1
|
Smoniewski CM, Mirzavand Borujeni P, Hampton M, Petersen A, Faacks SP, Salavati R, Zimmer SL. Manipulation of mitochondrial poly(A) polymerase family proteins in Trypanosoma brucei impacts mRNA termini processing. FRONTIERS IN PARASITOLOGY 2024; 2:1298561. [PMID: 39816830 PMCID: PMC11732105 DOI: 10.3389/fpara.2023.1298561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2025]
Abstract
RNA-specific nucleotidyltransferases (rNTrs) add nontemplated nucleotides to the 3' end of RNA. Two noncanonical rNTRs that are thought to be poly(A) polymerases (PAPs) have been identified in the mitochondria of trypanosomes - KPAP1 and KPAP2. KPAP1 is the primary polymerase that adds adenines (As) to trypanosome mitochondrial mRNA 3' tails, while KPAP2 is a non-essential putative polymerase whose role in the mitochondria is ambiguous. Here, we elucidate the effects of manipulations of KPAP1 and KPAP2 on the 5' and 3' termini of transcripts and their 3' tails. Using glycerol gradients followed by immunoblotting, we present evidence that KPAP2 is found in protein complexes of up to about 1600 kDa. High-throughput sequencing of mRNA termini showed that KPAP2 overexpression subtly changes an edited transcript's 3' tails, though not in a way consistent with general PAP activity. Next, to identify possible roles of posttranslational modifications on KPAP1 regulation, we mutated two KPAP1 arginine methylation sites to either mimic methylation or hypomethylation. We assessed their effect on 3' mRNA tail characteristics and found that the two mutants generally had opposing effects, though some of these were transcript-specific. We present results suggesting that while methylation increases KPAP1 substrate binding and/or initial nucleotide additions, unmethylated KPAP1is more processive. We also present a comprehensive review of UTR termini, and evidence that tail addition activity may change as mRNA editing is initiated. Together, this work furthers our understanding of the role of KPAP1 and KPAP2 on trypanosome mitochondrial mRNA 3' tail addition, as well as provides more information on mRNA termini processing in general.
Collapse
Affiliation(s)
- Clara M. Smoniewski
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| | | | - Marshall Hampton
- Department of Mathematics and Statistics, University of Minnesota Duluth, Duluth, MN, United States
| | - Austin Petersen
- Department of Biology, University of Minnesota Duluth, Duluth, MN, United States
| | - Sean P. Faacks
- Department of Biology, University of Minnesota Duluth, Duluth, MN, United States
| | - Reza Salavati
- Institute of Parasitology, McGill University, Montreal, QC, Canada
| | - Sara L. Zimmer
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| |
Collapse
|
2
|
Brogli R, Cristodero M, Schneider A, Polacek N. A ribosome-bound tRNA half stimulates mitochondrial translation during stress recovery in Trypanosoma brucei. Cell Rep 2023; 42:113112. [PMID: 37703180 DOI: 10.1016/j.celrep.2023.113112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/07/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023] Open
Abstract
The protozoan parasite Trypanosoma brucei and its disease-causing relatives are among the few organisms that barely regulate the transcription of protein-coding genes. Yet, alterations in its gene expression are essential to survive in different host environments. Recently, tRNA-derived RNAs have been implicated as regulators of many cellular processes within and beyond translation. Previously, we identified the tRNAThr-3'-half (AGU) as a ribosome-associated non-coding RNA able to enhance global translation. Here we report that the tRNAThr-3'-half is generated upon starvation inside the mitochondria. The tRNAThr-3'-half associates with mitochondrial ribosomes and stimulates translation during stress recovery, positively affecting mitochondrial activity and, consequently, cellular energy production capacity. Our results describe an organelle ribosome-associated ncRNA involved in translation regulation to boost the central hub of energy metabolism as an immediate stress recovery response.
Collapse
Affiliation(s)
- Rebecca Brogli
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland; Graduate School for Cellular and Biochemical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Marina Cristodero
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland.
| | - André Schneider
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Norbert Polacek
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
3
|
Current Status of Regulatory Non-Coding RNAs Research in the Tritryp. Noncoding RNA 2022; 8:ncrna8040054. [PMID: 35893237 PMCID: PMC9326685 DOI: 10.3390/ncrna8040054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 11/23/2022] Open
Abstract
Trypanosomatids are protozoan parasites that cause devastating vector-borne human diseases. Gene expression regulation of these organisms depends on post-transcriptional control in responding to diverse environments while going through multiple developmental stages of their complex life cycles. In this scenario, non-coding RNAs (ncRNAs) are excellent candidates for a very efficient, quick, and economic strategy to regulate gene expression. The advent of high throughput RNA sequencing technologies show the presence and deregulation of small RNA fragments derived from canonical ncRNAs. This review seeks to depict the ncRNA landscape in trypanosomatids, focusing on the small RNA fragments derived from functional RNA molecules observed in RNA sequencing studies. Small RNA fragments derived from canonical ncRNAs (tsRNAs, snsRNAs, sdRNAs, and sdrRNAs) were identified in trypanosomatids. Some of these RNAs display changes in their levels associated with different environments and developmental stages, demanding further studies to determine their functional characterization and potential roles. Nevertheless, a comprehensive and detailed ncRNA annotation for most trypanosomatid genomes is still needed, allowing better and more extensive comparative and functional studies.
Collapse
|
4
|
Aphasizheva I, Aphasizhev R. Mitochondrial RNA quality control in trypanosomes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1638. [PMID: 33331073 PMCID: PMC9805618 DOI: 10.1002/wrna.1638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 01/04/2023]
Abstract
Unicellular parasites Trypanosoma brucei spp. cause African human and animal trypanosomiasis, a spectrum of diseases that jeopardize public health and afflict the economy in sub-Saharan Africa. These hemoflagellates are distinguished by a single mitochondrion, which contains a kinetoplast nucleoid composed of DNA and histone-like proteins. Kinetoplast DNA (kDNA) represents a densely packed network of interlinked relaxed circular molecules: a few ~23-kb maxicircles encoding ribosomal RNAs (rRNAs) and proteins, and approximately 5,000 1-kb minicircles bearing guide RNA (gRNA) genes. The transcription start site defines the mRNA's 5' terminus while the primary RNA is remodeled into a monocistronic messenger by 3'-5' exonucleolytic trimming, 5' and 3' end modifications, and, in most cases, by internal U-insertion/deletion editing. Ribosomal and guide RNA precursors are also trimmed, and the processed molecules are uridylated. For 35 years, mRNA editing has attracted a major effort, but more recently the essential pre- and postediting processing and turnover events have been discovered and the key effectors have been identified. Among these, pentatricopeptide repeat (PPR) RNA binding proteins emerged as conduits coupling modifications of mRNA termini with internal sequence changes introduced by editing. Among 39 annotated PPRs, 20 belong to ribosomal subunits or assembly intermediates, four function as polyadenylation factors, a single factor directs 5' mRNA modification, and one protein is found in F1-ATPase. Nuclear and mitochondrial RNases P consist of a single PPR polypeptide, PRORP1 and PROP2, respectively. Here, we review PPR-mediated mitochondrial processes and discuss their potential roles in mRNA maturation, quality control, translational activation, and decay. This article is categorized under: RNA Processing > Capping and 5' End Modifications RNA Processing > 3' End Processing RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, Massachusetts
| | - Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, Massachusetts,Department of Biochemistry, Boston University Medical Campus, Boston, Massachusetts
| |
Collapse
|
5
|
Aphasizheva I, Suematsu T, Vacas A, Wang H, Fan C, Zhao X, Zhang L, Aphasizhev R. CTS tag-based methods for investigating mitochondrial RNA modification factors in Trypanosoma brucei. Methods Enzymol 2021; 658:83-109. [PMID: 34517961 PMCID: PMC9805619 DOI: 10.1016/bs.mie.2021.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Unicellular parasite Trypanosoma brucei maintains an elaborate mitochondrial mRNA processing pathway including 3'-5' exonucleolytic trimming of primary precursors, 5' and 3' modifications, and, in most cases, massive U-insertion/deletion editing. Whereas the role of editing in restoring protein coding sequence is apparent, recent developments suggest that terminal modifications are equally critical for generating a stable translationally competent messenger. The enzymatic activities responsible for 5' pyrophosphate hydrolysis, 3' adenylation and uridylation, and 3'-5' decay are positively and negatively regulated by pentatricopeptide repeat-containing (PPR) proteins. These sequence-specific RNA binding factors typically contain arrays of 35-amino acid repeats each of which recognizes a single nucleotide. Here, we introduce a combinatorial CTS affinity tag, which underlies a suite of methods for PPR proteins purification, in vivo RNA binding sites mapping and sub-cellular localization studies. These approaches should be applicable to most trypanosomal RNA binding proteins.
Collapse
Affiliation(s)
- Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA, United States,Corresponding author:
| | - Takuma Suematsu
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA, United States
| | - Andres Vacas
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA, United States
| | - Hong Wang
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA, United States
| | - Chenyu Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaojing Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Liye Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA, United States,Department of Biochemistry, Boston University Medical Campus, Boston, MA, United States
| |
Collapse
|
6
|
Aphasizheva I, Yu T, Suematsu T, Liu Q, Mesitov MV, Yu C, Huang L, Zhang L, Aphasizhev R. Poly(A) binding KPAF4/5 complex stabilizes kinetoplast mRNAs in Trypanosoma brucei. Nucleic Acids Res 2020; 48:8645-8662. [PMID: 32614436 PMCID: PMC7470953 DOI: 10.1093/nar/gkaa575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/23/2022] Open
Abstract
In Trypanosoma brucei, mitochondrial pre-mRNAs undergo 3′-5′ exonucleolytic processing, 3′ adenylation and uridylation, 5′ pyrophosphate removal, and, often, U-insertion/deletion editing. The 3′ modifications are modulated by pentatricopeptide repeat (PPR) Kinetoplast Polyadenylation Factors (KPAFs). We have shown that KPAF3 binding to the 3′ region stabilizes properly trimmed transcripts and stimulates their A-tailing by KPAP1 poly(A) polymerase. Conversely, poly(A) binding KPAF4 shields the nascent A-tail from uridylation and decay thereby protecting pre-mRNA upon KPAF3 displacement by editing. While editing concludes in the 5′ region, KPAF1/2 dimer induces A/U-tailing to activate translation. Remarkably, 5′ end recognition and pyrophosphate hydrolysis by the PPsome complex also contribute to mRNA stabilization. Here, we demonstrate that KPAF4 functions as a heterodimer with KPAF5, a protein lacking discernable motifs. We show that KPAF5 stabilizes KPAF4 to enable poly(A) tail recognition, which likely leads to mRNA stabilization during the editing process and impedes spontaneous translational activation of partially-edited transcripts. Thus, KPAF4/5 represents a poly(A) binding element of the mitochondrial polyadenylation complex. We present evidence that RNA editing substrate binding complex bridges the 5′ end-bound PPsome and 3′ end-bound polyadenylation complexes. This interaction may enable mRNA circularization, an apparently critical element of mitochondrial mRNA stability and quality control.
Collapse
Affiliation(s)
- Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA 02118, USA
| | - Tian Yu
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA 02118, USA
| | - Takuma Suematsu
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA 02118, USA
| | - Qiushi Liu
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA 02118, USA
| | - Mikhail V Mesitov
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA 02118, USA
| | - Clinton Yu
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Lan Huang
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Liye Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA 02118, USA.,Department of Biochemistry, Boston University Medical Campus, Boston, MA 02118, USA
| |
Collapse
|
7
|
Aphasizheva I, Alfonzo J, Carnes J, Cestari I, Cruz-Reyes J, Göringer HU, Hajduk S, Lukeš J, Madison-Antenucci S, Maslov DA, McDermott SM, Ochsenreiter T, Read LK, Salavati R, Schnaufer A, Schneider A, Simpson L, Stuart K, Yurchenko V, Zhou ZH, Zíková A, Zhang L, Zimmer S, Aphasizhev R. Lexis and Grammar of Mitochondrial RNA Processing in Trypanosomes. Trends Parasitol 2020; 36:337-355. [PMID: 32191849 PMCID: PMC7083771 DOI: 10.1016/j.pt.2020.01.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 12/15/2022]
Abstract
Trypanosoma brucei spp. cause African human and animal trypanosomiasis, a burden on health and economy in Africa. These hemoflagellates are distinguished by a kinetoplast nucleoid containing mitochondrial DNAs of two kinds: maxicircles encoding ribosomal RNAs (rRNAs) and proteins and minicircles bearing guide RNAs (gRNAs) for mRNA editing. All RNAs are produced by a phage-type RNA polymerase as 3' extended precursors, which undergo exonucleolytic trimming. Most pre-mRNAs proceed through 3' adenylation, uridine insertion/deletion editing, and 3' A/U-tailing. The rRNAs and gRNAs are 3' uridylated. Historically, RNA editing has attracted major research effort, and recently essential pre- and postediting processing events have been discovered. Here, we classify the key players that transform primary transcripts into mature molecules and regulate their function and turnover.
Collapse
Affiliation(s)
- Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA 02118, USA.
| | - Juan Alfonzo
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Jason Carnes
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Igor Cestari
- Institute of Parasitology, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, H9X3V9, Québec, Canada
| | - Jorge Cruz-Reyes
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - H Ulrich Göringer
- Department of Molecular Genetics, Darmstadt University of Technology, 64287 Darmstadt, Germany
| | - Stephen Hajduk
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Susan Madison-Antenucci
- Parasitology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Dmitri A Maslov
- Department of Molecular, Cell, and Systems Biology, University of California - Riverside, Riverside, CA 92521, USA
| | - Suzanne M McDermott
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Torsten Ochsenreiter
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern CH-3012, Switzerland
| | - Laurie K Read
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Reza Salavati
- Institute of Parasitology, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, H9X3V9, Québec, Canada
| | - Achim Schnaufer
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Bern CH-3012, Switzerland
| | - Larry Simpson
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095, USA
| | - Kenneth Stuart
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic; Martsinovsky Institute of Medical Parasitology, Sechenov University, Moscow, Russia
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095, USA
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Liye Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Sara Zimmer
- University of Minnesota Medical School, Duluth campus, Duluth, MN 55812, USA
| | - Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA 02118, USA
| |
Collapse
|
8
|
Mesitov MV, Yu T, Suematsu T, Sement FM, Zhang L, Yu C, Huang L, Aphasizheva I. Pentatricopeptide repeat poly(A) binding protein KPAF4 stabilizes mitochondrial mRNAs in Trypanosoma brucei. Nat Commun 2019; 10:146. [PMID: 30635574 PMCID: PMC6329795 DOI: 10.1038/s41467-018-08137-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/19/2018] [Indexed: 01/25/2023] Open
Abstract
In Trypanosoma brucei, most mitochondrial mRNAs undergo editing, and 3′ adenylation and uridylation. The internal sequence changes and terminal extensions are coordinated: pre-editing addition of the short (A) tail protects the edited transcript against 3′-5′ degradation, while post-editing A/U-tailing renders mRNA competent for translation. Participation of a poly(A) binding protein (PABP) in coupling of editing and 3′ modification processes has been inferred, but its identity and mechanism of action remained elusive. We report identification of KPAF4, a pentatricopeptide repeat-containing PABP which sequesters the A-tail and impedes mRNA degradation. Conversely, KPAF4 inhibits uridylation of A-tailed transcripts and, therefore, premature A/U-tailing of partially-edited mRNAs. This quality check point likely prevents translation of incompletely edited mRNAs. We also find that RNA editing substrate binding complex (RESC) mediates the interaction between the 5′ end-bound pyrophosphohydrolase MERS1 and 3′ end-associated KPAF4 to enable mRNA circularization. This event appears to be critical for edited mRNA stability. Polyadenylation stabilizes edited mitochondrial mRNAs in Trypanosoma brucei, but the involved poly(A) binding protein is unknown. Here, Mesitov et al. show that a pentatricopeptide repeat factor KPAF4 binds to A-tail and prevents exonucleolytic degradation as well as translation of incompletely edited mRNAs.
Collapse
Affiliation(s)
- Mikhail V Mesitov
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA, 02118, USA
| | - Tian Yu
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA, 02118, USA.,Bioinformatics Program, Boston University, Boston, MA, 02215, USA
| | - Takuma Suematsu
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA, 02118, USA
| | - Francois M Sement
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA, 02118, USA
| | - Liye Zhang
- School of Life Science and Technology, ShanghaiTechUniversity, 201210, Shanghai, China
| | - Clinton Yu
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Lan Huang
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA, 02118, USA.
| |
Collapse
|
9
|
Gazestani VH, Hampton M, Shaw AK, Salavati R, Zimmer SL. Tail characteristics of Trypanosoma brucei mitochondrial transcripts are developmentally altered in a transcript-specific manner. Int J Parasitol 2017; 48:179-189. [PMID: 29100810 DOI: 10.1016/j.ijpara.2017.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/22/2017] [Accepted: 08/26/2017] [Indexed: 11/29/2022]
Abstract
The intricate life cycle of Trypanosoma brucei requires extensive regulation of gene expression levels of the mtRNAs for adaptation. Post-transcriptional gene regulatory programs, including unencoded mtRNA 3' tail additions, potentially play major roles in this adaptation process. Intriguingly, T. brucei mitochondrial transcripts possess two distinct unencoded 3' tails, each with a differing functional role; i.e., while one type is implicated in RNA stability (in-tails), the other type appears associated with translation (ex-tails). We examined the degree to which tail characteristics differ among cytochrome c oxidase subunits I and III (CO1 and CO3), and NADH dehydrogenase subunit 1 (ND1) transcripts, and to what extent these characteristics differ developmentally. We found that CO1, CO3 and ND1 transcripts possess longer in-tails in the mammalian life stage. By mathematically modelling states of in-tail and ex-tail addition, we determined that the typical length at which an in-tail is extended to become an ex-tail differs by transcript and, in the case of ND1, by life stage. To the best of our knowledge, we provide the first evidence that developmental differences exist in tail length distributions of mtRNAs, underscoring the potential involvement of in-tail and ex-tail populations in mitochondrial post-transcriptional regulation mechanisms.
Collapse
Affiliation(s)
- Vahid H Gazestani
- Institute of Parasitology, McGill University, Montreal, QC H9X 3V9, Canada
| | - Marshall Hampton
- Department of Mathematics and Statistics, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Aubie K Shaw
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Reza Salavati
- Institute of Parasitology, McGill University, Montreal, QC H9X 3V9, Canada.
| | - Sara L Zimmer
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA.
| |
Collapse
|
10
|
Aphasizhev R, Suematsu T, Zhang L, Aphasizheva I. Constructive edge of uridylation-induced RNA degradation. RNA Biol 2016; 13:1078-1083. [PMID: 27715485 PMCID: PMC5100348 DOI: 10.1080/15476286.2016.1229736] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/06/2016] [Accepted: 08/24/2016] [Indexed: 12/18/2022] Open
Abstract
RNA uridylation is a significant transcriptome-shaping factor in protists, fungi, metazoans, and plants. The 3' U-additions are catalyzed by terminal uridyltransferases (TUTases), a diverse group of enzymes that along with non-canonical poly(A) polymerases form a distinct group in the superfamily of DNA polymerase β-like nucleotidyl transferases. Within and across studied organisms and subcellular compartments, TUTases differ in nucleotide triphosphate selectivity, interacting partners, and RNA targets. A general premise linking RNA uridylation to 3'-5' degradation received support from several studies of small RNAs and mRNA turnover. However, recent work on kinetoplastid protists typified by Trypanosoma brucei provides evidence that RNA uridylation may play a more nuanced role in generating functional small RNAs. In this pathogen's mitochondrion, most mRNAs are internally edited by U-insertions and deletions, and subjected to 3' adenylation/uridylation; guide RNAs (gRNAs) required for editing are U-tailed. The prominent role of uridylation in mitochondrial RNA metabolism stimulated identification of the first TUTase, RNA editing TUTase 1 (RET1). Here we discuss functional studies of mitochondrial uridylation in trypanosomes that have revealed an unorthodox pathway of small RNA biogenesis. The current model accentuates physical coupling of RET1 and 3'-5' RNase II/RNB-type exonuclease DSS1 within a stable complex termed the mitochondrial 3' processome (MPsome). In the confines of this complex, RET1 initially uridylates a long precursor to activate its 3'-5' degradation by DSS1, and then uridylates trimmed guide RNA to disengage the processing complex from the mature molecule. We also discuss a potential role of antisense transcription in the MPsome pausing at a fixed distance from gRNA's 5' end. This step likely defines the mature 3' end by enabling kinetic competition between TUTase and exonuclease activities.
Collapse
Affiliation(s)
- Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA, USA
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Takuma Suematsu
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA, USA
| | - Liye Zhang
- Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
11
|
Rajappa-Titu L, Suematsu T, Munoz-Tello P, Long M, Demir Ö, Cheng KJ, Stagno JR, Luecke H, Amaro RE, Aphasizheva I, Aphasizhev R, Thore S. RNA Editing TUTase 1: structural foundation of substrate recognition, complex interactions and drug targeting. Nucleic Acids Res 2016; 44:10862-10878. [PMID: 27744351 PMCID: PMC5159558 DOI: 10.1093/nar/gkw917] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/27/2016] [Accepted: 10/04/2016] [Indexed: 11/13/2022] Open
Abstract
Terminal uridyltransferases (TUTases) execute 3′ RNA uridylation across protists, fungi, metazoan and plant species. Uridylation plays a particularly prominent role in RNA processing pathways of kinetoplastid protists typified by the causative agent of African sleeping sickness, Trypanosoma brucei. In mitochondria of this pathogen, most mRNAs are internally modified by U-insertion/deletion editing while guide RNAs and rRNAs are U-tailed. The founding member of TUTase family, RNA editing TUTase 1 (RET1), functions as a subunit of the 3′ processome in uridylation of gRNA precursors and mature guide RNAs. Along with KPAP1 poly(A) polymerase, RET1 also participates in mRNA translational activation. RET1 is divergent from human TUTases and is essential for parasite viability in the mammalian host and the insect vector. Given its robust in vitro activity, RET1 represents an attractive target for trypanocide development. Here, we report high-resolution crystal structures of the RET1 catalytic core alone and in complex with UTP analogs. These structures reveal a tight docking of the conserved nucleotidyl transferase bi-domain module with a RET1-specific C2H2 zinc finger and RNA recognition (RRM) domains. Furthermore, we define RET1 region required for incorporation into the 3′ processome, determinants for RNA binding, subunit oligomerization and processive UTP incorporation, and predict druggable pockets.
Collapse
Affiliation(s)
- Lional Rajappa-Titu
- Department of Molecular Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Takuma Suematsu
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA 02118, USA
| | - Paola Munoz-Tello
- Department of Molecular Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Marius Long
- Department of Molecular Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Özlem Demir
- Department of Chemistry & Biochemistry and the National Biomedical Computation Resource, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin J Cheng
- Department of Chemistry & Biochemistry and the National Biomedical Computation Resource, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jason R Stagno
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Hartmut Luecke
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Rommie E Amaro
- Department of Chemistry & Biochemistry and the National Biomedical Computation Resource, University of California, San Diego, La Jolla, CA 92093, USA
| | - Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA 02118, USA
| | - Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA 02118, USA .,Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Stéphane Thore
- Department of Molecular Biology, University of Geneva, 1211 Geneva, Switzerland .,INSERM, U1212, ARNA Laboratory, Bordeaux 33000, France.,CNRS UMR5320, ARNA Laboratory, Bordeaux 33000, France.,University of Bordeaux, ARNA Laboratory, Bordeaux 33000, France
| |
Collapse
|
12
|
Down-Regulation of Donor Kupffer Cell B7 Expression Reduced Recipient Lymphocyte Activation and Secretion of Interleukin-2 In Vitro. Transplant Proc 2016; 47:2985-90. [PMID: 26707326 DOI: 10.1016/j.transproceed.2015.10.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/01/2015] [Accepted: 10/20/2015] [Indexed: 01/29/2023]
Abstract
BACKGROUND Kupffer cell (KC), a kind of important antigen-presenting cell in liver, play an important role in the process of acute rejection after liver transplantation. The aim of this study was to investigate effect of suppression of donor KC B7 expression on recipient lymphocyte activation and secretion of interleukin-2 (IL-2) in vitro. METHODS Liver ex vivo perfusion with collagenase IV and density-gradient centrifugation were used to isolate donor Lewis rat KCs. The interference fragments of the B7 molecule were designed to construct RNA interference vector pSilencer 3.1H1-Neo-B7 that was transfected into KCs of donor rat. Reverse-transcription polymerase chain reaction was used to detect the changes in the expression of B7 molecules in KCs. The transfected KCs were divided into 3 groups: A, control group; B, empty vector group; and C, RNA interference group. The lymphocytes of recipient Brown Norway (BN) rats were isolated and cocultured with the cells in the 3 groups. Enzyme-linked immunosorbent assay was used to detect the content of IL-2 in the culture supernate. Methylthiazolyl tetrazolium assay was used to detect the proliferation of lymphocytes. RESULTS The yield rate of KCs was 5 × 10(7), and the cell viability was >98%. RNA interference vector had been successfully constructed and identified by means of enzyme digestion and sequencing. The expression of B7 in KCs decreased by 22% after RNA interference (P < .01). After coculturing with lymphocytes of BN rats, compared with the control group, the decreased expression of B7 significantly inhibited the activation and proliferation of lymphocytes as well as the secretion of IL-2 by lymphocytes. The proliferation of lymphocytes in recipient BN rats decreased by 49% (P < .01), and the secretion of IL-2 in the culture supernate decreased by 67% (P < .01). CONCLUSIONS This study successfully constructed a B7 RNA interference vector, and applied it to assessing reduction of B7 expression in donor KCs. RNA interference significantly suppressed the activation of recipient T lymphocytes and secretion of IL-2 via the CD28/B7 costimulatory pathway and may induce immune tolerance in liver transplants.
Collapse
|
13
|
Suematsu T, Zhang L, Aphasizheva I, Monti S, Huang L, Wang Q, Costello CE, Aphasizhev R. Antisense Transcripts Delimit Exonucleolytic Activity of the Mitochondrial 3' Processome to Generate Guide RNAs. Mol Cell 2016; 61:364-378. [PMID: 26833087 PMCID: PMC4744118 DOI: 10.1016/j.molcel.2016.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/16/2015] [Accepted: 12/24/2015] [Indexed: 12/21/2022]
Abstract
Small, noncoding RNA biogenesis typically involves cleavage of structured precursor by RNase III-like endonucleases. However, guide RNAs (gRNAs) that direct U-insertion/deletion mRNA editing in mitochondria of trypanosomes maintain 5' triphosphate characteristic of the transcription initiation and possess a U-tail indicative of 3' processing and uridylation. Here, we identified a protein complex composed of RET1 TUTase, DSS1 3'-5' exonuclease, and three additional subunits. This complex, termed mitochondrial 3' processome (MPsome), is responsible for primary uridylation of ∼800 nt gRNA precursors, their processive degradation to a mature size of 40-60 nt, and secondary U-tail addition. Both strands of the gRNA gene are transcribed into sense and antisense precursors of similar lengths. Head-to-head hybridization of these transcripts blocks symmetrical 3'-5' degradation at a fixed distance from the double-stranded region. Together, our findings suggest a model in which gRNA is derived from the 5' extremity of a primary molecule by uridylation-induced, antisense transcription-controlled 3'-5' exonucleolytic degradation.
Collapse
Affiliation(s)
- Takuma Suematsu
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA 02118, USA
| | - Liye Zhang
- Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA 02118, USA
| | - Stefano Monti
- Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Lan Huang
- Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Qi Wang
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Catherine E Costello
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA 02118, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
14
|
Aphasizheva I, Aphasizhev R. U-Insertion/Deletion mRNA-Editing Holoenzyme: Definition in Sight. Trends Parasitol 2015; 32:144-156. [PMID: 26572691 DOI: 10.1016/j.pt.2015.10.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/06/2015] [Accepted: 10/12/2015] [Indexed: 11/16/2022]
Abstract
RNA editing is a process that alters DNA-encoded sequences and is distinct from splicing, 5' capping, and 3' additions. In 30 years since editing was discovered in mitochondria of trypanosomes, several functionally and evolutionarily unrelated mechanisms have been described in eukaryotes, archaea, and viruses. Editing events are predominantly post-transcriptional and include nucleoside insertions and deletions, and base substitutions and modifications. Here, we review the mechanism of uridine insertion/deletion mRNA editing in kinetoplastid protists typified by Trypanosoma brucei. This type of editing corrects frameshifts, introduces translation punctuation signals, and often adds hundreds of uridines to create protein-coding sequences. We focus on protein complexes responsible for editing reactions and their interactions with other elements of the mitochondrial gene expression pathway.
Collapse
Affiliation(s)
- Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA 02118, USA.
| | - Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA 02118, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
15
|
Viegas SC, Silva IJ, Apura P, Matos RG, Arraiano CM. Surprises in the 3'-end: 'U' can decide too! FEBS J 2015; 282:3489-99. [PMID: 26183531 DOI: 10.1111/febs.13377] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/22/2015] [Accepted: 07/10/2015] [Indexed: 12/27/2022]
Abstract
RNA molecules are subjected to post-transcriptional modifications that might determine their maturation, activity, localization and stability. These alterations can occur within the RNA molecule or at its 5'- or 3'- extremities, and are essential for gene regulation and proper function of the RNA. One major type of modification is the 3'-end addition of nontemplated nucleotides. Polyadenylation is the most well studied type of 3'-RNA modification, both in eukaryotes and prokaryotes. The importance of 3'-oligouridylation has recently gained attention through the discovery of several types of uridylated-RNAs, by the existence of enzymes that specifically add poly(U) tails and others that preferentially degrade these tails. Namely, Dis3L2 is a 3'-5' exoribonuclease from the RNase II/RNB family that has been shown to act preferentially on oligo(U)-tailed transcripts. Our understanding of this process is still at the beginning, but it is already known to interfere in the regulation of diverse RNA species in most eukaryotes. Now that we are aware of the prevalence of RNA uridylation and the techniques available to globally evaluate the 3'-terminome, we can expect to make rapid progress in determining the extent of terminal oligouridylation in different RNA populations and unravel its impact on RNA decay mechanisms. Here, we sum up what is known about 3'-RNA modification in the different cellular compartments of eukaryotic cells, the conserved enzymes that perform this 3'-end modification and the effectors that are selectively activated by this process.
Collapse
Affiliation(s)
- Sandra C Viegas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Inês J Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Patricia Apura
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Rute G Matos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cecilia M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
16
|
Polyuridylation in Eukaryotes: A 3'-End Modification Regulating RNA Life. BIOMED RESEARCH INTERNATIONAL 2015; 2015:968127. [PMID: 26078976 PMCID: PMC4442281 DOI: 10.1155/2015/968127] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/23/2015] [Accepted: 04/15/2015] [Indexed: 12/22/2022]
Abstract
In eukaryotes, mRNA polyadenylation is a well-known modification that is essential for many aspects of the protein-coding RNAs life cycle. However, modification of the 3′ terminal nucleotide within various RNA molecules is a general and conserved process that broadly modulates RNA function in all kingdoms of life. Numerous types of modifications have been characterized, which are generally specific for a given type of RNA such as the CCA addition found in tRNAs. In recent years, the addition of nontemplated uridine nucleotides or uridylation has been shown to occur in various types of RNA molecules and in various cellular compartments with significantly different outcomes. Indeed, uridylation is able to alter RNA half-life both in positive and in negative ways, highlighting the importance of the enzymes in charge of performing this modification. The present review aims at summarizing the current knowledge on the various processes leading to RNA 3′-end uridylation and on their potential impacts in various diseases.
Collapse
|
17
|
Carnes J, Lerch M, Kurtz I, Stuart K. Bloodstream form Trypanosoma brucei do not require mRPN1 for gRNA processing. RNA (NEW YORK, N.Y.) 2015; 21:28-35. [PMID: 25404564 PMCID: PMC4274635 DOI: 10.1261/rna.045708.114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 10/06/2014] [Indexed: 06/04/2023]
Abstract
Mitochondrial RNA processing in the kinetoplastid parasite Trypanosoma brucei involves numerous specialized catalytic activities that are incompletely understood. The mitochondrial genome consists of maxicircles that primarily encode rRNAs and mRNAs, and minicircles that encode a diverse array of guide RNAs (gRNAs). RNA editing uses these gRNAs as templates to recode mRNAs by insertion and deletion of uridine (U) residues. While the multiprotein complex that catalyzes RNA editing has been extensively studied, other players involved in mitochondrial RNA processing have remained enigmatic. The proteins required for processing mitochondrial polycistronic transcripts into mature species was essentially unknown until an RNase III endonuclease, called mRPN1, was reported to be involved in gRNA processing in procyclic form parasites. In this work, we examine the role of mRPN1 in gRNA processing in bloodstream form parasites, and show that complete elimination of mRPN1 by gene knockout does not alter gRNA maturation. These results indicate that another enzyme must be involved in gRNA processing.
Collapse
Affiliation(s)
- Jason Carnes
- Seattle Biomedical Research Institute, Seattle, Washington 98109, USA
| | - Melissa Lerch
- Seattle Biomedical Research Institute, Seattle, Washington 98109, USA
| | - Irina Kurtz
- Seattle Biomedical Research Institute, Seattle, Washington 98109, USA
| | - Ken Stuart
- Seattle Biomedical Research Institute, Seattle, Washington 98109, USA
| |
Collapse
|
18
|
Aphasizheva I, Zhang L, Wang X, Kaake RM, Huang L, Monti S, Aphasizhev R. RNA binding and core complexes constitute the U-insertion/deletion editosome. Mol Cell Biol 2014; 34:4329-42. [PMID: 25225332 PMCID: PMC4248751 DOI: 10.1128/mcb.01075-14] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 09/02/2014] [Accepted: 09/11/2014] [Indexed: 12/19/2022] Open
Abstract
Enzymes embedded into the RNA editing core complex (RECC) catalyze the U-insertion/deletion editing cascade to generate open reading frames in trypanosomal mitochondrial mRNAs. The sequential reactions of mRNA cleavage, U-addition or removal, and ligation are directed by guide RNAs (gRNAs). We combined proteomic, genetic, and functional studies with sequencing of total and complex-bound RNAs to define a protein particle responsible for the recognition of gRNAs and pre-mRNA substrates, editing intermediates, and products. This approximately 23-polypeptide tripartite assembly, termed the RNA editing substrate binding complex (RESC), also functions as the interface between mRNA editing, polyadenylation, and translation. Furthermore, we found that gRNAs represent only a subset of small mitochondrial RNAs, and yet an inexplicably high fraction of them possess 3' U-tails, which correlates with gRNA's enrichment in the RESC. Although both gRNAs and mRNAs are associated with the RESC, their metabolic fates are distinct: gRNAs are degraded in an editing-dependent process, whereas edited mRNAs undergo 3' adenylation/uridylation prior to translation. Our results demonstrate that the well-characterized editing core complex (RECC) and the RNA binding particle defined in this study (RESC) typify enzymatic and substrate binding macromolecular constituents, respectively, of the ∼40S RNA editing holoenzyme, the editosome.
Collapse
MESH Headings
- Base Sequence
- Mitochondria/genetics
- Open Reading Frames/genetics
- Peptide Chain Elongation, Translational/genetics
- Polyadenylation/genetics
- Protozoan Proteins/metabolism
- RNA/genetics
- RNA Editing/genetics
- RNA Interference
- RNA, Catalytic/genetics
- RNA, Guide, Kinetoplastida/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Mitochondrial
- RNA, Protozoan/genetics
- RNA, Small Interfering
- RNA-Binding Proteins/genetics
- Sequence Analysis, RNA
- Trypanosoma brucei brucei/genetics
Collapse
Affiliation(s)
- Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, USA
| | - Liye Zhang
- Section of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Xiaorong Wang
- Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Robyn M Kaake
- Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Lan Huang
- Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Stefano Monti
- Section of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, USA Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Aphasizhev R, Aphasizheva I. Mitochondrial RNA editing in trypanosomes: small RNAs in control. Biochimie 2014; 100:125-31. [PMID: 24440637 PMCID: PMC4737708 DOI: 10.1016/j.biochi.2014.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/06/2014] [Indexed: 12/29/2022]
Abstract
Mitochondrial mRNA editing in trypanosomes is a posttranscriptional processing pathway thereby uridine residues (Us) are inserted into, or deleted from, messenger RNA precursors. By correcting frameshifts, introducing start and stop codons, and often adding most of the coding sequence, editing restores open reading frames for mitochondrially-encoded mRNAs. There can be hundreds of editing events in a single pre-mRNA, typically spaced by few nucleotides, with U-insertions outnumbering U-deletions by approximately 10-fold. The mitochondrial genome is composed of ∼50 maxicircles and thousands of minicircles. Catenated maxi- and minicircles are packed into a dense structure called the kinetoplast; maxicircles yield rRNA and mRNA precursors while guide RNAs (gRNAs) are produced predominantly from minicircles, although varying numbers of maxicircle-encoded gRNAs have been identified in kinetoplastids species. Guide RNAs specify positions and the numbers of inserted or deleted Us by hybridizing to pre-mRNA and forming series of mismatches. These 50-60 nucleotide (nt) molecules are 3' uridylated by RET1 TUTase and stabilized via association with the gRNA binding complex (GRBC). Editing reactions of mRNA cleavage, U-insertion or deletion, and ligation are catalyzed by the RNA editing core complex (RECC). To function in mitochondrial translation, pre-mRNAs must further undergo post-editing 3' modification by polyadenylation/uridylation. Recent studies revealed a highly compound nature of mRNA editing and polyadenylation complexes and their interactions with the translational machinery. Here we focus on mechanisms of RNA editing and its functional coupling with pre- and post-editing 3' mRNA modification and gRNA maturation pathways.
Collapse
Affiliation(s)
- Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, 72 East Concord Street, Evans 4th Floor, E426, Boston, MA 02118, USA.
| | - Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, 72 East Concord Street, Evans 4th Floor, E426, Boston, MA 02118, USA
| |
Collapse
|
20
|
Aphasizheva I, Maslov DA, Aphasizhev R. Kinetoplast DNA-encoded ribosomal protein S12: a possible functional link between mitochondrial RNA editing and translation in Trypanosoma brucei. RNA Biol 2013; 10:1679-88. [PMID: 24270388 DOI: 10.4161/rna.26733] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial ribosomes of Trypanosoma brucei are composed of 9S and 12S rRNAs, which are encoded by the kinetoplast genome, and more than 150 proteins encoded in the nucleus and imported from the cytoplasm. However, a single ribosomal protein RPS12 is encoded by the kinetoplast DNA (kDNA) in all trypanosomatid species examined. As typical for these organisms, the gene itself is cryptic and its transcript undergoes an extensive U-insertion/deletion editing. An evolutionary trend to reduce or eliminate RNA editing could be traced with other cryptogenes, but the invariably pan-edited RPS12 cryptogene is apparently spared. Here we inquired whether editing of RPS12 mRNA is essential for mitochondrial translation. By RNAi-mediated knockdowns of RNA editing complexes and inducible knock-in of a key editing enzyme in procyclic parasites, we could reversibly downregulate production of edited RPS12 mRNA and, by inference, synthesis of this protein. While inhibition of editing decreased edited mRNA levels, the translation of edited (Cyb) and unedited (COI) mRNAs was blocked. Furthermore, the population of SSU-related 45S complexes declined upon inactivation of editing and so did the amount of mRNA-bound ribosomes. In bloodstream parasites, which lack active electron transport chain but still require translation of ATP synthase subunit 6 mRNA (A6), both edited RPS12 and A6 mRNAs were detected in translation complexes. Collectively, our results indicate that a single ribosomal protein gene retained by the kinetoplast mitochondrion serves as a possible functional link between editing and translation processes and provide the rationale for the evolutionary conservation of RPS12 pan-editing.
Collapse
Affiliation(s)
- Inna Aphasizheva
- Department of Molecular and Cell Biology; Boston University Goldman School of Dental Medicine; Boston, MA USA
| | - Dmitri A Maslov
- Department of Biology; University of California at Riverside; Riverside, CA USA
| | - Ruslan Aphasizhev
- Department of Molecular and Cell Biology; Boston University Goldman School of Dental Medicine; Boston, MA USA
| |
Collapse
|
21
|
Aphasizhev R, Aphasizheva I. Emerging roles of PPR proteins in trypanosomes: switches, blocks, and triggers. RNA Biol 2013; 10:1495-500. [PMID: 24055869 PMCID: PMC3858432 DOI: 10.4161/rna.26215] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/16/2013] [Accepted: 08/19/2013] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial genomes of trypanosomes are composed of catenated maxicircles and mini-circles that are densely packed into a nucleoprotein structure called the kinetoplast. Maxicircle DNA (~25 kb long, 20-50 copies) resembles a typical mitochondrial genome bearing rRNA and respiratory complex subunits genes, and also contains 12 cryptogenes whose transcripts require U-insertion/deletion editing to assemble protein-coding sequences. Production of guide RNAs for the editing process remains the only established function of mini-circle DNA (~1 kb, ~10000 copies). Although editing remains the most studied step in mRNA biogenesis, recent investigations illuminated complex nucleolytic processing and pre- and post-editing 3' modification events that ultimately create translation-competent mRNAs. Key mRNA 3' processing enzymes, such as KPAP1 poly(A) polymerase and RET1 TUTase, have been identified but the mechanisms regulating their activities remain poorly understood. Discoveries of multiple pentatricopeptide repeat-containing (PPR) proteins populating polyadenylation complex and ribosomal subunits opened exciting experimental prospects that may ultimately lead to an integrated picture of mitochondrial gene expression.
Collapse
Affiliation(s)
- Ruslan Aphasizhev
- Department of Molecular and Cell Biology; Boston University Goldman School of Dental Medicine; Boston, MA USA
| | - Inna Aphasizheva
- Department of Molecular and Cell Biology; Boston University Goldman School of Dental Medicine; Boston, MA USA
| |
Collapse
|
22
|
Kruse E, Voigt C, Leeder WM, Göringer HU. RNA helicases involved in U-insertion/deletion-type RNA editing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:835-41. [PMID: 23587716 DOI: 10.1016/j.bbagrm.2013.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 12/20/2022]
Abstract
Mitochondrial pre-messenger RNAs in kinetoplastid protozoa such as the disease-causing African trypanosomes are substrates of a unique RNA editing reaction. The process is characterized by the site-specific insertion and deletion of exclusively U nucleotides and converts nonfunctional pre-mRNAs into translatable transcripts. Similar to other RNA-based metabolic pathways, RNA editing is catalyzed by a macromolecular protein complex, the editosome. Editosomes provide a reactive surface for the individual steps of the catalytic cycle and involve as key players a specific class of small, non-coding RNAs termed guide (g)RNAs. gRNAs basepair proximal to an editing site and act as quasi templates in the U-insertion/deletion reaction. Next to the editosome several accessory proteins and complexes have been identified, which contribute to different steps of the reaction. This includes matchmaking-type RNA/RNA annealing factors as well as RNA helicases of the archetypical DEAD- and DExH/D-box families. Here we summarize the current structural, genetic and biochemical knowledge of the two characterized "editing RNA helicases" and provide an outlook onto dynamic processes within the editing reaction cycle. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.
Collapse
|
23
|
Abstract
RNA editing describes a chemically diverse set of biomolecular reactions in which the nucleotide sequence of RNA molecules is altered. Editing reactions have been identified in many organisms and frequently contribute to the maturation of organellar transcripts. A special editing reaction has evolved within the mitochondria of the kinetoplastid protozoa. The process is characterized by the insertion and deletion of uridine nucleotides into otherwise nontranslatable messenger RNAs. Kinetoplastid RNA editing involves an exclusive class of small, noncoding RNAs known as guide RNAs. Furthermore, a unique molecular machinery, the editosome, catalyzes the process. Editosomes are megadalton multienzyme assemblies that provide a catalytic surface for the individual steps of the reaction cycle. Here I review the current mechanistic understanding and molecular inventory of kinetoplastid RNA editing and the editosome machinery. Special emphasis is placed on the molecular morphology of the editing complex in order to correlate structural features with functional characteristics.
Collapse
Affiliation(s)
- H Ulrich Göringer
- Department of Genetics, Darmstadt University of Technology, Germany.
| |
Collapse
|
24
|
Park YJ, Hol WGJ. Explorations of linked editosome domains leading to the discovery of motifs defining conserved pockets in editosome OB-folds. J Struct Biol 2012; 180:362-73. [PMID: 22902563 PMCID: PMC3483419 DOI: 10.1016/j.jsb.2012.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/26/2012] [Accepted: 07/31/2012] [Indexed: 01/07/2023]
Abstract
Trypanosomatids form a group of protozoa which contain parasites of human, animals and plants. Several of these species cause major human diseases, including Trypanosoma brucei which is the causative agent of human African trypanosomiasis, also called sleeping sickness. These organisms have many highly unusual features including a unique U-insertion/deletion RNA editing process in the single mitochondrion. A key multi-protein complex, called the ∼20S editosome, or editosome, carries out a cascade of essential RNA-modifying reactions and contains a core of 12 different proteins of which six are the interaction proteins A1 to A6. Each of these interaction proteins comprises a C-terminal OB-fold and the smallest interaction protein A6 has been shown to interact with four other editosome OB-folds. Here we report the results of a "linked OB-fold" approach to obtain a view of how multiple OB-folds might interact in the core of the editosome. Constructs with variants of linked domains in 25 expression and co-expression experiments resulted in 13 soluble multi-OB-fold complexes. In several instances, these complexes were more homogeneous in size than those obtained from corresponding unlinked OB-folds. The crystal structure of A3(OB) linked to A6 could be elucidated and confirmed the tight interaction between these two OB domains as seen also in our recent complex of A3(OB) and A6 with nanobodies. In the current crystal structure of A3(OB) linked to A6, hydrophobic side chains reside in well-defined pockets of neighboring OB-fold domains. When analyzing the available crystal structures of editosome OB-folds, it appears that in five instances "Pocket 1" of A1(OB), A3(OB) and A6 is occupied by a hydrophobic side chain from a neighboring protein. In these three different OB-folds, Pocket 1 is formed by two conserved sequence motifs and an invariant arginine. These pockets might play a key role in the assembly or mechanism of the editosome by interacting with hydrophobic side chains from other proteins.
Collapse
Affiliation(s)
- Young-Jun Park
- Biomolecular Structure Center, Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Wim G. J. Hol
- Biomolecular Structure Center, Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA,To whom correspondence should be addressed. Telephone: +1 (206) 685 7044; Fax: +1 (206) 685 7002;
| |
Collapse
|
25
|
Park YJ, Budiarto T, Wu M, Pardon E, Steyaert J, Hol WGJ. The structure of the C-terminal domain of the largest editosome interaction protein and its role in promoting RNA binding by RNA-editing ligase L2. Nucleic Acids Res 2012; 40:6966-77. [PMID: 22561373 PMCID: PMC3413154 DOI: 10.1093/nar/gks369] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/10/2012] [Accepted: 04/11/2012] [Indexed: 12/20/2022] Open
Abstract
Trypanosomatids, such as the sleeping sickness parasite Trypanosoma brucei, contain a ∼ 20S RNA-editing complex, also called the editosome, which is required for U-insertion/deletion editing of mitochondrial mRNAs. The editosome contains a core of 12 proteins including the large interaction protein A1, the small interaction protein A6, and the editing RNA ligase L2. Using biochemical and structural data, we identified distinct domains of T. brucei A1 which specifically recognize A6 and L2. We provide evidence that an N-terminal domain of A1 interacts with the C-terminal domain of L2. The C-terminal domain of A1 appears to be required for the interaction with A6 and also plays a key role in RNA binding by the RNA-editing ligase L2 in trans. Three crystal structures of the C-terminal domain of A1 have been elucidated, each in complex with a nanobody as a crystallization chaperone. These structures permitted the identification of putative dsRNA recognition sites. Mutational analysis of conserved residues of the C-terminal domain identified Arg703, Arg731 and Arg734 as key requirements for RNA binding. The data show that the editing RNA ligase activity is modulated by a novel mechanism, i.e. by the trans-acting RNA binding C-terminal domain of A1.
Collapse
Affiliation(s)
- Young-Jun Park
- Biomolecular Structure Center, Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA, Structural Biology Brussels, Vrije Universiteit Brussel and Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Tanya Budiarto
- Biomolecular Structure Center, Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA, Structural Biology Brussels, Vrije Universiteit Brussel and Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Meiting Wu
- Biomolecular Structure Center, Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA, Structural Biology Brussels, Vrije Universiteit Brussel and Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Els Pardon
- Biomolecular Structure Center, Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA, Structural Biology Brussels, Vrije Universiteit Brussel and Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Jan Steyaert
- Biomolecular Structure Center, Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA, Structural Biology Brussels, Vrije Universiteit Brussel and Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Wim G. J. Hol
- Biomolecular Structure Center, Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA, Structural Biology Brussels, Vrije Universiteit Brussel and Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
26
|
|
27
|
Salavati R, Moshiri H, Kala S, Shateri Najafabadi H. Inhibitors of RNA editing as potential chemotherapeutics against trypanosomatid pathogens. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2011; 2:36-46. [PMID: 24533263 DOI: 10.1016/j.ijpddr.2011.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/17/2011] [Accepted: 10/21/2011] [Indexed: 01/14/2023]
Abstract
The related trypanosomatid pathogens, Trypanosoma brucei spp., Trypanosoma cruzi and Leishmania spp. cause devastating diseases in humans and animals and continue to pose a major challenge in drug development. Mitochondrial RNA editing, catalyzed by multi-protein complexes known as editosomes, has provided an opportunity for development of efficient and specific chemotherapeutic targets against trypanosomatid pathogens. This review will discuss both methods for discovery of RNA editing inhibitors, as well as inhibitors against the T. brucei editosome that were recently discovered through creative virtual and high throughput screening methods. In addition, the use of these inhibitors as agents that can block or perturb one or more steps of the RNA editing process will be discussed. These inhibitors can potentially be used to study the dynamic processing and assembly of the editosome proteins. A thorough understanding of the mechanisms and specificities of these new inhibitors is needed in order to contribute to both the functional studies of an essential gene expression mechanism and to the possibility of future drug development against the trypanosomatid pathogens.
Collapse
Affiliation(s)
- Reza Salavati
- Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G1Y6 ; Institute of Parasitology, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, Quebec, Canada H9X3V9 ; McGill Centre for Bioinformatics, McGill University, Bellini Building, 3649 Promenade Sir William Osler, Montreal, Quebec, Canada H3G0B1
| | - Houtan Moshiri
- Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G1Y6 ; Institute of Parasitology, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, Quebec, Canada H9X3V9
| | - Smriti Kala
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, Quebec, Canada H9X3V9
| | - Hamed Shateri Najafabadi
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, Quebec, Canada H9X3V9 ; McGill Centre for Bioinformatics, McGill University, Bellini Building, 3649 Promenade Sir William Osler, Montreal, Quebec, Canada H3G0B1
| |
Collapse
|
28
|
Madina BR, Kuppan G, Vashisht AA, Liang YH, Downey KM, Wohlschlegel JA, Ji X, Sze SH, Sacchettini JC, Read LK, Cruz-Reyes J. Guide RNA biogenesis involves a novel RNase III family endoribonuclease in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2011; 17:1821-30. [PMID: 21810935 PMCID: PMC3185915 DOI: 10.1261/rna.2815911] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 06/29/2011] [Indexed: 05/29/2023]
Abstract
The mitochondrial genome of kinetoplastids, including species of Trypanosoma and Leishmania, is an unprecedented DNA structure of catenated maxicircles and minicircles. Maxicircles represent the typical mitochondrial genome encoding components of the respiratory complexes and ribosomes. However, most mRNA sequences are cryptic, and their maturation requires a unique U insertion/deletion RNA editing. Minicircles encode hundreds of small guide RNAs (gRNAs) that partially anneal with unedited mRNAs and direct the extensive editing. Trypanosoma brucei gRNAs and mRNAs are transcribed as polycistronic precursors, which undergo processing preceding editing; however, the relevant nucleases are unknown. We report the identification and functional characterization of a close homolog of editing endonucleases, mRPN1 (mitochondrial RNA precursor-processing endonuclease 1), which is involved in gRNA biogenesis. Recombinant mRPN1 is a dimeric dsRNA-dependent endonuclease that requires Mg(2+), a critical catalytic carboxylate, and generates 2-nucleotide 3' overhangs. The cleavage specificity of mRPN1 is reminiscent of bacterial RNase III and thus is fundamentally distinct from editing endonucleases, which target a single scissile bond just 5' of short duplexes. An inducible knockdown of mRPN1 in T. brucei results in loss of gRNA and accumulation of precursor transcripts (pre-gRNAs), consistent with a role of mRPN1 in processing. mRPN1 stably associates with three proteins previously identified in relatively large complexes that do not contain mRPN1, and have been linked with multiple aspects of mitochondrial RNA metabolism. One protein, TbRGG2, directly binds mRPN1 and is thought to modulate gRNA utilization by editing complexes. The proposed participation of mRPN1 in processing of polycistronic RNA and its specific protein interactions in gRNA expression are discussed.
Collapse
Affiliation(s)
- Bhaskara Reddy Madina
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Gokulan Kuppan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Ajay A. Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1737, USA
| | - Yu-He Liang
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Kurtis M. Downey
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York 14214, USA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1737, USA
| | - Xinhua Ji
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Sing-Hoi Sze
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - James C. Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Laurie K. Read
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York 14214, USA
| | - Jorge Cruz-Reyes
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
29
|
Aphasizhev R, Aphasizheva I. Uridine insertion/deletion editing in trypanosomes: a playground for RNA-guided information transfer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2011; 2:669-85. [PMID: 21823228 PMCID: PMC3154072 DOI: 10.1002/wrna.82] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RNA editing is a collective term referring to enzymatic processes that change RNA sequence apart from splicing, 5' capping or 3' extension. In this article, we focus on uridine insertion/deletion mRNA editing found exclusively in mitochondria of kinetoplastid protists. This type of editing corrects frameshifts, introduces start and stops codons, and often adds much of the coding sequence to create an open reading frame. The mitochondrial genome of trypanosomatids, the most extensively studied clade within the order Kinetoplastida, is composed of ∼50 maxicircles with limited coding capacity and thousands of minicircles. To produce functional mRNAs, a multitude of nuclear-encoded factors mediate interactions of maxicircle-encoded pre-mRNAs with a vast repertoire of minicircle-encoded guide RNAs. Editing reactions of mRNA cleavage, U-insertions or U-deletions, and ligation are catalyzed by the RNA editing core complex (RECC, the 20S editosome) while each step of this enzymatic cascade is directed by guide RNAs. These 50-60 nucleotide (nt) molecules are 3' uridylated by RET1 TUTase and stabilized via association with the gRNA binding complex (GRBC). Remarkably, the information transfer between maxicircle and minicircle transcriptomes does not rely on template-dependent polymerization of nucleic acids. Instead, intrinsic substrate specificities of key enzymes are largely responsible for the fidelity of editing. Conversely, the efficiency of editing is enhanced by assembling enzymes and RNA binding proteins into stable multiprotein complexes. WIREs RNA 2011 2 669-685 DOI: 10.1002/wrna.82 For further resources related to this article, please visit the WIREs website.
Collapse
MESH Headings
- Endonucleases/chemistry
- Endonucleases/genetics
- Endonucleases/metabolism
- Models, Biological
- Models, Molecular
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/metabolism
- RNA Editing/genetics
- RNA Editing/physiology
- RNA Helicases/chemistry
- RNA Helicases/genetics
- RNA Helicases/metabolism
- RNA, Guide, Kinetoplastida/genetics
- RNA, Guide, Kinetoplastida/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Protozoan/chemistry
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Trypanosoma/genetics
- Trypanosoma/metabolism
- Uridine/chemistry
Collapse
Affiliation(s)
- Ruslan Aphasizhev
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, USA.
| | | |
Collapse
|
30
|
Aphasizheva I, Maslov D, Wang X, Huang L, Aphasizhev R. Pentatricopeptide repeat proteins stimulate mRNA adenylation/uridylation to activate mitochondrial translation in trypanosomes. Mol Cell 2011; 42:106-17. [PMID: 21474072 DOI: 10.1016/j.molcel.2011.02.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 12/10/2010] [Accepted: 01/20/2011] [Indexed: 01/10/2023]
Abstract
The majority of trypanosomal mitochondrial pre-mRNAs undergo massive uridine insertion/deletion editing, which creates open reading frames. Although the pre-editing addition of short 3' A tails is known to stabilize transcripts during and after the editing, the processing event committing the fully edited mRNAs to translation remained unknown. Here, we show that a heterodimer of pentatricopeptide repeat-containing (PPR) proteins, termed kinetoplast polyadenylation/uridylation factors (KPAFs) 1 and 2, induces the postediting addition of A/U heteropolymers by KPAP1 poly(A) polymerase and RET1 terminal uridyltransferase. Edited transcripts bearing 200- to 300-nucleotide-long A/U tails, but not short A tails, were enriched in translating ribosomal complexes and affinity-purified ribosomal particles. KPAF1 repression led to a selective loss of A/U-tailed mRNAs and concomitant inhibition of protein synthesis. These results establish A/U extensions as the defining cis-elements of translation-competent mRNAs. Furthermore, we demonstrate that A/U-tailed mRNA preferentially interacts with the small ribosomal subunit, whereas edited substrates and complexes bind to the large subunit.
Collapse
Affiliation(s)
- Inna Aphasizheva
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
31
|
Göringer HU, Katari VS, Böhm C. The structural landscape of native editosomes in African trypanosomes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2011; 2:395-407. [PMID: 21957025 DOI: 10.1002/wrna.67] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The majority of mitochondrial pre-messenger RNAs in African trypanosomes are substrates of a U-nucleotide-specific insertion/deletion-type RNA editing reaction. The process converts nonfunctional pre-mRNAs into translation-competent molecules and can generate protein diversity by alternative editing. High molecular mass protein complexes termed editosomes catalyze the processing reaction. They stably interact with pre-edited mRNAs and small noncoding RNAs, known as guide RNAs (gRNAs), which act as templates in the reaction. Editosomes provide a molecular surface for the individual steps of the catalytic reaction cycle and although the protein inventory of the complexes has been studied in detail, a structural analysis of the processing machinery has only recently been accomplished. Electron microscopy in combination with single particle reconstruction techniques has shown that steady state isolates of editosomes contain ensembles of two classes of stable complexes with calculated apparent hydrodynamic sizes of 20S and 35-40S. 20S editosomes are free of substrate RNAs, whereas 35-40S editosomes are associated with endogenous mRNA and gRNA molecules. Both complexes are characterized by a diverse structural landscape, which include complexes that lack or possess defined subdomains. Here, we summarize the consensus models and structural landmarks of both complexes. We correlate structural features with functional characteristics and provide an outlook into dynamic aspects of the editing reaction cycle.
Collapse
Affiliation(s)
- H Ulrich Göringer
- Department of Microbiology and Genetics, Darmstadt University of Technology, Darmstadt, Germany.
| | | | | |
Collapse
|
32
|
Aphasizhev R, Aphasizheva I. Mitochondrial RNA processing in trypanosomes. Res Microbiol 2011; 162:655-63. [PMID: 21596134 DOI: 10.1016/j.resmic.2011.04.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 04/04/2011] [Indexed: 01/20/2023]
Abstract
The mitochondrial genome of trypanosomes is composed of ∼50 maxicircles and thousands of minicircles. Maxi-(∼25 kb) and mini-(∼1 kb)circles are catenated and packed into a dense structure called a kinetoplast. Both types of circular DNA are transcribed by a phage-like RNA polymerase: maxicircles yield multicistronic rRNA and mRNA precursors, while guide RNA (gRNA) precursors are produced from minicircles. To function in mitochondrial translation, pre-mRNAs must undergo a nucleolytic processing and 3' modifications, and often uridine insertion/deletion editing. gRNAs, which represent short (50-60 nt) RNAs directing editing reactions, are produced by 3' nucleolytic processing of a much longer precursor followed by 3' uridylation. Ribosomal RNAs are excised from precursors and their 3' ends are also trimmed and uridylated. All tRNAs are imported from the cytoplasm and some are further modified and edited in the mitochondrial matrix. Historically, the fascinating phenomenon of RNA editing has been extensively studied as an isolated pathway in which nuclear-encoded proteins mediate interactions of maxi- and minicircle transcripts to create open reading frames. However, recent studies unraveled a highly integrated network of mitochondrial genome expression including critical pre- and post-editing 3' mRNA processing, and gRNA and rRNA maturation steps. Here we focus on RNA 3' adenylation and uridylation as processes essential for biogenesis, stability and functioning of mitochondrial RNAs.
Collapse
Affiliation(s)
- Ruslan Aphasizhev
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, B240 Medical Sciences I, Irvine, CA 92697, USA.
| | | |
Collapse
|
33
|
Moshiri H, Acoca S, Kala S, Najafabadi HS, Hogues H, Purisima E, Salavati R. Naphthalene-based RNA editing inhibitor blocks RNA editing activities and editosome assembly in Trypanosoma brucei. J Biol Chem 2011; 286:14178-89. [PMID: 21378165 DOI: 10.1074/jbc.m110.199646] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
RNA editing, catalyzed by the multiprotein editosome complex, is an essential step for the expression of most mitochondrial genes in trypanosomatid pathogens. It has been shown previously that Trypanosoma brucei RNA editing ligase 1 (TbREL1), a core catalytic component of the editosome, is essential in the mammalian life stage of these parasitic pathogens. Because of the availability of its crystal structure and absence from human, the adenylylation domain of TbREL1 has recently become the focus of several studies for designing inhibitors that target its adenylylation pocket. Here, we have studied new and existing inhibitors of TbREL1 to better understand their mechanism of action. We found that these compounds are moderate to weak inhibitors of adenylylation of TbREL1 and in fact enhance adenylylation at higher concentrations of protein. Nevertheless, they can efficiently block deadenylylation of TbREL1 in the editosome and, consequently, result in inhibition of the ligation step of RNA editing. Further experiments directly showed that the studied compounds inhibit the interaction of the editosome with substrate RNA. This was supported by the observation that not only the ligation activity of TbREL1 but also the activities of other editosome proteins such as endoribonuclease, terminal RNA uridylyltransferase, and uridylate-specific exoribonuclease, all of which require the interaction of the editosome with the substrate RNA, are efficiently inhibited by these compounds. In addition, we found that these compounds can interfere with the integrity and/or assembly of the editosome complex, opening the exciting possibility of using them to study the mechanism of assembly of the editosome components.
Collapse
Affiliation(s)
- Houtan Moshiri
- Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec H3G1Y6, Canada
| | | | | | | | | | | | | |
Collapse
|
34
|
Kala S, Salavati R. OB-fold domain of KREPA4 mediates high-affinity interaction with guide RNA and possesses annealing activity. RNA (NEW YORK, N.Y.) 2010; 16:1951-67. [PMID: 20713467 PMCID: PMC2941104 DOI: 10.1261/rna.2124610] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 07/19/2010] [Indexed: 05/29/2023]
Abstract
KREPA4, also called MP24, is an essential mitochondrial guide RNA (gRNA)-binding protein with a preference for the 3' oligo(U) tail in trypanosomes. Structural prediction and compositional analysis of KREPA4 have identified a conserved OB (oligonucleotide/oligosaccharide-binding)-fold at the C-terminal end and two low compositional complexity regions (LCRs) at its N terminus. Concurrent with these predictions, one or both of these regions in KREPA4 protein may be involved in gRNA binding. To test this possibility, deletion mutants of KREPA4 were made and the effects on the gRNA-binding affinities were measured by quantitative electrophoretic mobility shift assays. The gRNA-binding specificities of these mutants were evaluated by competition experiments using gRNAs with U-tail deletions or stem-loop modifications and uridylated nonguide RNAs or heterologous RNA. Our results identified the predicted OB-fold as the functional domain of KREPA4 that mediates a high-affinity interaction with the gRNA oligo(U) tail. An additional contribution toward RNA-binding function was localized to LCRs that further stabilize the binding through sequence-specific interactions with the guide secondary structure. In this study we also found that the predicted OB-fold has an RNA annealing activity, representing the first report of such activity for a core component of the RNA editing complex.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Binding, Competitive
- Kinetics
- Models, Biological
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Folding
- Protein Structure, Tertiary
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/metabolism
- RNA Editing
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA, Guide, Kinetoplastida/chemistry
- RNA, Guide, Kinetoplastida/genetics
- RNA, Guide, Kinetoplastida/metabolism
- RNA, Protozoan/chemistry
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Deletion
- Trypanosoma brucei brucei/genetics
- Trypanosoma brucei brucei/metabolism
Collapse
Affiliation(s)
- Smriti Kala
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | | |
Collapse
|
35
|
Ringpis GE, Aphasizheva I, Wang X, Huang L, Lathrop RH, Hatfield GW, Aphasizhev R. Mechanism of U insertion RNA editing in trypanosome mitochondria: the bimodal TUTase activity of the core complex. J Mol Biol 2010; 399:680-95. [PMID: 20362585 PMCID: PMC2885523 DOI: 10.1016/j.jmb.2010.03.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 03/23/2010] [Accepted: 03/25/2010] [Indexed: 12/20/2022]
Abstract
Expression of the trypanosomal mitochondrial genome requires the insertion and deletion of uridylyl residues at specific sites in pre-mRNAs. RET2 terminal uridylyl transferase is an integral component of the RNA editing core complex (RECC) and is responsible for the guide-RNA-dependent U insertion reaction. By analyzing RNA-interference-based knock-in Trypanosoma brucei cell lines, purified editing complex, and individual protein, we have investigated RET2's association with the RECC. In addition, the U insertion activity exhibited by RET2 as an RECC subunit was compared with characteristics of the monomeric protein. We show that interaction of RET2 with RECC is accomplished via a protein-protein contact between its middle domain and a structural subunit, MP81. The recombinant RET2 catalyzes a faithful editing on gapped (precleaved) double-stranded RNA substrates, and this reaction requires an internal monophosphate group at the 5' end of the mRNA 3' cleavage fragment. However, RET2 processivity is limited to insertion of three Us. Incorporation into the RECC voids the internal phosphate requirement and allows filling of longer gaps similar to those observed in vivo. Remarkably, monomeric and RECC-embedded enzymes display a similar bimodal activity: the distributive insertion of a single uracil is followed by a processive extension limited by the number of guiding nucleotides. Based on the RNA substrate specificity of RET2 and the purine-rich nature of U insertion sites, we propose that the distributive +1 insertion creates a substrate for the processive gap-filling reaction. Upon base-pairing of the +1 extended 5' cleavage fragment with a guiding nucleotide, this substrate is recognized by RET2 in a different mode compared to the product of the initial nucleolytic cleavage. Therefore, RET2 distinguishes base pairs in gapped RNA substrates which may constitute an additional checkpoint contributing to overall fidelity of the editing process.
Collapse
Affiliation(s)
- Gene-Errol Ringpis
- Department of Microbiology & Molecular Genetics, University of California Irvine, California, 92697, USA
| | - Inna Aphasizheva
- Department of Microbiology & Molecular Genetics, University of California Irvine, California, 92697, USA
| | - Xiaorong Wang
- Department of Physiology & Biophysics, University of California Irvine, California, 92697, USA
| | - Lan Huang
- Department of Physiology & Biophysics, University of California Irvine, California, 92697, USA
| | - Richard H. Lathrop
- Department of Informatics and Computer Science, University of California Irvine, California, 92697, USA
- Institute for Genomics and Bioinformatics, University of California Irvine, California, 92697, USA
| | - G. Wesley Hatfield
- Institute for Genomics and Bioinformatics, University of California Irvine, California, 92697, USA
| | - Ruslan Aphasizhev
- Department of Microbiology & Molecular Genetics, University of California Irvine, California, 92697, USA
| |
Collapse
|
36
|
Ringpis GE, Stagno J, Aphasizhev R. Mechanism of U-insertion RNA editing in trypanosome mitochondria: characterization of RET2 functional domains by mutational analysis. J Mol Biol 2010; 399:696-706. [PMID: 20417643 DOI: 10.1016/j.jmb.2010.04.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 04/14/2010] [Accepted: 04/19/2010] [Indexed: 12/30/2022]
Abstract
3'-Terminal uridylyl transferases (TUTases) selectively bind uridine 5'-triphosphate (UTP) and catalyze the addition of uridine 5'-monophosphate to the 3'-hydroxyl of RNA substrates in a template-independent manner. RNA editing TUTase 1 and RNA editing TUTase 2 (RET2) play central roles in uridine insertion/deletion RNA editing, which is an essential part of mitochondrial RNA processing in trypanosomes. Although the conserved N-terminal (catalytic) domain and C-terminal (nucleotide base recognition) domain are readily distinguished in all known TUTases, nucleotide specificity, RNA substrate preference, processivity, quaternary structures, and auxiliary domains vary significantly among enzymes of divergent biological functions. RET2 acts as a subunit of the RNA editing core complex to carry out guide-RNA-dependent U-insertion into mitochondrial mRNA. By correlating mutational effects on RET2 activity as recombinant protein and as RNA editing core complex subunit with RNAi-based knock-in phenotypes, we have assessed the UTP and RNA binding sites in RET2. Here we demonstrate functional conservation of key UTP-binding and metal-ion-coordinating residues and identify amino acids involved in RNA substrate recognition. Invariant arginine residues 144 and 435 positioned in the vicinity of the UTP binding site are critical for RET2 activity on single-stranded and double-stranded RNAs, as well as function in vivo. Recognition of a double-stranded RNA, which resembles a guide RNA/mRNA duplex, is further facilitated by multipoint contacts across the RET2-specific middle domain.
Collapse
Affiliation(s)
- Gene-Errol Ringpis
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, B240 Medical Sciences I, Irvine, CA 92697, USA
| | | | | |
Collapse
|
37
|
Stagno J, Aphasizheva I, Bruystens J, Luecke H, Aphasizhev R. Structure of the mitochondrial editosome-like complex associated TUTase 1 reveals divergent mechanisms of UTP selection and domain organization. J Mol Biol 2010; 399:464-75. [PMID: 20403364 DOI: 10.1016/j.jmb.2010.04.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 04/10/2010] [Accepted: 04/13/2010] [Indexed: 01/11/2023]
Abstract
RNA uridylylation reactions catalyzed by terminal uridylyl transferases (TUTases) play critical roles in the formation of the mitochondrial transcriptome in trypanosomes. Two mitochondrial RNA editing TUTases have been described: RNA editing TUTase 1 catalyzes guide RNA, ribosomal RNA, and mRNA 3'-uridylylation, and RNA editing TUTase 2 acts as a subunit of the RNA editing core complex (also referred to as the 20S editosome) to perform guided U-insertion mRNA editing. Although RNA editing TUTase 1 and RNA editing TUTase 2 carry out distinct functions and possess dissimilar enzymatic properties, their catalytic N-terminal domain and base recognition C-terminal domain display a high degree of similarity, while their middle domains are less conserved. MEAT1 (mitochondrial editosome-like complex associated TUTase 1), which interacts with an editosome-like assembly and is exclusively U-specific, nonetheless shows limited similarity with editing TUTases and lacks the middle domain. The crystal structures of apo MEAT1 and UTP-bound MEAT1 refined to 1.56 A and 1.95 A, respectively, reveal an unusual mechanism of UTP selection and domain organization previously unseen in TUTases. In addition to established invariant UTP-binding determinants, we have identified and verified critical contributions of MEAT1-specific residues using mutagenesis. Furthermore, MEAT1 possesses a novel bridging domain, which extends from the C-terminal domain and makes hydrophobic contacts with the N-terminal domain, thereby creating a cavity adjacent to the UTP-binding site. Unlike the minimal TUT4 TUTase, MEAT1 shows no appreciable conformational change upon UTP binding and apparently does not require RNA substrate to select a cognate nucleoside triphosphate. Because MEAT1 is essential for the viability of the bloodstream and insect forms of Trypanosoma brucei, the unique organization of its active site renders this protein an attractive target for trypanocide development.
Collapse
Affiliation(s)
- Jason Stagno
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
38
|
Sprehe M, Fisk JC, McEvoy SM, Read LK, Schumacher MA. Structure of the Trypanosoma brucei p22 protein, a cytochrome oxidase subunit II-specific RNA-editing accessory factor. J Biol Chem 2010; 285:18899-908. [PMID: 20392699 PMCID: PMC2881812 DOI: 10.1074/jbc.m109.066597] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Kinetoplastid RNA (k-RNA) editing is a complex process in the mitochondria of kinetoplastid protozoa, including Trypanosoma brucei, that involves the guide RNA-directed insertion and deletion of uridines from precursor-mRNAs to produce mature, translatable mRNAs. k-RNA editing is performed by multiprotein complexes called editosomes. Additional non-editosome components termed k-RNA-editing accessory factors affect the extent of editing of specific RNAs or classes of RNAs. The T. brucei p22 protein was identified as one such accessory factor. Here we show that p22 contributes to cell growth in the procyclic form of T. brucei and functions as a cytochrome oxidase subunit II-specific k-RNA-editing accessory factor. To gain insight into its functions, we solved the crystal structure of the T. brucei p22 protein to 2.0-A resolution. The p22 structure consists of a six-stranded, antiparallel beta-sheet flanked by five alpha-helices. Three p22 subunits combine to form a tight trimer that is primarily stabilized by interactions between helical residues. One side of the trimer is strikingly acidic, while the opposite face is more neutral. Database searches show p22 is structurally similar to human p32, which has a number of functions, including regulation of RNA splicing. p32 interacts with a number of target proteins via its alpha1 N-terminal helix, which is among the most conserved regions between p22 and p32. Co-immunoprecipitation studies showed that p22 interacts with the editosome and the k-RNA accessory protein, TbRGG2, and alpha1 of p22 was shown to be important for the p22-TbRGG2 interaction. Thus, these combined studies suggest that p22 mediates its role in k-RNA editing by acting as an adaptor protein.
Collapse
Affiliation(s)
- Mareen Sprehe
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
39
|
Aphasizheva I, Aphasizhev R. RET1-catalyzed uridylylation shapes the mitochondrial transcriptome in Trypanosoma brucei. Mol Cell Biol 2010; 30:1555-67. [PMID: 20086102 PMCID: PMC2832499 DOI: 10.1128/mcb.01281-09] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 10/30/2009] [Accepted: 01/05/2010] [Indexed: 01/25/2023] Open
Abstract
RNA uridylylation is critical for the expression of the mitochondrial genome in trypanosomes. Short U tails are added to guide RNAs and rRNAs, while long A/U heteropolymers mark 3' ends of most mRNAs. Three divergent mitochondrial terminal uridylyl transferases (TUTases) are known: RET1 catalyzes guide RNA (gRNA) uridylylation, RET2 executes U insertion mRNA editing, and MEAT1 associates with the editosome-like complex. However, the activities responsible for 3' uridylylation of rRNAs and mRNAs, and the roles of these modifications, are unclear. To dissect the functions of mitochondrial TUTases, we investigated the effects of their repression and overexpression on abundance, processing, 3'-end status, and in vivo stability of major mitochondrially encoded RNA classes. We show that RET1 adds U tails to gRNAs, rRNAs, and select mRNAs and contributes U's into A/U heteropolymers. Furthermore, RET1's TUTase activity is required for the nucleolytic processing of gRNA, rRNA, and mRNA precursors. The U tail's presence does not affect the stability of gRNAs and rRNAs, while transcript-specific uridylylation triggers 3' to 5' mRNA decay. We propose that the minicircle-encoded antisense transcripts, which are stabilized by RET1-catalyzed uridylylation, may direct a nucleolytic cleavage of multicistronic precursors.
Collapse
Affiliation(s)
- Inna Aphasizheva
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California 92697
| | - Ruslan Aphasizhev
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California 92697
| |
Collapse
|
40
|
Hernandez A, Madina BR, Ro K, Wohlschlegel JA, Willard B, Kinter MT, Cruz-Reyes J. REH2 RNA helicase in kinetoplastid mitochondria: ribonucleoprotein complexes and essential motifs for unwinding and guide RNA (gRNA) binding. J Biol Chem 2010; 285:1220-8. [PMID: 19850921 PMCID: PMC2801250 DOI: 10.1074/jbc.m109.051862] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 09/25/2009] [Indexed: 01/01/2023] Open
Abstract
Regulation of gene expression in kinetoplastid mitochondria is largely post-transcriptional and involves the orchestration of polycistronic RNA processing, 3'-terminal maturation, RNA editing, turnover, and translation; however, these processes remain poorly studied. Core editing complexes and their U-insertion/deletion activities are relatively well characterized, and a battery of ancillary factors has recently emerged. This study characterized a novel DExH-box RNA helicase, termed here REH2 (RNA editing associated helicase 2), in unique ribonucleoprotein complexes that exhibit unwinding and guide RNA binding activities, both of which required a double-stranded RNA-binding domain (dsRBD) and a functional helicase motif I of REH2. REH2 complexes and recently identified related particles share a multiprotein core but are distinguished by several differential polypeptides. Finally, REH2 associates transiently, via RNA, with editing complexes, mitochondrial ribosomes, and several ancillary factors that control editing and RNA stability. We propose that these putative higher order structures coordinate mitochondrial gene expression.
Collapse
Affiliation(s)
- Alfredo Hernandez
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Bhaskara Reddy Madina
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Kevin Ro
- the Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095-1737, and
| | - James A. Wohlschlegel
- the Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095-1737, and
| | - Belinda Willard
- the Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Mike T. Kinter
- the Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Jorge Cruz-Reyes
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
41
|
The assembly of F1FO-ATP synthase is disrupted upon interference of RNA editing in Trypanosoma brucei. Int J Parasitol 2010; 40:45-54. [DOI: 10.1016/j.ijpara.2009.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 06/18/2009] [Accepted: 07/07/2009] [Indexed: 11/20/2022]
|
42
|
Schnaufer A, Wu M, Park YJ, Nakai T, Deng J, Proff R, Hol WGJ, Stuart KD. A protein-protein interaction map of trypanosome ~20S editosomes. J Biol Chem 2009; 285:5282-95. [PMID: 20018860 DOI: 10.1074/jbc.m109.059378] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mitochondrial mRNA editing in trypanosomatid parasites involves several multiprotein assemblies, including three very similar complexes that contain the key enzymatic editing activities and sediment at ~20S on glycerol gradients. These ~20S editosomes have a common set of 12 proteins, including enzymes for uridylyl (U) removal and addition, 2 RNA ligases, 2 proteins with RNase III-like domains, and 6 proteins with predicted oligonucleotide binding (OB) folds. In addition, each of the 3 distinct ~20S editosomes contains a different RNase III-type endonuclease, 1 of 3 related proteins and, in one case, an additional exonuclease. Here we present a protein-protein interaction map that was obtained through a combination of yeast two-hybrid analysis and subcomplex reconstitution with recombinant protein. This map interlinks ten of the proteins and in several cases localizes the protein region mediating the interaction, which often includes the predicted OB-fold domain. The results indicate that the OB-fold proteins form an extensive protein-protein interaction network that connects the two trimeric subcomplexes that catalyze U removal or addition and RNA ligation. One of these proteins, KREPA6, interacts with the OB-fold zinc finger protein in each subcomplex that interconnects their two catalytic proteins. Another OB-fold protein, KREPA3, appears to link to the putative endonuclease subcomplex. These results reveal a physical organization that underlies the coordination of the various catalytic and substrate binding activities within the ~20S editosomes during the editing process.
Collapse
Affiliation(s)
- Achim Schnaufer
- Seattle Biomedical Research Institute, Seattle, Washington 98109, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Simpson L, Aphasizhev R, Lukes J, Cruz-Reyes J. Guide to the nomenclature of kinetoplastid RNA editing: a proposal. Protist 2009; 161:2-6. [PMID: 19945343 DOI: 10.1016/j.protis.2009.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
44
|
Aphasizheva I, Ringpis GE, Weng J, Gershon PD, Lathrop RH, Aphasizhev R. Novel TUTase associates with an editosome-like complex in mitochondria of Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2009; 15:1322-1337. [PMID: 19465686 PMCID: PMC2704088 DOI: 10.1261/rna.1538809] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Accepted: 04/06/2009] [Indexed: 05/27/2023]
Abstract
Expression of mitochondrial genomes in Kinetoplastida protists requires massive uracil insertion/deletion mRNA editing. The cascade of editing reactions is accomplished by a multiprotein complex, the 20S editosome, and is directed by trans-acting guide RNAs. Two distinct RNA terminal uridylyl transferases (TUTases), RNA Editing TUTase 1 (RET1) and RNA Editing TUTase 2 (RET2), catalyze 3' uridylylation of guide RNAs and U-insertions into the mRNAs, respectively. RET1 is also involved in mitochondrial mRNA turnover and participates in numerous heterogeneous complexes; RET2 is an integral part of the 20S editosome, in which it forms a U-insertion subcomplex with zinc finger protein MP81 and RNA editing ligase REL2. Here we report the identification of a third mitochondrial TUTase from Trypanosoma brucei. The mitochondrial editosome-like complex associated TUTase (MEAT1) interacts with a 20S editosome-like particle, effectively substituting the U-insertion subcomplex. MEAT1 and RET2 are mutually exclusive in their respective complexes, which otherwise share several components. Similarly to RET2, MEAT1 is exclusively U-specific in vitro and is active on gapped double-stranded RNA resembling editing substrates. However, MEAT1 does not require a 5' phosphate group on the 3' mRNA cleavage fragment produced by editing endonucleases. The functional RNAi complementation experiments showed that MEAT1 is essential for viability of bloodstream and insect parasite forms. The growth inhibition phenotype in the latter can be rescued by coexpressing an RNAi-resistant gene with double-stranded RNA targeting the endogenous transcript. However, preliminary RNA analysis revealed no gross effects on RNA editing in MEAT1-depleted cells and indicated its possible role in regulating the mitochondrial RNA stability.
Collapse
Affiliation(s)
- Inna Aphasizheva
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, California 92697, USA
| | | | | | | | | | | |
Collapse
|
45
|
Ernst NL, Panicucci B, Carnes J, Stuart K. Differential functions of two editosome exoUases in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2009; 15:947-957. [PMID: 19318463 PMCID: PMC2673068 DOI: 10.1261/rna.1373009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 01/22/2009] [Indexed: 05/27/2023]
Abstract
Mitochondrial RNAs in trypanosomes are edited by the insertion and deletion of uridine (U) nucleotides to form translatable mRNAs. Editing is catalyzed by three distinct editosomes that contain two related U-specific exonucleases (exoUases), KREX1 and KREX2, with the former present exclusively in KREN1 editosomes and the latter present in all editosomes. We show here that repression of KREX1 expression leads to a concomitant reduction of KREN1 in approximately 20S editosomes, whereas KREX2 repression results in reductions of KREPA2 and KREL1 in approximately 20S editosomes. Knockdown of KREX1 results in reduced cell viability, reduction of some edited RNA in vivo, and a significant reduction in deletion but not insertion endonuclease activity in vitro. In contrast, KREX2 knockdown does not affect cell growth or editing in vivo but results in modest reductions of both insertion and deletion endonuclease activities and a significant reduction of U removal in vitro. Simultaneous knockdown of both proteins leads to a more severe inhibition of cell growth and editing in vivo and an additive effect on endonuclease cleavage in vitro. Taken together, these results indicate that both KREX1 and KREX2 are important for retention of other proteins in editosomes, and suggest that the reduction in cell viability upon KREX1 knockdown is likely a consequence of KREN1 loss. Furthermore, although KREX2 appears dispensable for cell growth, the increased inhibition of editing and parasite viability upon knockdown of both KREX1 and KREX2 together suggests that both proteins have roles in editing.
Collapse
Affiliation(s)
- Nancy Lewis Ernst
- Seattle Biomedical Research Institute, Seattle, Washington 98109, USA
| | | | | | | |
Collapse
|
46
|
Mellman DL, Anderson RA. A novel gene expression pathway regulated by nuclear phosphoinositides. ACTA ACUST UNITED AC 2009; 49:11-28. [DOI: 10.1016/j.advenzreg.2009.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Etheridge RD, Clemens DM, Gershon PD, Aphasizhev R. Identification and characterization of nuclear non-canonical poly(A) polymerases from Trypanosoma brucei. Mol Biochem Parasitol 2008; 164:66-73. [PMID: 19070634 DOI: 10.1016/j.molbiopara.2008.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 10/23/2008] [Accepted: 11/11/2008] [Indexed: 01/19/2023]
Abstract
Regulation of nuclear genome expression in Trypanosoma brucei is critical for this protozoan parasite's successful transition between its vertebrate and invertebrate host environments. The canonical eukaryotic circuits such as modulation of transcription initiation, mRNA splicing and polyadenylation appear to be nearly non-existent in T. brucei suggesting that the transcriptome is primarily defined by mRNA turnover. Our previous work has highlighted sequence similarities between terminal RNA uridylyl transferases (TUTases) and non-canonical poly(A) polymerases, which are widely implicated in regulating nuclear, cytoplasmic and organellar RNA decay throughout the eukaryotic lineage. Here, we have continued characterization of TUTase-like proteins in T. brucei and identified two nuclear non-canonical poly(A) polymerases (ncPAPs). The 82kDa TbncPAP1 is essential for viability of procyclic and bloodstream forms of T. brucei. Similar to Trf4/5 proteins from budding yeast, TbncPAP1 requires protein cofactor(s) to exert poly(A) polymerase activity in vitro. The recombinant 54kDa TbncPAP2 showed a PAP activity as an individual polypeptide. Proteomic analysis of the TbncPAP1 interactions demonstrated its association with Mtr4 RNA helicase and several RNA binding proteins, including a potential ortholog of Air1p/2p proteins, which indicates the presence of a stable TRAMP-like complex in trypanosomes. Our findings suggest that TbncPAP1 may be a "quality control" nuclear PAP involved in targeting aberrant or anti-sense transcripts for degradation by the 3'-exosome. Such mechanisms are likely to play a major role in alleviating promiscuity of the transcriptional machinery.
Collapse
Affiliation(s)
- Ronald D Etheridge
- Department of Microbiology and Molecular Genetics, School of Medicine, B240 Medical Sciences I, University of California, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
48
|
Weng J, Aphasizheva I, Etheridge RD, Huang L, Wang X, Falick AM, Aphasizhev R. Guide RNA-binding complex from mitochondria of trypanosomatids. Mol Cell 2008; 32:198-209. [PMID: 18951088 PMCID: PMC2645705 DOI: 10.1016/j.molcel.2008.08.023] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2008] [Revised: 07/14/2008] [Accepted: 08/18/2008] [Indexed: 12/16/2022]
Abstract
In the mitochondria of trypanosomatids, the majority of mRNAs undergo massive uracil-insertion/deletion editing. Throughout the processes of pre-mRNA polyadenylation, guide RNA (gRNA) uridylylation and annealing to mRNA, and editing reactions, several multiprotein complexes must engage in transient interactions to produce a template for protein synthesis. Here, we report the identification of a protein complex essential for gRNA stability. The gRNA-binding complex (GRBC) interacts with gRNA processing, editing, and polyadenylation machineries and with the mitochondrial edited mRNA stability (MERS1) factor. RNAi knockdown of the core subunits, GRBC1 and GRBC2, led to the elimination of gRNAs, thus inhibiting mRNA editing. Inhibition of MERS1 expression selectively abrogated edited mRNAs. Homologous proteins unique to the order of Kinetoplastida, GRBC1 and GRBC2, form a stable 200 kDa particle that directly binds gRNAs. Systematic analysis of RNA-mediated and RNA-independent interactions involving the GRBC and MERS1 suggests a unified model for RNA processing in the kinetoplast mitochondria.
Collapse
Affiliation(s)
- James Weng
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Inna Aphasizheva
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Ronald D. Etheridge
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Lan Huang
- Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Xiaorong Wang
- Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Arnold M. Falick
- Howard Hughes Medical Institute Mass Spectrometry Laboratory and Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Ruslan Aphasizhev
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
49
|
Law JA, O'Hearn SF, Sollner-Webb B. Trypanosoma brucei RNA editing protein TbMP42 (band VI) is crucial for the endonucleolytic cleavages but not the subsequent steps of U-deletion and U-insertion. RNA (NEW YORK, N.Y.) 2008; 14:1187-200. [PMID: 18441050 PMCID: PMC2390806 DOI: 10.1261/rna.899508] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 02/18/2008] [Indexed: 05/20/2023]
Abstract
Trypanosome mitochondrial mRNAs achieve their coding sequences through RNA editing. This process, catalyzed by approximately 20S protein complexes, involves large numbers of uridylate (U) insertions and deletions within mRNA precursors. Here we analyze the role of the essential TbMP42 protein (band VI/KREPA2) by individually examining each step of the U-deletional and U-insertional editing cycles, using reactions in the approximately linear range. We examined control extracts and RNA interference (RNAi) extracts prepared soon after TbMP42 was depleted (when primary effects should be most evident) and three days later (when precedent shows secondary effects can become prominent). This analysis shows TbMP42 is critical for cleavage of editing substrates by both the U-deletional and U-insertional endonucleases. However, on simple substrates that assess cleavage independent of editing features, TbMP42 is similarly required only for the U-deletional endonuclease, indicating TbMP42 affects the two editing endonucleases differently. Supplementing RNAi extract with recombinant TbMP42 partly restores these cleavage activities. Notably, we find that all the other editing steps (the 3'-U-exonuclease [3'-U-exo] and ligation steps of U-deletion and the terminal-U-transferase [TUTase] and ligation steps of U-insertion) remain at control levels upon RNAi induction, and hence are not dependent on TbMP42. This contrasts with an earlier report that TbMP42 is a 3'-U-exo that may act in U-deletion and additionally is critical for the TUTase and/or ligation steps of U-insertion, observations our data suggest reflect indirect effects of TbMP42 depletion. Thus, trypanosomes require TbMP42 for both endonucleolytic cleavage steps of RNA editing, but not for any of the subsequent steps of the editing cycles.
Collapse
Affiliation(s)
- Julie A Law
- Biological Chemistry Department, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
50
|
3' adenylation determines mRNA abundance and monitors completion of RNA editing in T. brucei mitochondria. EMBO J 2008; 27:1596-608. [PMID: 18464794 DOI: 10.1038/emboj.2008.87] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 04/02/2008] [Indexed: 11/08/2022] Open
Abstract
Expression of the mitochondrial genome in protozoan parasite Trypanosoma brucei is controlled post-transcriptionally and requires extensive U-insertion/deletion mRNA editing. In mitochondrial extracts, 3' adenylation reportedly influences degradation kinetics of synthetic edited and pre-edited mRNAs. We have identified and characterized a mitochondrial poly(A) polymerase, termed KPAP1, and determined major polypeptides in the polyadenylation complex. Inhibition of KPAP1 expression abrogates short and long A-tails typically found in mitochondrial mRNAs, and decreases the abundance of never-edited and edited transcripts. Pre-edited mRNAs are not destabilized by the lack of 3' adenylation, whereas short A-tails are required and sufficient to maintain the steady-state levels of partially edited, fully edited, and never-edited mRNAs. The editing directed by a single guide RNA is sufficient to impose a requirement for the short A-tail in edited molecules. Upon completion of the editing process, the short A-tails are extended as (A/U) heteropolymers into structures previously thought to be long poly(A) tails. These data provide the first direct evidence of functional interactions between 3' processing and editing of mitochondrial mRNAs in trypanosomes.
Collapse
|