1
|
Lai X, Liu R, Li M, Fan Y, Li H, Han G, Guo R, Ma H, Su H, Xing W. Participation of WD repeat-containing protein 54 (WDR54) in rat sperm-oocyte fusion through interaction with both IZUMO1 and JUNO. Theriogenology 2024; 214:286-297. [PMID: 37951137 DOI: 10.1016/j.theriogenology.2023.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/13/2023]
Abstract
Fertilization is a complex process that depends on the fusion of the cell membrane of sperm with that of oocyte, and it involves sperm-oocyte recognition, binding, and fusion, which are mediated by multiple proteins. Among those proteins, IZUMO1 and its receptor JUNO have been identified as essential factors for sperm-oocyte recognition and fusion. However, the interaction between IZUMO1 and JUNO alone does not lead to cell membrane fusion, suggesting the involvement of additional proteins in sperm-oocyte membrane fusion. In this study, we have discovered that a protein called WDR54, which consists of WD-repeat modules, is located on the cell membrane of sperm, as well as on the cell membrane and in the cytoplasm of the oocyte. We have found that WDR54 is involved in sperm-oocyte fertilization. When sperm and oocyte were treated with anti-WDR54 ascites, the in vitro fertilization (IVF) rate significantly decreased. Furthermore, our research has shown that WDR54 interacts with both IZUMO1 and JUNO, and it colocalizes with IZUMO1 on the surface of the sperm head and with JUNO on the oocyte surface. Through structural analysis of the putative complexes of WDR54-IZUMO1 and WDR54-JUNO, we infer that these three proteins could form a complex of JUNO-WDR54-IZUMO1-JUNO (referred to as the "JWIJ complex") on the oocyte surface. Our findings suggest that WDR54 is an important factor involved in sperm-oocyte adhesion and fusion. This discovery provides new insight into the mechanisms of mammalian sperm-oocyte adhesion and fusion.
Collapse
Affiliation(s)
- Xiong Lai
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, PR China
| | - Ruizhuo Liu
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, PR China
| | - Mengyu Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, PR China
| | - Yaochun Fan
- Inner Mongolia Comprehensive Center for Disease Control and Prevention, Hohhot, PR China
| | - Hongxia Li
- Inner Mongolia Key Laboratory of Molecular Pathology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, PR China
| | - Guotao Han
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, PR China
| | - Ruijie Guo
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, PR China
| | - Hairui Ma
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, PR China
| | - Huimin Su
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, PR China.
| | - Wanjin Xing
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, PR China.
| |
Collapse
|
2
|
Fertilization, but Not Post-Implantation Development, Can Occur in the Absence of Sperm and Oocyte Beta1 Integrin in Mice. Int J Mol Sci 2022; 23:ijms232213812. [PMID: 36430291 PMCID: PMC9694253 DOI: 10.3390/ijms232213812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Fertilization is a complex process that requires successive stages and culminates in the adhesion/fusion of gamete membranes. If the question of the involvement of oocyte integrins has been swept away by deletion experiments, that of the involvement of sperm integrins remains to be further characterized. In the present study, we addressed the question of the feasibility of sperm-oocyte adhesion/fusion and early implantation in the absence of sperm β1 integrin. Males and females with β1 integrin-depleted sperm and oocytes were mated, and fertilization outcome was monitored by a gestational ultrasound analysis. Results suggest that although the sperm β1 integrin participates in gamete adhesion/fusion, it is dispensable for fertilization in mice. However, sperm- and/or oocyte-originated integrin β1 is essential for post-implantation development. Redundancy phenomena could be at the origin of a compensatory expression or alternative dimerization pattern.
Collapse
|
3
|
Qu H, Khalil RA. Role of ADAM and ADAMTS Disintegrin and Metalloproteinases in Normal Pregnancy and Preeclampsia. Biochem Pharmacol 2022; 206:115266. [PMID: 36191626 DOI: 10.1016/j.bcp.2022.115266] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022]
Abstract
Normal pregnancy (NP) involves intricate processes starting with egg fertilization, proceeding to embryo implantation, placentation and gestation, and culminating in parturition. These pregnancy-related processes require marked uteroplacental and vascular remodeling by proteolytic enzymes and metalloproteinases. A disintegrin and metalloproteinase (ADAM) and ADAM with thrombospondin motifs (ADAMTS) are members of the zinc-dependent family of proteinases with highly conserved protein structure and sequence homology, which include a pro-domain, and a metalloproteinase, disintegrin and cysteine-rich domain. In NP, ADAMs and ADAMTS regulate sperm-egg fusion, embryo implantation, trophoblast invasion, placental angiogenesis and spiral arteries remodeling through their ectodomain proteolysis of cell surface cytokines, cadherins and growth factors as well as their adhesion with integrins and cell-cell junction proteins. Preeclampsia (PE) is a serious complication of pregnancy characterized by new-onset hypertension (HTN) in pregnancy (HTN-Preg) at or after 20 weeks of gestation, with or without proteinuria. Insufficient trophoblast invasion of the uterine wall, inadequate expansive remodeling of the spiral arteries, reduced uteroplacental perfusion pressure, and placental ischemia/hypoxia are major initiating events in the pathogenesis of PE. Placental ischemia/hypoxia increase the release of reactive oxygen species (ROS), which lead to aberrant expression/activity of certain ADAMs and ADAMTS. In PE, abnormal expression/activity of specific ADAMs and ADAMTS that function as proteolytic sheddases could alter proangiogenic and growth factors, and promote the release of antiangiogenic factors and inflammatory cytokines into the placenta and maternal circulation leading to generalized inflammation, endothelial cell injury and HTN-Preg, renal injury and proteinuria, and further decreases in uteroplacental blood flow, exaggeration of placental ischemia, and consequently fetal growth restriction. Identifying the role of ADAMs and ADAMTS in NP and PE has led to a better understanding of the underlying molecular and vascular pathways, and advanced the potential for novel biomarkers for prediction and early detection, and new approaches for the management of PE.
Collapse
Affiliation(s)
- Hongmei Qu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA.
| |
Collapse
|
4
|
Matsushige C, Xu X, Miyagi M, Zuo YY, Yamazaki Y. RGD-modified dextran hydrogel promotes follicle growth in three-dimensional ovarian tissue culture in mice. Theriogenology 2022; 183:120-131. [PMID: 35247849 PMCID: PMC9005264 DOI: 10.1016/j.theriogenology.2022.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
Abstract
In vitro follicle growth is a promising technology to preserve fertility for cancer patients. We previously developed a three-dimensional (3-D) ovarian tissue culture system supported by mouse tumor cell-derived Matrigel. When murine ovarian tissues at 14 days old were cultured in Matrigel drops, antrum formation and oocyte competence were significantly enhanced compared with those cultured without Matrigel. In this study, we tested whether nonanimal-derived dextran hydrogels can support a 3-D ovarian tissue culture. We employed chemically defined dextran hydrogels consisting of dextran polymers crosslinked with polyethylene glycol (PEG)-based cell-degradable crosslinker. To determine the optimal gel elasticity for the 3-D tissue culture, we measured Young's modulus of dextran hydrogels at four concentrations (1.75, 2.25, 2.75, and 3.25 mmol/L), and cultured ovarian tissues in these gels for 7 days. As a result, 2.25 mmol/L dextran hydrogel with Young's modulus of 224 Pa was appropriate to provide physical support as well as to promote follicle expansion in the 3-D system. To mimic the natural extracellular matrix (ECM) environment, we modified the dextran hydrogels with two bioactive factors: ECM-derived Arg-Gly-Asp (RGD) peptides as a cell-adhesive factor, and activin A. The ovarian tissues were cultured in 2.25 mmol/L dextran hydrogels under four different conditions: Activin-/RGD- (A-R-), A + R-, A-R+, and A + R+. On Day 7 of culture, follicle and oocyte sizes were significantly increased in the RGD-modified conditions compared with those without RGD. The RGD-modified hydrogels also promoted mRNA levels of steroidogenic-related genes and estradiol production in the 3-D ovarian tissue culture. In vitro maturation and developmental competence of follicular oocytes were remarkably improved in the presence of RGD. In particular, blastocyst embryos were obtained only from A-R+ or A+R+ conditions after in vitro fertilization. We also determined synergistic effects of the RGD peptides and activin A on follicle growth and oocyte development in the 3-D tissue culture. In conclusion, our results suggest that RGD-modified dextran hydrogels provide an ECM-mimetic bioactive environment to support folliculogenesis in a 3-D ovarian tissue culture system.
Collapse
|
5
|
Merc V, Frolikova M, Komrskova K. Role of Integrins in Sperm Activation and Fertilization. Int J Mol Sci 2021; 22:11809. [PMID: 34769240 PMCID: PMC8584121 DOI: 10.3390/ijms222111809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
In mammals, integrins are heterodimeric transmembrane glycoproteins that represent a large group of cell adhesion receptors involved in cell-cell, cell-extracellular matrix, and cell-pathogen interactions. Integrin receptors are an important part of signalization pathways and have an ability to transmit signals into and out of cells and participate in cell activation. In addition to somatic cells, integrins have also been detected on germ cells and are known to play a crucial role in complex gamete-specific physiological events, resulting in sperm-oocyte fusion. The main aim of this review is to summarize the current knowledge on integrins in reproduction and deliver novel perspectives and graphical interpretations presenting integrin subunits localization and their dynamic relocation during sperm maturation in comparison to the oocyte. A significant part of this review is devoted to discussing the existing view of the role of integrins during sperm migration through the female reproductive tract; oviductal reservoir formation; sperm maturation processes ensuing capacitation and the acrosome reaction, and their direct and indirect involvement in gamete membrane adhesion and fusion leading to fertilization.
Collapse
Affiliation(s)
- Veronika Merc
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic; (V.M.); (M.F.)
| | - Michaela Frolikova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic; (V.M.); (M.F.)
| | - Katerina Komrskova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic; (V.M.); (M.F.)
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic
| |
Collapse
|
6
|
Gahlay GK, Rajput N. The enigmatic sperm proteins in mammalian fertilization: an overview†. Biol Reprod 2020; 103:1171-1185. [PMID: 32761117 DOI: 10.1093/biolre/ioaa140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 11/14/2022] Open
Abstract
Mammalian fertilization involves a physical interaction between a sperm and an egg followed by molecular interactions amongst their various cell surface molecules. These interactions are initially mediated on the egg's outermost matrix, zona pellucida (ZP), and then its plasma membrane. To better understand this process, it is pertinent to find the corresponding molecules on sperm that interact with ZP or the egg's plasma membrane. Although currently, we have some knowledge about the binding partners for egg's plasma membrane on sperm, yet the ones involved in an interaction with ZP have remained remarkably elusive. This review provides comprehensive knowledge about the various sperm proteins participating in mammalian fertilization and discusses the possible reasons for not being able to identify the strong sperm surface candidate (s) for ZP adhesion. It also hypothesizes the existence of a multi-protein complex(s), members of which participate in oviduct transport, cumulus penetration, zona adhesion, and adhesion/fusion with the egg's plasma membrane; with some protein(s) having multiple roles during this process. Identification of these proteins is crucial as it improves our understanding of the process and allows us to successfully treat infertility, develop contraceptives, and improve artificial reproductive technologies.
Collapse
Affiliation(s)
- Gagandeep Kaur Gahlay
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Neha Rajput
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143005, India
| |
Collapse
|
7
|
Abstract
Sexual reproduction is such a successful way of creating progeny with subtle genetic variations that the vast majority of eukaryotic species use it. In mammals, it involves the formation of highly specialised cells: the sperm in males and the egg in females, each carrying the genetic inheritance of an individual. The interaction of sperm and egg culminates with the fusion of their cell membranes, triggering the molecular events that result in the formation of a new genetically distinct organism. Although we have a good cellular description of fertilisation in mammals, many of the molecules involved remain unknown, and especially the identity and role of cell surface proteins that are responsible for sperm–egg recognition, binding, and fusion. Here, we will highlight and discuss these gaps in our knowledge and how the role of some recently discovered sperm cell surface and secreted proteins contribute to our understanding of this fundamental process. Fertilisation is the challenging process whereby cells from two individuals fuse to generate a new, genetically distinct organism of the same species. This Unsolved Mystery article explores the molecular mechanisms underlying sperm–egg interaction and fusion, a fascinating topic that is under increasing investigation.
Collapse
Affiliation(s)
- Enrica Bianchi
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, United Kingdom
- * E-mail:
| | - Gavin J. Wright
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, United Kingdom
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, Wentworth Way, York, United Kingdom
| |
Collapse
|
8
|
Barraud-Lange V, Ialy-Radio C, Chalas C, Holtzmann I, Wolf JP, Barbaux S, Ziyyat A. Partial Sperm beta1 Integrin Subunit Deletion Proves its Involvement in Mouse Gamete Adhesion/Fusion. Int J Mol Sci 2020; 21:ijms21228494. [PMID: 33187358 PMCID: PMC7696028 DOI: 10.3390/ijms21228494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/22/2022] Open
Abstract
We have previously shown, using antibodies, that the sperm alpha6beta1 integrin is involved in mouse gamete fusion in vitro. Here we report the conditional knockdown of the sperm Itgb1 gene. It induced a drastic failure of sperm fusogenic ability with sperm accumulation in the perivitelline space of in vitro inseminated oocytes deleted or not for the Itgb1 gene. These data demonstrate that sperm, but not oocyte, beta1 integrin subunit is involved in gamete adhesion/fusion. Curiously, knockdown males were fertile in vivo probably because of the incomplete Cre-mediated deletion of the sperm Itgb1 floxed gene. Indeed, this was shown by Western blot analysis and confirmed by both the viability and litter size of pups obtained by mating partially sperm Itgb1 deleted males with females producing completely deleted Itgb1 oocytes. Because of the total peri-implantation lethality of Itgb1 deletion in mice, we assume that sperm that escaped the Itgb1 excision seemed to be preferentially used to fertilize in vivo. Here, we showed for the first time that the deletion, even partial, of the sperm Itgb1 gene makes the sperm unable to normally fertilize oocytes. However, to elucidate the question of the essentiality of its role during fertilization, further investigations using a mouse expressing a recombinase more effective in male germ cells are necessary.
Collapse
Affiliation(s)
- Virginie Barraud-Lange
- Institut Cochin, Université de Paris, INSERM, CNRS, F-75014 Paris, France; (V.B.-L.); (C.I.-R.); (C.C.); (I.H.); (J.-P.W.); (S.B.)
- Service d’Histologie, d’Embryologie, Biologie de la Reproduction, AP-HP, Hôpital Cochin, F-75014 Paris, France
| | - Côme Ialy-Radio
- Institut Cochin, Université de Paris, INSERM, CNRS, F-75014 Paris, France; (V.B.-L.); (C.I.-R.); (C.C.); (I.H.); (J.-P.W.); (S.B.)
| | - Céline Chalas
- Institut Cochin, Université de Paris, INSERM, CNRS, F-75014 Paris, France; (V.B.-L.); (C.I.-R.); (C.C.); (I.H.); (J.-P.W.); (S.B.)
- Service d’Histologie, d’Embryologie, Biologie de la Reproduction, AP-HP, Hôpital Cochin, F-75014 Paris, France
| | - Isabelle Holtzmann
- Institut Cochin, Université de Paris, INSERM, CNRS, F-75014 Paris, France; (V.B.-L.); (C.I.-R.); (C.C.); (I.H.); (J.-P.W.); (S.B.)
| | - Jean-Philippe Wolf
- Institut Cochin, Université de Paris, INSERM, CNRS, F-75014 Paris, France; (V.B.-L.); (C.I.-R.); (C.C.); (I.H.); (J.-P.W.); (S.B.)
- Service d’Histologie, d’Embryologie, Biologie de la Reproduction, AP-HP, Hôpital Cochin, F-75014 Paris, France
| | - Sandrine Barbaux
- Institut Cochin, Université de Paris, INSERM, CNRS, F-75014 Paris, France; (V.B.-L.); (C.I.-R.); (C.C.); (I.H.); (J.-P.W.); (S.B.)
| | - Ahmed Ziyyat
- Institut Cochin, Université de Paris, INSERM, CNRS, F-75014 Paris, France; (V.B.-L.); (C.I.-R.); (C.C.); (I.H.); (J.-P.W.); (S.B.)
- Service d’Histologie, d’Embryologie, Biologie de la Reproduction, AP-HP, Hôpital Cochin, F-75014 Paris, France
- Correspondence:
| |
Collapse
|
9
|
D'Occhio MJ, Campanile G, Zicarelli L, Visintin JA, Baruselli PS. Adhesion molecules in gamete transport, fertilization, early embryonic development, and implantation-role in establishing a pregnancy in cattle: A review. Mol Reprod Dev 2020; 87:206-222. [PMID: 31944459 DOI: 10.1002/mrd.23312] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
Abstract
Cell-cell adhesion molecules have critically important roles in the early events of reproduction including gamete transport, sperm-oocyte interaction, embryonic development, and implantation. Major adhesion molecules involved in reproduction include cadherins, integrins, and disintegrin and metalloprotease domain-containing (ADAM) proteins. ADAMs on the surface of sperm adhere to integrins on the oocyte in the initial stages of sperm-oocyte interaction and fusion. Cadherins act in early embryos to organize the inner cell mass and trophectoderm. The trophoblast and uterine endometrial epithelium variously express cadherins, integrins, trophinin, and selectin, which achieve apposition and attachment between the elongating conceptus and uterine epithelium before implantation. An overview of the major cell-cell adhesion molecules is presented and this is followed by examples of how adhesion molecules help shape early reproductive events. The argument is made that a deeper understanding of adhesion molecules and reproduction will inform new strategies that improve embryo survival and increase the efficiency of natural mating and assisted breeding in cattle.
Collapse
Affiliation(s)
- Michael J D'Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Luigi Zicarelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - José A Visintin
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Pietro S Baruselli
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
10
|
Henández B, Legrand P, Dufay S, Gahoual R, Sanchez-Cortes S, Kruglik SG, Fabreguettes JR, Wolf JP, Houzé P, Ghomi M. Disorder-to-Order Markers of a Cyclic Hexapeptide Inspired from the Binding Site of Fertilin β Involved in Fertilization Process. ACS OMEGA 2019; 4:18049-18060. [PMID: 31720508 PMCID: PMC6843708 DOI: 10.1021/acsomega.9b01885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
Synthetic peptides mimicking the binding site of fertilin β to its receptor, integrin α6β1, were shown to inhibit sperm-egg fusion when added to in vitro media. In contrast, the synthetic cyclic hexapeptide, cyclo(Cys1-Ser2-Phe3-Glu4-Glu5-Cys6), named as cFEE, proved to stimulate gamete fusion. Owing to its biological specificity, this hexapeptide could help improve the in vitro fertilization pregnancy rate in human. In an attempt to establish the structure-activity relationship of cFEE, its structural dynamics was herein analyzed by means of ultraviolet circular dichroism (UV-CD) and Raman scattering. The low concentration CD profile in water, containing mainly a deep minimum at ∼202 nm, is consistent with a rather unordered chain. However, an ordering trend of the peptide loop has been observed in a less polar solvent such as methanol, where the UV-CD signal shape is formed by a double negative marker at ∼202/215 nm, indicating the presence of a type-II' β-turn. Raman spectra recorded in aqueous samples upon a 100-fold concentration increase, still showed an important population (∼30%) of the disordered structure. The structural flexibility of the disulfide bridge was confirmed by the Raman markers arising from the Cys1-Cys6 disulfide bond-stretch motions. Density functional theory calculations highlighted the formation of the type-II' β-turn on the four central residues of cFEE (i.e., -Ser2-Phe3-Glu4-Glu5-) either with a left- or with a right-handed disulfide. The structure with a left-handed S-S bond, however, appears to be more stable.
Collapse
Affiliation(s)
- Belén Henández
- Laboratoire
Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UMR 7369, Université de Reims, Faculté
des Sciences, Moulin de la Housse, 51687 Reims Cedex 2, France
- Sorbonne
Paris Cité, Université Paris 13, Groupe de Biophysique
Moléculaire, UFR Santé-Médecine-Biologie Humaine, 74 Rue Marcel Cachin, 93017 Bobigny Cedex, France
| | - Pauline Legrand
- Unité
de Technologies Chimiques et Biologiques pour la Santé (UTCBS),
CNRS UMR 8258-U1022, Faculté de Pharmacie Paris Descartes, Université Paris Descartes, 75006 Paris, France
- Agence
Générale des Equipements et Produits de Santé
(AGEPS), Assistance Publique-Hôpitaux
de Paris (AP-HP), 75005 Paris, France
| | - Sophie Dufay
- Agence
Générale des Equipements et Produits de Santé
(AGEPS), Assistance Publique-Hôpitaux
de Paris (AP-HP), 75005 Paris, France
| | - Rabah Gahoual
- Unité
de Technologies Chimiques et Biologiques pour la Santé (UTCBS),
CNRS UMR 8258-U1022, Faculté de Pharmacie Paris Descartes, Université Paris Descartes, 75006 Paris, France
| | | | - Sergei G. Kruglik
- Laboratoire
Jean Perrin, Sorbonne Université,
CNRS UMR 8237, 75005 Paris, France
| | - Jean-Roch Fabreguettes
- Agence
Générale des Equipements et Produits de Santé
(AGEPS), Assistance Publique-Hôpitaux
de Paris (AP-HP), 75005 Paris, France
| | - Jean-Philippe Wolf
- Sorbonne
Paris Cité, Université Paris Descartes, Faculté
de Médecine, Assistance Publique-Hôpitaux de Paris (AP-HP),
Hôpital Universitaire Paris Centre, Centre Hospitalier Universitaire
(CHU) Cochin, Service d’Histologie-Embryologie-Biologie de
la Reproduction, 75006 Paris, France
- Département
Génomique, Epigénétique et Physiopathologie de
la Reproduction, Institut Cochin, INSERM
U1016, CNRS UMR8104, Université Paris Descartes, Sorbonne Paris
Cité, 75006 Paris, France
| | - Pascal Houzé
- Unité
de Technologies Chimiques et Biologiques pour la Santé (UTCBS),
CNRS UMR 8258-U1022, Faculté de Pharmacie Paris Descartes, Université Paris Descartes, 75006 Paris, France
- Laboratoire
de Biochimie, Hôpital Universitaire
Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris
(AP-HP), 75015 Paris, France
| | - Mahmoud Ghomi
- Laboratoire
Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UMR 7369, Université de Reims, Faculté
des Sciences, Moulin de la Housse, 51687 Reims Cedex 2, France
- Sorbonne
Paris Cité, Université Paris 13, Groupe de Biophysique
Moléculaire, UFR Santé-Médecine-Biologie Humaine, 74 Rue Marcel Cachin, 93017 Bobigny Cedex, France
| |
Collapse
|
11
|
Okabe M. Sperm-egg interaction and fertilization: past, present, and future. Biol Reprod 2019; 99:134-146. [PMID: 29462236 DOI: 10.1093/biolre/ioy028] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/03/2018] [Indexed: 01/21/2023] Open
Abstract
Fifty years have passed since the findings of capacitation and acrosome reaction. These discoveries and the extensive effort of researchers led to the success of in vitro fertilization, which has become a top choice for patients at infertility clinics today. The effort to understand the mechanism of fertilization is ongoing, but the small number of eggs and similarly small quantity of spermatozoa continue to hinder biochemical experiments. The emergence of transgenic animals and gene disruption techniques has had a significant effect on fertilization research. Factors considered important in the early years were shown not to be essential and were replaced by newly found proteins. However, there is much about sperm-egg interaction which remains to be learned before we can outline the mechanism of fertilization. In fact, our understanding of sperm-egg interaction is entering a new stage. Progress in transgenic spermatozoa helped us to observe the behavior of spermatozoa in vivo and/or at the moment of sperm-egg fusion. These advancements are discussed together with the paradigm-shifting research in related fields to help us picture the direction which fertilization research may take in the future.
Collapse
Affiliation(s)
- Masaru Okabe
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
12
|
Addressing the Compartmentalization of Specific Integrin Heterodimers in Mouse Sperm. Int J Mol Sci 2019; 20:ijms20051004. [PMID: 30813527 PMCID: PMC6429177 DOI: 10.3390/ijms20051004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 11/17/2022] Open
Abstract
Integrins are transmembrane cell receptors involved in two crucial mechanisms for successful fertilization, namely, mammalian intracellular signaling and cell adhesion. Integrins α6β4, α3β1 and α6β1 are three major laminin receptors expressed on the surface of mammalian cells including gametes, and the presence of individual integrin subunits α3, α6, β1 and β4 has been previously detected in mammalian sperm. However, to date, proof of the existence of individual heterodimer pairs in sperm and their detailed localization is missing. The major conclusion of this study is evidence that the β4 integrin subunit is expressed in mouse sperm and that it pairs with subunit α6; additionally, there is a detailed identification of integrin heterodimer pairs across individual membranes in an intact mouse sperm head. We also demonstrate the existence of β4 integrin mRNAs in round spermatids and spermatogonia by q-RT-PCR, which was further supported by sequencing the PCR products. Using super-resolution microscopy accompanied by colocalization analysis, we located integrin subunits as follows: α6/β4-inner apical acrosomal membrane and equatorial segment; α3, α6/β1, β4-plasma membrane overlaying the apical acrosome; and α3/β1-outer acrosomal membrane. The existence of α6β4, α3β1 and α6β1 heterodimers was further confirmed by proximity ligation assay (PLA). In conclusion, we delivered detailed characterization of α3, α6, β1 and β4 integrin subunits, showing their presence in distinct compartments of the intact mouse sperm head. Moreover, we identified sperm-specific localization for heterodimers α6β4, α3β1 and α6β1, and their membrane compartmentalization and the presented data show a complexity of membranes overlaying specialized microdomain structures in the sperm head. Their different protein compositions of these individual membrane rafts may play a specialized role, based on their involvement in sperm-epithelium and sperm-egg interaction.
Collapse
|
13
|
Okabe M. Beware of memes in the interpretation of your results – lessons from gene‐disrupted mice in fertilization research. FEBS Lett 2018; 592:2673-2679. [DOI: 10.1002/1873-3468.13101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/13/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Masaru Okabe
- Research Institute for Microbial Diseases Osaka University Suita Osaka Japan
| |
Collapse
|
14
|
Erin N, Türker S, Elpek Ö, Yildirim B. ADAM proteases involved in inflammation are differentially altered in patients with gastritis or ulcer. Exp Ther Med 2018; 15:1999-2005. [PMID: 29434796 PMCID: PMC5776559 DOI: 10.3892/etm.2017.5619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/11/2017] [Indexed: 02/05/2023] Open
Abstract
ADAM metallopeptidase domain (ADAM)9, 10 and 17 have α-secretase activity that regulates ectodomain shedding of factors involved in inflammation, cell proliferation, angiogenesis, and wound healing. The secretase activity of ADAM proteins is known to induce an inflammatory response. However, under certain conditions, a lack of secretase activity may induce inflammation suggesting differential roles of ADAM proteins with secretase activity. To the best of our knowledge, the present study evaluated the changes in α-secretase activity and expression of associated ADAM proteases (ADAM9, 10 and 17) in the gastric mucosa of patients with gastritis and ulcers, for the first time. Gastroduedonal mucosal samples from 42 patients were snap-frozen to determine changes in α-secretase activity. Twenty-four of these patients had gastritis, 9 patients had duedonal ulcers and 9 patients did not have any pathological changes. Paraffin-embedded gastric specimens (n=32) were used for immunohistochemical detection of ADAM9, ADAM10 and ADAM17. α-secretase activity of the gastric mucosa of healthy subjects was significantly higher compared with the uninvolved mucosa of patients with gastritis or ulcer. These results were associated with the immunohistochemical staining results, which demonstrated that ADAM10 expression markedly decreased in glandular epithelial cells and ADAM9 expression was lost in foveolar epithelial cells of gastric mucosa adjacent to ulcer. However, ADAM17 expression was increased in the normal gastric mucosa of patients with bleeding peptic ulcers and in the gastric mucosa adjacent to the ulcer suggesting a counteracting role of ADAM17. Decreased ADAM9 and 10 expression, and an associated decrease in α-secretase activity may predispose to chronic gastritis and ulcer. Further studies are required to determine the possible etiological role of increased ADAM17 expression.
Collapse
Affiliation(s)
- Nuray Erin
- Department of Medical Pharmacology, School of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - Sema Türker
- Department of Internal Medicine, School of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - Özlem Elpek
- Department of Pathology, School of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - Bülent Yildirim
- Department of Internal Medicine, School of Medicine, Akdeniz University, Antalya 07070, Turkey
| |
Collapse
|
15
|
Krebsbach PH, Villa-Diaz LG. The Role of Integrin α6 (CD49f) in Stem Cells: More than a Conserved Biomarker. Stem Cells Dev 2017; 26:1090-1099. [PMID: 28494695 DOI: 10.1089/scd.2016.0319] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Stem cells have the capacity for self-renewal and differentiation into specialized cells that form and repopulated all tissues and organs, from conception to adult life. Depending on their capacity for differentiation, stem cells are classified as totipotent (ie, zygote), pluripotent (ie, embryonic stem cells), multipotent (ie, neuronal stem cells, hematopoietic stem cells, epithelial stem cells, etc.), and unipotent (ie, spermatogonial stem cells). Adult or tissue-specific stem cells reside in specific niches located in, or nearby, their organ or tissue of origin. There, they have microenvironmental support to remain quiescent, to proliferate as undifferentiated cells (self-renewal), and to differentiate into progenitors or terminally differentiated cells that migrate from the niche to perform specialized functions. The presence of proteins at the cell surface is often used to identify, classify, and isolate stem cells. Among the diverse groups of cell surface proteins used for these purposes, integrin α6, also known as CD49f, may be the only biomarker commonly found in more than 30 different populations of stem cells, including some cancer stem cells. This broad expression among stem cell populations indicates that integrin α6 may play an important and conserved role in stem cell biology, which is reaffirmed by recent demonstrations of its role maintaining self-renewal of pluripotent stem cells and breast and glioblastoma cancer stem cells. Therefore, this review intends to highlight and synthesize new findings on the importance of integrin α6 in stem cell biology.
Collapse
Affiliation(s)
- Paul H Krebsbach
- 1 School of Dentistry, University of California , Los Angeles, California
| | - Luis G Villa-Diaz
- 2 Department of Biological Sciences, Oakland University , Rochester, Michigan
| |
Collapse
|
16
|
Inoue N. Novel insights into the molecular mechanism of sperm-egg fusion via IZUMO1. JOURNAL OF PLANT RESEARCH 2017; 130:475-478. [PMID: 27995377 DOI: 10.1007/s10265-016-0895-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/24/2016] [Indexed: 06/06/2023]
Abstract
When a spermatozoon fertilizes an oocyte in mammals, there must be an extremely precise regulation system for successful gamete fusion to occur, which is the final step of fertilization. Using gene-modified animals, IZUMO1 on the sperm side and its receptor, JUNO, on the ovum side, have been unveiled as indispensable factors for triggering membrane fusion. We recently analyzed the detailed molecular machinery of the IZUMO1-JUNO recognition system and clarified the tertiary architecture of the IZUMO1-JUNO complex based on the crystal structure. Over the past 2 years, important discoveries have successively emerged, presenting a new perspective on fertilization. In this mini-review, I will initially explain the historical background of the molecular mechanism study of gamete fusion, and go on to describe our latest study data.
Collapse
Affiliation(s)
- Naokazu Inoue
- Department of Cell Science, School of Medicine, Institutes for Biomedical Sciences, Fukushima Medical University, Hikarigaoka 1, Fukushima-City, Fukushima, 960-1295, Japan.
| |
Collapse
|
17
|
Mammadova-Bach E, Zigrino P, Brucker C, Bourdon C, Freund M, De Arcangelis A, Abrams SI, Orend G, Gachet C, Mangin PH. Platelet integrin α6 β1 controls lung metastasis through direct binding to cancer cell-derived ADAM9. JCI Insight 2016; 1:e88245. [PMID: 27699237 DOI: 10.1172/jci.insight.88245] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Metastatic dissemination of cancer cells, which accounts for 90% of cancer mortality, is the ultimate hallmark of malignancy. Growing evidence suggests that blood platelets have a predominant role in tumor metastasis; however, the molecular mechanisms involved remain elusive. Here, we demonstrate that genetic deficiency of integrin α6β1 on platelets markedly decreases experimental and spontaneous lung metastasis. In vitro and in vivo assays reveal that human and mouse platelet α6β1 supports platelet adhesion to various types of cancer cells. Using a knockdown approach, we identified ADAM9 as the major counter receptor of α6β1 on both human and mouse tumor cells. Static and flow-based adhesion assays of platelets binding to DC-9, a recombinant protein covering the disintegrin-cysteine domain of ADAM9, demonstrated that this receptor directly binds to platelet α6β1. In vivo studies showed that the interplay between platelet α6β1 and tumor cell-expressed ADAM9 promotes efficient lung metastasis. The integrin α6β1-dependent platelet-tumor cell interaction induces platelet activation and favors the extravasation process of tumor cells. Finally, we demonstrate that a pharmacological approach targeting α6β1 efficiently impairs tumor metastasis through a platelet-dependent mechanism. Our study reveals a mechanism by which platelets promote tumor metastasis and suggests that integrin α6β1 represents a promising target for antimetastatic therapies.
Collapse
Affiliation(s)
- Elmina Mammadova-Bach
- UMR-S949, INSERM, Etablissement Français du Sang-Alsace, Université de Strasbourg, Strasbourg, France. Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Paola Zigrino
- Department of Dermatology and Venerology, University of Cologne, Cologne, Germany
| | - Camille Brucker
- UMR-S949, INSERM, Etablissement Français du Sang-Alsace, Université de Strasbourg, Strasbourg, France. Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Catherine Bourdon
- UMR-S949, INSERM, Etablissement Français du Sang-Alsace, Université de Strasbourg, Strasbourg, France. Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Monique Freund
- UMR-S949, INSERM, Etablissement Français du Sang-Alsace, Université de Strasbourg, Strasbourg, France. Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Adèle De Arcangelis
- U964, INSERM, UMR 7104, CNRS, Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, Strasbourg, France
| | - Scott I Abrams
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Gertaud Orend
- INSERM U1109, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, LabEx Medalis, Strasbourg, France
| | - Christian Gachet
- UMR-S949, INSERM, Etablissement Français du Sang-Alsace, Université de Strasbourg, Strasbourg, France. Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Pierre Henri Mangin
- UMR-S949, INSERM, Etablissement Français du Sang-Alsace, Université de Strasbourg, Strasbourg, France. Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| |
Collapse
|
18
|
Georgadaki K, Khoury N, Spandidos DA, Zoumpourlis V. The molecular basis of fertilization (Review). Int J Mol Med 2016; 38:979-86. [PMID: 27599669 PMCID: PMC5029953 DOI: 10.3892/ijmm.2016.2723] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/02/2016] [Indexed: 12/11/2022] Open
Abstract
Fertilization is the fusion of the male and female gamete. The process involves the fusion of an oocyte with a sperm, creating a single diploid cell, the zygote, from which a new individual organism will develop. The elucidation of the molecular mechanisms of fertilization has fascinated researchers for many years. In this review, we focus on this intriguing process at the molecular level. Several molecules have been identified to play a key role in each step of this intriguing process (the sperm attraction from the oocyte, the sperm maturation, the sperm and oocyte fusion and the two gamete pronuclei fusion leading to the zygote). Understanding the molecular mechanisms of the cell-cell interactions will provide a better understanding of the causes of fertility issues due to fertilization defects.
Collapse
Affiliation(s)
- Katerina Georgadaki
- Institute of Biology, Medical Chemistry and Biotechnology, National Hellenic Research Foundation, Athens 116 35, Greece
| | - Nikolas Khoury
- Institute of Biology, Medical Chemistry and Biotechnology, National Hellenic Research Foundation, Athens 116 35, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, Heraklion 71003, Greece
| | - Vasilis Zoumpourlis
- Institute of Biology, Medical Chemistry and Biotechnology, National Hellenic Research Foundation, Athens 116 35, Greece
| |
Collapse
|
19
|
Krauchunas AR, Marcello MR, Singson A. The molecular complexity of fertilization: Introducing the concept of a fertilization synapse. Mol Reprod Dev 2016; 83:376-86. [PMID: 26970099 DOI: 10.1002/mrd.22634] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/22/2016] [Indexed: 01/27/2023]
Abstract
The details of sperm-egg interactions remain a relative mystery despite many decades of research. As new molecular complexities are being discovered, we need to revise the framework in which we think about fertilization. As such, we propose that fertilization involves the formation of a synapse between the sperm and egg. A cellular synapse is a structure that mediates cell adhesion, signaling, and secretion through specialized zones of interaction and polarity. In this review, we draw parallels between the immune synapse and fertilization, and argue that we should consider sperm-egg recognition, binding, and fusion in the context of a "fertilization synapse." Mol. Reprod. Dev. 83: 376-386, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amber R Krauchunas
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey
| | | | - Andrew Singson
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
20
|
Fissore RA, Long CR, Duncan RP, Robl JM. Initiation and organization of events during the first cell cycle in mammals: applications in cloning. ACTA ACUST UNITED AC 2015; 1:89-100. [PMID: 16218834 DOI: 10.1089/15204559950019979] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The technology of cloning involves transplanting a diploid nucleus into a mature oocyte cytoplast. The cytoplast is then activated to initiate the first cell cycle of development as a nuclear transplant embryo. Initiation and regulation of events during the first cell cycle are, therefore, critical for proper reprogramming of the donor nucleus and development as a cloned embryo. Activation is normally induced by the sperm and is mediated by a series of intracellular free calcium ([Ca(2+)](i)) oscillations that last for several hours. Although it is not known precisely how the sperm induces activation, current evidence favors the delivery, by the sperm, of a soluble protein factor that causes the production of IP3. IP3 acts to open a Ca(2+) channel in the endoplasmic reticulum and release Ca(2+) into the cytosol. A variety of methods have been used to duplicate or replace the sperm-induced [Ca(2+)](i) increase to cause activation in nuclear transplant embryos. It has been found that treatments that cause a single transient [Ca(2+)](i) activate some oocytes with the level of activation increasing as the oocyte ages. Attempts have been made to extend the period of time over which [Ca(2+)](i) oscillations occur. This has been successful in increasing activation rates of less mature oocytes but the techniques are still cumbersome. An alternative method, that has been very successful, is the combination of a treatment that elevates [Ca(2+)](i) and a treatment that maintains low levels of maturation promoting factor for several hours after the initial [Ca(2+)](i) elevation. The sperm also contributes the centrosome that organizes microtubules during the first cell cycle. One current hypothesis for regulation of sperm centrosomal activity consists of a dephosphorylation of sperm connecting piece proteins following sperm entry into the oocyte and activation of the oocyte. Dephosphorylation of these proteins results in the disassembly of the connecting piece and assembly of a functional centrosome. In nuclear transfer, centrosomal components are contributed by the donor cell. If the cell is fused to the cytoplast before centriole replication then a single aster forms. If the cell is fused after centriole replication then two asters form. In either case and even in parthenogenetic oocytes, which do not have centrioles, the first cell cycle progresses to metaphase. However, progress is slow and some defects are observed in the assembly of chromosomes into a metaphase plate.
Collapse
Affiliation(s)
- R A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| | | | | | | |
Collapse
|
21
|
Rocha DR, Martins JAM, van Tilburg MF, Oliveira RV, Moreno FB, Monteiro-Moreira ACO, Moreira RA, Araújo AA, Moura AA. Effect of increased testicular temperature on seminal plasma proteome of the ram. Theriogenology 2015; 84:1291-305. [DOI: 10.1016/j.theriogenology.2015.07.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 01/12/2023]
|
22
|
Kaarouch I, Bouamoud N, Louanjli N, Madkour A, Copin H, Benkhalifa M, Sefrioui O. Impact of sperm genome decay on Day-3 embryo chromosomal abnormalities from advanced-maternal-age patients. Mol Reprod Dev 2015; 82:809-19. [PMID: 26191648 DOI: 10.1002/mrd.22526] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/17/2015] [Indexed: 01/06/2023]
Abstract
Infertile male patients often exhibit unconventional semen parameters, including DNA fragmentation, chromatin dispersion, and aneuploidy-collectively referred to as sperm genome decay (SGD). We investigated the correlation of SGD to embryo chromosomal abnormalities and its effect on clinical pregnancy rates in patients with advanced maternal age (AMA) (>40 years) who were undergoing intracytoplasmic sperm injection-preimplantation genetic screening (ICSI-PGS). Three groups were assessed: patients with AMA and male partners with normal sperm (AMA-N); AMA patients and male partners presenting with SGD (AMA-SGD); and young fertile female patients and male partners with SGD (Y-SGD). We found a significant increase in embryonic chromosomal abnormalities-polyploidy, nullisomy, mosaicism, and chaotic anomaly rates-when semen parameters are altered (76% vs. 67% and 66% in AMA-SGD vs. AMA-N and Y-SGD groups, respectively). Statistical analysis showed a correlation between SGD and aneuploidies of embryonic chromosomes 13, 16, 21, X, and Y, as well as negative clinical outcomes. Incorporation of molecular sperm analyses should therefore significantly minimize the risk of transmission of chromosomal anomalies from spermatozoa to embryos, and may provide better predictors of pregnancy than conventional sperm analyses. We also demonstrated that an ICSI-PGS program should be implemented for SGD patients in order to limit transmission of chromosomal paternal anomalies and to improve clinical outcome.
Collapse
Affiliation(s)
- Ismail Kaarouch
- Biochemistry and Immunology Laboratory, Mohammed V University, Faculty of Sciences, BP 1014, Avenue Ibn Batouta Agdal, Rabat, Morocco
| | - Nouzha Bouamoud
- Biochemistry and Immunology Laboratory, Mohammed V University, Faculty of Sciences, BP 1014, Avenue Ibn Batouta Agdal, Rabat, Morocco
| | - Noureddine Louanjli
- Labomac IVF Centers and Clinical Laboratory Medicine, Anfa Fertility Center, Privante Clinic of Human Reproduction and Endoscopic Surgery, Casablanca, Morocco
| | - Aicha Madkour
- Biochemistry and Immunology Laboratory, Mohammed V University, Faculty of Sciences, BP 1014, Avenue Ibn Batouta Agdal, Rabat, Morocco
| | - Henri Copin
- Reproductive Biology and Medical Cytogenetics Laboratory, Regional University Hospital & School of Medicine. Picardie University Jules Verne, Amiens, France
| | - Moncef Benkhalifa
- Reproductive Biology and Medical Cytogenetics Laboratory, Regional University Hospital & School of Medicine. Picardie University Jules Verne, Amiens, France
| | - Omar Sefrioui
- Anfa Fertility Center, Privante Clinic of Human Reproduction and Endoscopic Surgery, Casablanca, Morocco
| |
Collapse
|
23
|
Wang Y, Antunes M, Anderson AE, Kadrmas JL, Jacinto A, Galko MJ. Integrin Adhesions Suppress Syncytium Formation in the Drosophila Larval Epidermis. Curr Biol 2015; 25:2215-27. [PMID: 26255846 DOI: 10.1016/j.cub.2015.07.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 06/15/2015] [Accepted: 07/10/2015] [Indexed: 12/16/2022]
Abstract
Integrins are critical for barrier epithelial architecture. Integrin loss in vertebrate skin leads to blistering and wound healing defects. However, how integrins and associated proteins maintain the regular morphology of epithelia is not well understood. We found that targeted knockdown of the integrin focal adhesion (FA) complex components β-integrin, PINCH, and integrin-linked kinase (ILK) caused formation of multinucleate epidermal cells within the Drosophila larval epidermis. This phenotype was specific to the integrin FA complex and not due to secondary effects on polarity or junctional structures. The multinucleate cells resembled the syncytia caused by physical wounding. Live imaging of wound-induced syncytium formation in the pupal epidermis suggested direct membrane breakdown leading to cell-cell fusion and consequent mixing of cytoplasmic contents. Activation of Jun N-terminal kinase (JNK) signaling, which occurs upon wounding, also correlated with syncytium formation induced by PINCH knockdown. Further, ectopic JNK activation directly caused epidermal syncytium formation. No mode of syncytium formation, including that induced by wounding, genetic loss of FA proteins, or local JNK hyperactivation, involved misregulation of mitosis or apoptosis. Finally, the mechanism of epidermal syncytium formation following JNK hyperactivation and wounding appeared to be direct disassembly of FA complexes. In conclusion, the loss-of-function phenotype of integrin FA components in the larval epidermis resembles a wound. Integrin FA loss in mouse and human skin also causes a wound-like appearance. Our results reveal a novel and unexpected role for proper integrin-based adhesion in suppressing larval epidermal cell-cell fusion--a role that may be conserved in other epithelia.
Collapse
Affiliation(s)
- Yan Wang
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marco Antunes
- CEDOC-Faculdade de Ciências Médicas, Universidade Nova de Lisboa Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Instituto de Medicina Molecular Faculdade de Medicina da Universidade de Lisboa Edificio Egas Moniz, Av Prof Egas Moniz, 1649-028 Lisboa, Portugal
| | - Aimee E Anderson
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Julie L Kadrmas
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Antonio Jacinto
- CEDOC-Faculdade de Ciências Médicas, Universidade Nova de Lisboa Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Instituto de Medicina Molecular Faculdade de Medicina da Universidade de Lisboa Edificio Egas Moniz, Av Prof Egas Moniz, 1649-028 Lisboa, Portugal; Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Michael J Galko
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Genes and Development Graduate Program, The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
24
|
Wright GJ, Bianchi E. The challenges involved in elucidating the molecular basis of sperm-egg recognition in mammals and approaches to overcome them. Cell Tissue Res 2015. [PMID: 26224538 PMCID: PMC4700105 DOI: 10.1007/s00441-015-2243-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sexual reproduction is used by many different organisms to create a new generation of genetically distinct progeny. Cells originating from separate sexes or mating types segregate their genetic material into haploid gametes which must then recognize and fuse with each other in a process known as fertilization to form a diploid zygote. Despite the central importance of fertilization, we know remarkably little about the molecular mechanisms that are involved in how gametes recognize each other, particularly in mammals, although the proteins that are displayed on their surfaces are almost certainly involved. This paucity of knowledge is largely due to both the unique biological properties of mammalian gametes (sperm and egg) which make them experimentally difficult to manipulate, and the technical challenges of identifying interactions between membrane-embedded cell surface receptor proteins. In this review, we will discuss our current knowledge of animal gamete recognition, highlighting where important contributions to our understanding were made, why particular model systems were helpful, and why progress in mammals has been particularly challenging. We discuss how the development of mammalian in vitro fertilization and targeted gene disruption in mice were important technological advances that triggered progress. We argue that approaches employed to discover novel interactions between cell surface gamete recognition proteins should account for the unusual biochemical properties of membrane proteins and the typically highly transient nature of their interactions. Finally, we describe how these principles were applied to identify Juno as the egg receptor for sperm Izumo1, an interaction that is essential for mammalian fertilization.
Collapse
Affiliation(s)
- Gavin J Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Enrica Bianchi
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.
| |
Collapse
|
25
|
Abstract
It is imperative to understand the molecular basis of various steps involved during fertilization. In the manuscript by Bianchi et al.1 a novel protein, Juno on egg membrane (oolemma) has been characterized that binds to sperm specific protein, Izumo-1. Monoclonal antibodies against Juno inhibited in vitro fertilization. Juno knock-out female mice failed to deliver litters on mating. It is rapidly shed from oolemma after fertilization, suggesting its role in preventing polyspermy. Taken together these studies will help in our understanding of sperm-egg recognition mechanisms and also facilitate development of new fertility treatment regimens and novel contraceptives.
Collapse
Affiliation(s)
- Satish K Gupta
- Reproductive Cell Biology Lab, National Institute of Immunology, New Delhi 110067, India
| |
Collapse
|
26
|
Vazquez-Levin MH, Marín-Briggiler CI, Caballero JN, Veiga MF. Epithelial and neural cadherin expression in the mammalian reproductive tract and gametes and their participation in fertilization-related events. Dev Biol 2015; 401:2-16. [DOI: 10.1016/j.ydbio.2014.12.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 12/23/2014] [Accepted: 12/28/2014] [Indexed: 01/10/2023]
|
27
|
Abstract
Despite numerous studies on mammalian fertilization, the mechanisms of
fertilization—including the timing of acrosome reaction—remain largely unknown; more
accurately described, the classical theory built upon years of layered experimental data
is being challenged by recent conflicting evidence provided by gene-manipulated animals.
Although in vitro fertilization remains our central research tool, the
classical theory’s decline reminds us of the importance of in vivo
observations. Here, I describe the essential roles of gene-manipulated animals in
elucidating the mechanism of fertilization and the pitfalls of in vitro
fertilization studies trapping many researchers.
Collapse
Affiliation(s)
- Masaru Okabe
- Center for Genetic Analysis for Biological Responses, Research Institute for Microbial Diseases, Osaka University, Yamadaoka 3-1, Suita, Osaka 565-0871, Japan
| |
Collapse
|
28
|
Klinovska K, Sebkova N, Dvorakova-Hortova K. Sperm-egg fusion: a molecular enigma of mammalian reproduction. Int J Mol Sci 2014; 15:10652-68. [PMID: 24933635 PMCID: PMC4100174 DOI: 10.3390/ijms150610652] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/13/2014] [Accepted: 05/30/2014] [Indexed: 12/14/2022] Open
Abstract
The mechanism of gamete fusion remains largely unknown on a molecular level despite its indisputable significance. Only a few of the molecules required for membrane interaction are known, among them IZUMO1, which is present on sperm, tetraspanin CD9, which is present on the egg, and the newly found oolema protein named Juno. A concept of a large multiprotein complex on both membranes forming fusion machinery has recently emerged. The Juno and IZUMO1, up to present, is the only known extracellular receptor pair in the process of fertilization, thus, facilitating the essential binding of gametes. However, neither IZUMO1 nor Juno appears to be the fusogenic protein. At the same time, the tetraspanin is expected to play a role in organizing the egg membrane order and to interact laterally with other factors. This review summarizes, to present, the known molecules involved in the process of sperm-egg fusion. The complexity and expected redundancy of the involved factors makes the process an intricate and still poorly understood mechanism, which is difficult to comprehend in its full distinction.
Collapse
Affiliation(s)
- Karolina Klinovska
- BIOCEV Group, Department of Zoology, Charles University in Prague, Vinicna 7, Prague 2 128 44, Czech Republic.
| | - Natasa Sebkova
- BIOCEV Group, Department of Zoology, Charles University in Prague, Vinicna 7, Prague 2 128 44, Czech Republic.
| | - Katerina Dvorakova-Hortova
- BIOCEV Group, Department of Zoology, Charles University in Prague, Vinicna 7, Prague 2 128 44, Czech Republic.
| |
Collapse
|
29
|
Comprehensive determination of the cyclic FEE peptide chemical stability in solution. J Pharm Biomed Anal 2014; 89:50-5. [DOI: 10.1016/j.jpba.2013.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/15/2013] [Accepted: 10/17/2013] [Indexed: 11/20/2022]
|
30
|
Affiliation(s)
- Masaru OKABE
- Center for Genetic Analysis for Biological Responses, Research Institute for Microbial Diseases, Osaka University, Yamadaoka 3-1, Suita, Osaka 565-0871, Japan
| |
Collapse
|
31
|
Pires ES, Hlavin C, Macnamara E, Ishola-Gbenla K, Doerwaldt C, Chamberlain C, Klotz K, Herr AK, Khole A, Chertihin O, Curnow E, Feldman SH, Mandal A, Shetty J, Flickinger C, Herr JC. SAS1B protein [ovastacin] shows temporal and spatial restriction to oocytes in several eutherian orders and initiates translation at the primary to secondary follicle transition. Dev Dyn 2013; 242:1405-26. [PMID: 24038607 DOI: 10.1002/dvdy.24040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/07/2013] [Accepted: 08/16/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Sperm Acrosomal SLLP1 Binding (SAS1B) protein (ovastacin) is an oolemmal binding partner for the intra-acrosomal sperm protein SLLP1. RESULTS Immunohistochemical localization revealed that SAS1B translation is restricted among adult tissues to the ovary and oocytes, SAS1B appearing first in follicles at the primary-secondary transition. Quiescent oocytes within primordial follicles and primary follicles did not stain for SAS1B. Examination of neonatal rat ovaries revealed SAS1B expression first as faint signals in postnatal day 3 oocytes, with SAS1B protein staining intensifying with oocyte growth. Irrespective of animal age or estrus stage, SAS1B was seen only in oocytes of follicles that initiated a second granulosa cell layer. The precise temporal and spatial onset of SAS1B expression was conserved in adult ovaries in seven eutherian species, including nonhuman primates. Immunoelectron micrographs localized SAS1B within cortical granules in MII oocytes. A population of SAS1B localized on the oolemma predominantly in the microvillar region anti-podal to the nucleus in ovulated MII rat oocytes and on the oolemma in macaque GV oocytes. CONCLUSIONS The restricted expression of SAS1B protein in growing oocytes, absence in the ovarian reserve, and localization on the oolemma suggest this zinc metalloprotease deserves consideration as a candidate target for reversible female contraceptive strategies.
Collapse
Affiliation(s)
- Eusebio S Pires
- Department of Cell Biology, Center for Research in Contraceptive and Reproductive Health, University of Virginia, Charlottesville, Virginia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Boccia L, Di Francesco S, Neglia G, De Blasi M, Longobardi V, Campanile G, Gasparrini B. Osteopontin improves sperm capacitation and in vitro fertilization efficiency in buffalo (Bubalus bubalis). Theriogenology 2013; 80:212-7. [DOI: 10.1016/j.theriogenology.2013.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 04/11/2013] [Accepted: 04/17/2013] [Indexed: 12/27/2022]
|
33
|
Kim YH, Kim BJ, Kim BG, Lee YA, Kim KJ, Chung HJ, Hwang S, Woo JS, Park JK, Schmidt JA, Pang MG, Ryu BY. Stage-specific embryonic antigen-1 expression by undifferentiated spermatogonia in the prepubertal boar testis1. J Anim Sci 2013; 91:3143-54. [DOI: 10.2527/jas.2012-6139] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Y.-H. Kim
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Korea
| | - B.-J. Kim
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Korea
| | - B.-G. Kim
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Korea
| | - Y.-A. Lee
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Korea
| | - K.-J. Kim
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Korea
| | - H.-J. Chung
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Chuksan-gil 77, Suwon, Gyeonggi-do 441-706, Korea
| | - S. Hwang
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Chuksan-gil 77, Suwon, Gyeonggi-do 441-706, Korea
| | - J.-S. Woo
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Chuksan-gil 77, Suwon, Gyeonggi-do 441-706, Korea
| | - J.-K. Park
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Chuksan-gil 77, Suwon, Gyeonggi-do 441-706, Korea
| | - J. A. Schmidt
- Department of Science, Spokane Community College, 1810 N Greene St., Spokane, WA 99217-5399
| | - M.-G. Pang
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Korea
| | - B.-Y. Ryu
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Korea
| |
Collapse
|
34
|
Critical role of exosomes in sperm-egg fusion and virus-induced cell-cell fusion. Reprod Med Biol 2013; 12:117-126. [PMID: 29699139 DOI: 10.1007/s12522-013-0152-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 04/27/2013] [Indexed: 10/26/2022] Open
Abstract
In mammals, two integral membrane proteins, sperm IZUMO1 and egg CD9, regulate sperm-egg fusion, and their roles are critical, but yet unclear. Recent studies, however, indicate interesting connections between the sperm-egg fusion and virus-induced cell-cell fusion. First, CD9-containing exosome-like vesicles, which are released from wild-type eggs, can induce the fusion between sperm and CD9-deficient egg, even though CD9-deficient eggs are highly refractory to the fusion with sperm. This finding provides strong evidence for the involvement of CD9-containing, fusion-facilitating vesicles in the sperm-egg fusion. Secondly, there are similarities between the generation of retroviruses in the host cells and the formation of small cellular vesicles, termed exosomes, in mammalian cells. The exosomes are involved in intercellular communication through transfer of proteins and ribonucleic acids (RNAs) including mRNAs and microRNAs. These collective studies provide an insight into the molecular mechanism of membrane fusion events.
Collapse
|
35
|
Ahmed MAE. Feto-maternal interactions and immunological tolerance of the mother to her semiallogeneic fetus. THE EGYPTIAN JOURNAL OF HISTOLOGY 2013; 36:1-12. [DOI: 10.1097/01.ehx.0000426050.42572.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
36
|
Cho C. Testicular and epididymal ADAMs: expression and function during fertilization. Nat Rev Urol 2012; 9:550-60. [DOI: 10.1038/nrurol.2012.167] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Kashyap T, Rabinovitz I. The calcium/calcineurin pathway promotes hemidesmosome stability through inhibition of β4 integrin phosphorylation. J Biol Chem 2012; 287:32440-9. [PMID: 22865863 DOI: 10.1074/jbc.m112.385245] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell migration depends on cells being able to create and disassemble adhesive contacts. Hemidesmosomes are multiprotein structures that attach epithelia to basal lamina and disassemble during migration and carcinoma invasion. Phosphorylation of the β4 integrin, a hemidesmosome component, induces disassembly. Although kinases involved in β4 phosphorylation have been identified, little is known about phosphatases countering kinase action. Here we report that calcineurin, a serine-threonine protein phosphatase, regulates β4 phosphorylation. Calcineurin inhibitor cyclosporin A (CsA) and calcineurin-siRNA increase β4 phosphorylation, induce hemidesmosome disassembly, and increase migration in HaCat keratinocytes, suggesting that calcineurin negatively regulates β4 phosphorylation. We found no direct dephosphorylation of β4 by calcineurin or association between β4 and calcineurin, suggesting indirect regulation of β4 phosphorylation. We therefore assessed calcineurin influence on MAPK and PKC, known to phosphorylate β4. CsA increased MAPK activity, whereas MAPK inhibitors reduced CsA-induced β4 phosphorylation, suggesting that calcineurin restricts β4 phosphorylation by MAPK. Calcineurin is activated by calcium. Increased [Ca(2+)](i) reduces β4 phosphorylation and stabilizes hemidesmosomes, effects that are reversed by CsA, indicating that calcineurin mediates calcium effects on β4. However, MAPK activation is increased when [Ca(2+)](i) is increased, suggesting that calcineurin activates an additional mechanism that counteracts MAPK-induced β4 phosphorylation. Interestingly, in some squamous cell carcinoma cells, which have reduced hemidesmosomes and increased β4 phosphorylation, an increase in [Ca(2+)](i) using thapsigargin, bradykinin, or acetylcholine can increase hemidesmosomes and reduce β4 phosphorylation in a calcineurin-dependent manner. These findings have implications in calcineurin-inhibitor induced carcinoma, a complication of immunosuppressive therapy.
Collapse
Affiliation(s)
- Trinayan Kashyap
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
38
|
Identification of differentially expressed genes in Mongolian sheep ovaries by suppression subtractive hybridization. Anim Reprod Sci 2012; 133:86-92. [DOI: 10.1016/j.anireprosci.2012.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 06/05/2012] [Accepted: 06/06/2012] [Indexed: 11/21/2022]
|
39
|
Barraud-Lange V, Chalas Boissonnas C, Serres C, Auer J, Schmitt A, Lefèvre B, Wolf JP, Ziyyat A. Membrane transfer from oocyte to sperm occurs in two CD9-independent ways that do not supply the fertilising ability of Cd9-deleted oocytes. Reproduction 2012; 144:53-66. [PMID: 22554680 DOI: 10.1530/rep-12-0040] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Spermatozoa undergo regulation of their functions along their lifespan through exchanges via vesicles or interactions with epithelial cells, in the epididymis, in the seminal fluid and in the female genital tract. Two different ways of oocyte membrane transfer to spermatozoa have been described: trogocytosis and exosomes. We here report an analysis of in vitro exchanges between the membranes of unfertilised oocytes and capacitated spermatozoa. We showed that optimum conditions are fulfilled when unfertilised oocytes interact with acrosome-reacted spermatozoa, a scenario mimicking the events occurring when the fertilising spermatozoon is inside the perivitelline space. Although CD9 tetraspanin is an essential molecule for fertilisation, exosome and trogocytosis transfer persists in Cd9-null oocytes in spite of their dramatic fusion failure. These exchanges are CD9 tetraspanin independent. We also confirm that mice sperm express CD9 tetraspanin and that when Cd9-null oocytes were inseminated with sperm covered with oocyte membrane materials, including CD9 tetraspanin, no rescue of the oocytes' fertilisability could be obtained. Thus, the existence of two ways of exchange between gametes during fertilisation suggests that these events could be of a physiological importance in this process.
Collapse
Affiliation(s)
- Virginie Barraud-Lange
- Service d'Histologie Embryologie, Biologie de la Reproduction, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Université Paris Descartes, 123, Boulevard Port Royal, 75013 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Dun MD, Anderson AL, Bromfield EG, Asquith KL, Emmett B, McLaughlin EA, Aitken RJ, Nixon B. Investigation of the expression and functional significance of the novel mouse sperm protein, a disintegrin and metalloprotease with thrombospondin type 1 motifs number 10 (ADAMTS10). ACTA ACUST UNITED AC 2012; 35:572-89. [DOI: 10.1111/j.1365-2605.2011.01235.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Laminin/β1 integrin signal triggers axon formation by promoting microtubule assembly and stabilization. Cell Res 2012; 22:954-72. [PMID: 22430151 DOI: 10.1038/cr.2012.40] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Axon specification during neuronal polarization is closely associated with increased microtubule stabilization in one of the neurites of unpolarized neuron, but how this increased microtubule stability is achieved is unclear. Here, we show that extracellular matrix (ECM) component laminin promotes neuronal polarization via regulating directional microtubule assembly through β1 integrin (Itgb1). Contact with laminin coated on culture substrate or polystyrene beads was sufficient for axon specification of undifferentiated neurites in cultured hippocampal neurons and cortical slices. Active Itgb1 was found to be concentrated in laminin-contacting neurites. Axon formation was promoted and abolished by enhancing and attenuating Itgb1 signaling, respectively. Interestingly, laminin contact promoted plus-end microtubule assembly in a manner that required Itgb1. Moreover, stabilizing microtubules partially prevented polarization defects caused by Itgb1 downregulation. Finally, genetic ablation of Itgb1 in dorsal telencephalic progenitors caused deficits in axon development of cortical pyramidal neurons. Thus, laminin/Itgb1 signaling plays an instructive role in axon initiation and growth, both in vitro and in vivo, through the regulation of microtubule assembly. This study has established a linkage between an extrinsic factor and intrinsic cytoskeletal dynamics during neuronal polarization.
Collapse
|
42
|
Sachdev M, Mandal A, Mulders S, Digilio LC, Panneerdoss S, Suryavathi V, Pires E, Klotz KL, Hermens L, Herrero MB, Flickinger CJ, van Duin M, Herr JC. Oocyte specific oolemmal SAS1B involved in sperm binding through intra-acrosomal SLLP1 during fertilization. Dev Biol 2011; 363:40-51. [PMID: 22206759 DOI: 10.1016/j.ydbio.2011.12.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 12/08/2011] [Accepted: 12/12/2011] [Indexed: 10/14/2022]
Abstract
Molecular mechanisms by which fertilization competent acrosome-reacted sperm bind to the oolemma remain uncharacterized. To identify oolemmal binding partner(s) for sperm acrosomal ligands, affinity panning was performed with mouse oocyte lysates using sperm acrosomal protein, SLLP1 as a target. An oocyte specific membrane metalloproteinase, SAS1B (Sperm Acrosomal SLLP1 Binding), was identified as a SLLP1 binding partner. cDNA cloning revealed six SAS1B splice variants, each containing a zinc binding active site and a putative transmembrane domain, with signal peptides in three variants. SAS1B transcripts were ovary specific. SAS1B protein was first detected in early secondary follicles in day 3 ovaries. Immunofluorescence localized SAS1B to the microvillar oolemma of M2 oocytes. After fertilization, SAS1B decreased on the oolemma and became virtually undetectable in blastocysts. In transfected CHO-K1 cells SAS1B localized to the surface of unpermeabilized cells. Recombinant and native SLLP1 co-localized with SAS1B to the microvillar domain of ovulated M2 oocytes. Molecular interactions between mouse SLLP1 and SAS1B were demonstrated by surface plasmon resonance, far-western, yeast two-hybrid, recombinant- and native-co-IP analyses. SAS1B bound to SLLP1 with high affinity. SAS1B had protease activity, and SAS1B protein or antibody significantly inhibited fertilization. SAS1B knockout female mice showed a 34% reduction in fertility. The study identified SAS1B-SLLP1 as a pair of novel sperm-egg binding partners involving the oolemma and intra-acrosomal compartment during fertilization.
Collapse
Affiliation(s)
- Monika Sachdev
- Department of Cell Biology, Center for Research in Contraceptive and Reproductive Health, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Cortical granules are membrane bound organelles located in the cortex of unfertilized oocytes. Following fertilization, cortical granules undergo exocytosis to release their contents into the perivitelline space. This secretory process, which is calcium dependent and SNARE protein-mediated pathway, is known as the cortical reaction. After exocytosis, the released cortical granule proteins are responsible for blocking polyspermy by modifying the oocytes' extracellular matrices, such as the zona pellucida in mammals. Mammalian cortical granules range in size from 0.2 um to 0.6 um in diameter and different from most other regulatory secretory organelles in that they are not renewed once released. These granules are only synthesized in female germ cells and transform an egg upon sperm entry; therefore, this unique cellular structure has inherent interest for our understanding of the biology of fertilization. Cortical granules are long thought to be static and awaiting in the cortex of unfertilized oocytes to be stimulated undergoing exocytosis upon gamete fusion. Not till recently, the dynamic nature of cortical granules is appreciated and understood. The latest studies of mammalian cortical granules document that this organelle is not only biochemically heterogeneous, but also displays complex distribution during oocyte development. Interestingly, some cortical granules undergo exocytosis prior to fertilization; and a number of granule components function beyond the time of fertilization in regulating embryonic cleavage and preimplantation development, demonstrating their functional significance in fertilization as well as early embryonic development. The following review will present studies that investigate the biology of cortical granules and will also discuss new findings that uncover the dynamic aspect of this organelle in mammals.
Collapse
Affiliation(s)
- Min Liu
- Department of Life Science and Graduate Institute of Biotechnology, Private Chinese Culture University, Taipei, Republic of China.
| |
Collapse
|
44
|
Yan X, Lin J, Markus A, Rolfs A, Luo J. Regional expression of ADAM19 during chicken embryonic development. Dev Growth Differ 2011; 53:333-46. [PMID: 21492148 DOI: 10.1111/j.1440-169x.2010.01238.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
ADAM19 (also named meltrin β) is a member of the ADAM (a disintegrin and metalloprotease) family of metalloproteases and is involved in morphogenesis and tissue formation during embryonic development. In the present study, chicken ADAM19 is cloned by reverse transcription-polymerase chain reaction and identified by sequencing. Its expression patterns in different parts of the developing chicken embryo are investigated by Western blot analysis and immunohistochemistry. Results show that ADAM19 protein is widely expressed in chicken embryos. It is detectable in the central nervous system, including the brain, spinal cord, cochlea, and retina. Furthermore, ADAM19 protein is also found in other tissues and organs such as digestive organs, the thymus, the lung bud, the dorsal aorta, the kidney, the gonad, muscles, and in the feather buds. All these data suggest that ADAM19 plays an important role in the embryonic development of chicken.
Collapse
Affiliation(s)
- Xin Yan
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Gehlsheimer Strasse 20, D-18147 Rostock, Germany
| | | | | | | | | |
Collapse
|
45
|
Mouguelar VS, Cabada MO, Coux G. The integrin-binding motif RGDS induces protein tyrosine phosphorylation without activation in Bufo arenarum (Amphibia) oocytes. Reproduction 2011; 141:581-93. [DOI: 10.1530/rep-10-0411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Integrins are cell adhesion molecules that are thought to be involved in sperm–oocyte interaction. Nevertheless, their function in mammalian fertilization is still controversial, as different species behave differently. In amphibians, their role is mainly supported byXenopus laevisstudies, where RGDS peptide induces oocyte activation. We recently provided evidence suggesting the presence and involvement of integrins in the interaction of the oocyte plasma membrane (PM) with sperm in the amphibianBufo arenarum. In order to understand the role of integrin homologs in oocytes and their possible contribution to egg activation mechanisms, we examined the presence of integrin subunits and the effect of RGDS peptide on oocytes and during fertilization. Western blot studies detected integrin subunits α5, αV and β1 in oocytes. In sperm, we could detect only the αV integrin subunit. We found that RGDS peptide was unable to elicit egg activation or MAPK dephosphorylation, but can induce reversible inhibition of fertilization. A similar partial inhibition was produced by an anti-β1 integrin antibody. Using an anti-phosphotyrosine antibody we found major changes in phosphotyrosine-containing proteins in egg extracts minutes after fertilization. Cytosol and PMs isolated from oocytes and fertilized eggs showed additional fertilization-induced phosphorylated proteins. Some of these were also present in cytosol and PMs from RGDS-treated oocytes (partially mimicking fertilization). These findings suggest thatB. arenarumfertilization involves integrins (e.g. β1 subunit) as adhesion proteins. Our data support the view that RGDS-binding receptors may function as signaling receptors inB. arenarumoocytes, but integrin engagement by RGDS is not sufficient for oocyte activation.
Collapse
|
46
|
Nawaratna SSK, McManus DP, Moertel L, Gobert GN, Jones MK. Gene Atlasing of digestive and reproductive tissues in Schistosoma mansoni. PLoS Negl Trop Dis 2011; 5:e1043. [PMID: 21541360 PMCID: PMC3082511 DOI: 10.1371/journal.pntd.0001043] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 03/25/2011] [Indexed: 11/30/2022] Open
Abstract
Background While considerable genomic and transcriptomic data are available for
Schistosoma mansoni, many of its genes lack significant
annotation. A transcriptomic study of individual tissues and organs of
schistosomes could play an important role in functional annotation of the
unknown genes, particularly by providing rapid localisation data and thus
giving insight into the potential roles of these molecules in parasite
development, reproduction and homeostasis, and in the complex host-parasite
interaction. Methodology/Principal Findings Quantification of gene expression in tissues of S. mansoni
was achieved by a combination of laser microdissection microscopy (LMM) and
oligonucleotide microarray analysis. We compared the gene expression profile
of the adult female gastrodermis and male and female reproductive tissues
with whole worm controls. The results revealed a total of 393 genes
(contigs) that were up-regulated two-fold or more in the gastrodermis, 4,450
in the ovary, 384 in the vitelline tissues of female parasites, and 2,171 in
the testes. We have also supplemented these data with the identification of
highly expressed genes in different regions of manually dissected male and
female S. mansoni. Though relatively crude, this dissection
strategy provides low resolution localisation data for critical regions of
the adult parasites that are not amenable to LMM isolation. Conclusions This is the first detailed transcriptomic study of the reproductive tissues
and gastrodermis of S. mansoni. The results obtained will
help direct future research on the functional aspects of these tissues,
expediting the characterisation of currently unannotated gene products of
S. mansoni and the discovery of new drug and vaccine
targets. There is currently only one drug available for treatment of
schistosomiasis mansoni and no vaccine. The searches for
possible new drug and vaccine candidates remain two major areas of current
research in schistosomiasis. There are considerable amounts of data available on
the genomics, transcriptomics and proteomics of Schistosoma
mansoni from which useful candidates for future drug and vaccine
development can be identified. Arranging these data into a biologically relevant
context through the characterisation of gene expression profiles of the
different tissues of this complex metazoan parasite, is an essential step in
identifying molecules with potential therapeutic value. We have used laser
microdissection microscopy and microarray analysis to show that many
tissue-specific genes are up-regulated in the digestive and reproductive tissues
of S. mansoni. This new knowledge provides an avenue to
investigate the molecular components associated with fundamental aspects of
schistosome biology.
Collapse
Affiliation(s)
- Sujeevi S. K. Nawaratna
- Queensland Institute of Medical Research, Herston, Australia
- School of Veterinary Sciences, The University of Queensland, Gatton,
Australia
| | | | - Luke Moertel
- Queensland Institute of Medical Research, Herston, Australia
| | - Geoffrey N. Gobert
- Queensland Institute of Medical Research, Herston, Australia
- School of Veterinary Sciences, The University of Queensland, Gatton,
Australia
| | - Malcolm K. Jones
- Queensland Institute of Medical Research, Herston, Australia
- School of Veterinary Sciences, The University of Queensland, Gatton,
Australia
- * E-mail:
| |
Collapse
|
47
|
Kempisty B, Jackowska M, Piotrowska H, Antosik P, Woźna M, Bukowska D, Brüssow KP, Jaśkowski JM. Zona pellucida glycoprotein 3 (pZP3) and integrin β2 (ITGB2) mRNA and protein expression in porcine oocytes after single and double exposure to brilliant cresyl blue test. Theriogenology 2011; 75:1525-35. [PMID: 21295838 DOI: 10.1016/j.theriogenology.2010.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 11/23/2010] [Accepted: 12/19/2010] [Indexed: 11/16/2022]
Abstract
Brilliant cresyl blues (BCB) staining test is a useful tool in assessing the competence of cumulus-oocyte-complexes (COCs) in several mammalian species. It is mostly used to select gametes after they are recovered from the ovary or before and after IVM to isolate those oocytes that reach developmental competency. However, there is evidence that double exposure to BCB test may lead to impaired fertilization or even have a toxic effect on cells. The aim of the present study was to investigate the expression pattern of sperm-egg interaction molecules in oocytes after single and double exposure to BCB test. Follicles were dissected from porcine ovaries after slaughter and aspirated COCs were cultured in standard porcine IVM culture medium (TCM 199) for 44 h. The BCB test was applied to COCs before and after IVM. In developmentally competent oocytes, assessed by determining the activity of glucose-6-phosphate dehydrogenase (G6PDH; BCB test), real-time quantitative PCR reaction methods, western blot and confocal microscopy analysis were applied to determine the transcript levels of porcine zona pellucida glycoprotein 3 (pZP3), and integrin beta 2 (ITGB2), as well as the levels of pZP3 and ITGB2 proteins. In the control group, assessment of the expression of the investigated genes was performed before and after IVM without BCB test. We observed a significantly higher level of pZP3 mRNA in oocytes after single exposure to BCB test compared to control before and after IVM (P < 0.001), and to double staining (P < 0.05). The level of ITGB2 mRNA was also increased in gametes after single exposure to BCB test as compared to control before and after IVM (P < 0.001, P < 0.01, respectively), and double staining (P < 0.05). Western blot analysis demonstrated a higher level of pZP3 protein in oocytes after single staining with BCB as compared to control both before and after IVM (P < 0.001, P < 0.05, respectively) and double staining (P < 0.05). Confocal microscopic observations have revealed the same pattern of increased level of pZP3 and ITGB2 expression after single exposure to BCB test. In both cases we detected specific cytoplasmic localization of both proteins. The ITGB2 protein has zona pellucida and membrane localization in control oocytes before IVM. After IVM and after single exposure to BCB, ITGB2 was also strongly detected in the cytoplasm. In both cases, after double exposure to BCB both proteins were detected only partially in the cytoplasm. Our results suggest that (i) single exposure to BCB increased the expression of sperm-oocyte interaction genes, (ii) double exposure to BCB leads to only partial expression of pZP3 and ITGB2 in oocyte cytoplasm, (iii) the BCB staining test itself may be a cause of specific pZP3 translocation from the zona pellucida to the cytoplasm, and that (iv) in vitro maturation of oocytes may increase ITGB2 expression and translocation from the zona pellucida to the cytoplasm.
Collapse
Affiliation(s)
- B Kempisty
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
New Insights into the Mechanisms and Roles of Cell–Cell Fusion. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 289:149-209. [DOI: 10.1016/b978-0-12-386039-2.00005-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
49
|
Zigrino P, Nischt R, Mauch C. The disintegrin-like and cysteine-rich domains of ADAM-9 mediate interactions between melanoma cells and fibroblasts. J Biol Chem 2010; 286:6801-7. [PMID: 21135106 DOI: 10.1074/jbc.m110.168617] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A characteristic of malignant cells is their capacity to invade their surrounding and to metastasize to distant organs. During these processes, proteolytic activities of tumor and stromal cells modify the extracellular matrix to produce a microenvironment suitable for their growth and migration. In recent years the family of ADAM proteases has been ascribed important roles in these processes. ADAM-9 is expressed in human melanoma at the tumor-stroma border where direct or indirect interactions between tumor cells and fibroblasts occur. To analyze the role of ADAM-9 for the interaction between melanoma cells and stromal fibroblasts, we produced the recombinant disintegrin-like and cysteine-rich domain of ADAM-9 (DC-9). Melanoma cells and human fibroblasts adhered to immobilized DC-9 in a Mn(2+)-dependent fashion suggesting an integrin-mediated process. Inhibition studies showed that adhesion of fibroblasts was mediated by several β1 integrin receptors independent of the RGD and ECD recognition motif. Furthermore, interaction of fibroblasts and high invasive melanoma cells with soluble recombinant DC-9 resulted in enhanced expression of MMP-1 and MMP-2. Silencing of ADAM-9 in melanoma cells significantly reduced cell adhesion to fibroblasts. Ablation of ADAM-9 in fibroblasts almost completely abolished these cellular interactions and melanoma cell invasion in vitro. In summary, these results suggest that ADAM-9 expression plays an important role in mediating cell-cell contacts between fibroblasts and melanoma cells and that these interactions contribute to proteolytic activities required during invasion of melanoma cells.
Collapse
Affiliation(s)
- Paola Zigrino
- Department of Dermatology and Center for Molecular Medicine, University of Cologne, 50937 Cologne, Germany.
| | | | | |
Collapse
|
50
|
Sakai C, Hoshino Y, Sato Y, Sato E. Evaluation of maturation competence of metaphase II oocytes in mice based on the distance between pericentriolar materials of meiotic spindle: distance of PCM during oocyte maturation. J Assist Reprod Genet 2010; 28:157-66. [PMID: 21082234 DOI: 10.1007/s10815-010-9496-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 10/13/2010] [Indexed: 12/01/2022] Open
Abstract
PURPOSE To ascertain whether metaphase II (MII) spindle shape influences oocyte competence, we examined the meiotic spindle organization in in vivo ovulated (IVO) oocytes and in spontaneously matured or follicle stimulating hormone (FSH)-induced oocytes. METHODS FSH-induced oocytes matured in Waymouth's MB752/1 or human tubal fluid (HTF) media and oocytes matured spontaneously in the basal medium were obtained, and spindles were detected by immunofluorescence. To evaluate the fertilization-associated differences in spindle morphology, we performed in vitro fertilization and analysed integrin mRNA expression. RESULTS The distance between the pericentriolar materials (PCMs) in oocytes matured under all conditions was initially more, but it reduced gradually and increased again thereafter. Therefore, oocytes exhibiting a reduction in the distance between PCMs had the highest development rate to blastocyst in each condition. CONCLUSION These results indicate that the 'maturation competence' of MII oocytes can be evaluated on the basis of the distance between PCMs.
Collapse
Affiliation(s)
- Chizuka Sakai
- Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan.
| | | | | | | |
Collapse
|