactivation process. The three residues belong to the last 56 amino acids of the C-terminus of Synechocystis GS. A protein-protein docking modeling of Synechocystis GS in complex with IF7 supports the role of the identified core for GS/IF interaction.
Collapse
Affiliation(s)
- Lorena Saelices
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Seville, 41092, Spain
| | | | | | | |
Collapse
|
39
|
CcpA-mediated catabolite activation of the Bacillus subtilis ilv-leu operon and its negation by either CodY- or TnrA-mediated negative regulation. J Bacteriol 2014; 196:3793-806. [PMID: 25157083 DOI: 10.1128/jb.02055-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis ilv-leu operon functions in the biosynthesis of branched-chain amino acids. It undergoes catabolite activation involving a promoter-proximal cre which is mediated by the complex of CcpA and P-Ser-HPr. This activation of ilv-leu expression is negatively regulated through CodY binding to a high-affinity site in the promoter region under amino acid-rich growth conditions, and it is negatively regulated through TnrA binding to the TnrA box under nitrogen-limited growth conditions. The CcpA-mediated catabolite activation of ilv-leu required a helix face-dependent interaction of the complex of CcpA and P-Ser-HPr with RNA polymerase and needed a 19-nucleotide region upstream of cre for full activation. DNase I footprinting indicated that CodY binding to the high-affinity site competitively prevented the binding of the complex of CcpA and P-Ser-HPr to cre. This CodY binding not only negated catabolite activation but also likely inhibited transcription initiation from the ilv-leu promoter. The footprinting also indicated that TnrA and the complex of CcpA and P-Ser-HPr simultaneously bound to the TnrA box and the cre site, respectively, which are 112 nucleotides apart; TnrA binding to its box was likely to induce DNA bending. This implied that interaction of TnrA bound to its box with the complex of CcpA and P-Ser-HPr bound to cre might negate catabolite activation, but TnrA bound to its box did not inhibit transcription initiation from the ilv-leu promoter. Moreover, this negation of catabolite activation by TnrA required a 26-nucleotide region downstream of the TnrA box.
Collapse
|
40
|
Abstract
Beyond fuelling cellular activities with building blocks and energy, metabolism also integrates environmental conditions into intracellular signals. The underlying regulatory network is complex and multifaceted: it ranges from slow interactions, such as changing gene expression, to rapid ones, such as the modulation of protein activity via post-translational modification or the allosteric binding of small molecules. In this Review, we outline the coordination of common metabolic tasks, including nutrient uptake, central metabolism, the generation of energy, the supply of amino acids and protein synthesis. Increasingly, a set of key metabolites is recognized to control individual regulatory circuits, which carry out specific functions of information input and regulatory output. Such a modular view of microbial metabolism facilitates an intuitive understanding of the molecular mechanisms that underlie cellular decision making.
Collapse
|
41
|
Choi KY, Wernick DG, Tat CA, Liao JC. Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis. Metab Eng 2014; 23:53-61. [PMID: 24566040 DOI: 10.1016/j.ymben.2014.02.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/23/2014] [Accepted: 02/11/2014] [Indexed: 01/24/2023]
Abstract
The non-recyclable use of nitrogen fertilizers in microbial production of fuels and chemicals remains environmentally detrimental. Conversion of protein wastes into biofuels and ammonia by engineering nitrogen flux in Escherichia coli has been demonstrated as a method to reclaim reduced-nitrogen and curb its environmental deposition. However, protein biomass requires a proteolysis process before it can be taken up and converted by any microbe. Here, we metabolically engineered Bacillus subtilis to hydrolyze polypeptides through its secreted proteases and to convert amino acids into advanced biofuels and ammonia fertilizer. Redirection of B. subtilis metabolism for amino-acid conversion required inactivation of the branched-chain amino-acid (BCAA) global regulator CodY. Additionally, the lipoamide acyltransferase (bkdB) was deleted to prevent conversion of branched-chain 2-keto acids into their acyl-CoA derivatives. With these deletions and heterologous expression of a keto-acid decarboxylase and an alcohol dehydrogenase, the final strain produced biofuels and ammonia from an amino-acid media with 18.9% and 46.6% of the maximum theoretical yield. The process was also demonstrated on several waste proteins. The results demonstrate the feasibility of direct microbial conversion of polypeptides into sustainable products.
Collapse
Affiliation(s)
- Kwon-Young Choi
- Department of Chemical and Biomolecular Engineering, University of California, 7523 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA; Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, Gyeonggi-do, South Korea
| | - David G Wernick
- Department of Chemical and Biomolecular Engineering, University of California, 7523 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Christine A Tat
- Department of Chemical and Biomolecular Engineering, University of California, 7523 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - James C Liao
- Department of Chemical and Biomolecular Engineering, University of California, 7523 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, University of California, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA; Institute for Genomics and Proteomics, University of California, 201 Boyer Hall, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA; The Molecular Biology Institute, University of California, Paul D. Boyer Hall Box 951570, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA.
| |
Collapse
|
42
|
A sensing role of the glutamine synthetase in the nitrogen regulation network in Fusarium fujikuroi. PLoS One 2013; 8:e80740. [PMID: 24260467 PMCID: PMC3829961 DOI: 10.1371/journal.pone.0080740] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/05/2013] [Indexed: 11/29/2022] Open
Abstract
In the plant pathogenic ascomycete Fusarium fujikuroi the synthesis of several economically important secondary metabolites (SM) depends on the nitrogen status of the cells. Of these SMs, gibberellin and bikaverin synthesis is subject to nitrogen catabolite repression (NCR) and is therefore only executed under nitrogen starvation conditions. How the signal of available nitrogen quantity and quality is sensed and transmitted to transcription factors is largely unknown. Earlier work revealed an essential regulatory role of the glutamine synthetase (GS) in the nitrogen regulation network and secondary metabolism as its deletion resulted in total loss of SM gene expression. Here we present extensive gene regulation studies of the wild type, the Δgln1 mutant and complementation strains of the gln1 deletion mutant expressing heterologous GS-encoding genes of prokaryotic and eukaryotic origin or 14 different F. fujikuroi gln1 copies with site-directed mutations. All strains were grown under different nitrogen conditions and characterized regarding growth, expression of NCR-responsive genes and biosynthesis of SM. We provide evidence for distinct roles of the GS in sensing and transducing the signals to NCR-responsive genes. Three site directed mutations partially restored secondary metabolism and GS-dependent gene expression, but not glutamine formation, demonstrating for the first time that the catalytic and regulatory roles of GS can be separated. The distinct mutant phenotypes show that the GS (1) participates in NH4+-sensing and transducing the signal towards NCR-responsive transcription factors and their subsequent target genes; (2) affects carbon catabolism and (3) activates the expression of a distinct set of non-NCR GS-dependent genes. These novel insights into the regulatory role of the GS provide fascinating perspectives for elucidating regulatory roles of GS proteins of different organism in general.
Collapse
|
43
|
Murray DS, Chinnam N, Tonthat NK, Whitfill T, Wray LV, Fisher SH, Schumacher MA. Structures of the Bacillus subtilis glutamine synthetase dodecamer reveal large intersubunit catalytic conformational changes linked to a unique feedback inhibition mechanism. J Biol Chem 2013; 288:35801-11. [PMID: 24158439 DOI: 10.1074/jbc.m113.519496] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutamine synthetase (GS), which catalyzes the production of glutamine, plays essential roles in nitrogen metabolism. There are two main bacterial GS isoenzymes, GSI-α and GSI-β. GSI-α enzymes, which have not been structurally characterized, are uniquely feedback-inhibited by Gln. To gain insight into GSI-α function, we performed biochemical and cellular studies and obtained structures for all GSI-α catalytic and regulatory states. GSI-α forms a massive 600-kDa dodecameric machine. Unlike other characterized GS, the Bacillus subtilis enzyme undergoes dramatic intersubunit conformational alterations during formation of the transition state. Remarkably, these changes are required for active site construction. Feedback inhibition arises from a hydrogen bond network between Gln, the catalytic glutamate, and the GSI-α-specific residue, Arg(62), from an adjacent subunit. Notably, Arg(62) must be ejected for proper active site reorganization. Consistent with these findings, an R62A mutation abrogates Gln feedback inhibition but does not affect catalysis. Thus, these data reveal a heretofore unseen restructuring of an enzyme active site that is coupled with an isoenzyme-specific regulatory mechanism. This GSI-α-specific regulatory network could be exploited for inhibitor design against Gram-positive pathogens.
Collapse
Affiliation(s)
- David S Murray
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Fedorova K, Kayumov A, Woyda K, Ilinskaja O, Forchhammer K. Transcription factor TnrA inhibits the biosynthetic activity of glutamine synthetase in Bacillus subtilis. FEBS Lett 2013; 587:1293-8. [PMID: 23535029 DOI: 10.1016/j.febslet.2013.03.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 03/11/2013] [Accepted: 03/11/2013] [Indexed: 11/25/2022]
Abstract
The Bacillus subtilis glutamine synthetase (GS) plays a dual role in cell metabolism by functioning as catalyst and regulator. GS catalyses the ATP-dependent synthesis of glutamine from glutamate and ammonium. Under nitrogen-rich conditions, GS becomes feedback-inhibited by high intracellular glutamine levels and then binds transcription factors GlnR and TnrA, which control the genes of nitrogen assimilation. While GS-bound TnrA is no longer able to interact with DNA, GlnR-DNA binding is shown to be stimulated by GS complex formation. In this paper we show a new physiological feature of the interaction between glutamine synthetase and TnrA. The transcription factor TnrA inhibits the biosynthetic activity of glutamine synthetase in vivo and in vitro, while the GlnR protein does not affect the activity of the enzyme.
Collapse
Affiliation(s)
- Ksenia Fedorova
- Kazan (Volga region) Federal University, Department of Microbiology, Kremlevskaya 18, 420008 Kazan, Russia
| | | | | | | | | |
Collapse
|
46
|
Huergo LF, Chandra G, Merrick M. PIIsignal transduction proteins: nitrogen regulation and beyond. FEMS Microbiol Rev 2013; 37:251-83. [DOI: 10.1111/j.1574-6976.2012.00351.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/26/2012] [Accepted: 07/26/2012] [Indexed: 01/12/2023] Open
|
47
|
Gunka K, Commichau FM. Control of glutamate homeostasis in Bacillus subtilis: a complex interplay between ammonium assimilation, glutamate biosynthesis and degradation. Mol Microbiol 2012; 85:213-24. [DOI: 10.1111/j.1365-2958.2012.08105.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
48
|
Groot Kormelink T, Koenders E, Hagemeijer Y, Overmars L, Siezen RJ, de Vos WM, Francke C. Comparative genome analysis of central nitrogen metabolism and its control by GlnR in the class Bacilli. BMC Genomics 2012; 13:191. [PMID: 22607086 PMCID: PMC3412718 DOI: 10.1186/1471-2164-13-191] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 03/20/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The assimilation of nitrogen in bacteria is achieved through only a few metabolic conversions between alpha-ketoglutarate, glutamate and glutamine. The enzymes that catalyze these conversions are glutamine synthetase, glutaminase, glutamate dehydrogenase and glutamine alpha-ketoglutarate aminotransferase. In low-GC Gram-positive bacteria the transcriptional control over the levels of the related enzymes is mediated by four regulators: GlnR, TnrA, GltC and CodY. We have analyzed the genomes of all species belonging to the taxonomic families Bacillaceae, Listeriaceae, Staphylococcaceae, Lactobacillaceae, Leuconostocaceae and Streptococcaceae to determine the diversity in central nitrogen metabolism and reconstructed the regulation by GlnR. RESULTS Although we observed a substantial difference in the extent of central nitrogen metabolism in the various species, the basic GlnR regulon was remarkably constant and appeared not affected by the presence or absence of the other three main regulators. We found a conserved regulatory association of GlnR with glutamine synthetase (glnRA operon), and the transport of ammonium (amtB-glnK) and glutamine/glutamate (i.e. via glnQHMP, glnPHQ, gltT, alsT). In addition less-conserved associations were found with, for instance, glutamate dehydrogenase in Streptococcaceae, purine catabolism and the reduction of nitrite in Bacillaceae, and aspartate/asparagine deamination in Lactobacillaceae. CONCLUSIONS Our analyses imply GlnR-mediated regulation in constraining the import of ammonia/amino-containing compounds and the production of intracellular ammonia under conditions of high nitrogen availability. Such a role fits with the intrinsic need for tight control of ammonia levels to limit futile cycling.
Collapse
Affiliation(s)
- Tom Groot Kormelink
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
49
|
Fuchs TM, Eisenreich W, Kern T, Dandekar T. Toward a Systemic Understanding of Listeria monocytogenes Metabolism during Infection. Front Microbiol 2012; 3:23. [PMID: 22347216 PMCID: PMC3271275 DOI: 10.3389/fmicb.2012.00023] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 01/13/2012] [Indexed: 02/03/2023] Open
Abstract
Listeria monocytogenes is a foodborne human pathogen that can cause invasive infection in susceptible animals and humans. For proliferation within hosts, this facultative intracellular pathogen uses a reservoir of specific metabolic pathways, transporter, and enzymatic functions whose expression requires the coordinated activity of a complex regulatory network. The highly adapted metabolism of L. monocytogenes strongly depends on the nutrient composition of various milieus encountered during infection. Transcriptomic and proteomic studies revealed the spatial-temporal dynamic of gene expression of this pathogen during replication within cultured cells or in vivo. Metabolic clues are the utilization of unusual C(2)- and C(3)-bodies, the metabolism of pyruvate, thiamine availability, the uptake of peptides, the acquisition or biosynthesis of certain amino acids, and the degradation of glucose-phosphate via the pentose phosphate pathway. These examples illustrate the interference of in vivo conditions with energy, carbon, and nitrogen metabolism, thus affecting listerial growth. The exploitation, analysis, and modeling of the available data sets served as a first attempt to a systemic understanding of listerial metabolism during infection. L. monocytogenes might serve as a model organism for systems biology of a Gram-positive, facultative intracellular bacterium.
Collapse
Affiliation(s)
- Thilo M. Fuchs
- Abteilung Mikrobiologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Technische Universität MünchenFreising, Germany
- Lehrstuhl für Mikrobielle Ökologie, Department Biowissenschaften, Wissenschaftszentrum Weihenstephan, Technische Universität MünchenFreising, Germany
| | | | - Tanja Kern
- Abteilung Mikrobiologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Technische Universität MünchenFreising, Germany
| | - Thomas Dandekar
- Abteilung Bioinformatik, Theodor-Boveri-Institut (Biozentrum), Universität WürzburgWürzburg, Germany
| |
Collapse
|
50
|
Junne S, Klingner A, Kabisch J, Schweder T, Neubauer P. A two-compartment bioreactor system made of commercial parts for bioprocess scale-down studies: impact of oscillations on Bacillus subtilis fed-batch cultivations. Biotechnol J 2011; 6:1009-17. [PMID: 21751400 DOI: 10.1002/biot.201100293] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study describes an advanced version of a two-compartment scale-down bioreactor that simulates inhomogeneities present in large-scale industrial bioreactors on the laboratory scale. The system is made of commercially available parts and is suitable for sterilization with steam. The scale-down bioreactor consists of a usual stirred tank bioreactor (STR) and a plug flow reactor (PFR) equipped with static mixer modules. The PFR module with a working volume of 1.2 L is equipped with five sample ports, and pH and dissolved oxygen (DO) sensors. The concept was applied using the non-sporulating Bacillus subtilis mutant strain AS3, characterized by a SpoIIGA gene knockout. In a fed-batch process with a constant feed rate, it is found that oscillating substrate and DO concentration led to diminished glucose uptake, ethanol formation and an altered amino acid synthesis. Sampling at the PFR module allowed the detection of dynamics at different concentrations of intermediates, such as pyruvic acid, lactic acid and amino acids. Results indicate that the carbon flux at excess glucose and low DO concentrations is shifted towards ethanol formation. As a result, the reduced carbon flux entering the tricarboxylic acid cycle is not sufficient to support amino acid synthesis following the oxaloacetic acid branch point.
Collapse
Affiliation(s)
- Stefan Junne
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Berlin, Germany.
| | | | | | | | | |
Collapse
|