1
|
Xiong B, Zhang Y, Liu S, Liao S, Zhou Z, He Q, Zhou Y. NOX Family: Regulators of Reactive Oxygen Species Balance in Tumor Cells. FASEB J 2025; 39:e70565. [PMID: 40266050 PMCID: PMC12017260 DOI: 10.1096/fj.202500238rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
Cancer cells are capable of surviving, proliferating, and invading or migrating within hypoxic environments by regulating various adaptive mechanisms. Due to the activation of oncogenes and the inactivation of tumor suppressor genes, and relative deficiencies in oxygen and nutrients, cancer cells demonstrate elevated production of reactive oxygen species (ROS), primarily sourced from NADPH oxidases (NOX family). A key aspect of the reorientation of tumor cell metabolism is the combating of cellular oxidative stress through the promotion of antioxidant molecule synthesis to counteract ROS production. Given that most cancers experience hypoxia and that NOX is closely linked to numerous redox-dependent signaling pathways, the expression and function of NOX are altered in various malignancies. Therefore, this review summarizes the characteristics of NOX family members, their influence on tumor proliferation, invasion, and migration, the role of NOX in promoting tumor angiogenesis, the impact of NOX on the function of immune cells within the tumor microenvironment, and the potential of targeting NOX in tumor therapy. This aims to offer a fresh viewpoint on a comprehensive understanding of the functions of NOX family members.
Collapse
Affiliation(s)
- Bin Xiong
- Department of Radiation OncologyThe Affiliated Cancer Hospital of Xiangya School of Medicine Central South University/Hunan Cancer HospitalChangshaHunanChina
- Cancer Research Institute, Basic School of MedicineCentral South UniversityChangshaHunanChina
| | - Yang Zhang
- Cancer Research Institute, Basic School of MedicineCentral South UniversityChangshaHunanChina
| | - Siyi Liu
- Cancer Research Institute, Basic School of MedicineCentral South UniversityChangshaHunanChina
| | - Shan Liao
- Department of PathologyThe Third Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Zihua Zhou
- Department of OncologyLoudi Central HospitalLoudiHunanChina
| | - Qian He
- Department of Radiation OncologyThe Affiliated Cancer Hospital of Xiangya School of Medicine Central South University/Hunan Cancer HospitalChangshaHunanChina
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of MedicineCentral South UniversityChangshaHunanChina
| |
Collapse
|
2
|
Kračun D, Görlach A, Snedeker JG, Buschmann J. Reactive oxygen species in tendon injury and repair. Redox Biol 2025; 81:103568. [PMID: 40023978 PMCID: PMC11915165 DOI: 10.1016/j.redox.2025.103568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
Reactive oxygen species (ROS) are chemical moieties that in physiological concentrations serve as fast-acting signaling molecules important for cellular homeostasis. However, their excess either due to overproduction or inability of the antioxidant system to inactivate them results in oxidative stress, contributing to cellular dysfunction and tissue damage. In tendons, which are hypovascular, hypocellular, and composed predominantly of extracellular matrix (ECM), particularly collagen I, ROS likely play a dual role: regulating cellular processes such as inflammation, proliferation, and ECM remodeling under physiological conditions, while contributing to tendinopathy and impaired healing when dysregulated. This review explores the sources of ROS in tendons, including NADPH oxidases and mitochondria, and their role in key processes such as tissue adaptation to mechanical load and injury repair, also in systemic conditions such as diabetes. In addition, we integrate the emerging perspective that calcium signaling-mediated by mechanically activated ion channels-plays a central role in tendon mechanotransduction under daily mechanical loads. We propose that mechanical overuse (overload) may lead to hyperactivation of calcium channels, resulting in chronically elevated intracellular calcium levels that amplify ROS production and oxidative stress. Although direct evidence linking calcium channel hyperactivity, intracellular calcium dysregulation, and ROS generation under overload conditions is currently circumstantial, this review aims to highlight these connections and identify them as critical avenues for future research. By framing ROS within the context of both adaptive and maladaptive responses to mechanical load, this review provides a comprehensive synthesis of redox biology in tendon injury and repair, paving the way for future work, including development of therapeutic strategies targeting ROS and calcium signaling to enhance tendon recovery and resilience.
Collapse
Affiliation(s)
- Damir Kračun
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland; University Clinic Balgrist, Orthopaedic Biomechanics, Forchstrasse 340, 8008, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Gloriastrasse 37/39, 8092, Zurich, Switzerland.
| | - Agnes Görlach
- Experimental and Molecular Paediatric Cardiology, German Heart Centre Munich, TUM University Hospital, Technical University of Munich, Munich, 80636, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Jess G Snedeker
- University Clinic Balgrist, Orthopaedic Biomechanics, Forchstrasse 340, 8008, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Gloriastrasse 37/39, 8092, Zurich, Switzerland
| | - Johanna Buschmann
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland.
| |
Collapse
|
3
|
Furuya-Ikude C, Kitta A, Tomonobu N, Kawasaki Y, Sakaguchi M, Kondo E. NCF-1 plays a pivotal role in the survival of adenocarcinoma cells of pancreatic and gastric origins. In Vitro Cell Dev Biol Anim 2024; 60:1151-1159. [PMID: 39666242 DOI: 10.1007/s11626-024-00994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/01/2024] [Indexed: 12/13/2024]
Abstract
Reactive oxygen species (ROS) play a pivotal biological role in cells, with ROS function differing depending on cellular conditions and the extracellular environment. Notably, ROS act as cytotoxic factors to eliminate infectious pathogens or promote cell death under cellular stress, while also facilitating cell growth (via ROS-sensing pathways) by modifying gene expression. Among ROS-related genes, neutrophil cytosolic factor-1 (NCF-1; p47phox) was identified as a ROS generator in neutrophils. This product is a subunit of a cytosolic NADPH oxidase complex activated in response to pathogens such as bacteria and viruses. NCF-1 has been examined primarily in terms of ROS-production pathways in macrophages and neutrophils; however, the expression of this protein and its biological role in cancer cells remain unclear. Here, we report expression of NCF-1 in pancreatic and gastric cancers, and demonstrate its biological significance in these tumor cells. Abundant expression of NCF-1 was observed in pancreatic adenocarcinoma (PDAC) lines and in patient tissues, as well as in gastric adenocarcinomas. Accumulation of the protein was also detected in the invasive/metastatic foci of these tumors. Unexpectedly, BxPC-3 underwent apoptotic cell death when transfected with a small interfering RNA (siRNA) specific to NCF-1, whereas the cells treated with a control siRNA proliferated in a time-dependent manner. A similar phenomenon was observed in HSC-58, a poorly differentiated gastric adenocarcinoma line. Consequently, the tumor cells highly expressing NCF-1 obtained coincident accumulation of ROS and reduced glutathione (GSH) with expression of glutathione peroxidase 4 (GPX4), a quencher involved in ferroptosis. Unlike the conventional role of ROS as a representative cytotoxic factor, these findings suggest that NCF-1-mediated ROS generation may be required for expansive growth of PDAC and gastric cancers.
Collapse
Affiliation(s)
- Chiemi Furuya-Ikude
- Division of Tumor Pathology, NIR-PIT Research Institute, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Akane Kitta
- Division of Tumor Pathology, NIR-PIT Research Institute, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Naoko Tomonobu
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Yoshihiro Kawasaki
- Division of Tumor Pathology, NIR-PIT Research Institute, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan.
| | - Eisaku Kondo
- Division of Tumor Pathology, NIR-PIT Research Institute, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan.
| |
Collapse
|
4
|
Wang T, Zhang Y. Mechanisms and therapeutic targets of carbon monoxide poisoning: A focus on reactive oxygen species. Chem Biol Interact 2024; 403:111223. [PMID: 39237073 DOI: 10.1016/j.cbi.2024.111223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Carbon monoxide (CO) poisoning presents a substantial public health challenge that necessitates the identification of its pathological mechanisms and therapeutic targets. CO toxicity arises from tissue hypoxia-ischemia secondary to carboxyhemoglobin formation, and cellular damage mediated by CO at the cellular level. The mitochondria are the major targets of neuronal damage caused by CO. Under normal physiological conditions, mitochondria produce reactive oxygen species (ROS), which are byproducts of aerobic metabolism. While low ROS levels are crucial for essential cellular functions, including signal transduction, differentiation, responses to hypoxia and immunity, transcriptional regulation, and autophagy, excess ROS become pathological and exacerbate CO poisoning. This review presents the evidence of elevated ROS being associated with the progression of CO poisoning. Antioxidant treatments targeting ROS removal have been proven effective in mitigating CO poisoning, underscoring their therapeutic potential. In this review, we highlight the latest advances in the understanding of the role and the clinical implications of ROS in CO poisoning. We focus on cellular sources of ROS, the molecular mechanisms underlying mitochondrial oxidative stress, and potential therapeutic strategies for targeting ROS in CO poisoning.
Collapse
Affiliation(s)
- Tianhong Wang
- Department of Neurology, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Yanli Zhang
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
5
|
Aimeur S, Fas BA, Serfaty X, Santuz H, Sacquin-Mora S, Bizouarn T, Taly A, Baciou L. Structural profiles of the full phagocyte NADPH oxidase unveiled by combining computational biology and experimental knowledge. J Biol Chem 2024:107943. [PMID: 39481598 DOI: 10.1016/j.jbc.2024.107943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/05/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
The phagocyte NADPH oxidase (NOX2) is an enzyme, crucial for innate immune defense, producing reactive oxygen species necessary for pathogen destruction. Its activation requires the assembly of soluble proteins (p47phox, p40phox, p67phox, and Rac) with the membrane-bound flavocytochrome b558 (cytb558). We combined circular-dichroism analyses, with decades of experimental data, to filter structural models of the NADPH oxidase complex generated by the artificial intelligence program AlphaFold2 (AF2). The predicted patterns tend to closely resemble the active states of the proteins, as shown by the compact structure of the cytb558, whose dehydrogenase domain is stabilized closer to the membrane. The modeling of the interaction of p47phox with cytb558, which is the initial assembly and activation steps of the NADPH oxidase, enables us to describe how the C-terminus of p47phox interacts with the cytb558. Combining the AF2 cytb558 -p47phox model and its classical molecular dynamics simulations, we highlighted new hydrophobic lipid insertions of p47phox, particularly at residues Trp80-Phe81 of its PX domain. The AF2 models also revealed the implications of intrinsically disordered regions, such as the fragment between the PX domain and the SH3 regions of p47phox, in ensuring distant protein-protein and membrane-protein interactions. Finally, the AF2 prediction of the cytb558-Trimera model highlighted the importance of leaving Rac1 as a separate protein to reach an active state of the NADPH oxidase complex. Altogether, our step-by-step approach provides a structural model of the active complex showing how disordered regions and specific lipid and protein interactions can enable and stabilize the multi-subunit assembly.
Collapse
Affiliation(s)
- Sana Aimeur
- Institut de Chimie Physique, UMR 8000, CNRS, Université Paris Saclay, 91405 Orsay Cedex, France
| | - Burcu Aykac Fas
- Laboratoire de Biochimie Théorique, CNRS, UPR 9080, Université Paris-Cité, 75005, Paris, France
| | - Xavier Serfaty
- Institut de Chimie Physique, UMR 8000, CNRS, Université Paris Saclay, 91405 Orsay Cedex, France
| | - Hubert Santuz
- Laboratoire de Biochimie Théorique, CNRS, UPR 9080, Université Paris-Cité, 75005, Paris, France
| | - Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, CNRS, UPR 9080, Université Paris-Cité, 75005, Paris, France
| | - Tania Bizouarn
- Institut de Chimie Physique, UMR 8000, CNRS, Université Paris Saclay, 91405 Orsay Cedex, France
| | - Antoine Taly
- Laboratoire de Biochimie Théorique, CNRS, UPR 9080, Université Paris-Cité, 75005, Paris, France
| | - Laura Baciou
- Institut de Chimie Physique, UMR 8000, CNRS, Université Paris Saclay, 91405 Orsay Cedex, France.
| |
Collapse
|
6
|
Hanessian S. My 50-Plus Years of Academic Research Collaborations with Industry. A Retrospective. J Org Chem 2024; 89:9147-9186. [PMID: 38865159 DOI: 10.1021/acs.joc.4c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
A retrospective is presented highlighting the synthesis of selected "first-in-kind" natural products, their synthetic analogues, structure elucidations, and rationally designed bioactive synthetic compounds that were accomplished because of collaborations with past and present pharmaceutical and agrochemical companies. Medicinal chemistry projects involving structure-based design exploiting cocrystal structures of small molecules with biologically relevant enzymes, receptors, and bacterial ribosomes with synthetic small molecules leading to marketed products, clinical candidates, and novel drug prototypes were realized in collaboration. Personal reflections, historical insights, behind the scenes stories from various long-term projects are shared in this retrospective article.
Collapse
Affiliation(s)
- Stephen Hanessian
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Succ. Centre-ville, Montréal, Québec, Canada H3C 3J7
- Department of Pharmaceutical Sciences, University of California, Irvine, California 91266, United States
| |
Collapse
|
7
|
Zheng CM, Hou YC, Liao MT, Tsai KW, Hu WC, Yeh CC, Lu KC. Potential role of molecular hydrogen therapy on oxidative stress and redox signaling in chronic kidney disease. Biomed Pharmacother 2024; 176:116802. [PMID: 38795643 DOI: 10.1016/j.biopha.2024.116802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024] Open
Abstract
Oxidative stress plays a key role in chronic kidney disease (CKD) development and progression, inducing kidney cell damage, inflammation, and fibrosis. However, effective therapeutic interventions to slow down CKD advancement are currently lacking. The multifaceted pharmacological effects of molecular hydrogen (H2) have made it a promising therapeutic avenue. H2 is capable of capturing harmful •OH and ONOO- while maintaining the crucial reactive oxygen species (ROS) involved in cellular signaling. The NRF2-KEAP1 system, which manages cell redox balance, could be used to treat CKD. H2 activates this pathway, fortifying antioxidant defenses and scavenging ROS to counteract oxidative stress. H2 can improve NRF2 signaling by using the Wnt/β-catenin pathway and indirectly activate NRF2-KEAP1 in mitochondria. Additionally, H2 modulates NF-κB activity by regulating cellular redox status, inhibiting MAPK pathways, and maintaining Trx levels. Treatment with H2 also attenuates HIF signaling by neutralizing ROS while indirectly bolstering HIF-1α function. Furthermore, H2 affects FOXO factors and enhances the activity of antioxidant enzymes. Despite the encouraging results of bench studies, clinical trials are still limited and require further investigation. The focus of this review is on hydrogen's role in treating renal diseases, with a specific focus on oxidative stress and redox signaling regulation, and it discusses its potential clinical applications.
Collapse
Affiliation(s)
- Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City 11031, Taiwan; TMU Research Centre of Urology and Kidney, Taipei Medical University, New Taipei City 11031, Taiwan
| | - Yi-Chou Hou
- Division of Nephrology, Department of Internal Medicine, Cardinal-Tien Hospital, School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan City, Taiwan; Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Wang Tsai
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Wan-Chung Hu
- Department of Clinical Pathology, Taipei Tzu Chi Hospital, Buddhist Medical Tzu Chi Foundation, New Taipei City 23142, Taiwan
| | - Chien-Chih Yeh
- Division of colon and Rectal Surgery, Department of Surgery, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan; National Defense Medical Center, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City 24352, Taiwan.
| |
Collapse
|
8
|
Jones R, Robinson AT, Beach LB, Lindsey ML, Kirabo A, Hinton A, Erlandson KM, Jenkins ND. Exercise to Prevent Accelerated Vascular Aging in People Living With HIV. Circ Res 2024; 134:1607-1635. [PMID: 38781293 PMCID: PMC11126195 DOI: 10.1161/circresaha.124.323975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Given advances in antiretroviral therapy, the mortality rate for HIV infection has dropped considerably over recent decades. However, people living with HIV (PLWH) experience longer life spans coupled with persistent immune activation despite viral suppression and potential toxicity from long-term antiretroviral therapy use. Consequently, PLWH face a cardiovascular disease (CVD) risk more than twice that of the general population, making it the leading cause of death among this group. Here, we briefly review the epidemiology of CVD in PLWH highlighting disparities at the intersections of sex and gender, age, race/ethnicity, and the contributions of social determinants of health and psychosocial stress to increased CVD risk among individuals with marginalized identities. We then overview the pathophysiology of HIV and discuss the primary factors implicated as contributors to CVD risk among PLWH on antiretroviral therapy. Subsequently, we highlight the functional evidence of premature vascular dysfunction as an early pathophysiological determinant of CVD risk among PLWH, discuss several mechanisms underlying premature vascular dysfunction in PLWH, and synthesize current research on the pathophysiological mechanisms underlying accelerated vascular aging in PLWH, focusing on immune activation, chronic inflammation, and oxidative stress. We consider understudied aspects such as HIV-related changes to the gut microbiome and psychosocial stress, which may serve as mechanisms through which exercise can abrogate accelerated vascular aging. Emphasizing the significance of exercise, we review various modalities and their impacts on vascular health, proposing a holistic approach to managing CVD risks in PLWH. The discussion extends to critical future study areas related to vascular aging, CVD, and the efficacy of exercise interventions, with a call for more inclusive research that considers the diversity of the PLWH population.
Collapse
Affiliation(s)
- Raymond Jones
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | | | - Lauren B. Beach
- Department of Medical Social Sciences, Northwestern, Chicago, IL
- Department of Preventive Medicine, Northwestern, Chicago, IL
| | - Merry L. Lindsey
- School of Graduate Studies, Meharry Medical College, Nashville, TN
- Research Service, Nashville VA Medical Center, Nashville, TN
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology, Nashville, TN
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN
- Vanderbilt Institute for Global Health, Nashville, TN
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | | | - Nathaniel D.M. Jenkins
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
| |
Collapse
|
9
|
Kuihon SVNP, Sevart BJ, Abbey CA, Bayless KJ, Chen B. The NADPH oxidase 2 subunit p47 phox binds to the WAVE regulatory complex and p22 phox in a mutually exclusive manner. J Biol Chem 2024; 300:107130. [PMID: 38432630 PMCID: PMC10979099 DOI: 10.1016/j.jbc.2024.107130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024] Open
Abstract
The actin cytoskeleton and reactive oxygen species (ROS) both play crucial roles in various cellular processes. Previous research indicated a direct interaction between two key components of these systems: the WAVE1 subunit of the WAVE regulatory complex (WRC), which promotes actin polymerization and the p47phox subunit of the NADPH oxidase 2 complex (NOX2), which produces ROS. Here, using carefully characterized recombinant proteins, we find that activated p47phox uses its dual Src homology 3 domains to bind to multiple regions within the WAVE1 and Abi2 subunits of the WRC, without altering WRC's activity in promoting Arp2/3-mediated actin polymerization. Notably, contrary to previous findings, p47phox uses the same binding pocket to interact with both the WRC and the p22phox subunit of NOX2, albeit in a mutually exclusive manner. This observation suggests that when activated, p47phox may separately participate in two distinct processes: assembling into NOX2 to promote ROS production and engaging with WRC to regulate the actin cytoskeleton.
Collapse
Affiliation(s)
- Simon V N P Kuihon
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Brodrick J Sevart
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Colette A Abbey
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Kayla J Bayless
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa, USA.
| |
Collapse
|
10
|
Amadio P, Sandrini L, Zarà M, Barbieri SS, Ieraci A. NADPH-oxidases as potential pharmacological targets for thrombosis and depression comorbidity. Redox Biol 2024; 70:103060. [PMID: 38310682 PMCID: PMC10848036 DOI: 10.1016/j.redox.2024.103060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/06/2024] Open
Abstract
There is a complex interrelationship between the nervous system and the cardiovascular system. Comorbidities of cardiovascular diseases (CVD) with mental disorders, and vice versa, are prevalent. Adults with mental disorders such as anxiety and depression have a higher risk of developing CVD, and people with CVD have an increased risk of being diagnosed with mental disorders. Oxidative stress is one of the many pathways associated with the pathophysiology of brain and cardiovascular disease. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is one of the major generators of reactive oxygen species (ROS) in mammalian cells, as it is the enzyme that specifically produces superoxide. This review summarizes recent findings on the consequences of NOX activation in thrombosis and depression. It also discusses the therapeutic effects and pharmacological strategies of NOX inhibitors in CVD and brain disorders. A better comprehension of these processes could facilitate the development of new therapeutic approaches for the prevention and treatment of the comorbidity of thrombosis and depression.
Collapse
Affiliation(s)
- Patrizia Amadio
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Leonardo Sandrini
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Marta Zarà
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Silvia S Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy.
| | - Alessandro Ieraci
- Department of Theoretical and Applied Sciences, eCampus University, 22060, Novedrate (CO), Italy; Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156, Milan, Italy.
| |
Collapse
|
11
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
12
|
Kishi S, Nagasu H, Kidokoro K, Kashihara N. Oxidative stress and the role of redox signalling in chronic kidney disease. Nat Rev Nephrol 2024; 20:101-119. [PMID: 37857763 DOI: 10.1038/s41581-023-00775-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
Chronic kidney disease (CKD) is a major public health concern, underscoring a need to identify pathogenic mechanisms and potential therapeutic targets. Reactive oxygen species (ROS) are derivatives of oxygen molecules that are generated during aerobic metabolism and are involved in a variety of cellular functions that are governed by redox conditions. Low levels of ROS are required for diverse processes, including intracellular signal transduction, metabolism, immune and hypoxic responses, and transcriptional regulation. However, excess ROS can be pathological, and contribute to the development and progression of chronic diseases. Despite evidence linking elevated levels of ROS to CKD development and progression, the use of low-molecular-weight antioxidants to remove ROS has not been successful in preventing or slowing disease progression. More recent advances have enabled evaluation of the molecular interactions between specific ROS and their targets in redox signalling pathways. Such studies may pave the way for the development of sophisticated treatments that allow the selective control of specific ROS-mediated signalling pathways.
Collapse
Affiliation(s)
- Seiji Kishi
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Hajime Nagasu
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Kengo Kidokoro
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Naoki Kashihara
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan.
| |
Collapse
|
13
|
Zang J, Peters F, Cambet Y, Cifuentes-Pagano E, Hissabu MMS, Dustin CM, Svensson LH, Olesen MM, Poulsen MFL, Jacobsen S, Tuelung PS, Narayanan D, Langkilde AE, Gajhede M, Pagano PJ, Jaquet V, Vilhardt F, Bach A. Targeting NOX2 with Bivalent Small-Molecule p47phox-p22phox Inhibitors. J Med Chem 2023; 66:14963-15005. [PMID: 37857466 DOI: 10.1021/acs.jmedchem.3c01548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Nicotinamide adenine dinucleotide phosphate oxidase isoform 2 (NOX2) is an enzymatic complex whose function is the regulated generation of reactive oxygen species (ROS). NOX2 activity is central to redox signaling events and antibacterial response, but excessive ROS production by NOX2 leads to oxidative stress and inflammation in a range of diseases. The protein-protein interaction between the NOX2 subunits p47phox and p22phox is essential for NOX2 activation, thus p47phox is a potential drug target. Previously, we identified 2-aminoquinoline as a fragment hit toward p47phoxSH3A-B and converted it to a bivalent small-molecule p47phox-p22phox inhibitor (Ki = 20 μM). Here, we systematically optimized the bivalent compounds by exploring linker types and positioning as well as substituents on the 2-aminoquinoline part and characterized the bivalent binding mode with biophysical methods. We identified several compounds with submicromolar binding affinities and cellular activity and thereby demonstrated that p47phox can be targeted by potent small molecules.
Collapse
Affiliation(s)
- Jie Zang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Felix Peters
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Yves Cambet
- READS unit, Centre Médical Universitaire, University of Geneva, Geneva CH-1211, Switzerland
| | - Eugenia Cifuentes-Pagano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Pharmacology and ChemicalBiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Munira Mohamed Shishay Hissabu
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Christopher M Dustin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Pharmacology and ChemicalBiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Lars Henrik Svensson
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Martin Mariboe Olesen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Mathias Feldt Lomholt Poulsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Stig Jacobsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Pernille Sønderby Tuelung
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Dilip Narayanan
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Annette Eva Langkilde
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Michael Gajhede
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Patrick J Pagano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Pharmacology and ChemicalBiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Vincent Jaquet
- READS unit, Centre Médical Universitaire, University of Geneva, Geneva CH-1211, Switzerland
- Department of Pathology and Immunology, Centre Médical Universitaire, University of Geneva, Geneva CH-1211, Switzerland
| | - Frederik Vilhardt
- Institute of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Anders Bach
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
14
|
Treuer AV, Faúndez M, Ebensperger R, Hovelmeyer E, Vergara-Jaque A, Perera-Sardiña Y, Gutierrez M, Fuentealba R, González DR. New NADPH Oxidase 2 Inhibitors Display Potent Activity against Oxidative Stress by Targeting p22 phox-p47 phox Interactions. Antioxidants (Basel) 2023; 12:1441. [PMID: 37507978 PMCID: PMC10376059 DOI: 10.3390/antiox12071441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
NADPH oxidase (NOX2) is responsible for reactive oxygen species (ROS) production in neutrophils and has been recognized as a key mediator in inflammatory and cardiovascular pathologies. Nevertheless, there is a lack of specific NOX2 pharmacological inhibitors. In medicinal chemistry, heterocyclic compounds are essential scaffolds for drug design, and among them, indole is a very versatile pharmacophore. We tested the hypothesis that indole heteroaryl-acrylonitrile derivatives may serve as NOX2 inhibitors by evaluating the capacity of 19 of these molecules to inhibit NOX2-derived ROS production in human neutrophils (HL-60 cells). Of these compounds, C6 and C14 exhibited concentration-dependent inhibition of NOX2 (IC50~1 µM). These molecules also reduced NOX2-derived oxidative stress in cardiomyocytes and prevented cardiac damage induced by ischemia-reperfusion. Compound C6 significantly reduced the membrane translocation of p47phox, a cytosolic subunit that is required for NOX2 activation. Molecular docking analyses of the binding modes of these molecules with p47phox indicated that C6 and C14 interact with specific residues in the inner part of the groove of p47phox, the binding cavity for p22phox. This combination of methods showed that novel indole heteroaryl acrylonitriles represent interesting lead compounds for developing specific and potent NOX2 inhibitors.
Collapse
Affiliation(s)
- Adriana V Treuer
- Department of Basic Biomedical Sciences, School of Health Sciences, Universidad de Talca, Avenida Lircay s/n, Talca 3460000, Chile
| | - Mario Faúndez
- Departamento de Farmacia, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Roberto Ebensperger
- Escuela de Química y Farmacia, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile
| | - Erwin Hovelmeyer
- Center for Bioinformatics, Simulation and Modeling, Faculty of Engineering, Universidad de Talca, Avenida Lircay s/n, Talca 3460000, Chile
| | - Ariela Vergara-Jaque
- Center for Bioinformatics, Simulation and Modeling, Faculty of Engineering, Universidad de Talca, Avenida Lircay s/n, Talca 3460000, Chile
| | - Yunier Perera-Sardiña
- Department of Basic Biomedical Sciences, School of Health Sciences, Universidad de Talca, Avenida Lircay s/n, Talca 3460000, Chile
| | - Margarita Gutierrez
- Organic Synthesis Laboratory and Biological Activity (LSO-Act-Bio), Institute of Chemistry of Natural Resources, Universidad de Talca, Talca 3460000, Chile
| | - Roberto Fuentealba
- Escuela de Enfermería, Facultad de Salud, Universidad Santo Tomás, Talca 3460000, Chile
| | - Daniel R González
- Department of Basic Biomedical Sciences, School of Health Sciences, Universidad de Talca, Avenida Lircay s/n, Talca 3460000, Chile
| |
Collapse
|
15
|
Bouraoui A, Louzada RA, Aimeur S, Waeytens J, Wien F, My-Chan Dang P, Bizouarn T, Dupuy C, Baciou L. New insights in the molecular regulation of the NADPH oxidase 2 activity: Negative modulation by Poldip2. Free Radic Biol Med 2023; 199:113-125. [PMID: 36828293 DOI: 10.1016/j.freeradbiomed.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
Poldip2 was shown to be involved in oxidative signaling to ensure certain biological functions. It was proposed that, in VSMC, by interaction with the Nox4-associated membrane protein p22phox, Poldip2 stimulates the level of reactive oxygen species (ROS) production. In vitro, with fractionated membranes from HEK393 cells over-expressing Nox4, we confirmed the up-regulation of NADPH oxidase 4 activity by the recombinant and purified Poldip2. Besides Nox4, the Nox1, Nox2, or Nox3 isoforms are also established partners of the p22phox protein raising the question of their regulation by Poldip2 and of the effect in cells expressing simultaneously different Nox isoforms. In this study, we have addressed this issue by investigating the potential regulatory role of Poldip2 on NADPH oxidase 2, present in phagocyte cells. Unexpectedly, the effect of Poldip2 on phagocyte NADPH oxidase 2 was opposite to that observed on NADPH oxidase 4. Using membranes from circulating resting neutrophils, the ROS production rate of NADPH oxidase 2 was down-regulated by Poldip2 (2.5-fold). The down-regulation effect could not be correlated to the interaction of Poldip2 with p22phox but rather, to the interaction of Poldip2 with the p47phox protein, one of the regulatory proteins of the phagocyte NADPH oxidase. Our results show that the interaction of Poldip2 with p47phox constitutes a novel regulatory mechanism that can negatively modulate the activity of NADPH oxidase 2 by trapping the so-called "adaptor" subunit of the complex. Poldip2 could act as a tunable switch capable of specifically regulating the activities of NADPH oxidases. This selective regulatory role of Poldip2, positive for Nox4 or negative for Nox2 could orchestrate the level and the type of ROS generated by Nox enzymes in the cells.
Collapse
Affiliation(s)
- Aicha Bouraoui
- Université Paris-Saclay, Institut de Chimie Physique UMR 8000, CNRS, 91405, Orsay Cedex, France
| | - Ruy Andrade Louzada
- Université Paris Saclay, UMR 9019 CNRS, Gustave Roussy, 94800, Villejuif, France
| | - Sana Aimeur
- Université Paris-Saclay, Institut de Chimie Physique UMR 8000, CNRS, 91405, Orsay Cedex, France
| | - Jehan Waeytens
- Université Paris-Saclay, Institut de Chimie Physique UMR 8000, CNRS, 91405, Orsay Cedex, France; Structure et Fonction des Membranes Biologiques, Université libre de Bruxelles, Bruxelles, Belgium
| | - Frank Wien
- DISCO beamline, Synchrotron SOLEIL, Campus Paris-Saclay, 91192, Gif-sur-Yvette Cedex, France
| | - Pham My-Chan Dang
- INSERM U1149, CNRS ERL8252, Centre de Recherche sur l'Inflammation, Université de Paris, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris, F-75018, France
| | - Tania Bizouarn
- Université Paris-Saclay, Institut de Chimie Physique UMR 8000, CNRS, 91405, Orsay Cedex, France
| | - Corinne Dupuy
- Université Paris Saclay, UMR 9019 CNRS, Gustave Roussy, 94800, Villejuif, France
| | - Laura Baciou
- Université Paris-Saclay, Institut de Chimie Physique UMR 8000, CNRS, 91405, Orsay Cedex, France.
| |
Collapse
|
16
|
Caspase Inhibition Modulates Monocyte-Derived Macrophage Polarization in Damaged Tissues. Int J Mol Sci 2023; 24:ijms24044151. [PMID: 36835566 PMCID: PMC9964254 DOI: 10.3390/ijms24044151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Circulating monocytes are recruited in damaged tissues to generate macrophages that modulate disease progression. Colony-stimulating factor-1 (CSF-1) promotes the generation of monocyte-derived macrophages, which involves caspase activation. Here, we demonstrate that activated caspase-3 and caspase-7 are located to the vicinity of the mitochondria in CSF1-treated human monocytes. Active caspase-7 cleaves p47PHOX at aspartate 34, which promotes the formation of the NADPH (nicotinamide adenine dinucleotide phosphate) oxidase complex NOX2 and the production of cytosolic superoxide anions. Monocyte response to CSF-1 is altered in patients with a chronic granulomatous disease, which are constitutively defective in NOX2. Both caspase-7 down-regulation and radical oxygen species scavenging decrease the migration of CSF-1-induced macrophages. Inhibition or deletion of caspases prevents the development of lung fibrosis in mice exposed to bleomycin. Altogether, a non-conventional pathway that involves caspases and activates NOX2 is involved in CSF1-driven monocyte differentiation and could be therapeutically targeted to modulate macrophage polarization in damaged tissues.
Collapse
|
17
|
Meng F, Guo B, Ma YQ, Li KW, Niu FJ. Puerarin: A review of its mechanisms of action and clinical studies in ophthalmology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154465. [PMID: 36166943 DOI: 10.1016/j.phymed.2022.154465] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/07/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Pueraria is the common name of the dried root of either Pueraria montana var. lobata (Willd.) Maesen & S.M.Almeida ex Sanjappa & Predeep (syn. Pueraria lobata (Willd.) Ohwi) or Pueraria montana var. thomsonii (Benth.) M.R.Almeida (syn. Pueraria thomsonii Benth.). Puerarin is a C-glucoside of the isoflavone daidzein extracted from Pueraria. It has been widely investigated to explore its therapeutic role in eye diseases and the molecular mechanisms. PURPOSE To collect the available literature from 2000 to 2022 on puerarin in the treatment of ocular diseases and suggest the future required directions to improve its medicinal value. METHOD The content of this review was obtained from databases such as Web of Science, PubMed, Google Scholar, China National Knowledge Infrastructure (CNKI), and the Wanfang Database. RESULTS The search yielded 428 articles, of which 159 articles were included after excluding duplicate articles and articles related to puerarin but less relevant to the topic of the review. In eleven articles, the bioavailability of puerarin was discussed. Despite puerarin possesses diverse biological activities, its bioavailability on its own is poor. There are 95 articles in which the therapeutic mechanisms of puerarin in ocular diseases was reported. Of these, 54 articles discussed the various signalling pathways related to occular diseases affected by puerarin. The other 41 articles discussed specific biological activities of puerarin. It plays a therapeutic role in ophthalmopathy via regulating nuclear factor kappa-B (NF-ĸB), mitogen-activated protein kinases (MAPKs), PI3K/AKT, JAK/STAT, protein kinase C (PKC) and other related pathways, affecting the expression of tumour necrosis factor α (TNF-α), interleukin-1β (IL-1β), intercellular adhesion molecule-1 (ICAM-1), monocyte chemoattractant protein-1 (MCP-1), superoxide dismutase (SOD), B-cell lymphoma-2 (Bcl-2) and other cytokines resulting in anti-inflammatory, antioxidant and anti-apoptotic effects. The clinical applications of puerarin in ophthalmology were discussed in 25 articles. Eleven articles discussed the toxicity of puerarin. The literature suggests that puerarin has a good curative effect and can be used safely in clinical practice. CONCLUSION This review has illustrated the diverse applications of puerarin acting on ocular diseases and suggested that puerarin can be used for treating diabetic retinopathy, retinal vascular occlusion, glaucoma and other ocular diseases in the clinic. Some ocular diseases are the result of the combined action of multiple factors, and the effect of puerarin on different factors needs to be further studied to improve a more complete mechanism of action of puerarin. In addition, it is necessary to increase the number of subjects in clinical trials and conduct clinical trials for other ocular diseases. The information presented here will guide future research studies.
Collapse
Affiliation(s)
- Fan Meng
- Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Ji'nan 250355, China
| | - Bin Guo
- Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Ji'nan 250355, China
| | - Yi-Qing Ma
- Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Ji'nan 250355, China
| | - Kun-Wei Li
- Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Ji'nan 250355, China.
| | - Feng-Ju Niu
- Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Ji'nan 250355, China.
| |
Collapse
|
18
|
Zhang NN, Xu HY, Liu XN, Chen YF, Xia CM, Wu XZ, Lu N. The Inhibitory Role of Hydrogen Sulfide in UII-Induced Cardiovascular Effects and the Underlying Signaling Pathways. Antioxidants (Basel) 2022; 11:2253. [PMID: 36421438 PMCID: PMC9686774 DOI: 10.3390/antiox11112253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 12/08/2023] Open
Abstract
Urotensin II (UII) could increase blood pressure and heart rate via increased central reactive oxygen species (ROS) levels. We reported previously that hydrogen sulfide (H2S) exerts an antihypertensive effect by suppressing ROS production. The aim of the current study is to further examine the effects of endogenous and exogenous H2S on UII-induced cardiovascular effects by using an integrated physiology approach. We also use cell culture and molecular biological techniques to explore the inhibitory role of H2S on UII-induced cardiovascular effects. In this study, we found that cystathionine-β-synthase (CBS), the main H2S synthesizing enzyme in CNS, was expressed in neuronal cells of the rostral ventrolateral medulla (RVLM) area. Cellular distribution of CBS and urotensin II receptor (UT) in SH-SY5Y cells that are confirmed as glutamatergic were identified by immunofluorescent and Western blots assay. In Sprague-Dawley rats, administration of UII into the RVLM resulted in an increase in mean arterial pressure (MAP), heart rate (HR), ROS production, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, and phosphorylation of p47phox, extracellular signal-regulated protein kinase (ERK)1/2 and p38MAPK, but not stress-activated protein kinase/Jun N-terminal kinase (SAPK/JNK). These effects of UII were attenuated by application into the RVLM of endogenous (L-cysteine, SAM) or exogenous (NaHS) H2S. These results were confirmed in SH-SY5Y cells. UII-induced cardiovascular effects were also significantly abolished by pretreatment with microinjection of Tempol, Apocynin, SB203580, or PD98059 into the RVLM. Preincubated SH-SY5Y cells with Apocynin before administration of UII followed by Western blots assay showed that ROS is in the upstream of p38MAPK/ERK1/2. Gao activation assay in SH-SY5Y cells suggested that H2S may exert an inhibitory role on UII-induced cardiovascular effects by inhibiting the activity of Gαo. These results suggest that both endogenous and exogenous H2S attenuate UII-induced cardiovascular effects via Gαo-ROS-p38MAPK/ERK1/2 pathway.
Collapse
Affiliation(s)
- Na-Na Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Department of Urology, Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Hai-Yan Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiao-Ni Liu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yi-Fan Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chun-Mei Xia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xing-Zhong Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ning Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
19
|
Zheng D, Liu J, Piao H, Zhu Z, Wei R, Liu K. ROS-triggered endothelial cell death mechanisms: Focus on pyroptosis, parthanatos, and ferroptosis. Front Immunol 2022; 13:1039241. [PMID: 36389728 PMCID: PMC9663996 DOI: 10.3389/fimmu.2022.1039241] [Citation(s) in RCA: 268] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/17/2022] [Indexed: 12/04/2022] Open
Abstract
The endothelium is a single layer of epithelium covering the surface of the vascular system, and it represents a physical barrier between the blood and vessel wall that plays an important role in maintaining intravascular homeostasis. However, endothelial dysfunction or endothelial cell death can cause vascular barrier disruption, vasoconstriction and diastolic dysfunction, vascular smooth muscle cell proliferation and migration, inflammatory responses, and thrombosis, which are closely associated with the progression of several diseases, such as atherosclerosis, hypertension, coronary atherosclerotic heart disease, ischemic stroke, acute lung injury, acute kidney injury, diabetic retinopathy, and Alzheimer's disease. Oxidative stress caused by the overproduction of reactive oxygen species (ROS) is an important mechanism underlying endothelial cell death. Growing evidence suggests that ROS can trigger endothelial cell death in various ways, including pyroptosis, parthanatos, and ferroptosis. Therefore, this review will systematically illustrate the source of ROS in endothelial cells (ECs); reveal the molecular mechanism by which ROS trigger pyroptosis, parthanatos, and ferroptosis in ECs; and provide new ideas for the research and treatment of endothelial dysfunction-related diseases.
Collapse
Affiliation(s)
- Dongdong Zheng
- Department of Cardiovascular Surgery of the Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jia Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Hulin Piao
- Department of Cardiovascular Surgery of the Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zhicheng Zhu
- Department of Cardiovascular Surgery of the Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ran Wei
- Department of Cardiovascular Surgery of the Second Hospital of Jilin University, Changchun, Jilin, China
| | - Kexiang Liu
- Department of Cardiovascular Surgery of the Second Hospital of Jilin University, Changchun, Jilin, China,*Correspondence: Kexiang Liu,
| |
Collapse
|
20
|
Abstract
NOX2 is the prototypical member of the NADPH oxidase NOX superfamily and produces superoxide (O2•-), a key reactive oxygen species (ROS) that is essential in innate and adaptive immunity. Mutations that lead to deficiency in NOX2 activity correlate with increased susceptibility to bacterial and fungal infections, resulting in chronic granulomatous disease. The core of NOX2 is formed by a heterodimeric transmembrane complex composed of NOX2 (formerly gp91) and p22, but a detailed description of its structural architecture is lacking. Here, we present the structure of the human NOX2 core complex bound to a selective anti-NOX2 antibody fragment. The core complex reveals an intricate extracellular topology of NOX2, a four-transmembrane fold of the p22 subunit, and an extensive transmembrane interface which provides insights into NOX2 assembly and activation. Functional assays uncover an inhibitory activity of the 7G5 antibody mediated by internalization-dependent and internalization-independent mechanisms. Overall, our results provide insights into the NOX2 core complex architecture, disease-causing mutations, and potential avenues for selective NOX2 pharmacological modulation.
Collapse
|
21
|
Chen JR, Lazarenko OP, Blackburn ML, Chen JF, Randolph CE, Zabaleta J, Schroder K, Pedersen KB, Ronis MJJ. Nox4 expression in osteo-progenitors controls bone development in mice during early life. Commun Biol 2022; 5:583. [PMID: 35701603 PMCID: PMC9198054 DOI: 10.1038/s42003-022-03544-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
Tightly regulated and cell-specific NADPH-oxidases (Nox) represent one of the major sources of reactive oxygen species (ROS) signaling molecules that are involved in tissue development and stem cell self-renewal. We have characterized the role of Nox4 in osteo-progenitors during postnatal bone development. Nox4 expression in bone and ROS generation were increased during early osteoblast differentiation and bone development. Stromal osteoblastic cell self-renewal, proliferation and ROS production were significantly lower in samples from whole-body Nox4 knockout mice (Nox4-/-) and conditional knockout (CKO) mice with depletion of Nox4 in the limb bud mesenchyme compared with those from control mice (Nox4fl/fl), but they were reversed after 9 passages. In both sexes, bone volume, trabecular number and bone mineral density were significantly lower in 3-week old CKO and Nox4-/- mice compared with Nox4fl/fl controls. This was reflected in serum levels of bone formation markers alkaline phosphatase (ALP) and procollagen 1 intact N-terminal propeptide (P1NP). However, under-developed bone formation in 3-week old CKO and Nox4-/- mice quickly caught up to levels of control mice by 6-week of age, remained no different at 13-week of age, and was reversed in 32-week old male mice. Osteoclastogenesis showed no differences among groups, however, CTX1 reflecting osteoclast activity was significantly higher in 3-week old male CKO and Nox4-/- mice compared with control mice, and significantly lower in 32-week old Nox4-/- mice compared with control mice. These data suggest that Nox4 expression and ROS signaling in bone and osteoblastic cells coordinately play an important role in osteoblast differentiation, proliferation and maturation.
Collapse
Affiliation(s)
- Jin-Ran Chen
- Arkansas Children's Nutrition Center, Little Rock, AR, 72202, USA. .,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA.
| | - Oxana P. Lazarenko
- grid.508987.bArkansas Children’s Nutrition Center, Little Rock, AR 72202 USA ,grid.241054.60000 0004 4687 1637Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202 USA
| | - Michael L. Blackburn
- grid.508987.bArkansas Children’s Nutrition Center, Little Rock, AR 72202 USA ,grid.241054.60000 0004 4687 1637Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202 USA
| | - Jennifer F. Chen
- grid.411017.20000 0001 2151 0999Undergraduate Pre-Medical Program, University of Arkansas at Fayetteville, Fayetteville, AR 72701 USA
| | - Christopher E. Randolph
- grid.488749.eCenter for Translational Pediatric Research, Arkansas Children’s Research Institute, Little Rock, AR 72202 USA
| | - Jovanny Zabaleta
- grid.279863.10000 0000 8954 1233Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112 USA
| | - Katrin Schroder
- grid.7839.50000 0004 1936 9721Institute of Physiology I, Goethe-University, Frankfurt, Germany
| | - Kim B. Pedersen
- grid.279863.10000 0000 8954 1233Department of Interdisciplinary Oncology (DIO), Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA 70112 USA
| | - Martin J. J. Ronis
- grid.279863.10000 0000 8954 1233Department of Interdisciplinary Oncology (DIO), Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA 70112 USA
| |
Collapse
|
22
|
Guo CL. Self-Sustained Regulation or Self-Perpetuating Dysregulation: ROS-dependent HIF-YAP-Notch Signaling as a Double-Edged Sword on Stem Cell Physiology and Tumorigenesis. Front Cell Dev Biol 2022; 10:862791. [PMID: 35774228 PMCID: PMC9237464 DOI: 10.3389/fcell.2022.862791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/29/2022] [Indexed: 12/19/2022] Open
Abstract
Organ development, homeostasis, and repair often rely on bidirectional, self-organized cell-niche interactions, through which cells select cell fate, such as stem cell self-renewal and differentiation. The niche contains multiplexed chemical and mechanical factors. How cells interpret niche structural information such as the 3D topology of organs and integrate with multiplexed mechano-chemical signals is an open and active research field. Among all the niche factors, reactive oxygen species (ROS) have recently gained growing interest. Once considered harmful, ROS are now recognized as an important niche factor in the regulation of tissue mechanics and topology through, for example, the HIF-YAP-Notch signaling pathways. These pathways are not only involved in the regulation of stem cell physiology but also associated with inflammation, neurological disorder, aging, tumorigenesis, and the regulation of the immune checkpoint molecule PD-L1. Positive feedback circuits have been identified in the interplay of ROS and HIF-YAP-Notch signaling, leading to the possibility that under aberrant conditions, self-organized, ROS-dependent physiological regulations can be switched to self-perpetuating dysregulation, making ROS a double-edged sword at the interface of stem cell physiology and tumorigenesis. In this review, we discuss the recent findings on how ROS and tissue mechanics affect YAP-HIF-Notch-PD-L1 signaling, hoping that the knowledge can be used to design strategies for stem cell-based and ROS-targeting therapy and tissue engineering.
Collapse
Affiliation(s)
- Chin-Lin Guo
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
23
|
Dionne U, Percival LJ, Chartier FJM, Landry CR, Bisson N. SRC homology 3 domains: multifaceted binding modules. Trends Biochem Sci 2022; 47:772-784. [PMID: 35562294 DOI: 10.1016/j.tibs.2022.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022]
Abstract
The assembly of complexes following the detection of extracellular signals is often controlled by signaling proteins comprising multiple peptide binding modules. The SRC homology (SH)3 family represents the archetypical modular protein interaction module, with ~300 annotated SH3 domains in humans that regulate an impressive array of signaling processes. We review recent findings regarding the allosteric contributions of SH3 domains host protein context, their phosphoregulation, and their roles in phase separation that challenge the simple model in which SH3s are considered to be portable domains binding to specific proline-rich peptide motifs.
Collapse
Affiliation(s)
- Ugo Dionne
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada
| | - Lily J Percival
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada; School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Manchester, UK
| | - François J M Chartier
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada
| | - Christian R Landry
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada; Institute of Integrative and Systems Biology, Université Laval, Quebec, QC, Canada; Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Quebec, QC, Canada; Department of Biology, Université Laval, Quebec, QC, Canada.
| | - Nicolas Bisson
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec, QC, Canada.
| |
Collapse
|
24
|
Garsi JB, Komjáti B, Cullia G, Fejes I, Sipos M, Sipos Z, Fördős E, Markacz P, Balázs B, Lancelot N, Berger S, Raimbaud E, Brown D, Vuillard LM, Haberkorn L, Cukier C, Szlávik Z, Hanessian S. Targeting NOX2 via p47/phox-p22/phox Inhibition with Novel Triproline Mimetics. ACS Med Chem Lett 2022; 13:949-954. [DOI: 10.1021/acsmedchemlett.2c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/26/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Jean-Baptiste Garsi
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H2V 0B3, Canada
| | - Balázs Komjáti
- Servier Research Institute of Medicinal Chemistry, 1031 Záhony utca 7 Mb, Budapest 1031, Hungary
| | - Gregorio Cullia
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H2V 0B3, Canada
| | - Imre Fejes
- Servier Research Institute of Medicinal Chemistry, 1031 Záhony utca 7 Mb, Budapest 1031, Hungary
| | - Melinda Sipos
- Servier Research Institute of Medicinal Chemistry, 1031 Záhony utca 7 Mb, Budapest 1031, Hungary
| | - Zoltán Sipos
- Servier Research Institute of Medicinal Chemistry, 1031 Záhony utca 7 Mb, Budapest 1031, Hungary
| | - Eszter Fördős
- Servier Research Institute of Medicinal Chemistry, 1031 Záhony utca 7 Mb, Budapest 1031, Hungary
| | - Piroska Markacz
- Servier Research Institute of Medicinal Chemistry, 1031 Záhony utca 7 Mb, Budapest 1031, Hungary
| | - Barbara Balázs
- Servier Research Institute of Medicinal Chemistry, 1031 Záhony utca 7 Mb, Budapest 1031, Hungary
| | - Nathalie Lancelot
- Institut de Recherche Servier, 125 Chemin de la Ronde, 78290 Croissy, France
| | - Sylvie Berger
- Institut de Recherche Servier, 125 Chemin de la Ronde, 78290 Croissy, France
| | - Eric Raimbaud
- Institut de Recherche Servier, 125 Chemin de la Ronde, 78290 Croissy, France
| | - David Brown
- Institut de Recherche Servier, 125 Chemin de la Ronde, 78290 Croissy, France
| | | | - Laure Haberkorn
- Institut de Recherche Servier, 125 Chemin de la Ronde, 78290 Croissy, France
| | - Cyprian Cukier
- Selvita S.A., ul. Bobrzyńskiego 14, 30-348 Kraków, Poland
| | - Zoltán Szlávik
- Servier Research Institute of Medicinal Chemistry, 1031 Záhony utca 7 Mb, Budapest 1031, Hungary
| | - Stephen Hanessian
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H2V 0B3, Canada
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92617, USA
| |
Collapse
|
25
|
Bai L, Sun S, Sun Y, Wang F, Nishiyama A. N-type calcium channel and renal injury. Int Urol Nephrol 2022; 54:2871-2879. [PMID: 35416563 PMCID: PMC9534814 DOI: 10.1007/s11255-022-03183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/15/2022] [Indexed: 11/26/2022]
Abstract
Accumulating evidences indicated that voltage-gated calcium channels (VDCC), including L-, T-, N-, and P/Q-type, are present in kidney and contribute to renal injury during various chronic diseases trough different mechanisms. As a voltage-gated calcium channel, N-type calcium channel was firstly been founded predominately distributed on nerve endings which control neurotransmitter releases. Since sympathetic nerve is distributed along renal afferent and efferent arterioles, N-type calcium channel blockade on sympathetic nerve terminals would bring renal dynamic improvement by dilating both arterioles and reducing glomerular pressure. In addition, large body of scientific research indicated that neurotransmitters, such as norepinephrine, releases by activating N-type calcium channel can trigger inflammatory and fibrotic signaling pathways in kidney. Interestingly, we recently demonstrated that N-type calcium channel is also expressed on podocytes and may directly contribute to podocyte injury in denervated animal models. In this paper, we will summarize our current knowledge regarding renal N-type calcium channels, and discuss how they might contribute to the river that terminates in renal injury.
Collapse
Affiliation(s)
- Lei Bai
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050011, Hebei, People's Republic of China.
| | - Shichao Sun
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215 Heping Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Yao Sun
- Department of Medical Image, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050011, Hebei, People's Republic of China
| | - Fujun Wang
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050011, Hebei, People's Republic of China
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University Medical School, Kagawa, 761-0793, Japan
| |
Collapse
|
26
|
Fan LM, Liu F, Du J, Geng L, Li JM. Inhibition of endothelial Nox2 activation by LMH001 protects mice from angiotensin II-induced vascular oxidative stress, hypertension and aortic aneurysm. Redox Biol 2022; 51:102269. [PMID: 35276443 PMCID: PMC8908273 DOI: 10.1016/j.redox.2022.102269] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/11/2022] [Indexed: 12/31/2022] Open
Abstract
Endothelial oxidative stress and inflammation attributable to the activation of a Nox2-NADPH oxidase are key features of many cardiovascular diseases. Here, we report a novel small chemical compound (LMH001, MW = 290.079), by blocking phosphorylated p47phox interaction with p22phox, inhibited effectively angiotensin II (AngII)-induced endothelial Nox2 activation and superoxide production at a small dose (IC50 = 0.25 μM) without effect on peripheral leucocyte oxidative response to pathogens. The therapeutic potential of LMH001 was tested using a mouse model (C57BL/6J, 7-month-old) of AngII infusion (0.8 mg/kg/d, 14 days)-induced vascular oxidative stress, hypertension and aortic aneurysm. Age-matched littermates of p47phox knockout mice were used as controls of Nox2 inhibition. LMH001 (2.5 mg/kg/d, ip. once) showed no effect on control mice, but inhibited completely AngII infusion-induced excess ROS production in vital organs, hypertension, aortic walls inflammation and reduced incidences of aortic aneurysm. LMH001 effects on reducing vascular oxidative stress was due to its inhibition of Nox2 activation and was abrogated by knockout of p47phox. LMH001 has the potential to be developed as a novel drug candidate to treat oxidative stress-related cardiovascular diseases.
Collapse
Affiliation(s)
- Lampson M Fan
- Department of Cardiology, Royal Wolverhampton NHS Trust, UK
| | - Fangfei Liu
- School of Biological Sciences, University of Reading, UK
| | - Junjie Du
- Department of Cardiovascular Surgery, Nanjing Medical University, PR China; Faculty of Health and Medical Sciences, University of Surrey, UK
| | - Li Geng
- School of Biological Sciences, University of Reading, UK; Faculty of Health and Medical Sciences, University of Surrey, UK
| | - Jian-Mei Li
- School of Biological Sciences, University of Reading, UK; Faculty of Health and Medical Sciences, University of Surrey, UK.
| |
Collapse
|
27
|
Application value of a new Cu(II)-coordination polymer in stroke rehabilitation treatment and nursing by reducing oxidative stress in nerve cells. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Characterization of the binding of cytosolic phospholipase A 2 alpha and NOX2 NADPH oxidase in mouse macrophages. Mol Biol Rep 2022; 49:3511-3518. [PMID: 35092565 DOI: 10.1007/s11033-022-07191-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Previous studies have demonstrated that cytosolic phospholipase A2α (cPLA2α) is required for NOX2 NADPH oxidase activation in human and mouse phagocytes. Moreover, upon stimulation, cPLA2α translocates to the plasma membranes by binding to the assembled oxidase, forming a complex between its C2 domain and the PX domain of the cytosolic oxidase factor, p47phox in human phagocytes. Intravenous administration of antisense against cPLA2α that significantly inhibited its expression in mouse peritoneal neutrophils and macrophages also inhibited superoxide production, in contrast to cPLA2α knockout mice that showed normal superoxide production. The present study aimed to determine whether there is a binding between cPLA2α-C2 domain and p47phox-PX in mouse macrophages, to further support the role of cPLA2α in oxidase regulation also in mouse phagocytes. METHODS AND RESULTS A significant binding of mouse GST-p47phox-PX domain fusion protein and cPLA2α in stimulated mouse phagocyte membranes was demonstrated by pull-down experiments, although lower than that detected by the human p47phox-PX domain. Substituting the amino acids Phe98, Asn99, and Gly100 to Cys98, Ser99, and Thr100 in the mouse p47phox-PX domain (present in the human p47phox-PX domain) caused strong binding that was similar to that detected by the human p47phox-PX domain CONCLUSIONS: The binding between cPLA2α-C2 and p47phox-PX domains exists in mouse macrophages and is not unique to human phagocytes. The binding between the two proteins is lower in the mice, probably due to the absence of amino acids Cys98, Ser 99, and Thr100in the p47phox-PX domain that facilitate the binding to cPLA2α.
Collapse
|
29
|
Taylor JP, Tse HM. The role of NADPH oxidases in infectious and inflammatory diseases. Redox Biol 2021; 48:102159. [PMID: 34627721 PMCID: PMC8487856 DOI: 10.1016/j.redox.2021.102159] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) are enzymes that generate superoxide or hydrogen peroxide from molecular oxygen utilizing NADPH as an electron donor. There are seven enzymes in the NOX family: NOX1-5 and dual oxidase (DUOX) 1-2. NOX enzymes in humans play important roles in diverse biological functions and vary in expression from tissue to tissue. Importantly, NOX2 is involved in regulating many aspects of innate and adaptive immunity, including regulation of type I interferons, the inflammasome, phagocytosis, antigen processing and presentation, and cell signaling. DUOX1 and DUOX2 play important roles in innate immune defenses at epithelial barriers. This review discusses the role of NOX enzymes in normal physiological processes as well as in disease. NOX enzymes are important in autoimmune diseases like type 1 diabetes and have also been implicated in acute lung injury caused by infection with SARS-CoV-2. Targeting NOX enzymes directly or through scavenging free radicals may be useful therapies for autoimmunity and acute lung injury where oxidative stress contributes to pathology.
Collapse
Affiliation(s)
- Jared P Taylor
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hubert M Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
30
|
Merő B, Koprivanacz K, Cserkaszky A, Radnai L, Vas V, Kudlik G, Gógl G, Sok P, Póti ÁL, Szeder B, Nyitray L, Reményi A, Geiszt M, Buday L. Characterization of the Intramolecular Interactions and Regulatory Mechanisms of the Scaffold Protein Tks4. Int J Mol Sci 2021; 22:ijms22158103. [PMID: 34360869 PMCID: PMC8348221 DOI: 10.3390/ijms22158103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
The scaffold protein Tks4 is a member of the p47phox-related organizer superfamily. It plays a key role in cell motility by being essential for the formation of podosomes and invadopodia. In addition, Tks4 is involved in the epidermal growth factor (EGF) signaling pathway, in which EGF induces the translocation of Tks4 from the cytoplasm to the plasma membrane. The evolutionarily-related protein p47phox and Tks4 share many similarities in their N-terminal region: a phosphoinositide-binding PX domain is followed by two SH3 domains (so called “tandem SH3”) and a proline-rich region (PRR). In p47phox, the PRR is followed by a relatively short, disordered C-terminal tail region containing multiple phosphorylation sites. These play a key role in the regulation of the protein. In Tks4, the PRR is followed by a third and a fourth SH3 domain connected by a long (~420 residues) unstructured region. In p47phox, the tandem SH3 domain binds the PRR while the first SH3 domain interacts with the PX domain, thereby preventing its binding to the membrane. Based on the conserved structural features of p47phox and Tks4 and the fact that an intramolecular interaction between the third SH3 and the PX domains of Tks4 has already been reported, we hypothesized that Tks4 is similarly regulated by autoinhibition. In this study, we showed, via fluorescence-based titrations, MST, ITC, and SAXS measurements, that the tandem SH3 domain of Tks4 binds the PRR and that the PX domain interacts with the third SH3 domain. We also investigated a phosphomimicking Thr-to-Glu point mutation in the PRR as a possible regulator of intramolecular interactions. Phosphatidylinositol-3-phosphate (PtdIns(3)P) was identified as the main binding partner of the PX domain via lipid-binding assays. In truncated Tks4 fragments, the presence of the tandem SH3, together with the PRR, reduced PtdIns(3)P binding, while the presence of the third SH3 domain led to complete inhibition.
Collapse
Affiliation(s)
- Balázs Merő
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (B.M.); (K.K.); (A.C.); (L.R.); (V.V.); (G.K.); (B.S.)
| | - Kitti Koprivanacz
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (B.M.); (K.K.); (A.C.); (L.R.); (V.V.); (G.K.); (B.S.)
| | - Anna Cserkaszky
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (B.M.); (K.K.); (A.C.); (L.R.); (V.V.); (G.K.); (B.S.)
| | - László Radnai
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (B.M.); (K.K.); (A.C.); (L.R.); (V.V.); (G.K.); (B.S.)
| | - Virag Vas
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (B.M.); (K.K.); (A.C.); (L.R.); (V.V.); (G.K.); (B.S.)
| | - Gyöngyi Kudlik
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (B.M.); (K.K.); (A.C.); (L.R.); (V.V.); (G.K.); (B.S.)
| | - Gergő Gógl
- Department of Biochemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (G.G.); (L.N.)
| | - Péter Sok
- Research Centre for Natural Sciences, Institute of Organic Chemistry, 1117 Budapest, Hungary; (P.S.); (Á.L.P.); (A.R.)
| | - Ádám L. Póti
- Research Centre for Natural Sciences, Institute of Organic Chemistry, 1117 Budapest, Hungary; (P.S.); (Á.L.P.); (A.R.)
| | - Bálint Szeder
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (B.M.); (K.K.); (A.C.); (L.R.); (V.V.); (G.K.); (B.S.)
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (G.G.); (L.N.)
| | - Attila Reményi
- Research Centre for Natural Sciences, Institute of Organic Chemistry, 1117 Budapest, Hungary; (P.S.); (Á.L.P.); (A.R.)
| | - Miklós Geiszt
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary;
| | - László Buday
- Department of Biochemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (G.G.); (L.N.)
- Department of Molecular Biology, Semmelweis University Medical School, 1094 Budapest, Hungary
- Correspondence:
| |
Collapse
|
31
|
Yuan Q, Basit A, Liang W, Qu R, Luan Y, Ren C, Li A, Xu X, Liu X, Yang C, Kuo A, Pierce R, Zhang L, Turk B, Hu X, Li F, Cui W, Li R, Huang D, Mo L, Sessa WC, Lee PJ, Kluger Y, Su B, Tang W, He J, Wu D. Pazopanib ameliorates acute lung injuries via inhibition of MAP3K2 and MAP3K3. Sci Transl Med 2021; 13:13/591/eabc2499. [PMID: 33910977 DOI: 10.1126/scitranslmed.abc2499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/30/2020] [Accepted: 01/04/2021] [Indexed: 11/02/2022]
Abstract
Acute lung injury (ALI) causes high mortality and lacks any pharmacological intervention. Here, we found that pazopanib ameliorated ALI manifestations and reduced mortality in mouse ALI models and reduced edema in human lung transplantation recipients. Pazopanib inhibits mitogen-activated protein kinase kinase kinase 2 (MAP3K2)- and MAP3K3-mediated phosphorylation of NADPH oxidase 2 subunit p47phox at Ser208 to increase reactive oxygen species (ROS) formation in myeloid cells. Genetic inactivation of MAP3K2 and MAP3K3 in myeloid cells or hematopoietic mutation of p47phox Ser208 to alanine attenuated ALI manifestations and abrogates anti-ALI effects of pazopanib. This myeloid MAP3K2/MAP3K3-p47phox pathway acted via paracrine H2O2 to enhance pulmonary vasculature integrity and promote lung epithelial cell survival and proliferation, leading to increased pulmonary barrier function and resistance to ALI. Thus, pazopanib has the potential to be effective for treating ALI.
Collapse
Affiliation(s)
- Qianying Yuan
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Abdul Basit
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Wenhua Liang
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Rihao Qu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yi Luan
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Chunguang Ren
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ao Li
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xin Xu
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Xiaoqing Liu
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Chun Yang
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Andrew Kuo
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Richard Pierce
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Longbo Zhang
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Benjamin Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xin Hu
- Department of Biostatistics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Fangyong Li
- Department of Biostatistics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Weixue Cui
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Run Li
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Danxia Huang
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Lili Mo
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - William C Sessa
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Patty J Lee
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yuval Kluger
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Bing Su
- Shanghai Institute of Immunology, Shanghai Jiaotong University, Shanghai 200025, China.
| | - Wenwen Tang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA. .,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jianxing He
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China.
| | - Dianqing Wu
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA. .,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
32
|
Vermot A, Petit-Härtlein I, Smith SME, Fieschi F. NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology. Antioxidants (Basel) 2021; 10:890. [PMID: 34205998 PMCID: PMC8228183 DOI: 10.3390/antiox10060890] [Citation(s) in RCA: 368] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/17/2023] Open
Abstract
The reactive oxygen species (ROS)-producing enzyme NADPH oxidase (NOX) was first identified in the membrane of phagocytic cells. For many years, its only known role was in immune defense, where its ROS production leads to the destruction of pathogens by the immune cells. NOX from phagocytes catalyzes, via one-electron trans-membrane transfer to molecular oxygen, the production of the superoxide anion. Over the years, six human homologs of the catalytic subunit of the phagocyte NADPH oxidase were found: NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2. Together with the NOX2/gp91phox component present in the phagocyte NADPH oxidase assembly itself, the homologs are now referred to as the NOX family of NADPH oxidases. NOX are complex multidomain proteins with varying requirements for assembly with combinations of other proteins for activity. The recent structural insights acquired on both prokaryotic and eukaryotic NOX open new perspectives for the understanding of the molecular mechanisms inherent to NOX regulation and ROS production (superoxide or hydrogen peroxide). This new structural information will certainly inform new investigations of human disease. As specialized ROS producers, NOX enzymes participate in numerous crucial physiological processes, including host defense, the post-translational processing of proteins, cellular signaling, regulation of gene expression, and cell differentiation. These diversities of physiological context will be discussed in this review. We also discuss NOX misregulation, which can contribute to a wide range of severe pathologies, such as atherosclerosis, hypertension, diabetic nephropathy, lung fibrosis, cancer, or neurodegenerative diseases, giving this family of membrane proteins a strong therapeutic interest.
Collapse
Affiliation(s)
- Annelise Vermot
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| | - Isabelle Petit-Härtlein
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| | - Susan M. E. Smith
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA;
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| |
Collapse
|
33
|
Kim JS, Cho E, Mun SJ, Kim S, Kim SY, Kim DG, Son W, Jeon HI, Kim HK, Jeong YJ, Jang S, Kim HS, Yang CS. Multi-Functional MPT Protein as a Therapeutic Agent against Mycobacterium tuberculosis. Biomedicines 2021; 9:biomedicines9050545. [PMID: 34068051 PMCID: PMC8152475 DOI: 10.3390/biomedicines9050545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/03/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis (TB), avoids the host immune system through its virulence factors. MPT63 and MPT64 are the virulence factors secreted by MTB which regulate host proteins for the survival and proliferation of MTB in the host. Here, we found that MPT63 bound directly with TBK1 and p47phox, whereas MPT64 interacted with TBK1 and HK2. We constructed a MPT63/64-derived multifunctional recombinant protein (rMPT) that was able to interact with TBK1, p47phox, or HK2. rMPT was shown to regulate IFN-β levels and increase inflammation and concentration of reactive oxygen species (ROS), while targeting macrophages and killing MTB, both in vitro and in vivo. Furthermore, the identification of the role of rMPT against MTB was achieved via vaccination in a mouse model. Taken together, we here present rMPT, which, by regulating important immune signaling systems, can be considered an effective vaccine or therapeutic agent against MTB.
Collapse
Affiliation(s)
- Jae-Sung Kim
- Department of Bionano Technology, Hanyang University, Seoul 04673, Korea; (J.-S.K.); (E.C.); (S.-J.M.); (S.-Y.K.)
- Institute of Natural Science & Technology, Hanyang University, Ansan 15588, Korea
| | - Euni Cho
- Department of Bionano Technology, Hanyang University, Seoul 04673, Korea; (J.-S.K.); (E.C.); (S.-J.M.); (S.-Y.K.)
- Center for Bionano Intelligence Education and Research, Ansan 15588, Korea; (W.S.); (H.-I.J.); (H.-K.K.); (Y.-J.J.); (S.J.)
| | - Seok-Jun Mun
- Department of Bionano Technology, Hanyang University, Seoul 04673, Korea; (J.-S.K.); (E.C.); (S.-J.M.); (S.-Y.K.)
- Center for Bionano Intelligence Education and Research, Ansan 15588, Korea; (W.S.); (H.-I.J.); (H.-K.K.); (Y.-J.J.); (S.J.)
| | - Sojin Kim
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, Korea; (S.K.); (D.-G.K.)
| | - Sun-Young Kim
- Department of Bionano Technology, Hanyang University, Seoul 04673, Korea; (J.-S.K.); (E.C.); (S.-J.M.); (S.-Y.K.)
| | - Dong-Gyu Kim
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, Korea; (S.K.); (D.-G.K.)
| | - Wooic Son
- Center for Bionano Intelligence Education and Research, Ansan 15588, Korea; (W.S.); (H.-I.J.); (H.-K.K.); (Y.-J.J.); (S.J.)
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, Korea; (S.K.); (D.-G.K.)
| | - Hye-In Jeon
- Center for Bionano Intelligence Education and Research, Ansan 15588, Korea; (W.S.); (H.-I.J.); (H.-K.K.); (Y.-J.J.); (S.J.)
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, Korea; (S.K.); (D.-G.K.)
| | - Hyo-Keun Kim
- Center for Bionano Intelligence Education and Research, Ansan 15588, Korea; (W.S.); (H.-I.J.); (H.-K.K.); (Y.-J.J.); (S.J.)
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, Korea; (S.K.); (D.-G.K.)
| | - Young-Jin Jeong
- Center for Bionano Intelligence Education and Research, Ansan 15588, Korea; (W.S.); (H.-I.J.); (H.-K.K.); (Y.-J.J.); (S.J.)
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, Korea; (S.K.); (D.-G.K.)
| | - Sein Jang
- Center for Bionano Intelligence Education and Research, Ansan 15588, Korea; (W.S.); (H.-I.J.); (H.-K.K.); (Y.-J.J.); (S.J.)
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, Korea; (S.K.); (D.-G.K.)
| | - Hyun-Sung Kim
- Department of Pathology, Hanyang University College of Medicine, Seoul 04673, Korea;
| | - Chul-Su Yang
- Center for Bionano Intelligence Education and Research, Ansan 15588, Korea; (W.S.); (H.-I.J.); (H.-K.K.); (Y.-J.J.); (S.J.)
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, Korea; (S.K.); (D.-G.K.)
- Correspondence: ; Tel.: +82-31-400-5519; Fax: +82-31-436-8153
| |
Collapse
|
34
|
Hsieh YS, Shin YK, Seol GH. Protection of the neurovascular unit from calcium-related ischemic injury by linalyl acetate. CHINESE J PHYSIOL 2021; 64:88-96. [PMID: 33938819 DOI: 10.4103/cjp.cjp_94_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Calcium-related ischemic injury (CRII) can damage cells of the neurovascular unit (NVU). Here, we investigate the protective effects of linalyl acetate (LA) against CRII-induced NVU damage and evaluate the underlying mechanisms. The protective effects of LA in cell lines representative of NVU components (BEND, SH-SY5Y, BV2, and U373 cells) were evaluated following exposure to oxygen-glucose deprivation/reoxygenation alone (OGD/R-only) or OGD/R in the presence of 5 mM extracellular calcium ([Ca2+]o) to mimic CRII. LA reversed damage under OGD/R-only conditions by blocking p47phox/NADPH oxidase (NOX) 2 expression, reactive oxygen species (ROS) production, nitric oxide (NO) abnormality, and lactate dehydrogenase (LDH) release only in the BEND cells. However, under CRII-mimicking conditions, LA reversed NO abnormality and matrix metalloproteinase (MMP)-9 activation in the BEND murine brain endothelial cells; inhibited p47phox expression in the human SH-SY5Y neural-like cells; decreased NOX2 expression and ROS generation in the BV2 murine microglial cells; and reduced p47phox expression in the U373 human astrocyte-like cells. Importantly, LA protected against impairment of the neural cells, astrocytes, and microglia, all of which are cellular components of the NVU induced by exposure to CRII-mimicking conditions, by reducing LDH release. We found that LA exerted a protective effect in the BEND cells that may differ from its protective effects in other NVU cell types, following OGD/R-induced damage in the context of elevated [Ca2+]o.
Collapse
Affiliation(s)
- Yu Shan Hsieh
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul, Republic of Korea; Department of Nursing, School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - You Kyoung Shin
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul, Republic of Korea
| | - Geun Hee Seol
- Department of Basic Nursing Science, School of Nursing; BK21 FOUR Program of Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul, Republic of Korea
| |
Collapse
|
35
|
Xu Z, Liang Y, Delaney MK, Zhang Y, Kim K, Li J, Bai Y, Cho J, Ushio-Fukai M, Cheng N, Du X. Shear and Integrin Outside-In Signaling Activate NADPH-Oxidase 2 to Promote Platelet Activation. Arterioscler Thromb Vasc Biol 2021; 41:1638-1653. [PMID: 33691478 PMCID: PMC8057529 DOI: 10.1161/atvbaha.120.315773] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 03/01/2021] [Indexed: 11/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Zheng Xu
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| | - Ying Liang
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| | - M. Keegan Delaney
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
- Dupage Medical Technology, Inc (M.K.D.)
| | - Yaping Zhang
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| | - Kyungho Kim
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
- Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu (K.K.)
| | - Jing Li
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| | - Yanyan Bai
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| | - Jaehyung Cho
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| | - Masuko Ushio-Fukai
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
- Department of Medicine (Cardiology), Vascular Biology Center, Medical College of Georgia at Augusta University (M.U.-F.)
| | - Ni Cheng
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| | - Xiaoping Du
- Department of Pharmacology, University of Illinois at Chicago (Z.X., Y.L., M.K.D., Y.Z., K.K., J.L., Y.B., J.C., M.U.-F., N.C., X.D.)
| |
Collapse
|
36
|
Jiang Q, Zhao Y, Shui Y, Zhou X, Cheng L, Ren B, Chen Z, Li M. Interactions Between Neutrophils and Periodontal Pathogens in Late-Onset Periodontitis. Front Cell Infect Microbiol 2021; 11:627328. [PMID: 33777839 PMCID: PMC7994856 DOI: 10.3389/fcimb.2021.627328] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/03/2021] [Indexed: 02/05/2023] Open
Abstract
Late-onset periodontitis is associated with a series of inflammatory reactions induced by periodontal pathogens, such as Porphyromonas gingivalis, a keystone pathogen involved in periodontitis. Neutrophils are the most abundant leukocytes in the periodontal pocket/gingival crevice and inflamed periodontal tissues. They form a “wall” between the dental plaque and the junctional epithelium, preventing microbial invasion. The balance between neutrophils and the microbial community is essential to periodontal homeostasis. Excessive activation of neutrophils in response to periodontal pathogens can induce tissue damage and lead to periodontitis persistence. Therefore, illuminating the interactions between neutrophils and periodontal pathogens is critical for progress in the field of periodontitis. The present review aimed to summarize the interactions between neutrophils and periodontal pathogens in late-onset periodontitis, including neutrophil recruitment, neutrophil mechanisms to clear the pathogens, and pathogen strategies to evade neutrophil-mediated elimination of bacteria. The recruitment is a multi-step process, including tethering and rolling, adhesion, crawling, and transmigration. Neutrophils clear the pathogens mainly by phagocytosis, respiratory burst responses, degranulation, and neutrophil extracellular trap (NET) formation. The mechanisms that pathogens activate to evade neutrophil-mediated killing include impairing neutrophil recruitment, preventing phagocytosis, uncoupling killing from inflammation, and resistance to ROS, degranulation products, and NETs.
Collapse
Affiliation(s)
- Qingsong Jiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yuxi Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yusen Shui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Zhu Chen
- Department of Conservative Dentistry and Endodontics, Guiyang Hospital of Stomatology, Guiyang, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Miralda I, Uriarte SM. Periodontal Pathogens' strategies disarm neutrophils to promote dysregulated inflammation. Mol Oral Microbiol 2020; 36:103-120. [PMID: 33128827 PMCID: PMC8048607 DOI: 10.1111/omi.12321] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/16/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022]
Abstract
Periodontitis is an irreversible, chronic inflammatory disease where inflammophilic pathogenic microbial communities accumulate in the gingival crevice. Neutrophils are a major component of the innate host response against bacterial challenge, and under homeostatic conditions, their microbicidal functions typically protect the host against periodontitis. However, a number of periodontal pathogens developed survival strategies to evade neutrophil microbicidal functions while promoting inflammation, which provides a source of nutrients for bacterial growth. Research on periodontal pathogens has largely focused on a few established species: Tannerella forsythia, Treponema denticola, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, and Porphyromonas gingivalis. However, advances in culture-independent techniques have facilitated the identification of new bacterial species in periodontal lesions, such as the two Gram-positive anaerobes, Filifactor alocis and Peptoanaerobacter stomatis, whose characterization of pathogenic potential has not been fully described. Additionally, there is not a full understanding of the pathogenic mechanisms used against neutrophils by organisms that are abundant in periodontal lesions. This presents a substantial barrier to the development of new approaches to prevent or ameliorate the disease. In this review, we first summarize the neutrophil functions affected by the established periodontal pathogens listed above, denoting unknown areas that still merit a closer look. Then, we review the literature on neutrophil functions and the emerging periodontal pathogens, F. alocis and P. stomatis, comparing the effects of the emerging microbes to that of established pathogens, and speculate on the contribution of these putative pathogens to the progression of periodontal disease.
Collapse
Affiliation(s)
- Irina Miralda
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - Silvia M Uriarte
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| |
Collapse
|
38
|
Oxidative Stress and Antioxidant Treatments in Cardiovascular Diseases. Antioxidants (Basel) 2020; 9:antiox9121292. [PMID: 33348578 PMCID: PMC7766219 DOI: 10.3390/antiox9121292] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress plays a key role in many physiological and pathological conditions. The intracellular oxidative homeostasis is tightly regulated by the reactive oxygen species production and the intracellular defense mechanisms. Increased oxidative stress could alter lipid, DNA, and protein, resulting in cellular inflammation and programmed cell death. Evidences show that oxidative stress plays an important role in the progression of various cardiovascular diseases, such as atherosclerosis, heart failure, cardiac arrhythmia, and ischemia-reperfusion injury. There are a number of therapeutic options to treat oxidative stress-associated cardiovascular diseases. Well known antioxidants, such as nutritional supplements, as well as more novel antioxidants have been studied. In addition, novel therapeutic strategies using miRNA and nanomedicine are also being developed to treat various cardiovascular diseases. In this article, we provide a detailed description of oxidative stress. Then, we will introduce the relationship between oxidative stress and several cardiovascular diseases. Finally, we will focus on the clinical implications of oxidative stress in cardiovascular diseases.
Collapse
|
39
|
Regulation of Metabolic Processes by Hydrogen Peroxide Generated by NADPH Oxidases. Processes (Basel) 2020. [DOI: 10.3390/pr8111424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hydrogen peroxide (H2O2) is an important oxidizing molecule that regulates the metabolisms of aerobic organisms. Redox signaling comprises physiological oxidative stress (eustress), while excessive oxidative stress causes damage to molecules. The main enzymatic generators of H2O2 are nicotinamide adenine dinucleotide phosphate oxidases or NADPH oxidases (NOXs) and mitochondrial respiratory chains, as well as various oxidases. The NOX family is constituted of seven enzyme isoforms that produce a superoxide anion (O2−), which can be converted to H2O2 by superoxide dismutase or spontaneously. H2O2 passes through the membranes by some aquaporins (AQPs), known as peroxyporins. It diffuses through cells and tissues to initiate cellular effects, such as proliferation, the recruitment of immune cells, and cell shape changes. Therefore, it has been proposed that H2O2 has the same importance as Ca2+ or adenosine triphosphate (ATP) to act as modulators in signaling and the metabolism. The present overview focuses on the metabolic processes of liver and adipose tissue, regulated by the H2O2 generated by NOXs.
Collapse
|
40
|
Advances in Understanding TKS4 and TKS5: Molecular Scaffolds Regulating Cellular Processes from Podosome and Invadopodium Formation to Differentiation and Tissue Homeostasis. Int J Mol Sci 2020; 21:ijms21218117. [PMID: 33143131 PMCID: PMC7663256 DOI: 10.3390/ijms21218117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Scaffold proteins are typically thought of as multi-domain "bridging molecules." They serve as crucial regulators of key signaling events by simultaneously binding multiple participants involved in specific signaling pathways. In the case of epidermal growth factor (EGF)-epidermal growth factor receptor (EGFR) binding, the activated EGFR contacts cytosolic SRC tyrosine-kinase, which then becomes activated. This process leads to the phosphorylation of SRC-substrates, including the tyrosine kinase substrates (TKS) scaffold proteins. The TKS proteins serve as a platform for the recruitment of key players in EGFR signal transduction, promoting cell spreading and migration. The TKS4 and the TKS5 scaffold proteins are tyrosine kinase substrates with four or five SH3 domains, respectively. Their structural features allow them to recruit and bind a variety of signaling proteins and to anchor them to the cytoplasmic surface of the cell membrane. Until recently, TKS4 and TKS5 had been recognized for their involvement in cellular motility, reactive oxygen species-dependent processes, and embryonic development, among others. However, a number of novel functions have been discovered for these molecules in recent years. In this review, we attempt to cover the diverse nature of the TKS molecules by discussing their structure, regulation by SRC kinase, relevant signaling pathways, and interaction partners, as well as their involvement in cellular processes, including migration, invasion, differentiation, and adipose tissue and bone homeostasis. We also describe related pathologies and the established mouse models.
Collapse
|
41
|
Sadri S, Tomar N, Yang C, Audi SH, Cowley AW, Dash RK. Mechanistic computational modeling of the kinetics and regulation of NADPH oxidase 2 assembly and activation facilitating superoxide production. Free Radic Res 2020; 54:695-721. [PMID: 33059489 DOI: 10.1080/10715762.2020.1836368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Reactive oxygen species (ROS) play a crucial role in many physiological processes. However, ROS overproduction leads to oxidative stress, which plays a critical role in cell injury/death and the pathogenesis of many diseases. Members of NADPH oxidase (NOX) family, most of which are comprised of membrane and cytosolic components, are known to be the major nonmitochondrial sources of ROS in many cells. NOX2 is a widely-expressed and well-studied NOX family member, which is activated upon assembly of its membrane subunits gp91 phox and p22 phox with its cytosolic subunits p40 phox , p47 phox , p67 phox , and Rac, facilitating ROS production. NOX2 activation is also enhanced by GTP and inhibited by GDP. However, there remains a lack of a mechanistic, quantitative, and integrated understanding of the kinetics and regulation of the assembly of these subunits and their relative contributions toward NOX2 activation and ROS production. Toward this end, we have developed a mechanistic computational model, which incorporates a generalized random rapid equilibrium binding mechanism for NOX2 assembly and activation as well as regulations by GTP (activation), GDP (inhibition), and individual subunits enhancing the binding of other subunits (mutual binding enhancement). The resulting model replicates diverse published kinetic data, including subunit concentration-dependent NOX2 activation and ROS production, under different assay conditions, with appropriate estimates of the unknown model parameters. The model provides a mechanistic, quantitative, and integrated framework for investigating the critical roles of NOX2 subunits in NOX2 assembly and activation facilitating ROS production in a variety of physiological and pathophysiological conditions. However, there is also a need for better quantitative kinetic data based on current understanding of NOX2 assembly and activation in order to test and further develop this model.
Collapse
Affiliation(s)
- Shima Sadri
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WIS, USA
| | - Namrata Tomar
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WIS, USA
| | - Chun Yang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WIS, USA
| | - Said H Audi
- Department of Biomedical Engineering, Marquette University, Milwaukee, WIS, USA
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WIS, USA
| | - Ranjan K Dash
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WIS, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WIS, USA
| |
Collapse
|
42
|
Lima SNP, Cerdeira CD, Santos GB, Fernandes MDM, Giusti-Paiva A, Brigagão MRPL. Tempol modulates the leukocyte response to inflammatory stimuli and attenuates endotoxin-induced sickness behaviour in mice. Arch Physiol Biochem 2020; 126:341-347. [PMID: 30465447 DOI: 10.1080/13813455.2018.1538247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Background and aims: Lipopolysaccharide (LPS), an endotoxin, is a component of the outer membrane of Gram-negative bacteria that is able to activate the peripheral immune system, leading to changes in signalling pathways that act locally and systemically to achieve adaptive responses. Sickness behaviour is a motivational state in response to endotoxin exposure and includes depressed activity and a reduction of exploratory behaviour, potentially reorganising organism priorities to cope with infectious diseases. We hypothesised that 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (Tempol) modulates the leukocyte response to endotoxins and decreases LPS-induced sickness behaviour in mice.Methods: The effects of Tempol on LPS-induced peritonitis and the respiratory burst of neutrophils primed with LPS and triggered by phorbol 12-myristate-13-acetate (PMA) were evaluated. To evaluate the effects of Tempol on sickness behaviour, the mice were submitted to an open field and forced swim tests.Results: Tempol (50-100 μM/106 cells) decreased the respiratory burst of LPS-primed and PMA-stimulated neutrophils in vitro. In vivo, this nitroxide (30 and 100 mg/kg body weight) inhibited leukocyte migration to the peritoneal cavity after LPS administration in mice. Moreover, Tempol pretreatment (30 and 100 mg/kg body weight) before LPS administration also attenuated sickness behavioural changes.Conclusions: Together, these findings shed light on the mechanisms underlying the anti-inflammatory potential and confirm the therapeutic potential of nitroxides.
Collapse
Affiliation(s)
- Samuel Nuno Pereira Lima
- Department of Biochemistry (DBq), Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Cláudio Daniel Cerdeira
- Department of Biochemistry (DBq), Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Gérsika Bitencourt Santos
- Department of Biochemistry (DBq), Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Mateus de Mello Fernandes
- Department of Biochemistry (DBq), Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Alexandre Giusti-Paiva
- Department of Physiology, Institute of Biomedical Sciences; Federal University of Alfenas, Alfenas, Brazil
| | | |
Collapse
|
43
|
ELABELA attenuates deoxycorticosterone acetate/salt-induced hypertension and renal injury by inhibition of NADPH oxidase/ROS/NLRP3 inflammasome pathway. Cell Death Dis 2020; 11:698. [PMID: 32829380 PMCID: PMC7443189 DOI: 10.1038/s41419-020-02912-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
ELABELA (ELA), a 32-residue hormone peptide abundantly expressed in adult kidneys, has been identified as a novel endogenous ligand for APJ/Apelin receptor. The aim of this study was to investigate the role of ELA in deoxycorticosterone acetate (DOCA)/salt-induced hypertension and further explore the underlying mechanism. In DOCA/salt-treated rats, the mRNA level of ELA greatly decreased in the renal medulla. Next, overexpression of ELA in the kidney was found to attenuate DOCA/salt-induced hypertension and renal injury, including lower blood pressure, reversed glomerular morphological damage, decreased blood urea nitrogen (BUN), and blocked the accumulation of fibrotic markers. Mechanistically, ELA overexpression inhibited renal nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and subsequent reactive oxygen species (ROS) production, thus resulted in the blockade of formation and activation of Nod-like receptor protein 3 (NLRP3) inflammasome. The inhibitory effects of ELA on Aldosterone-stimulated NADPH oxidase/ROS/NLRP3 inflammasome pathway were confirmed in the human renal tubular cells. Furthermore, our in vivo and in vitro results showed that the deficiency of the apelin receptor APJ did not influence the antihypertensive effect and blockage to NADPH oxidase/ROS/NLRP3 pathway of ELA. Moreover, in heterozygous ELA knockout mice (ELA+/−), the ELA deficiency remarkably accelerated the onset of DOCA/salt-induced hypertension. Our data demonstrate that ELA prevents DOCA/salt-induced hypertension by inhibiting NADPH oxidase/ROS/NLRP3 pathway in the kidney, which is APJ independent. Pharmacological targeting of ELA may serve as a novel therapeutic strategy for the treatment of hypertensive kidney disease.
Collapse
|
44
|
Vermot A, Petit-Härtlein I, Breyton C, Le Roy A, Thépaut M, Vivès C, Moulin M, Härtlein M, Grudinin S, Smith SME, Ebel C, Martel A, Fieschi F. Interdomain Flexibility within NADPH Oxidase Suggested by SANS Using LMNG Stealth Carrier. Biophys J 2020; 119:605-618. [PMID: 32668232 PMCID: PMC7399496 DOI: 10.1016/j.bpj.2020.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/26/2020] [Accepted: 06/23/2020] [Indexed: 11/12/2022] Open
Abstract
Small angle neutron scattering (SANS) provides a method to obtain important low-resolution information for integral membrane proteins (IMPs), challenging targets for structural determination. Specific deuteration furnishes a "stealth" carrier for the solubilized IMP. We used SANS to determine a structural envelope of SpNOX, the Streptococcus pneumoniae NADPH oxidase (NOX), a prokaryotic model system for exploring structure and function of eukaryotic NOXes. SpNOX was solubilized in the detergent lauryl maltose neopentyl glycol, which provides optimal SpNOX stability and activity. Using deuterated solvent and protein, the lauryl maltose neopentyl glycol was experimentally undetected in SANS. This affords a cost-effective SANS approach for obtaining novel structural information on IMPs. Combining SANS data with molecular modeling provided a first, to our knowledge, structural characterization of an entire NOX enzyme. It revealed a distinctly less compact structure than that predicted from the docking of homologous crystal structures of the separate transmembrane and dehydrogenase domains, consistent with a flexible linker connecting the two domains.
Collapse
Affiliation(s)
- Annelise Vermot
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | | | - Cécile Breyton
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Aline Le Roy
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Michel Thépaut
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Corinne Vivès
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | | | | | | | - Susan M E Smith
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia
| | - Christine Ebel
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | | | - Franck Fieschi
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France.
| |
Collapse
|
45
|
Song Z, Hudik E, Le Bars R, Roux B, Dang PMC, El Benna J, Nüsse O, Dupré-Crochet S. Class I phosphoinositide 3-kinases control sustained NADPH oxidase activation in adherent neutrophils. Biochem Pharmacol 2020; 178:114088. [PMID: 32531347 DOI: 10.1016/j.bcp.2020.114088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/21/2022]
Abstract
Phagocytes, especially neutrophils, can produce reactive oxygen species (ROS), through the activation of the NADPH oxidase (NOX2). Although this enzyme is crucial for host-pathogen defense, ROS production by neutrophils can be harmful in several pathologies such as cardiovascular diseases or chronic pulmonary diseases. The ROS production by NOX2 involves the assembly of the cytosolic subunits (p67phox, p47phox, and p40phox) and Rac with the membrane subunits (gp91phox and p22phox). Many studies are devoted to the activation of NOX2. However, the mechanisms that cause NADPH oxidase deactivation and thus terminate ROS production are not well known. Here we investigated the ability of class I phosphoinositide 3-kinases (PI3Ks) to sustain NADPH oxidase activation. The NADPH oxidase activation was triggered by seeding neutrophil-like PLB-985 cells, or human neutrophils on immobilized fibrinogen. Adhesion of the neutrophils, mediated by β2 integrins, induced activation of the NADPH oxidase and translocation of the cytosolic subunits at the plasma membrane. Inhibition of class I PI3Ks, and especially PI3Kβ, terminated ROS production. This deactivation of NOX2 is due to the release of the cytosolic subunits, p67phox and p47phox from the plasma membrane. Overexpression of an active form of Rac 1 did not prevent the drop of ROS production upon inhibition of class I PI3Ks. Moreover, the phosphorylation of p47phox at S328, a potential target of kinases activated by the PI3K pathway, was unchanged. Our results indicate that the experimental downregulation of class I PI3K products triggers the plasma membrane NADPH oxidase deactivation. Release of p47phox from the plasma membrane may involve its PX domains that bind PI3K products.
Collapse
Affiliation(s)
- Zhimin Song
- Université Paris-Saclay, CNRS UMR 8000, Institut de Chimie Physique, 91405 Orsay, France
| | - Elodie Hudik
- Université Paris-Saclay, CNRS UMR 8000, Institut de Chimie Physique, 91405 Orsay, France
| | - Romain Le Bars
- Light microscopy core facility, Imagerie-Gif, Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Blandine Roux
- Université Paris-Saclay, CNRS UMR 8000, Institut de Chimie Physique, 91405 Orsay, France
| | - Pham My-Chan Dang
- Université de Paris, Centre de Recherche sur l'Inflammation (CRI), Inserm, UMR 1149, CNRS, ERL8252, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, F-75018 Paris, France
| | - Jamel El Benna
- Université de Paris, Centre de Recherche sur l'Inflammation (CRI), Inserm, UMR 1149, CNRS, ERL8252, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, F-75018 Paris, France
| | - Oliver Nüsse
- Université Paris-Saclay, CNRS UMR 8000, Institut de Chimie Physique, 91405 Orsay, France
| | - Sophie Dupré-Crochet
- Université Paris-Saclay, CNRS UMR 8000, Institut de Chimie Physique, 91405 Orsay, France.
| |
Collapse
|
46
|
Richter K, Rufer AC, Muller M, Burger D, Casagrande F, Grossenbacher T, Huber S, Hug MN, Koldewey P, D'Osualdo A, Schlatter D, Stoll T, Rudolph MG. Small molecule AX-024 reduces T cell proliferation independently of CD3ϵ/Nck1 interaction, which is governed by a domain swap in the Nck1-SH3.1 domain. J Biol Chem 2020; 295:7849-7864. [PMID: 32317279 PMCID: PMC7278359 DOI: 10.1074/jbc.ra120.012788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Activation of the T cell receptor (TCR) results in binding of the adapter protein Nck (noncatalytic region of tyrosine kinase) to the CD3ϵ subunit of the TCR. The interaction was suggested to be important for the amplification of TCR signals and is governed by a proline-rich sequence (PRS) in CD3ϵ that binds to the first Src homology 3 (SH3) domain of Nck (Nck-SH3.1). Inhibition of this protein/protein interaction ameliorated inflammatory symptoms in mouse models of multiple sclerosis, psoriasis, and asthma. A small molecule, AX-024, was reported to inhibit the Nck/CD3ϵ interaction by physically binding to the Nck1-SH3.1 domain, suggesting a route to develop an inhibitor of the Nck1/CD3ϵ interaction for modulating TCR activity in autoimmune and inflammatory diseases. We show here that AX-024 reduces T cell proliferation upon weak TCR stimulation but does not significantly affect phosphorylation of Zap70 (ζ chain of T cell receptor–associated protein kinase 70). We also find that AX-024 is likely not involved in modulating the Nck/TCR interaction but probably has other targets in T cells. An array of biophysical techniques did not detect a direct interaction between AX-024 and Nck-SH3.1 in vitro. Crystal structures of the Nck-SH3.1 domain revealed its binding mode to the PRS in CD3ϵ. The SH3 domain tends to generate homodimers through a domain swap. Domain swaps observed previously in other SH3 domains indicate a general propensity of this protein fold to exchange structural elements. The swapped form of Nck-SH3.1 is unable to bind CD3ϵ, possibly representing an inactive form of Nck in cells.
Collapse
Affiliation(s)
- Kirsten Richter
- I2O Disease Translational Area, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Arne C Rufer
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Magali Muller
- I2O Disease Translational Area, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Dominique Burger
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Fabio Casagrande
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Tabea Grossenbacher
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sylwia Huber
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Melanie N Hug
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Philipp Koldewey
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Andrea D'Osualdo
- I2O Disease Translational Area, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Daniel Schlatter
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Theodor Stoll
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Markus G Rudolph
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
47
|
Solbak SMØ, Zang J, Narayanan D, Høj LJ, Bucciarelli S, Softley C, Meier S, Langkilde AE, Gotfredsen CH, Sattler M, Bach A. Developing Inhibitors of the p47phox-p22phox Protein-Protein Interaction by Fragment-Based Drug Discovery. J Med Chem 2020; 63:1156-1177. [PMID: 31922756 DOI: 10.1021/acs.jmedchem.9b01492] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nicotinamide adenine dinucleotide phosphate oxidase isoform 2 is an enzyme complex, which generates reactive oxygen species and contributes to oxidative stress. The p47phox-p22phox interaction is critical for the activation of the catalytical NOX2 domain, and p47phox is a potential target for therapeutic intervention. By screening 2500 fragments using fluorescence polarization and a thermal shift assay and validation by surface plasmon resonance, we found eight hits toward the tandem SH3 domain of p47phox (p47phoxSH3A-B) with KD values of 400-600 μM. Structural studies revealed that fragments 1 and 2 bound two separate binding sites in the elongated conformation of p47phoxSH3A-B and these competed with p22phox for binding to p47phoxSH3A-B. Chemical optimization led to a dimeric compound with the ability to potently inhibit the p47phoxSH3A-B-p22phox interaction (Ki of 20 μM). Thereby, we reveal a new way of targeting p47phox and present the first report of drug-like molecules with the ability to bind p47phox and inhibit its interaction with p22phox.
Collapse
Affiliation(s)
- Sara Marie Øie Solbak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Jie Zang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Dilip Narayanan
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Lars Jakobsen Høj
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Saskia Bucciarelli
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Charlotte Softley
- Institute of Structural Biology , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Biomolecular NMR and Center for Integrated Protein Science Munich at Department of Chemistry , Technical University of Munich , 85747 Garching , Germany
| | - Sebastian Meier
- Department of Chemistry , Technical University of Denmark , Kemitorvet , 2800 Kgs Lyngby , Denmark
| | - Annette Eva Langkilde
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | | | - Michael Sattler
- Institute of Structural Biology , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Biomolecular NMR and Center for Integrated Protein Science Munich at Department of Chemistry , Technical University of Munich , 85747 Garching , Germany
| | - Anders Bach
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| |
Collapse
|
48
|
Bechor E, Zahavi A, Amichay M, Fradin T, Federman A, Berdichevsky Y, Pick E. p67phoxbinds to a newly identified site in Nox2 following the disengagement of an intramolecular bond—Canaan sighted? J Leukoc Biol 2020; 107:509-528. [DOI: 10.1002/jlb.4a1219-607r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 11/10/2022] Open
Affiliation(s)
- Edna Bechor
- The Julius Friedrich Cohnheim Laboratory of Phagocyte ResearchDepartment of Clinical Microbiology and ImmunologySackler School of MedicineTel Aviv University Tel Aviv Israel
| | - Anat Zahavi
- The Julius Friedrich Cohnheim Laboratory of Phagocyte ResearchDepartment of Clinical Microbiology and ImmunologySackler School of MedicineTel Aviv University Tel Aviv Israel
| | - Maya Amichay
- The Julius Friedrich Cohnheim Laboratory of Phagocyte ResearchDepartment of Clinical Microbiology and ImmunologySackler School of MedicineTel Aviv University Tel Aviv Israel
| | - Tanya Fradin
- The Julius Friedrich Cohnheim Laboratory of Phagocyte ResearchDepartment of Clinical Microbiology and ImmunologySackler School of MedicineTel Aviv University Tel Aviv Israel
| | - Aya Federman
- The Julius Friedrich Cohnheim Laboratory of Phagocyte ResearchDepartment of Clinical Microbiology and ImmunologySackler School of MedicineTel Aviv University Tel Aviv Israel
| | - Yevgeny Berdichevsky
- The Julius Friedrich Cohnheim Laboratory of Phagocyte ResearchDepartment of Clinical Microbiology and ImmunologySackler School of MedicineTel Aviv University Tel Aviv Israel
| | - Edgar Pick
- The Julius Friedrich Cohnheim Laboratory of Phagocyte ResearchDepartment of Clinical Microbiology and ImmunologySackler School of MedicineTel Aviv University Tel Aviv Israel
| |
Collapse
|
49
|
Lee SR, An EJ, Kim J, Bae YS. Function of NADPH Oxidases in Diabetic Nephropathy and Development of Nox Inhibitors. Biomol Ther (Seoul) 2020; 28:25-33. [PMID: 31875663 PMCID: PMC6939690 DOI: 10.4062/biomolther.2019.188] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022] Open
Abstract
Several recent studies have reported that reactive oxygen species (ROS), superoxide anion and hydrogen peroxide (H2O2), play important roles in various cellular signaling networks. NADPH oxidase (Nox) isozymes have been shown to mediate receptor-mediated ROS generation for physiological signaling processes involved in cell growth, differentiation, apoptosis, and fibrosis. Detectable intracellular levels of ROS can be induced by the electron leakage from mitochondrial respiratory chain as well as by activation of cytochrome p450, glucose oxidase and xanthine oxidase, leading to oxidative stress. The up-regulation and the hyper-activation of NADPH oxidases (Nox) also likely contribute to oxidative stress in pathophysiologic stages. Elevation of the renal ROS level through hyperglycemia-mediated Nox activation results in the oxidative stress which induces a damage to kidney tissues, causing to diabetic nephropathy (DN). Nox inhibitors are currently being developed as the therapeutics of DN. In this review, we summarize Nox-mediated ROS generation and development of Nox inhibitors for therapeutics of DN treatment.
Collapse
Affiliation(s)
- Sae Rom Lee
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Eun Jung An
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jaesang Kim
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yun Soo Bae
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
50
|
Abstract
The superoxide (O2·-)-generating NADPH oxidase complex of phagocytes comprises a membrane-associated heterodimeric flavocytochrome, known as cytochrome b 558 (consisting of NOX2 and p22phox) and four cytosolic regulatory proteins, p47phox, p67phox, p40phox, and the small GTPase Rac. Under physiological conditions, in the resting phagocyte, O2·- generation is initiated by engagement of membrane receptors by a variety of stimuli, followed by signal transduction sequences leading to the translocation of the cytosolic components to the membrane and their association with the cytochrome, a process known as NADPH oxidase assembly. A consequent conformational change in NOX2 initiates the electron flow along a redox gradient, from NADPH to molecular oxygen (O2), leading to the one-electron reduction of O2 to O2·-. Historically, methodological difficulties in the study of the assembled complex derived from stimulated cells, due to its lack of stability, led to the design of "cell-free" systems (also known as "broken cells" or in vitro systems). In a major paradigm shift, the cell-free systems have as their starting point NADPH oxidase components derived from resting (unstimulated) phagocytes, or as in the predominant method at present, recombinant proteins representing the components of the NADPH oxidase complex. In cell-free systems, membrane receptor stimulation and the signal transduction sequence are absent, the accent being placed on the actual process of assembly, all of which takes place in vitro. Thus, a mixture of the individual components of the NADPH oxidase is exposed in vitro to an activating agent, the most common being anionic amphiphiles, resulting in the formation of a complex between cytochrome b 558 and the cytosolic components and O2·- generation in the presence of NADPH. Alternative activating pathways require posttranslational modification of oxidase components or modifying the phospholipid milieu surrounding cytochrome b 558. Activation is commonly quantified by measuring the primary product of the reaction, O2·-, trapped immediately after its generation by an appropriate acceptor in a kinetic assay, permitting the calculation of rates of O2·- production, but numerous variations exist, based on the assessment of reaction products or the consumption of substrates. Cell-free assays played a paramount role in the identification and characterization of the components of the NADPH oxidase complex, the performance of structure-function studies, the deciphering of the mechanisms of assembly, the search for inhibitory drugs, and the diagnosis of various forms of chronic granulomatous disease (CGD).
Collapse
|