1
|
Qayyum MZ, Imashimizu M, Leanca M, Vishwakarma RK, Riaz-Bradley A, Yuzenkova Y, Murakami KS. Structure and function of the Si3 insertion integrated into the trigger loop/helix of cyanobacterial RNA polymerase. Proc Natl Acad Sci U S A 2024; 121:e2311480121. [PMID: 38354263 PMCID: PMC10895346 DOI: 10.1073/pnas.2311480121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
Cyanobacteria and evolutionarily related chloroplasts of algae and plants possess unique RNA polymerases (RNAPs) with characteristics that distinguish them from canonical bacterial RNAPs. The largest subunit of cyanobacterial RNAP (cyRNAP) is divided into two polypeptides, β'1 and β'2, and contains the largest known lineage-specific insertion domain, Si3, located in the middle of the trigger loop and spanning approximately half of the β'2 subunit. In this study, we present the X-ray crystal structure of Si3 and the cryo-EM structures of the cyRNAP transcription elongation complex plus the NusG factor with and without incoming nucleoside triphosphate (iNTP) bound at the active site. Si3 has a well-ordered and elongated shape that exceeds the length of the main body of cyRNAP, fits into cavities of cyRNAP in the absence of iNTP bound at the active site and shields the binding site of secondary channel-binding proteins such as Gre and DksA. A small transition from the trigger loop to the trigger helix upon iNTP binding results in a large swing motion of Si3; however, this transition does not affect the catalytic activity of cyRNAP due to its minimal contact with cyRNAP, NusG, or DNA. This study provides a structural framework for understanding the evolutionary significance of these features unique to cyRNAP and chloroplast RNAP and may provide insights into the molecular mechanism of transcription in specific environment of photosynthetic organisms and organelle.
Collapse
Affiliation(s)
- M. Zuhaib Qayyum
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Center for Structural Biology, The Pennsylvania State University, University Park, PA16802
| | - Masahiko Imashimizu
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Center for Structural Biology, The Pennsylvania State University, University Park, PA16802
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba305-8565, Japan
| | - Miron Leanca
- The Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon TyneNE2 4HH, United Kingdom
| | - Rishi K. Vishwakarma
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Center for Structural Biology, The Pennsylvania State University, University Park, PA16802
| | - Amber Riaz-Bradley
- The Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon TyneNE2 4HH, United Kingdom
| | - Yulia Yuzenkova
- The Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon TyneNE2 4HH, United Kingdom
| | - Katsuhiko S. Murakami
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Center for Structural Biology, The Pennsylvania State University, University Park, PA16802
| |
Collapse
|
2
|
Qayyum MZ, Imashimizu M, Leanca M, Vishwakarma RK, Riaz-Bradley A, Yuzenkova Y, Murakami KS. Structure and function of the Si3 insertion integrated into the trigger loop/helix of cyanobacterial RNA polymerase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575193. [PMID: 38260627 PMCID: PMC10802570 DOI: 10.1101/2024.01.11.575193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cyanobacteria and evolutionarily related chloroplasts of algae and plants possess unique RNA polymerases (RNAPs) with characteristics that distinguish from canonical bacterial RNAPs. The largest subunit of cyanobacterial RNAP (cyRNAP) is divided into two polypeptides, β'1 and β'2, and contains the largest known lineage-specific insertion domain, Si3, located in the middle of the trigger loop and spans approximately half of the β'2 subunit. In this study, we present the X-ray crystal structure of Si3 and the cryo-EM structures of the cyRNAP transcription elongation complex plus the NusG factor with and without incoming nucleoside triphosphate (iNTP) bound at the active site. Si3 has a well-ordered and elongated shape that exceeds the length of the main body of cyRNAP, fits into cavities of cyRNAP and shields the binding site of secondary channel-binding proteins such as Gre and DksA. A small transition from the trigger loop to the trigger helix upon iNTP binding at the active site results in a large swing motion of Si3; however, this transition does not affect the catalytic activity of cyRNAP due to its minimal contact with cyRNAP, NusG or DNA. This study provides a structural framework for understanding the evolutionary significance of these features unique to cyRNAP and chloroplast RNAP and may provide insights into the molecular mechanism of transcription in specific environment of photosynthetic organisms.
Collapse
Affiliation(s)
- M. Zuhaib Qayyum
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Center for Structural Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Current address: Protein Technologies Center, Inspiration4 Advanced Research Center, Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Masahiko Imashimizu
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Center for Structural Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8565 Japan
| | - Miron Leanca
- The Centre for Bacterial Cell Biology, Newcastle University, UK
| | - Rishi K. Vishwakarma
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Center for Structural Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | - Yulia Yuzenkova
- The Centre for Bacterial Cell Biology, Newcastle University, UK
| | - Katsuhiko S. Murakami
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Center for Structural Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
3
|
Joseph A, Nagaraja V, Natesh R. MSMEG_6292, a Mycobacterium smegmatis RNA polymerase secondary channel-binding protein: purification, crystallization and X-ray diffraction analysis. Acta Crystallogr F Struct Biol Commun 2018; 74:543-548. [PMID: 30198886 PMCID: PMC6130422 DOI: 10.1107/s2053230x18009755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/09/2018] [Indexed: 11/10/2022] Open
Abstract
The transcriptional activity of RNA polymerase (RNAP) is controlled by a diverse set of regulatory factors. A subset of these regulators modulate the activity of RNAP through its secondary channel. Gre factors reactivate stalled elongation complexes by enhancing the intrinsic cleavage activity of RNAP. In the present study, the protein MSMEG_6292, a Gre-factor homologue from Mycobacterium smegmatis, was expressed heterologously in Escherichia coli and purified using standard chromatographic techniques. The hanging-drop vapour-diffusion crystallization method yielded diffraction-quality crystals. The crystals belonged to the trigonal space group P3121 (or its enantiomorph P3221), with unit-cell parameters a = b = 83.15, c = 107.07 Å, α = β = 90, γ = 120°. The crystals diffracted to better than 3.0 Å resolution. Molecular-replacement attempts did not yield any phasing models; hence, platinum derivatization was carried out with K2PtCl4 and derivative data were collected to 3.4 Å resolution.
Collapse
Affiliation(s)
- Abyson Joseph
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum, Kerala 695 016, India
| | - Valakunja Nagaraja
- Microbiology and Cell Biology Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ramanathan Natesh
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum, Kerala 695 016, India
| |
Collapse
|
4
|
Dynamics of GreB-RNA polymerase interaction allow a proofreading accessory protein to patrol for transcription complexes needing rescue. Proc Natl Acad Sci U S A 2017; 114:E1081-E1090. [PMID: 28137878 DOI: 10.1073/pnas.1616525114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The secondary channel (SC) of multisubunit RNA polymerases (RNAPs) allows access to the active site and is a nexus for the regulation of transcription. Multiple regulatory proteins bind in the SC and reprogram the catalytic activity of RNAP, but the dynamics of these factors' interactions with RNAP and how they function without cross-interference are unclear. In Escherichia coli, GreB is an SC protein that promotes proofreading by transcript cleavage in elongation complexes backtracked by nucleotide misincorporation. Using multiwavelength single-molecule fluorescence microscopy, we observed the dynamics of GreB interactions with elongation complexes. GreB binds to actively elongating complexes at nearly diffusion-limited rates but remains bound for only 0.3-0.5 s, longer than the duration of the nucleotide addition cycle but far shorter than the time needed to synthesize a complete mRNA. Bound GreB inhibits transcript elongation only partially. To test whether GreB preferentially binds backtracked complexes, we reconstituted complexes stabilized in backtracked and nonbacktracked configurations. By verifying the functional state of each molecular complex studied, we could exclude models in which GreB is selectively recruited to backtracked complexes or is ejected from RNAP by catalytic turnover. Instead, GreB binds rapidly and randomly to elongation complexes, patrolling for those requiring nucleolytic rescue, and its short residence time minimizes RNAP inhibition. The results suggest a general mechanism by which SC factors may cooperate to regulate RNAP while minimizing mutual interference.
Collapse
|
5
|
Rijal K, Maraia RJ, Arimbasseri AG. A methods review on use of nonsense suppression to study 3' end formation and other aspects of tRNA biogenesis. Gene 2014; 556:35-50. [PMID: 25447915 DOI: 10.1016/j.gene.2014.11.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 12/26/2022]
Abstract
Suppressor tRNAs bear anticodon mutations that allow them to decode premature stop codons in metabolic marker gene mRNAs, that can be used as in vivo reporters of functional tRNA biogenesis. Here, we review key components of a suppressor tRNA system specific to Schizosaccharomyces pombe and its adaptations for use to study specific steps in tRNA biogenesis. Eukaryotic tRNA biogenesis begins with transcription initiation by RNA polymerase (pol) III. The nascent pre-tRNAs must undergo folding, 5' and 3' processing to remove the leader and trailer, nuclear export, and splicing if applicable, while multiple complex chemical modifications occur throughout the process. We review evidence that precursor-tRNA processing begins with transcription termination at the oligo(T) terminator element, which forms a 3' oligo(U) tract on the nascent RNA, a sequence-specific binding site for the RNA chaperone, La protein. The processing pathway bifurcates depending on a poorly understood property of pol III termination that determines the 3' oligo(U) length and therefore the affinity for La. We thus review the pol III termination process and the factors involved including advances using gene-specific random mutagenesis by dNTP analogs that identify key residues important for transcription termination in certain pol III subunits. The review ends with a 'technical approaches' section that includes a parts lists of suppressor-tRNA alleles, strains and plasmids, and graphic examples of its diverse uses.
Collapse
Affiliation(s)
- Keshab Rijal
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Richard J Maraia
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Aneeshkumar G Arimbasseri
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Gleghorn ML, Davydova EK, Basu R, Rothman-Denes LB, Murakami KS. X-ray crystal structures elucidate the nucleotidyl transfer reaction of transcript initiation using two nucleotides. Proc Natl Acad Sci U S A 2011; 108:3566-71. [PMID: 21321236 PMCID: PMC3048110 DOI: 10.1073/pnas.1016691108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have determined the X-ray crystal structures of the pre- and postcatalytic forms of the initiation complex of bacteriophage N4 RNA polymerase that provide the complete set of atomic images depicting the process of transcript initiation by a single-subunit RNA polymerase. As observed during T7 RNA polymerase transcript elongation, substrate loading for the initiation process also drives a conformational change of the O-helix, but only the correct base pairing between the +2 substrate and DNA base is able to complete the O-helix conformational transition. Substrate binding also facilitates catalytic metal binding that leads to alignment of the reactive groups of substrates for the nucleotidyl transfer reaction. Although all nucleic acid polymerases use two divalent metals for catalysis, they differ in the requirements and the timing of binding of each metal. In the case of bacteriophage RNA polymerase, we propose that catalytic metal binding is the last step before the nucleotidyl transfer reaction.
Collapse
Affiliation(s)
- Michael L. Gleghorn
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802; and
| | - Elena K. Davydova
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Ritwika Basu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802; and
| | - Lucia B. Rothman-Denes
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Katsuhiko S. Murakami
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802; and
| |
Collapse
|
7
|
Perederina AA, Vassylyeva MN, Berezin IA, Svetlov V, Artsimovitch I, Vassylyev DG. Cloning, expression, purification, crystallization and initial crystallographic analysis of transcription elongation factors GreB from Escherichia coli and Gfh1 from Thermus thermophilus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 62:44-6. [PMID: 16511259 PMCID: PMC1401493 DOI: 10.1107/s1744309105040297] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 12/05/2005] [Indexed: 11/11/2022]
Abstract
The Escherichia coli gene encoding the transcription cleavage factor GreB and the Thermus thermophilus gene encoding the anti-GreA transcription factor Gfh1 were cloned and expressed and the purified proteins were crystallized by the sitting-drop vapor-diffusion technique. The GreB and Gfh1 crystals, which were improved by macroseeding, belong to space group P4(1)2(1)2 (or P4(3)2(1)2), with unit-cell parameters a = b = 148, c = 115.2 A and a = b = 59.3, c = 218.9 A, respectively. Complete diffraction data sets were collected for the GreB and Gfh1 crystals to 2.6 and 2.8 A resolution, respectively. Crystals of the selenomethionine proteins were obtained by microseeding using the native protein crystals and diffract as well as the native ones. The structure determination of these proteins is now in progress.
Collapse
Affiliation(s)
- Anna A. Perederina
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, 402B Kaul Genetics Building, 720 20th Street South, Birmingham, AL 35294, USA
| | - Marina N. Vassylyeva
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, 402B Kaul Genetics Building, 720 20th Street South, Birmingham, AL 35294, USA
| | - Igor A. Berezin
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, 402B Kaul Genetics Building, 720 20th Street South, Birmingham, AL 35294, USA
| | - Vladimir Svetlov
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Irina Artsimovitch
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Dmitry G. Vassylyev
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, 402B Kaul Genetics Building, 720 20th Street South, Birmingham, AL 35294, USA
- Correspondence e-mail:
| |
Collapse
|
8
|
Sims RJ, Belotserkovskaya R, Reinberg D. Elongation by RNA polymerase II: the short and long of it. Genes Dev 2004; 18:2437-68. [PMID: 15489290 DOI: 10.1101/gad.1235904] [Citation(s) in RCA: 538] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Appreciable advances into the process of transcript elongation by RNA polymerase II (RNAP II) have identified this stage as a dynamic and highly regulated step of the transcription cycle. Here, we discuss the many factors that regulate the elongation stage of transcription. Our discussion includes the classical elongation factors that modulate the activity of RNAP II, and the more recently identified factors that facilitate elongation on chromatin templates. Additionally, we discuss the factors that associate with RNAP II, but do not modulate its catalytic activity. Elongation is highlighted as a central process that coordinates multiple stages in mRNA biogenesis and maturation.
Collapse
Affiliation(s)
- Robert J Sims
- Howard Hughes Medical Institute, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
9
|
da Costa e Silva O, Lorbiecke R, Garg P, Müller L, Wassmann M, Lauert P, Scanlon M, Hsia AP, Schnable PS, Krupinska K, Wienand U. The Etched1 gene of Zea mays (L.) encodes a zinc ribbon protein that belongs to the transcriptionally active chromosome (TAC) of plastids and is similar to the transcription factor TFIIS. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:923-39. [PMID: 15165185 DOI: 10.1111/j.1365-313x.2004.02094.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Etched1 (et1) is a pleiotropic, recessive mutation of maize that causes fissured and cracked mature kernels and virescent seedlings. Microscopic examinations of the et1 phenotype revealed an aberrant plastid development in mutant kernels and mutant leaves. Here, we report on the cloning of the et1 gene by transposon tagging, the localization of the gene product in chloroplasts, and its putative function in the plastid transcriptional apparatus. Several alleles of Mutator (Mu)-induced et1 mutants, the et1-reference (et1-R) mutant, and Et1 wild-type were cloned and analyzed at the molecular level. Northern analyses with wild-type plants revealed that Et1 transcripts are present in kernels, leaves, and other types of tissue, and no Et1 expression could be detected in the et1 mutants analyzed. The ET1 protein is imported by chloroplasts and has been immunologically detected in transcriptionally active chromosome (TAC) fractions derived from chloroplasts. Accordingly, the relative transcriptional activity of TAC fractions was significantly reduced in chloroplasts of et1-R plants. ET1 is the first zinc ribbon (ZR) protein shown to be targeted to plastids. With regard to its localization and its striking structural similarity to the eukaryotic transcription elongation factor TFIIS, it is feasible that ET1 functions in plastid transcription elongation by reactivation of arrested RNA polymerases.
Collapse
Affiliation(s)
- Oswaldo da Costa e Silva
- Institut für Allgemeine Botanik und Botanischer Garten, Universität Hamburg, Ohnhorststr. 18, D-22 609 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|