1
|
Liao Z, Steenwinkel TE, Moscoso B, Salas E, Patton BK, Rodriguez A, Malovannaya A, Pangas SA. Disruption of oocyte SUMOylation impacts critical regulatory processes during folliculogenesis in mice†. Biol Reprod 2025; 112:932-941. [PMID: 39982420 DOI: 10.1093/biolre/ioaf035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/30/2025] [Accepted: 02/20/2025] [Indexed: 02/22/2025] Open
Abstract
The conjugation of small ubiquitin-like modifiers (SUMO) to target proteins, known as SUMOylation, plays a crucial role in regulating protein homeostasis, activity, interaction with other proteins, and subcellular localization. Loss of SUMOylation in nongrowing oocytes by conditional deletion of the E2 SUMO conjugating enzyme, Ube2i, at the primordial follicle stage leads to female sterility due to complex changes in oocyte development, including altered folliculogenesis, defective meiotic progression, and premature loss of the ovarian reserve. In this study, proteomics was used to compare control and Ube2i conditional knockout ovaries during the first wave of folliculogenesis to identify key differences that may drive the premature follicle loss phenotype. Label-free mass spectrometry results showed that 238 proteins were significantly altered more than 2-fold (p < 0.05). Proteins upregulated in the Ube2i conditional knockout ovaries included those involved in mRNA splicing and WNT signaling, while those downregulated were related to metabolism, mitochondria, and the maternal effect proteins NLRP2 and NLRP9B. The majority of differentially expressed proteins showed no change by transcriptome analysis, indicating protein level regulation and revealing potential SUMOylation targets with necessary roles in oocyte and follicle development.
Collapse
Affiliation(s)
- Zian Liao
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Graduate School of Biomedical Sciences, Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, TX, United States
| | - Tessa E Steenwinkel
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Graduate School of Biomedical Sciences, Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States
| | - Bruno Moscoso
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Ernesto Salas
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Bethany K Patton
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Graduate School of Biomedical Sciences, Molecular & Cellular Biology Graduate Program, Baylor College of Medicine, Houston, TX, United States
| | - Amanda Rodriguez
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Graduate School of Biomedical Sciences, Molecular & Cellular Biology Graduate Program, Baylor College of Medicine, Houston, TX, United States
| | - Anna Malovannaya
- Department of Biochemistry and Molecular Pharmacology, Houston, TX, United States
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, United States
| | - Stephanie A Pangas
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Graduate School of Biomedical Sciences, Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States
- Graduate School of Biomedical Sciences, Molecular & Cellular Biology Graduate Program, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
2
|
Morales-Sánchez E, Campuzano-Caballero JC, Cervantes A, Martínez-Ibarra A, Cerbón M, Vital-Reyes VS. Which Side of the Coin Are You on Regarding Possible Postnatal Oogenesis? Arch Med Res 2024; 55:103071. [PMID: 39236439 DOI: 10.1016/j.arcmed.2024.103071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024]
Abstract
It is well known that oocytes are produced during fetal development and that the total number of primary follicles is determined at birth. In humans, there is a constant loss of follicles after birth until about two years of age. The number of follicles is preserved until the resumption of meiosis at puberty and there is no renewal of the oocytes; this dogma was maintained in the last century because there were no suitable techniques to detect and obtain stem cells. However, following stem cell markers, several scientists have detected them in developing and adult human ovarian tissues, especially in the ovarian surface epithelial cells. Furthermore, many authors using different methodological strategies have indicated this possibility. This evidence has led many scientists to explore this hypothesis; there is no definitive consensus to accept this idea. Interestingly, oocyte retrieval from mature ovaries and other tissue sources of stem cells has contributed to the development of strategies for the retrieval of mature oocytes, useful for assisted reproductive technology. Here, we review the evidence and controversies on oocyte neooogenesis in adult women; in addition, we agree with the idea that this process may occur in adulthood and that its alteration may be related to various pathologies in women, such as polycystic ovary syndrome, premature ovarian insufficiency, diminished ovarian reserve and several infertility and genetic disorders.
Collapse
Affiliation(s)
- Elizabeth Morales-Sánchez
- Unidad de Histología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juan Carlos Campuzano-Caballero
- Departamento de Biología Comparada, Facultad de Ciencias, Laboratorio de Biología de la Reproducción Animal, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alicia Cervantes
- Servicio de Genética, Hospital General de México, Eduardo Liceaga, Mexico City, Mexico; Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandra Martínez-Ibarra
- Departmento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Circuito Escolar, Mexico City, Coyoacán 04510, Mexico
| | - Marco Cerbón
- Departmento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Circuito Escolar, Mexico City, Coyoacán 04510, Mexico.
| | | |
Collapse
|
3
|
Santos T, Pires-Luís AS, Calado AM, Oliveira E, Cunha M, Silva J, Viana P, Teixeira-da-Silva J, Oliveira C, Barros A, Sá R, Sousa M. Stereological study of organelle distribution in human mature oocytes. Sci Rep 2024; 14:25816. [PMID: 39468218 PMCID: PMC11519492 DOI: 10.1038/s41598-024-76893-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
The ultrastructure of human oocytes has been described only qualitatively. To offer a precise organelle spatial distribution and organelle volume during the main maturation stages, we previously conducted stereological studies on prophase-I (GV) and metaphase-I (MI) oocytes, and here we present results on metaphase-II (MII) oocytes. Five donor oocytes from different donors were processed for transmission electron microscopy, and quantification of organelle distribution was performed using point-counting stereology. Statistical tests compared the means of the relative volumes occupied by organelles among oocyte regions. The most abundant organelles were elements of the smooth endoplasmic reticulum (SER), such as SER small vesicles, SER medium vesicles, SER large vesicles and SER isolated tubules, along with mitochondria, followed by SER tubular aggregates, cortical vesicles and lysosomes. Significant differences between oocyte regions were found for lysosomes, cortical vesicles and SER large vesicles. Comparisons of MII oocytes to previous findings in GV and MI oocytes evidenced specific patterns of organelle distribution and relative volumes. This final evaluation thus enables to track organelle spatial reorganization across oocyte stages, which, in addition to gathered knowledge, may be useful to assist in improvements of stimulation protocols, in-vitro maturation media and cryopreservation techniques.
Collapse
Affiliation(s)
- Tânia Santos
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Department of Veterinarian Science, School of Veterinary and Agricultural Sciences (ECAV), Associated Laboratory for Animal and Veterinary Science (AL4AnimalS), CECAV-Interdisciplinary Research Center in Animal Health, Universidade de Trás-Os-Montes E Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Ana S Pires-Luís
- Department of Pathology, Unidade Local de Saúde de Vila Nova de Gaia/Espinho, Unidade 1, Rua Conceição Fernandes 1079, 4434-502, Vila Nova de Gaia, Portugal
| | - Ana Margarida Calado
- Department of Veterinarian Science, School of Veterinary and Agricultural Sciences (ECAV), Associated Laboratory for Animal and Veterinary Science (AL4AnimalS), CECAV-Interdisciplinary Research Center in Animal Health, Universidade de Trás-Os-Montes E Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Elsa Oliveira
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine/ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal
| | - Mariana Cunha
- Centre for Reproductive Genetics Alberto Barros, Av. Do Bessa, 240, 1º Dto. Frente, 4100-012, Porto, Portugal
| | - Joaquina Silva
- Centre for Reproductive Genetics Alberto Barros, Av. Do Bessa, 240, 1º Dto. Frente, 4100-012, Porto, Portugal
| | - Paulo Viana
- Centre for Reproductive Genetics Alberto Barros, Av. Do Bessa, 240, 1º Dto. Frente, 4100-012, Porto, Portugal
| | - José Teixeira-da-Silva
- Centre for Reproductive Genetics Alberto Barros, Av. Do Bessa, 240, 1º Dto. Frente, 4100-012, Porto, Portugal
| | - Cristiano Oliveira
- Centre for Reproductive Genetics Alberto Barros, Av. Do Bessa, 240, 1º Dto. Frente, 4100-012, Porto, Portugal
| | - Alberto Barros
- Centre for Reproductive Genetics Alberto Barros, Av. Do Bessa, 240, 1º Dto. Frente, 4100-012, Porto, Portugal
- Service of Genetics, Department of Pathology, Faculty of Medicine, University of Porto, RISE Health Research Network, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Rosália Sá
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine/ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
- UMIB-Unit for Multidisciplinary Research in Biomedicine/ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal.
| |
Collapse
|
4
|
Giaccari C, Cecere F, Argenziano L, Pagano A, Riccio A. New insights into oocyte cytoplasmic lattice-associated proteins. Trends Genet 2024; 40:880-890. [PMID: 38955588 DOI: 10.1016/j.tig.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024]
Abstract
Oocyte maturation and preimplantation embryo development are critical to successful pregnancy outcomes and the correct establishment and maintenance of genomic imprinting. Thanks to novel technologies and omics studies in human patients and mouse models, the importance of the proteins associated with the cytoplasmic lattices (CPLs), highly abundant structures found in the cytoplasm of mammalian oocytes and preimplantation embryos, in the maternal to zygotic transition is becoming increasingly evident. This review highlights the recent discoveries on the role of these proteins in protein storage and other oocyte cytoplasmic processes, epigenetic reprogramming, and zygotic genome activation (ZGA). A better comprehension of these events may significantly improve clinical diagnosis and pave the way for targeted interventions aiming to correct or mitigate female fertility issues and genomic imprinting disorders.
Collapse
Affiliation(s)
- Carlo Giaccari
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania 'Luigi Vanvitelli,' Caserta, Italy
| | - Francesco Cecere
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania 'Luigi Vanvitelli,' Caserta, Italy
| | - Lucia Argenziano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania 'Luigi Vanvitelli,' Caserta, Italy
| | - Angela Pagano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania 'Luigi Vanvitelli,' Caserta, Italy
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania 'Luigi Vanvitelli,' Caserta, Italy; Institute of Genetics and Biophysics (IGB) 'Adriano Buzzati-Traverso,' Consiglio Nazionale delle Ricerche (CNR), Naples, Italy.
| |
Collapse
|
5
|
Ermisch AF, Wood JR. Regulation of Oocyte mRNA Metabolism: A Key Determinant of Oocyte Developmental Competence. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 238:23-46. [PMID: 39030353 DOI: 10.1007/978-3-031-55163-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The regulation of mRNA transcription and translation is uncoupled during oogenesis. The reason for this uncoupling is two-fold. Chromatin is only accessible to the transcriptional machinery during the growth phase as it condenses prior to resumption of meiosis to ensure faithful segregation of chromosomes during meiotic maturation. Thus, transcription rates are high during this time period in order to produce all of the transcripts needed for meiosis, fertilization, and embryo cleavage until the newly formed embryonic genome becomes transcriptionally active. To ensure appropriate timing of key developmental milestones including chromatin condensation, resumption of meiosis, segregation of chromosomes, and polar body extrusion, the translation of protein from transcripts synthesized during oocyte growth must be temporally regulated. This is achieved by the regulation of mRNA interaction with RNA binding proteins and shortening and lengthening of the poly(A) tail. This chapter details the essential factors that regulate the dynamic changes in mRNA synthesis, storage, translation, and degradation during oocyte growth and maturation.
Collapse
Affiliation(s)
- Alison F Ermisch
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jennifer R Wood
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
6
|
Haug LM, Wilson RC, Gaustad AH, Jochems R, Kommisrud E, Grindflek E, Alm-Kristiansen AH. Cumulus Cell and Oocyte Gene Expression in Prepubertal Gilts and Sows Identifies Cumulus Cells as a Prime Informative Parameter of Oocyte Quality. BIOLOGY 2023; 12:1484. [PMID: 38132310 PMCID: PMC10740982 DOI: 10.3390/biology12121484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Cumulus cells (CCs) are pivotal during oocyte development. This study aimed to identify novel marker genes for porcine oocyte quality by examining the expression of selected genes in CCs and oocytes, employing the model of oocytes from prepubertal animals being of reduced quality compared to those from adult animals. Total RNA was extracted either directly after follicle aspiration or after in vitro maturation, followed by RT-qPCR. Immature gilt CCs accumulated BBOX1 transcripts, involved in L-carnitine biosynthesis, to a 14.8-fold higher level (p < 0.05) relative to sows, while for CPT2, participating in fatty acid oxidation, the level was 0.48 (p < 0.05). While showing no differences between gilt and sow CCs after maturation, CPT2 and BBOX1 levels in oocytes were higher in gilts at both time points. The apparent delayed lipid metabolism and reduced accumulation of ALDOA and G6PD transcripts in gilt CCs after maturation, implying downregulation of glycolysis and the pentose phosphate pathway, suggest gilt cumulus-oocyte complexes have inadequate ATP stores and oxidative stress balance compared to sows at the end of maturation. Reduced expression of BBOX1 and higher expression of CPT2 in CCs before maturation and higher expression of G6PD and ALDOA after maturation are new potential markers of oocyte quality.
Collapse
Affiliation(s)
- Linda Marijke Haug
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2318 Hamar, Norway; (L.M.H.); (R.C.W.); (R.J.); (E.K.)
| | - Robert C. Wilson
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2318 Hamar, Norway; (L.M.H.); (R.C.W.); (R.J.); (E.K.)
| | | | - Reina Jochems
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2318 Hamar, Norway; (L.M.H.); (R.C.W.); (R.J.); (E.K.)
- Norsvin SA, 2317 Hamar, Norway; (A.H.G.); (E.G.)
| | - Elisabeth Kommisrud
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2318 Hamar, Norway; (L.M.H.); (R.C.W.); (R.J.); (E.K.)
| | | | - Anne Hege Alm-Kristiansen
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2318 Hamar, Norway; (L.M.H.); (R.C.W.); (R.J.); (E.K.)
| |
Collapse
|
7
|
Zhang H, Li C, Liu Q, Li J, Wu H, Xu R, Sun Y, Cheng M, Zhao X, Pan M, Wei Q, Ma B. C-type natriuretic peptide improves maternally aged oocytes quality by inhibiting excessive PINK1/Parkin-mediated mitophagy. eLife 2023; 12:RP88523. [PMID: 37860954 PMCID: PMC10588981 DOI: 10.7554/elife.88523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
The overall oocyte quality declines with aging, and this effect is strongly associated with a higher reactive oxygen species (ROS) level and the resultant oxidative damage. C-type natriuretic peptide (CNP) is a well-characterized physiological meiotic inhibitor that has been successfully used to improve immature oocyte quality during in vitro maturation. However, the underlying roles of CNP in maternally aged oocytes have not been reported. Here, we found that the age-related reduction in the serum CNP concentration was highly correlated with decreased oocyte quality. Treatment with exogenous CNP promoted follicle growth and ovulation in aged mice and enhanced meiotic competency and fertilization ability. Interestingly, the cytoplasmic maturation of aged oocytes was thoroughly improved by CNP treatment, as assessed by spindle/chromosome morphology and redistribution of organelles (mitochondria, the endoplasmic reticulum, cortical granules, and the Golgi apparatus). CNP treatment also ameliorated DNA damage and apoptosis caused by ROS accumulation in aged oocytes. Importantly, oocyte RNA-seq revealed that the beneficial effect of CNP on aged oocytes was mediated by restoration of mitochondrial oxidative phosphorylation, eliminating excessive mitophagy. CNP reversed the defective phenotypes in aged oocytes by alleviating oxidative damage and suppressing excessive PINK1/Parkin-mediated mitophagy. Mechanistically, CNP functioned as a cAMP/PKA pathway modulator to decrease PINK1 stability and inhibit Parkin recruitment. In summary, our results demonstrated that CNP supplementation constitutes an alternative therapeutic approach for advanced maternal age-related oocyte deterioration and may improve the overall success rates of clinically assisted reproduction in older women.
Collapse
Affiliation(s)
- Hui Zhang
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Chan Li
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Qingyang Liu
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Jingmei Li
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Hao Wu
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Rui Xu
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Yidan Sun
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Ming Cheng
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Xiaoe Zhao
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Menghao Pan
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Qiang Wei
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| |
Collapse
|
8
|
Calderari S, Archilla C, Jouneau L, Daniel N, Peynot N, Dahirel M, Richard C, Mourier E, Schmaltz-Panneau B, Vitorino Carvalho A, Rousseau-Ralliard D, Lager F, Marchiol C, Renault G, Gatien J, Nadal-Desbarats L, Couturier-Tarrade A, Duranthon V, Chavatte-Palmer P. Alteration of the embryonic microenvironment and sex-specific responses of the preimplantation embryo related to a maternal high-fat diet in the rabbit model. J Dev Orig Health Dis 2023; 14:602-613. [PMID: 37822211 DOI: 10.1017/s2040174423000260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The maternal metabolic environment can be detrimental to the health of the offspring. In a previous work, we showed that maternal high-fat (HH) feeding in rabbit induced sex-dependent metabolic adaptation in the fetus and led to metabolic syndrome in adult offspring. As early development representing a critical window of susceptibility, in the present work we aimed to explore the effects of the HH diet on the oocyte, preimplantation embryo and its microenvironment. In oocytes from females on HH diet, transcriptomic analysis revealed a weak modification in the content of transcripts mainly involved in meiosis and translational control. The effect of maternal HH diet on the embryonic microenvironment was investigated by identifying the metabolite composition of uterine and embryonic fluids collected in vivo by biomicroscopy. Metabolomic analysis revealed differences in the HH uterine fluid surrounding the embryo, with increased pyruvate concentration. Within the blastocoelic fluid, metabolomic profiles showed decreased glucose and alanine concentrations. In addition, the blastocyst transcriptome showed under-expression of genes and pathways involved in lipid, glucose and amino acid transport and metabolism, most pronounced in female embryos. This work demonstrates that the maternal HH diet disrupts the in vivo composition of the embryonic microenvironment, where the presence of nutrients is increased. In contrast to this nutrient-rich environment, the embryo presents a decrease in nutrient sensing and metabolism suggesting a potential protective process. In addition, this work identifies a very early sex-specific response to the maternal HH diet, from the blastocyst stage.
Collapse
Affiliation(s)
- Sophie Calderari
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Catherine Archilla
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Luc Jouneau
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Nathalie Daniel
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Nathalie Peynot
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Michele Dahirel
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Christophe Richard
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
- Plateforme MIMA2-CIMA, Jouy en Josas, France
| | - Eve Mourier
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
- Plateforme MIMA2-CIMA, Jouy en Josas, France
| | - Barbara Schmaltz-Panneau
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Anaïs Vitorino Carvalho
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Delphine Rousseau-Ralliard
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Franck Lager
- Université Paris Cité, Institut Cochin, Inserm, CNRS, ParisF-75014, France
| | - Carmen Marchiol
- Université Paris Cité, Institut Cochin, Inserm, CNRS, ParisF-75014, France
| | - Gilles Renault
- Université Paris Cité, Institut Cochin, Inserm, CNRS, ParisF-75014, France
| | - Julie Gatien
- Research and Development Department, Eliance, Nouzilly, France
| | - Lydie Nadal-Desbarats
- UMR 1253, iBrain, University of Tours, Inserm, Tours, France
- PST-ASB, University of Tours, Tours, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Véronique Duranthon
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| |
Collapse
|
9
|
Ryu SA, Baek S, Kim KC, Lee ES, Lee ST. Effects of cumulus cells on the in vitro cytoplasmic maturation of immature oocytes in pigs. Theriogenology 2023; 206:133-139. [PMID: 37209433 DOI: 10.1016/j.theriogenology.2023.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/22/2023]
Abstract
The exposure of cumulus cells to nuclear matured oocytes can be regulated through the forced delay of nuclear maturation or the alteration of in vitro maturation (IVM) time in cumulus-oocyte complexes (COCs). However, to date, no evidence has been presented for the enhancement of cytoplasmic maturation by them, indicating irrelevance of cumulus cells in cytoplasmic maturation. Therefore, in order to identify the requirement of cumulus cells in achieving the cytoplasmic maturation of immature oocytes, this study investigated the effects of cumulus cells on the in vitro cytoplasmic maturation of oocytes within COCs derived from porcine medium antral follicles (MAFs) post-the completion of nuclear maturation. For these, with IVM of COCs for 44 h (control), cumulus cell-free oocytes with completed nuclear maturation were in-vitro-matured additionally for 0, 6, or 12 h, and then a variety of factors representing the cytoplasmic maturation of oocytes were analyzed and compared. As the results, the IVM of COCs for 32 h showed complete nuclear maturation and incomplete cytoplasmic maturation. Moreover, after the removal of cumulus cells from COCs with the completion of nuclear maturation, IVM for an additional 6 or 12 h resulted in significant increases in the size of the perivitelline space, the proportion of oocytes with a normal intracellular mitochondrial distribution and a normal round first polar body, and the preimplantation development into the 2-cell and blastocyst stages after parthenogenetic activation. Simultaneously, they showed significant reduction in the level of intracellular reactive oxygen species and no significant differences in the total number of blastocysts. Furthermore, oocytes obtained by this approach did not significantly differ from control oocytes produced by IVM of COCs for 44 h. Our results demonstrate that the cumulus cells enclosing COCs derived from porcine MAFs are not essential for the completion of cytoplasmic maturation after complete nuclear maturation by COCs.
Collapse
Affiliation(s)
- Seon Ah Ryu
- Department of Applied Animal Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Song Baek
- Department of Applied Animal Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keun Cheon Kim
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, 65201, USA
| | - Eun Song Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Seung Tae Lee
- Department of Applied Animal Science, Kangwon National University, Chuncheon, 24341, Republic of Korea; Kustogen, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
10
|
Liu N, Si X, Ji Y, Yang Q, Bai J, He Y, Jia H, Song Z, Chen J, Yang L, Zeng S, Yang Y, Wu Z. l-Proline improves the cytoplasmic maturation of mouse oocyte by regulating glutathione-related redox homeostasis. Theriogenology 2023; 195:159-167. [DOI: 10.1016/j.theriogenology.2022.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
|
11
|
Tesarik J, Mendoza-Tesarik R. Molecular Clues to Understanding Causes of Human-Assisted Reproduction Treatment Failures and Possible Treatment Options. Int J Mol Sci 2022; 23:10357. [PMID: 36142268 PMCID: PMC9499616 DOI: 10.3390/ijms231810357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
More than forty years after the first birth following in vitro fertilization (IVF), the success rates of IVF and of IVF-derived assisted reproduction techniques (ART) still remain relatively low. Interindividual differences between infertile couples and the nature of the problems underlying their infertility appear to be underestimated nowadays. Consequently, the molecular basis of each couple's reproductive function and of its disturbances is needed to offer an individualized diagnostic and therapeutic approaches to each couple, instead of applying a standard or minimally adapted protocols to everybody. Interindividual differences include sperm and oocyte function and health status, early (preimplantation) embryonic development, the optimal window of uterine receptivity for the implanting embryo, the function of the corpus luteum as the main source of progesterone production during the first days of pregnancy, the timing of the subsequent luteoplacental shift in progesterone production, and aberrant reactions of the uterine immune cells to the implanting and recently implanted embryos. In this article, the molecular basis that underlies each of these abnormalities is reviewed and discussed, with the aim to design specific treatment options to be used for each of them.
Collapse
|
12
|
Davoodian N, Kadivar A, Davoodian N, Ahmadi E, Nazari H, Mehrban H. The effect of quercetin in the maturation media on cumulus-granulosa cells and the developmental competence of bovine oocytes. Theriogenology 2022; 189:262-269. [DOI: 10.1016/j.theriogenology.2022.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/26/2022]
|
13
|
Pfeifer L, Gasperin B, Cestaro J, Schneider A. Postponing TAI in beef cows with small preovulatory follicles. Anim Reprod Sci 2022; 242:107006. [DOI: 10.1016/j.anireprosci.2022.107006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022]
|
14
|
Taiyeb AM, Haji AI, Ibraheem ZO, Alsakkal GS. Pregnancy outcomes following different protocols of controlled ovarian hyperstimulation in couples undergoing intrauterine insemination. Clin Exp Pharmacol Physiol 2021; 48:1070-1079. [PMID: 33852746 DOI: 10.1111/1440-1681.13506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 04/09/2021] [Indexed: 11/28/2022]
Abstract
Clomiphene citrate (CC), letrozole and cetrorelix acetate are frequently used agents in controlled ovarian hyperstimulation (COH). However, these three agents have not yet been compared to one another regarding their pregnancy outcomes. The present study was designed to retrospectively compare pregnancy outcomes among the three aforementioned agents. This study involved infertile couples with an infertility duration of at least 2 years, ages 18 to 42 years and who were referred to have their first intrauterine insemination (IUI) treatment cycle. All patients underwent COH with recombinant follicle-stimulating hormone (rFSH) plus CC (n = 118), letrozole (n = 81), or cetrorelix acetate (n = 62), followed by IUI. Using the one-way multivariate analysis of covariance to control female patients' ages, patients stimulated with cetrorelix acetate/rFSH or CC/rFSH had higher numbers of preovulatory follicles than women stimulated with letrozole/rFSH (P < .02), whereas women stimulated with cetrorelix acetate/rFSH had a thicker endometrium than women stimulated with CC/rFSH (P < .0005). Biochemical pregnancy rates were similar among the three protocols of COH. However, women stimulated with letrozole/rFSH showed clinical pregnancy rates higher than those stimulated with CC/rFSH (P = .003) or cetrorelix acetate/rFSH (P = .03) and subclinical abortion rates lower than those stimulated with CC/rFSH or cetrorelix acetate/rFSH (P = .009). Of the different protocols of COH, the odds of having a clinical pregnancy was 3.1 times greater for women stimulated with letrozole/rFSH than women stimulated with CC/rFSH (P = .004) and 2.8 times greater for women stimulated with letrozole/rFSH than women stimulated with cetrorelix acetate/rFSH (P = .03). Our observations show that increased numbers of preovulatory follicles or endometrium thickness do not necessarily improve pregnancy outcomes, because pregnancy outcomes are also subjected to the type of COH used agent. In this regard, letrozole produced fewer preovulatory follicles and did not significantly increase endometrium thickness, but significantly improved pregnancy outcomes in comparison to CC and cetrorelix acetate.
Collapse
Affiliation(s)
- Ahmed M Taiyeb
- College of Pharmacy, Almaaqal University, Basrah, Iraq
- Barz IVF Center for Embryo Research and Infertility Treatment, Erbil, Iraq
| | - Azheen I Haji
- Barz IVF Center for Embryo Research and Infertility Treatment, Erbil, Iraq
- Department of Obstetrics and Gynecology, College of Medicine, Hawler Medical University, Erbil, Iraq
| | - Zaid O Ibraheem
- Department of Pharmacy, Al Rafidain University College, Baghdad, Iraq
| | - Ghada S Alsakkal
- Department of Obstetrics and Gynecology, College of Medicine, Hawler Medical University, Erbil, Iraq
| |
Collapse
|
15
|
Serra E, Gadau SD, Leoni GG, Naitana S, Succu S. Seasonal Effect on Developmental Competence, Oxidative Status and Tubulin Assessment of Prepubertal Ovine Oocyte. Animals (Basel) 2021; 11:ani11071886. [PMID: 34202918 PMCID: PMC8300209 DOI: 10.3390/ani11071886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Oocytes obtained from the ovaries of slaughtered prepubertal ewes can be incorporated into an in vitro embryo production system. The collection of this material is possible at two different times of the year, spring and autumn. The first period is linked to the natural reproductive cycle of the sheep. The second, on the other hand, is linked to the manipulation of the reproductive seasonality which allows the oestrus cycle to be controlled artificially. The analysis highlighted that the collection season influences oocytes quality from prepubertal donors in terms of improved energetic and oxidative status, microtubular organization, and developmental competence in oocytes recovered in spring. Data obtained underline that oocytes seem to be genetically and evolutionarily programmed to give their best in spring, this being the most favorable period for newborns. Abstract The reproductive seasonality of domestic animals is often manipulated in order to have more reproductive periods for commercial purposes related to the production of milk and meat. It is scientifically proven that such an alteration of the reproductive activity in sheep entails a deterioration in oocyte quality, leading to an inability to generate embryos. Since oocytes obtained from prepubertal ewes can be incorporated into an in vitro embryo production system and considering that their quality is crucial to the success of in vitro procedures, the aim of this work was to investigate the effect of seasons on the quality of prepubertal ovine oocytes collected in autumn and spring. Ovaries were collected from a local slaughterhouse from 30–40-day-old suckling lambs during both seasons. Following 24 h of in vitro maturation, oocytes developmental competence, reactive oxygen species (ROS) intracellular levels, and mitochondrial activity were evaluated, and a tubulin assessment was performed. The results on embryo production, as a percentage of first divisions and number of blastocysts obtained, were significantly higher in oocytes collected in the spring. Mitochondrial activity in oocytes was higher, and ROS production significantly lower, in spring than in autumn. Tubulin PTMs (tyrosinated and acetylated α-tubulin) showed a higher immunoreactivity in oocytes collected in spring compared with autumn sampling. Our data showed that seasons may affect the developmental competence, energetic status, and tubulin assessment of oocytes recovered from prepubertal ewes. Therefore, special care should be taken when choosing the period of the year for prepuberal ovine oocytes collection aimed at in vitro embryo reproduction programs.
Collapse
|
16
|
Suresh A, Shukla MK, Kumar D, Shrivastava OP, Verma N. Simulated physiological oocyte maturation (SPOM) improves developmental competence of in vitro produced goat embryos. Theriogenology 2021; 172:193-199. [PMID: 34246165 DOI: 10.1016/j.theriogenology.2021.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/01/2023]
Abstract
The effect of simulated physiological oocyte maturation on the developmental competence, reactive oxygen species production and apoptosis rate of in vitro produced goat embryos were studied in the present experiment. Oocytes and spermatozoa were recovered from ovaries and epididymis, respectively, procured from a local small animal abattoir. The oocytes aspirated from the ovaries were allocated into two groups, control (subjected to routine in vitro maturation, fertilization and culture) and simulated physiological oocyte maturation (SPOM) group (subjected to prematuration, followed by routine in vitro maturation, fertilization and culture). The SPOM group showed a significantly (p < 0.05) higher maturation and blastocyst rates (90.60 ± 0.46% and 29.09 ± 2.59%, respectively) as compared to the control group (85.29 ± 0.98% and 24.09 ± 1.08%). The intensity of reactive oxygen species of the embryos in the control group (14.98 ± 0.83 pixels/embryo) was significantly (p < 0.05) higher than the SPOM group (9.60 ± 0.76 pixels/embryo). The apoptosis rate was also significantly (p < 0.05) higher in the embryos of the control group (9.18 ± 1.07%) as compared to the SPOM group (5.71 ± 0.90%). In conclusion, the simulated physiological oocyte maturation system significantly increases the developmental competence of the oocytes and decreases the intensity of reactive oxygen species and embryonic apoptosis in abattoir derived goat embryos.
Collapse
Affiliation(s)
- Ashitha Suresh
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science and Animal Husbandry, Jabalpur, Madhya Pradesh, India; Department of Veterinary Gynaecology and Obstetrics, Madras Veterinary College, Chennai, Tamil Nadu, India
| | - M K Shukla
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science and Animal Husbandry, Jabalpur, Madhya Pradesh, India; Department of Veterinary Gynaecology & Obstetrics, College of Veterinary and Animal Science, Sardar Vallabhbhai Patel University of Agriculture & Technology, Meerut, 250110, Uttar Pradesh, India.
| | - Dharmendra Kumar
- Animal Biotechnology Centre, Nanaji Deshmukh Veterinary Science University, Adhartaal, Jabalpur, 482004, Madhya Pradesh, India
| | - O P Shrivastava
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science and Animal Husbandry, Jabalpur, Madhya Pradesh, India
| | - Neeraj Verma
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science and Animal Husbandry, Jabalpur, Madhya Pradesh, India
| |
Collapse
|
17
|
Roth Z. Heat stress reduces maturation and developmental capacity in bovine oocytes. Reprod Fertil Dev 2021; 33:66-75. [PMID: 38769677 DOI: 10.1071/rd20213] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
The ovarian pool of follicles, and their enclosed oocytes, is highly sensitive to hyperthermia. Heat-induced changes in small antral follicles can later manifest as impaired follicle development and compromised competence of the enclosed oocytes to undergo maturation, fertilisation and further development into an embryo. This review describes the main changes documented so far that underlie the oocyte damage. The review discusses some cellular and molecular mechanisms by which heat stress compromises oocyte developmental competence, such as impairment of nuclear and cytoplasmic maturation and mitochondrial function, changes in the expression of both nuclear and mitochondrial transcripts and the induction of apoptosis. The review emphasises that although the oocyte is exposed to heat stress, changes are also evident in the developed embryo. Moreover, the effect of heat stress is not limited to the summer; it carries over to the cold autumn, as manifest by impaired steroid production, low oocyte competence and reduced fertility. The spontaneous recovery of oocytes from the end of the summer through the autumn until the beginning of winter suggests that only subpopulations of follicles, rather than the entire ovarian reserve, are damaged upon heat exposure.
Collapse
Affiliation(s)
- Zvi Roth
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, POB 12 Rehovot, 76100, Israel
| |
Collapse
|
18
|
de Lima MA, Morotti F, Bayeux BM, de Rezende RG, Botigelli RC, De Bem THC, Fontes PK, Nogueira MFG, Meirelles FV, Baruselli PS, da Silveira JC, Perecin F, Seneda MM. Ovarian follicular dynamics, progesterone concentrations, pregnancy rates and transcriptional patterns in Bos indicus females with a high or low antral follicle count. Sci Rep 2020; 10:19557. [PMID: 33177637 PMCID: PMC7658257 DOI: 10.1038/s41598-020-76601-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/02/2020] [Indexed: 11/22/2022] Open
Abstract
We evaluated the effect of the antral follicle count (AFC) on ovarian follicular dynamics, pregnancy rates, progesterone concentrations, and transcriptional patterns of genes in Nelore cattle (Bos taurus indicus) after a timed artificial insemination (TAI) programme. Cows were separated based on the AFC, and those with a high AFC showed a larger (P < 0.0001) ovarian diameter and area than those with a very low AFC. Females with a very low AFC exhibited a larger (P < 0.01) diameter of the dominant follicle at TAI (13.6 ± 0.3 vs. 12.2 ± 0.4 mm) and a tendency (P = 0.06) to have different serum progesterone concentrations (2.9 ± 0.3 vs. 2.1 ± 0.3 ng/mL; on day 18, considering day 0 as the beginning of the synchronization protocol) than those with a high AFC. The pregnancy rate was higher (P ≤ 0.05) in animals with a very low (57.9%) and low (53.1%) AFC than in those with a high AFC (45.2%). The expression of genes related to intercellular communication, meiotic control, epigenetic modulation, cell division, follicular growth, cell maintenance, steroidogenesis and cellular stress response was assessed on day 5. In females with a low AFC, 8 and 21 genes in oocytes and cumulus cells, respectively, were upregulated (P < 0.05), while 3 and 6 genes in oocytes and cumulus cells, respectively, were downregulated. The results described here will help elucidate the differences in ovarian physiology and the reproductive success of Bos indicus females with a low or high AFC.
Collapse
Affiliation(s)
| | - Fábio Morotti
- Animal Reproduction and Biotechnology Laboratory, State University of Londrina-UEL, Londrina, PR, Brazil.
- Laboratório de Reprodução Animal, DCV, CCA, UEL, Cx. Postal: 10.011, Londrina, PR, Cep: 86057-970, Brazil.
| | | | | | | | | | | | | | | | | | | | - Felipe Perecin
- Department of Veterinary Medicine, FZEA/USP, Pirassununga, SP, Brazil
| | - Marcelo Marcondes Seneda
- Animal Reproduction and Biotechnology Laboratory, State University of Londrina-UEL, Londrina, PR, Brazil
| |
Collapse
|
19
|
Sarwar Z, Saad M, Saleem M, Husnain A, Riaz A, Ahmad N. Effect of follicle size on oocytes recovery rate, quality, and in-vitro developmental competence in Bos indicus cows. Anim Reprod 2020; 17:e20200011. [PMID: 33029208 PMCID: PMC7534568 DOI: 10.1590/1984-3143-ar2020-0011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
The objective of the present study was to determine the effect of follicle size on recovery rate, quality, and in-vitro developmental competence of oocytes in Bos indicus cows. The ovaries (n = 507) of Bos indicus cows having age of 5-8 years, with mixed parity, BCS 2.75 ± 0.25, and clinically normal reproductive tracts were collected from the local abattoir. The follicles on the ovaries were divided into two groups based upon their size; 1) ≥6 mm diameter, and 2) <6 mm diameter. After initial evaluation of quality of the oocytes, the COCs were in vitro matured, fertilized, and cultured to determine the in vitro developmental competence. The oocyte recovery, quality, maturation, cleavage, 4-cell, 8-cell, and 16-cell stages were analyzed using PROC GLIMMIX procedure of SAS. However, the number of oocytes recovered per ovary was analyzed using MIXED procedure of SAS. Results revealed that the recovery of oocytes (LSM ± SEM) derived from the follicles having size <6 mm per ovary was greater (1.02 vs. 3.14 ± 0.13; P < 0. 0001). However, the percentage (n/n) recovery [69.8 (474/679) vs. 62.7% (1454/2320); P = 0.01] and grade I_+_II oocytes [68.4 (324/474) vs. 57.9% (842/1454); P < 0.0001] was greater in ≥6 mm as compared with <6 mm group, respectively. However, maturation rate did not differ [92.9 (288/310) vs. 92.2% (296/321); P = 0.98] between the groups. In contrast, cleavage rate [58.1 (180/310) vs. 47.4% (152/321); P = 0.01], the 4-cell [34.5 (107/310) vs. 18.7% (60/321); P = 0.0003], 8-cell [15.5 (48/310) vs. 7.8% (25/321); P = 0.008], and 16-cell [8.7 (27/310) vs. 2.1% (7/321); P = 0.004] stage embryos were greater in ≥6 mm group. It can be concluded that oocytes derived from follicle ≥6 mm have better in vitro developmental competence based on embryonic conversion in Bos indicus cows.
Collapse
Affiliation(s)
- Zaeem Sarwar
- Department of Theriogenology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan.,Department of Theriogenology, Faculty of Veterinary Science, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Muhammad Saad
- Department of Theriogenology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan.,Department of Theriogenology, Faculty of Veterinary Science, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Muhammad Saleem
- Department of Theriogenology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ali Husnain
- Department of Theriogenology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan.,Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Amjad Riaz
- Department of Theriogenology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Nasim Ahmad
- Department of Theriogenology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan.,Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
20
|
Stamperna K, Giannoulis T, Nanas I, Kalemkeridou M, Dadouli K, Moutou K, Amiridis GS, Dovolou E. Short term temperature elevation during IVM affects embryo yield and alters gene expression pattern in oocytes, cumulus cells and blastocysts in cattle. Theriogenology 2020; 156:36-45. [PMID: 32652327 DOI: 10.1016/j.theriogenology.2020.06.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/22/2020] [Accepted: 06/27/2020] [Indexed: 12/20/2022]
Abstract
Heat stress causes subfertility in cattle by inducing alterations in steroidogenic capacity, follicular function and ovulation defects, which eventually negatively affect oocyte quality and embryo survival. Here, the effects of short, moderate temperature elevation during IVM, on embryo yield, and on the expression of various genes was evaluated. In 8 replicates, cumulus oocyte complexes (COCs) were matured for 24 h at 39 °C (controls n = 605) or at 41 °C from hour 2 to hour 8 of IVM (treated, n = 912), fertilized, and presumptive zygotes were cultured for 9 days at 39 °C. Cleavage and embryo formation rates were evaluated 48 h post insemination and on days 7, 8, 9 respectively. Cumulus cells, oocytes and blastocysts from 5 replicates were snap frozen for the relative expression analysis of genes related to metabolism, thermal and oxidative stress response, apoptosis, and placentation. In treated group, cleavage and embryo formation rates were statistically significantly lower compared with the control (cleavage 86.7% vs 74.2%; blastocysts: day 7, 29.9% vs 19.7%, day 8, 34.2% vs 22.9% and day 9 35.9% vs 24.5%). Relative mRNA abundance of three genes in cumulus cells (HSP90AA1, CPT1B, G6PD) and three genes in blastocysts (DNMT3A, PLAC8, GPX1) indicated significantly different expression between groups (p < 0.05)., The expression of G6PD, SOD2, GXP1 in oocytes and PTGS2 in blastocysts tended to differ among groups (0.05<p < 0.08). Heat stress altered (p < 0.05) the correlation of expression between HSPs and other genes in oocytes (G6PD, GPX1, CCNB1), cumulus cells (LDH, CCNB1) and blastocysts (AKR1B1, PLAC8). These results imply that exposure of oocytes to elevated temperature, even for only 6 h, disrupts the developmental competence of the oocytes, suppresses blastocyst yield and significantly alters the coordinated pattern of gene expressions.
Collapse
Affiliation(s)
- Konstantina Stamperna
- Department of Obstetrics and Reproduction, Veterinary Faculty, University of Thessaly, Karditsa, Greece
| | - Themistoklis Giannoulis
- Department of Obstetrics and Reproduction, Veterinary Faculty, University of Thessaly, Karditsa, Greece; Department of Genetics, Comparative and Evolutionary Biology, Faculty of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Ioannis Nanas
- Department of Obstetrics and Reproduction, Veterinary Faculty, University of Thessaly, Karditsa, Greece
| | - Maria Kalemkeridou
- Department of Genetics, Comparative and Evolutionary Biology, Faculty of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Katerina Dadouli
- Department of Obstetrics and Reproduction, Veterinary Faculty, University of Thessaly, Karditsa, Greece
| | - Katerina Moutou
- Department of Genetics, Comparative and Evolutionary Biology, Faculty of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Georgios S Amiridis
- Department of Obstetrics and Reproduction, Veterinary Faculty, University of Thessaly, Karditsa, Greece.
| | - Eleni Dovolou
- Department of Obstetrics and Reproduction, Veterinary Faculty, University of Thessaly, Karditsa, Greece
| |
Collapse
|
21
|
ÖZDEMİR A, KARLI P, AVCI B. Do midkine levels in serum and follicular fluid affect IVF-ICSI outcome? JOURNAL OF HEALTH SCIENCES AND MEDICINE 2020. [DOI: 10.32322/jhsm.735162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
22
|
Implications of miRNA expression pattern in bovine oocytes and follicular fluids for developmental competence. Theriogenology 2020; 145:77-85. [PMID: 32004821 DOI: 10.1016/j.theriogenology.2020.01.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/23/2019] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Abstract
Developmental competence determines the oocyte capacity to support initial embryo growth, but the molecular mechanisms underlying this phenomenon are still ill-defined. Changes in microRNA (miRNA) expression pattern have been described during follicular growth in several species. Therefore, aim of this study was to investigate whether miRNA expression pattern in cow oocyte and follicular fluid (FF) is associated with the acquisition of developmental competence. Samples were collected from ovaries with more than, or fewer than, 10 mid-antral follicles (H- and L-ovaries) because previous studies demonstrated that this parameter is a reliable predictor of oocyte competence. After miRNA deep sequencing and bioinformatic data analysis, we identified 58 miRNAs in FF and 6 in the oocyte that were differentially expressed between H- and L-ovaries. Overall, our results indicate that miRNA levels both in FF and in the ooplasm must remain within specific thresholds and that changes in either direction compromising oocyte competence. Some of the miRNAs found in FF (miR-769, miR-1343, miR-450a, miR-204, miR-1271 and miR-451) where already known to regulate follicle growth and their expression pattern indicate that they are also involved in the acquisition of developmental competence. Some miRNAs were differentially expressed in both compartments but with opposite patterns, suggesting that miRNAs do not flow freely between FF and oocyte. Gene Ontology analysis showed that the predicted gene targets of most differentially expressed miRNAs are part of a few signalling pathways. Regulation of maternal mRNA storage and mitochondrial activity seem to be the processes more functionally relevant in determining oocyte quality. In conclusion, our data identified a few miRNAs in the follicular fluid and in the ooplasm that modulate the oocyte developmental competence. This provides new insights that could help with the management of cattle reproductive efficiency.
Collapse
|
23
|
Marsico TV, de Camargo J, Valente RS, Sudano MJ. Embryo competence and cryosurvival: Molecular and cellular features. Anim Reprod 2019; 16:423-439. [PMID: 32435286 PMCID: PMC7234140 DOI: 10.21451/1984-3143-ar2019-0072] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 05/28/2019] [Indexed: 12/27/2022] Open
Abstract
Global cattle genetic market is experiencing a change of strategy, large genetic companies, traditionally recognized in the artificial insemination field, have also begun to operate in the embryo market. Consequently, the demand for in vitro produced (IVP) embryos has grown. However, the overall efficiency of the biotechnology process remains low. Additionally, the lack of homogeneity of post-cryopreservation survival results of IVP embryos still impairing a massive dissemination of this biotechnology in the field. A great challenge for in vitro production labs is to increase the amount of embryos produced with exceptional quality after each round of in vitro fertilization. Herein, we discuss the molecular and cellular features associated with the competence and cryosurvival of IVP embryos. First, morphofunctional, cellular and molecular competence of the embryos were addressed and a relationship between embryo developmental ability and quality were established with cryosurvival and pregnancy success. Additionally, determinant factors of embryo competence and cryosurvival were discussed including the following effects: genotype, oocyte quality and follicular microenvironment, in vitro production conditions, and lipids and other determining molecules. Finally, embryo cryopreservation aspects were addressed and an embryo-focused approach to improve cryosurvival was presented.
Collapse
Affiliation(s)
- Thamiris V. Marsico
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brasil.
| | - Janine de Camargo
- School of Veterinary Medicine, Federal University of Pampa, Uruguaiana, RS, Brasil.
| | - Roniele S. Valente
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brasil.
| | - Mateus J. Sudano
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brasil.
- School of Veterinary Medicine, Federal University of Pampa, Uruguaiana, RS, Brasil.
| |
Collapse
|
24
|
Gupta MK, Heo YT, Kim DK, Lee HT, Uhm SJ. 5-Azacytidine improves the meiotic maturation and subsequent in vitro development of pig oocytes. Anim Reprod Sci 2019; 208:106118. [PMID: 31405459 DOI: 10.1016/j.anireprosci.2019.106118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 06/03/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022]
Abstract
Treatment of donor cells and/or cloned embryos with cytidine analogues, having an Aza group at its 5th carbon (5-Aza), such as 5-Azacytidine (5-Aza-C) or 5-Aza-2'-deoxycytidine (5-Aza-dC) improves the in vitro development of cloned embryos produced by somatic cell nuclear transfer (SCNT). In vitro maturation (IVM) of immature pig oocytes treated with 5-Aza-C not only results in greater (P < 0.05) meiotic maturation to the MII stage but also enhances the capacity of 5-Aza-C treated oocytes for early embryonic development after parthenogenetic activation (PA), in vitro fertilization (IVF) or SCNT in a dose-dependent manner (0-10 μM). Cloned embryos generated from 5-Aza-C (0.01 μM) treated oocytes had an increased capacity to develop to the blastocyst stage (14.1 ± 1.5% compared with 9.6 ± 1.8%), greater probability of hatching (61.8 ± 1.5% compared with 45.0 ± 3.9%) and contained a greater number of cells per blastocyst (38.5 ± 4.4 compared with 30.5 ± 3.4) than those produced from non-treated control oocytes (P < 0.05). Data from the present study indicate that treatment of oocytes with 5-Aza-C may be an important approach to enhance the meiotic maturation and subsequent in vitro development of pig embryos. Future studies should be conducted to determine the underlying mechanism of improved early embryonic development of 5-Aza-C treated oocytes.
Collapse
Affiliation(s)
- Mukesh Kumar Gupta
- Department of Animal Science and Biotechnology, Sangji Youngseo College, Wonju 26339, South Korea; Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Young Tae Heo
- Department of Animal Science and Biotechnology, Sangji Youngseo College, Wonju 26339, South Korea
| | - Dong Ku Kim
- Nuri Science Inc., 320 Achasanro, Seoul 05053, South Korea
| | - Hoon Taek Lee
- Department of Animal Biotechnology, College of Animal Bioscience & Technology, Konkuk University, Seoul 05029, South Korea
| | - Sang Jun Uhm
- Department of Animal Science and Biotechnology, Sangji Youngseo College, Wonju 26339, South Korea.
| |
Collapse
|
25
|
Superstimulation prior to the ovum pick-up improves the in vitro embryo production in nulliparous, primiparous and multiparous buffalo (Bubalus bubalis) donors. Theriogenology 2019; 138:164-168. [PMID: 31374459 DOI: 10.1016/j.theriogenology.2019.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 11/23/2022]
Abstract
The aim of this study was to evaluate the ovarian follicular population, the oocyte yield and the in vitro embryo production (IVEP) of nulliparous (NU), primiparous (PR) and multiparous (MU) buffalo donors submitted to the superstimulation with FSH prior to the ovum pick-up (OPU). A total of 54 buffalo donors (18 NU, 15 PR and 21MU) received an intravaginal progesterone device (1.0 g) plus estradiol benzoate [2.0 mg, intramuscular (im)] at random stage of the estrous cycle (Day 0) during the breeding season (autumn and winter). Buffaloes from different categories were then randomly allocated to one of two groups (Control or FSH), in a cross-over experimental design. Buffalo donors in the Control group received no further treatment, whereas buffalo donors in the FSH group received a total dosage of 200 mg im of FSH on Days 4 and 5, in four decreasing doses 12 h apart (57, 57, 43 and 43 mg). On Day 7, the progesterone device was removed and the OPU procedure was performed in both groups. The same semen was used across all replicates and donor category. Data were analyzed by the GLIMMIX procedure of SAS 9.4®. There was no interaction between FSH treatment and animal category for all analyzed variables. Furthermore, no differences between animal category (P = 0.73) and FSH treatment (P = 0.53) were observed regarding the total follicles aspirated. However, the FSH treatment increased (P < 0.001) the proportion of large (>10 mm; FSH = 16.2% and Control = 2.0%) and medium-sized follicles (6-10 mm; FSH = 36.3% and Control = 6.1%) available for the OPU procedure. The total of recovered oocytes was greater in NU than in MU, and PR were similar to NU and MU (P = 0.05). No effect of FSH treatment was observed (P = 0.85) for this variable. Buffalo donors treated with FSH had a greater viable oocytes rate (P = 0.03), blastocyst rate (P = 0.03) and embryo yield per OPU-IVEP session (P = 0.07), however, no category effects were observed for these variables. These results provided evidence that superstimulation with FSH increased the proportion of large and medium-sized follicles available for the OPU procedure. Consequently, the FSH treatment enhanced the proportion of viable oocytes for culture and resulted in greater blastocyst rates and embryo yield per OPU-IVEP session in all buffalo donors categories.
Collapse
|
26
|
Shi P, Xu J, Zhao X, Shen P, Wen D, Yu Q, Deng Y, Shi D, Lu F. CK1 inhibitor affects in vitro maturation and developmental competence of bovine oocytes. Reprod Domest Anim 2019; 54:1104-1112. [PMID: 31155763 DOI: 10.1111/rda.13483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 02/17/2019] [Accepted: 05/24/2019] [Indexed: 11/27/2022]
Abstract
The objectives of present study were to evaluate the effect of casein kinase 1 (CK1) inhibition D4476 on in vitro maturation (IVM) and developmental competence of bovine oocytes. The cumulus oocyte complexes (COCs) were cultured in maturation medium with D4476 (0, 2, 5, 10, 20 μM) for 24 hr. After IVM and in vitro fertilization, through expansion average scores of cumulus cells (CCs), oocyte maturation efficiency, cleavage rate and blastocyst rate of zygote, we found 5 μM D4476 could increase the development potential of oocytes. After the COCs were treated with 5 μM D4476, the results of quantitative real-time PCR analysis, Lichen red staining and PI staining showed that under without affecting germinal vesicle breakdown and nuclear morphology, D4476 could significantly decrease CK1 and upregulate TCF-4 in oocytes. Furthermore, without influencing the level of Bad and CTSB, D4476 could significantly increase the expression of β-catenin, TCF-4, Cx43, MAPK, PTGS-2, PTX-3, TGS-6, Bax and Bcl-2 in CCs. Western blot analysis revealed that the addition of 5 μM D4476 during the maturation of COCs resulted in a lower level of Cx43 protein at 12 hr and a higher expression of Cx43 protein at 24 hr compared to the group without D4476. These results indicate that adding optimum D4476 (5 μM) to maturation medium is beneficial to maturity efficiency and development competence of bovine oocytes.
Collapse
Affiliation(s)
- Pengfei Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Jie Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Xin Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Penglei Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Dongmei Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Qing Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| |
Collapse
|
27
|
Camargo LSA, Munk M, Sales JN, Wohlres-Viana S, Quintão CCR, Viana JHM. Differential gene expression between in vivo and in vitro maturation: a comparative study with bovine oocytes derived from the same donor pool. JBRA Assist Reprod 2019; 23:7-14. [PMID: 30614236 PMCID: PMC6364282 DOI: 10.5935/1518-0557.20180084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective: In vitro maturation has been shown to influence gene
expression in oocytes, but a common shortcoming in reports on the matter has
been the use of different donors in each experimental group thus
disregarding donor effects. This study aimed to investigate the abundance of
mRNA in oocytes matured in vivo and in
vitro obtained from the same group of donors. Methods: A bovine model was used to assess the relative abundance of specific
transcripts in in vitro-matured (IN VITRO-OPU) and in
vivo-matured (IN VIVO-OPU) oocytes collected from the same donors
by transvaginal ovum pick-up (OPU). Transcript abundance in oocytes from the
IN VIVO-OPU group and oocytes matured in vitro but
retrieved from different cows slaughtered at a commercial abattoir (IN
VITRO-Abattoir group) was also compared. Total RNA was extracted from
denuded oocytes and cDNA was produced via reverse transcription using an
oligo(dT) primer for relative quantification of eight target transcripts by
real-time PCR. Results: Oocytes in the IN VITRO-OPU group had lower (p<0.05)
abundance of peroxiredoxin 1 (Prdx1), heat shock protein
70.1 (Hsp70.1), growth and differentiation factor 9
(Gdf9), and maternal antigen that embryo requires
(Mater) transcripts than the oocytes in the IN VIVO-OPU
group, all obtained from the same pool of donor cows. Similar results were
seen in the comparisons involving the IN VIVO-OPU and IN VITRO-Abattoir
groups (p<0.05). Conclusion: In vitro maturation affected the abundance of polyadenylated
transcripts in the oocyte cytoplasm when compared to in
vivo maturation induced by exogenous hormones in oocytes
collected from the same donor pool.
Collapse
Affiliation(s)
| | - Michele Munk
- Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | | | | | | | | |
Collapse
|
28
|
Kaneko H, Kikuchi K, Men NT, Noguchi J. Developmental ability of oocytes retrieved from Meishan neonatal ovarian tissue grafted into nude mice. Anim Sci J 2019; 90:344-352. [PMID: 30656795 PMCID: PMC6590305 DOI: 10.1111/asj.13160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 11/28/2022]
Abstract
Ovarian xenografting makes it possible to obtain oocytes with fertilization ability from immature pigs of Western breeds. In this study, we applied these methods to the Meishan, an indigenous Chinese pig breed, and investigated the developmental competence of oocytes grown in their neonatal tissue after grafting into nude mice. First, mice harboring neonatal ovarian tissue were infused with follicle stimulating hormone (FSH) (62.5 U/ml) for 13 days starting at 10, 30, and 60 days after vaginal opening (D10‐, D30‐, and D60‐FSH groups, respectively). Development of antral follicles and their oocytes was most enhanced in the D60‐FSH group. For the next step, we examined the in vitro maturation ability of the oocytes recovered from host mice after infusion with FSH at a dose of 62.5 U/ml or 125 U/ml (FSH‐62.5 or ‐125 group) for 13 days starting at 60 days after vaginal opening. Many more oocytes with maturation ability were obtained from the FSH‐125 group. The FSH‐125 mature oocytes were fertilized in vitro, as shown by formation of male and female pronuclei, but did not reach the blastocyst stage. These results indicate that Meishan neonatal ovaries are able to produce oocytes with fertilization ability after being grafted into nude mice.
Collapse
Affiliation(s)
- Hiroyuki Kaneko
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Kazuhiro Kikuchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan.,The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Nguyen Thi Men
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Junko Noguchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| |
Collapse
|
29
|
Conde P, Morado S, Alvarez G, Smitz J, Gentile T, Cetica P. Effect of the hematopoietic growth factors erythropoietin and kit ligand on bovine oocyte in vitro maturation and developmental competence. Theriogenology 2019; 123:37-44. [DOI: 10.1016/j.theriogenology.2018.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 09/06/2018] [Accepted: 09/12/2018] [Indexed: 11/28/2022]
|
30
|
Propensity in low-grade oocytes for delayed germinal vesicle breakdown compromises the developmental ability of sub-optimal grade Bubalus bubalis oocytes. ZYGOTE 2018; 26:359-365. [PMID: 30289096 DOI: 10.1017/s0967199418000321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryMaturing oocytes have diverse developmental potential and good quality oocytes exhibit a better ability to attain physiological milestones in a time-dependent manner. This situation necessitates the confirmation of oocyte developmental status more precisely under an in vitro embryo production (IVEP) regime. The aim of this study was to explain timely events in germinal vesicle breakdown (GVBD), an important milestone of oocyte nuclear maturation, to delineate the developmental capacity of Bubalus bubalis oocytes. In addition, the expression profile of genes responsible for GVBD was assessed in order to understand the molecular context responsible for GVBD. The chronology of GVBD events at different time intervals during in vitro maturation (IVM) suggests that the rate at which oocytes undergo GVBD was strikingly different in the brilliant cresyl blue (BCB)+ and BCB- groups. The expression of AKT and CDC25B genes for BCB+ oocytes was maximum at 8 h of IVM, and CCNB (cyclin B) peaked at around 10 h, which suggested that GVBD was finished after 10 h in BCB+ oocytes, whereas the expression of AKT and CDC25B was found to peak at around 12-14 h of IVM. This difference consequently delays the GVBD event by 2-4 h in BCB- oocytes. Poor abundance of gene transcripts was mainly implicated in delay and lower rate of GVBD in BCB- oocytes which in turn strongly affected the translational ability of oocytes to blastocysts. The findings of this study support the idea that there is a propensity in sub-optimal grade oocytes for delayed GVBD that compromises the developmental ability of low grade buffalo oocytes. The study highlights the very small, but importantly vital and separate, time window of the GVBD event during which the competence levels of buffalo oocytes are altered along with their translational ability to develop into the prospective embryos.
Collapse
|
31
|
Roth Z. Stress-induced alterations in oocyte transcripts are further expressed in the developing blastocyst. Mol Reprod Dev 2018; 85:821-835. [DOI: 10.1002/mrd.23045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 07/18/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Zvi Roth
- Department of Animal Sciences; Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem; Rehovot Israel
| |
Collapse
|
32
|
Moreira R, Pereiro P, Balseiro P, Milan M, Pauletto M, Bargelloni L, Novoa B, Figueras A. Revealing Mytilus galloprovincialis transcriptomic profiles during ontogeny. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:292-306. [PMID: 29481906 DOI: 10.1016/j.dci.2018.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Abstract
Mediterranean mussels are a worldwide spread bivalve species with extraordinary biological success. One of the reasons of this success could be the reproduction strategy of bivalves, characterized by the presence of trochophore larvae. Larval development in bivalves has been a topic of raising interest in the scientific community but it deserves much more attention. The principal objective of this work was to study the transcriptomic profile of the ontogeny of Mytilus galloprovincialis analyzing the gene expression in different developmental stages, from oocytes to juveniles. For this purpose, after conducting a 454 sequencing of the transcriptomes of mussel hemocytes, adult tissues and larvae, a new DNA microarray was designed and developed. The studied developmental stages: unfertilized oocytes, veliger, pediveliger, settled larvae and juveniles, showed very different transcriptomic profiles and clustered in groups defining their characteristic gene expression along ontogeny. Our results show that oocytes present a distinct and characteristic transcriptome. After metamorphosis, both settled larvae and juveniles showed a very similar transcriptome, with no enriched GO terms found between these two stages. This suggests: 1.- the progressive loss of RNA of maternal origin through larval development and 2.- the stabilization of the gene expression after settlement. On the other hand during metamorphosis a specific profile of differentially expressed genes was found. These genes were related to processes such as differentiation and biosynthesis. Processes related to the immune response were strongly down regulated. These suggest a development commitment at the expense of other non-essential functions, which are temporary set aside. Immune genes such as antimicrobial peptides suffer a decreased expression during metamorphosis. In fact, we found that the oocytes which express a higher quantity of genes such as myticins are more likely to reach success of the offspring, compared to oocytes poor in such mRNAs, whose progeny died before reaching metamorphosis.
Collapse
Affiliation(s)
- Rebeca Moreira
- Instituto de Investigaciones Marinas, IIM - CSIC, Eduardo Cabello, 6, 36208 Vigo, Spain.
| | - Patricia Pereiro
- Instituto de Investigaciones Marinas, IIM - CSIC, Eduardo Cabello, 6, 36208 Vigo, Spain.
| | - Pablo Balseiro
- Instituto de Investigaciones Marinas, IIM - CSIC, Eduardo Cabello, 6, 36208 Vigo, Spain; Uni Research Environment, Uni Research AS, Nygårdsgaten 112, 5008 Bergen, Norway.
| | - Massimo Milan
- Department of Comparative Biomedicine and Food Science (BCA) University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy.
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science (BCA) University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy.
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science (BCA) University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy.
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas, IIM - CSIC, Eduardo Cabello, 6, 36208 Vigo, Spain.
| | - Antonio Figueras
- Instituto de Investigaciones Marinas, IIM - CSIC, Eduardo Cabello, 6, 36208 Vigo, Spain.
| |
Collapse
|
33
|
Zhang RN, Pang B, Xu SR, Wan PC, Guo SC, Ji HZ, Jia GX, Hu LY, Zhao XQ, Yang QE. The CXCL12-CXCR4 signaling promotes oocyte maturation by regulating cumulus expansion in sheep. Theriogenology 2018; 107:85-94. [DOI: 10.1016/j.theriogenology.2017.10.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/27/2017] [Accepted: 10/29/2017] [Indexed: 12/19/2022]
|
34
|
He GF, Yang LL, Luo SM, Ma JY, Ge ZJ, Shen W, Yin S, Sun QY. The role of L-type calcium channels in mouse oocyte maturation, activation and early embryonic development. Theriogenology 2017; 102:67-74. [PMID: 28750296 DOI: 10.1016/j.theriogenology.2017.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/16/2017] [Accepted: 07/15/2017] [Indexed: 12/15/2022]
Abstract
Calcium ion fluctuation is closely related to the transformation of cell cycle. However, little is known about the function of L-type calcium channel in mammalian oocyte and embryo development. We thus studied the roles of L-type calcium channel in mouse oocyte meiotic maturation, parthenogenetic activation and early embryonic development. We used the antagonist Amlodipine to block L-type calcium channel. Oocytes or zygotes were cultured to different time points with 0 μM, 10 μM, 30 μM and 50 μM Amlodipine. Then we checked the rate of first polar body extrusion, spindle formation, asymmetric division parthenogenetic activation and early embryo cleavage. The results showed that Amlodipine treatment did not affect germinal vesicle breakdown, but caused disruption of cytoskeleton organization, symmetric division, formation of mature oocytes with a large polar body, or reduced the first polar body extrusion, depending on its concentrations. Amlodipine treatment also resulted in decreased parthenogenetic activation and arrested early embryonic development. Overall, these data suggest that proper function of L-type calcium channel is critical for oocyte maturation, activation, and early embryonic development.
Collapse
Affiliation(s)
- Gui-Fang He
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; College of Life Science, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lei-Lei Yang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shi-Ming Luo
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jun-Yu Ma
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Zhao-Jia Ge
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shen Yin
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Qing-Yuan Sun
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China; State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
35
|
Reader KL, Stanton JAL, Juengel JL. The Role of Oocyte Organelles in Determining Developmental Competence. BIOLOGY 2017; 6:biology6030035. [PMID: 28927010 PMCID: PMC5617923 DOI: 10.3390/biology6030035] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 02/04/2023]
Abstract
The ability of an oocyte to undergo successful cytoplasmic and nuclear maturation, fertilization and embryo development is referred to as the oocyte’s quality or developmental competence. Quality is dependent on the accumulation of organelles, metabolites and maternal RNAs during the growth and maturation of the oocyte. Various models of good and poor oocyte quality have been used to understand the essential contributors to developmental success. This review covers the current knowledge of how oocyte organelle quantity, distribution and morphology differ between good and poor quality oocytes. The models of oocyte quality are also described and their usefulness for studying the intrinsic quality of an oocyte discussed. Understanding the key critical features of cytoplasmic organelles and metabolites driving oocyte quality will lead to methods for identifying high quality oocytes and improving oocyte competence, both in vitro and in vivo.
Collapse
Affiliation(s)
- Karen L Reader
- Department of Anatomy, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Jo-Ann L Stanton
- Department of Anatomy, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Jennifer L Juengel
- Animal Reproduction, AgResearch Invermay Agricultural Centre, Private Bag 50034, Mosgiel 9053, New Zealand.
| |
Collapse
|
36
|
Association between growth dynamics, morphological parameters, the chromosomal status of the blastocysts, and clinical outcomes in IVF PGS cycles with single embryo transfer. J Assist Reprod Genet 2017; 34:1007-1016. [PMID: 28560610 DOI: 10.1007/s10815-017-0944-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/02/2017] [Indexed: 10/19/2022] Open
Abstract
PURPOSE The purpose of the present study is to examine interconnection between speed of embryo development, the genetic status of the blastocysts, and clinical outcomes in IVF preimplantation genetic screening (PGS) cycles with single embryo transfer (SET). METHODS The retrospective comparative study has been performed between January 2013 and January 2016. Seven hundred thirty-seven cycles of IVF treatment with PGS, followed by 503 SETs, were included in the study. Normally fertilized oocytes were hatched on day 3, were cultured to the blastocyst stage, and were biopsied only when at least three to seven cells were herniating from zona pellucida on the morning of day 5 (≤118 h) or day 6 (≥139 h). A total of 3705 embryos were analyzed for euploidy rates and blastocyst morphology. All embryos were vitrified after the biopsy, and selected embryos were subsequently thawed for a hormone replacement frozen embryo transfer cycle. RESULTS The euploidy rate was significantly higher among embryos biopsied on day 5 versus day 6: 59.44 ± 4.1 and 48.19 ± 3.8, respectively, p < 0.05. The difference in euploidy rates between embryos biopsied on day 5 versus day 6 in matched age groups increased from 5.83 to 25.46% with advancing maternal age. Our data demonstrated no statistically significant difference in euploidy rates between good-quality embryos biopsied on day 5 in the group of patients <38 years old and embryos in PGS cycles using donor oocytes: 71.12% (336/472) and 75.68% (221/292), respectively, p = 0.174, χ 2 = 1.848. In 270 out of 503 SETs, transferred embryos were biopsied on day 5 (ongoing pregnancy rate was 64.6% in a group of patients <38 years old, and in a group of patients ≥38 years old, ongoing PR was 64.2%). In 233 out of 503 cycles, transferred embryos were biopsied on day 6 (ongoing PR was 46.6% in a group of patients <38 years old, and in a group of patients ≥38 years old, ongoing PR was 50.8%). In all study groups, the ongoing pregnancy rate was higher when the transferred embryo was available for biopsy on day 5. CONCLUSIONS Good- and fair-quality embryos available for biopsy on day 5 have higher euploidy rates and have a higher chance to result in an ongoing pregnancy. Euploidy rate has significant variations within the same age group depending on the morphology of the blastocysts.
Collapse
|
37
|
Mahesh YU, Gibence HRW, Shivaji S, Rao BS. Effect of different cryo-devices on in vitro maturation and development of vitrified-warmed immature buffalo oocytes. Cryobiology 2017; 75:106-116. [DOI: 10.1016/j.cryobiol.2017.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/12/2016] [Accepted: 01/12/2017] [Indexed: 11/17/2022]
|
38
|
Biase FH. Oocyte Developmental Competence: Insights from Cross-Species Differential Gene Expression and Human Oocyte-Specific Functional Gene Networks. ACTA ACUST UNITED AC 2017; 21:156-168. [DOI: 10.1089/omi.2016.0177] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
Ticianelli JS, Emanuelli IP, Satrapa RA, Castilho ACS, Loureiro B, Sudano MJ, Fontes PK, Pinto RFP, Razza EM, Surjus RS, Sartori R, Assumpção MEOA, Visintin JA, Barros CM, Paula-Lopes FF. Gene expression profile in heat-shocked Holstein and Nelore oocytes and cumulus cells. Reprod Fertil Dev 2017; 29:1787-1802. [DOI: 10.1071/rd16154] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/20/2016] [Indexed: 12/15/2022] Open
Abstract
The present study determined the transcriptome profile in Nelore and Holstein oocytes subjected to heat shock during IVM and the mRNA abundance of selected candidate genes in Nelore and Holstein heat-shocked oocytes and cumulus cells (CC). Holstein and Nelore cows were subjected to in vivo follicle aspiration. Cumulus–oocyte complexes were assigned to control (38.5°C, 22 h) or heat shock (41°C for 12 h, followed by 38.5°C for 10 h) treatment during IVM. Denuded oocytes were subjected to bovine microarray analysis. Transcriptome analysis demonstrated 127, nine and six genes were differentially expressed between breed, temperature and the breed × temperature interaction respectively. Selected differentially expressed genes were evaluated by real-time polymerase chain reaction in oocytes and respective CC. The molecular motor kinesin family member 3A (KIF3A) was upregulated in Holstein oocytes, whereas the pro-apoptotic gene death-associated protein (DAP) and the membrane trafficking gene DENN/MADD domain containing 3 (DENND3) were downregulated in Holstein oocytes. Nelore CC showed increased transcript abundance for tight junction claudin 11 (CLDN11), whereas Holstein CC showed increased transcript abundance for antioxidant metallothionein 1E (MT1E) . Moreover, heat shock downregulated antioxidant MT1E mRNA expression in CC. In conclusion, oocyte transcriptome analysis indicated a strong difference between breeds involving organisation and cell death. In CC, both breed and temperature affected mRNA abundance, involving cellular organisation and oxidative stress.
Collapse
|
40
|
Fernandes C, Martins L, Gaudêncio Neto S, Tavares K, Aguiar L, Calderón C, Silva A, Alves J, Silva C, Rossetto R, Bertolini L, Bertolini M, Rondina D. Gene expression, oocyte quality and embryo production by cloning in goats supplemented with different diets. Small Rumin Res 2016. [DOI: 10.1016/j.smallrumres.2016.09.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Roth Z. Effect of Heat Stress on Reproduction in Dairy Cows: Insights into the Cellular and Molecular Responses of the Oocyte. Annu Rev Anim Biosci 2016; 5:151-170. [PMID: 27732786 DOI: 10.1146/annurev-animal-022516-022849] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Among the components of the female reproductive tract, the ovarian pool of follicles and their enclosed oocytes are highly sensitive to hyperthermia. Heat-induced alterations in small antral follicles can be expressed later as compromised maturation and developmental capacity of the ovulating oocyte. This review summarizes the most up-to-date information on the effects of heat stress on the oocyte with an emphasis on unclear points and open questions, some of which might involve new research directions, for instance, whether preantral follicles are heat resistant. The review focuses on the follicle-enclosed oocytes, provides new insights into the cellular and molecular responses of the oocyte to elevated temperature, points out the role of the follicle microenvironment, and discusses some mechanisms that might underlie oocyte impairment. Mechanisms include nuclear and cytoplasmic maturation, mitochondrial function, apoptotic pathways, and oxidative stress. Understanding the mechanism by which heat stress compromises fertility might enable development of new strategies to mitigate its effects.
Collapse
Affiliation(s)
- Zvi Roth
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel;
| |
Collapse
|
42
|
Nagina G, Asima A, Nemat U, Shamim A. Effect of melatonin on maturation capacity and fertilization of Nili-Ravi buffalo (Bubalus bubalis) oocytes. Open Vet J 2016; 6:128-34. [PMID: 27540514 PMCID: PMC4980478 DOI: 10.4314/ovj.v6i2.9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 07/23/2016] [Indexed: 02/03/2023] Open
Abstract
This study evaluated the effect of melatonin supplementation of in vitro maturation media on in vitro maturation (IVM) and in vitro fertilization (IVF) rate of buffalo oocytes. Cumulus oocytes complexes (COCs) were aspirated from follicles of 2-8 mm diameter. In experiment I, COCs were matured in IVM medium supplemented with 0 (control), 250, 500, and 1000 μM melatonin for 22-24 hours in CO2 incubator at 38.5°C with 5% CO2 and at 95% relative humidity. The maturation rate did not differ in media supplemented with melatonin at 250 μM, 500 μM, 1000 μM and control (0 μM). In experiment II, the matured oocytes were fertilized in 50 μl droplets of Tyrode’s Albumin Lactate Pyruvate (TALP) medium having 10 ug/ml heparin for sperm (2 million/ml) capacitation. The fertilization droplets were then kept for incubation at 5% CO2, 39°C and at 95% relative humidity for 18 hours. The fertilization rate was assessed by sperm penetration and pronuclear formation. Fertilization rate was improved when maturation medium was supplemented with 250 μM melatonin compared to control. In conclusion, melatonin supplementation to serum free maturation media at 250 μM improved the fertilization rate of buffalo oocytes.
Collapse
Affiliation(s)
- G Nagina
- PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - A Asima
- PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - U Nemat
- University of Animal and Veterinary Sciences Lahore, Pakistan
| | - A Shamim
- PMAS Arid Agriculture University, Rawalpindi, Pakistan
| |
Collapse
|
43
|
Vieira L, Rodrigues C, Castro Netto A, Guerreiro B, Silveira C, Freitas B, Bragança L, Marques K, Sá Filho M, Bó G, Mapletoft R, Baruselli P. Efficacy of a single intramuscular injection of porcine FSH in hyaluronan prior to ovum pick-up in Holstein cattle. Theriogenology 2016; 85:877-886. [DOI: 10.1016/j.theriogenology.2015.10.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 10/14/2015] [Accepted: 10/28/2015] [Indexed: 11/26/2022]
|
44
|
Abstract
SummaryGene expression profiling of in vivo- and in vitro-matured bovine oocytes can identify transcripts related to the developmental potential of oocytes. Nonetheless, the effects of in vitro culturing oocytes are yet to be fully understood. We tested the effects of in vitro maturation on the transcript profile of oocytes collected from Bos taurus indicus cows. We quantified the expression of 1488 genes in in vivo- and in vitro-matured oocytes. Of these, 51 genes were up-regulated, whereas 56 were down-regulated (≥2-fold) in in vivo-matured oocytes in comparison with in vitro-matured oocytes. Quantitative real-time polymerase chain reaction (PCR) of nine genes confirmed the microarray results of differential expression between in vivo- and in vitro-matured oocytes (EZR, EPN1, PSEN2, FST, IGFBP3, RBBP4, STAT3, FDPS and IRS1). We interrogated the results for enrichment of Gene Ontology categories and overlap with protein–protein interactions. The results revealed that the genes altered by in vitro maturation are mostly related to the regulation of oocyte metabolism. Additionally, analysis of protein–protein interactions uncovered two regulatory networks affected by the in vitro culture system. We propose that the differentially expressed genes are candidates for biomarkers of oocyte competence. In vitro oocyte maturation can affect the abundance of specific transcripts and are likely to deplete the developmental competence.
Collapse
|
45
|
Kohn YY, Symonds JE, Kleffmann T, Nakagawa S, Lagisz M, Lokman PM. Proteomic analysis of early-stage embryos: implications for egg quality in hapuku (Polyprion oxygeneios). FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1403-1417. [PMID: 26183261 DOI: 10.1007/s10695-015-0095-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 07/06/2015] [Indexed: 06/04/2023]
Abstract
In order to develop biomarkers that may help predict the egg quality of captive hapuku (Polyprion oxygeneios) and provide potential avenues for its manipulation, the present study (1) sequenced the proteome of early-stage embryos using isobaric tag for relative and absolute quantification analysis, and (2) aimed to establish the predictive value of the abundance of identified proteins with regard to egg quality through regression analysis. Egg quality was determined for eight different egg batches by blastomere symmetry scores. In total, 121 proteins were identified and assigned to one of nine major groups according to their function/pathway. A mixed-effects model analysis revealed a decrease in relative protein abundance that correlated with (decreasing) egg quality in one major group (heat-shock proteins). No differences were found in the other protein groups. Linear regression analysis, performed for each identified protein separately, revealed seven proteins that showed a significant decrease in relative abundance with reduced blastomere symmetry: two correlates that have been named in other studies (vitellogenin, heat-shock protein-70) and a further five new candidate proteins (78 kDa glucose-regulated protein, elongation factor-2, GTP-binding nuclear protein Ran, iduronate 2-sulfatase and 6-phosphogluconate dehydrogenase). Notwithstanding issues associated with multiple statistical testing, we conclude that these proteins, and especially iduronate 2-sulfatase and the generic heat-shock protein group, could serve as biomarkers of egg quality in hapuku.
Collapse
Affiliation(s)
- Yair Y Kohn
- Department of Zoology, University of Otago, PO Box 56, 340 Great King St., Dunedin, 9016, New Zealand
- Bream Bay Aquaculture Park, NIWA, PO Box 147, Ruakaka, 0151, New Zealand
- Arava Research and Development Station, Hatzeva, Israel
| | - Jane E Symonds
- Bream Bay Aquaculture Park, NIWA, PO Box 147, Ruakaka, 0151, New Zealand
| | - Torsten Kleffmann
- Centre for Protein Research, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - P Mark Lokman
- Department of Zoology, University of Otago, PO Box 56, 340 Great King St., Dunedin, 9016, New Zealand.
| |
Collapse
|
46
|
|
47
|
McCoy RC, Demko ZP, Ryan A, Banjevic M, Hill M, Sigurjonsson S, Rabinowitz M, Petrov DA. Evidence of Selection against Complex Mitotic-Origin Aneuploidy during Preimplantation Development. PLoS Genet 2015; 11:e1005601. [PMID: 26491874 PMCID: PMC4619652 DOI: 10.1371/journal.pgen.1005601] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/21/2015] [Indexed: 11/18/2022] Open
Abstract
Whole-chromosome imbalances affect over half of early human embryos and are the leading cause of pregnancy loss. While these errors frequently arise in oocyte meiosis, many such whole-chromosome abnormalities affecting cleavage-stage embryos are the result of chromosome missegregation occurring during the initial mitotic cell divisions. The first wave of zygotic genome activation at the 4-8 cell stage results in the arrest of a large proportion of embryos, the vast majority of which contain whole-chromosome abnormalities. Thus, the full spectrum of meiotic and mitotic errors can only be detected by sampling after the initial cell divisions, but prior to this selective filter. Here, we apply 24-chromosome preimplantation genetic screening (PGS) to 28,052 single-cell day-3 blastomere biopsies and 18,387 multi-cell day-5 trophectoderm biopsies from 6,366 in vitro fertilization (IVF) cycles. We precisely characterize the rates and patterns of whole-chromosome abnormalities at each developmental stage and distinguish errors of meiotic and mitotic origin without embryo disaggregation, based on informative chromosomal signatures. We show that mitotic errors frequently involve multiple chromosome losses that are not biased toward maternal or paternal homologs. This outcome is characteristic of spindle abnormalities and chaotic cell division detected in previous studies. In contrast to meiotic errors, our data also show that mitotic errors are not significantly associated with maternal age. PGS patients referred due to previous IVF failure had elevated rates of mitotic error, while patients referred due to recurrent pregnancy loss had elevated rates of meiotic error, controlling for maternal age. These results support the conclusion that mitotic error is the predominant mechanism contributing to pregnancy losses occurring prior to blastocyst formation. This high-resolution view of the full spectrum of whole-chromosome abnormalities affecting early embryos provides insight into the cytogenetic mechanisms underlying their formation and the consequences for human fertility.
Collapse
Affiliation(s)
- Rajiv C. McCoy
- Department of Biology, Stanford University, Stanford, California, United States of America
| | | | - Allison Ryan
- Natera, Inc., San Carlos, California, United States of America
| | - Milena Banjevic
- Natera, Inc., San Carlos, California, United States of America
| | - Matthew Hill
- Natera, Inc., San Carlos, California, United States of America
| | | | | | - Dmitri A. Petrov
- Department of Biology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
48
|
Effect of Acrylamide on Oocyte Nuclear Maturation and Cumulus Cells Apoptosis in Mouse In Vitro. PLoS One 2015; 10:e0135818. [PMID: 26275143 PMCID: PMC4537141 DOI: 10.1371/journal.pone.0135818] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/27/2015] [Indexed: 11/19/2022] Open
Abstract
Acrylamide (ACR) is a chemical compound with severe neurotoxicity, genotoxicity, carcinogenicity and reproductive toxicity. Recent studies showed that ACR impairs the function of reproductive organs, e.g., epididymis and testes. In vitro maturation of mouse oocyte is a sensitive assay to identify potential chemical hazard to female fertility. The aim of this study was to evaluate the adverse effects of ACR on the nuclear maturation and cumulus cells apoptosis of mouse oocytes in vitro. Cumulus–oocyte complexes were incubated in a maturation medium containing 0, 5, 10 and 20 μM of ACR. Chromosome alignment and spindle morphology of oocytes was determined by immunofluorescence and confocal microscopy. Our results showed that oocytes exposed to different doses of ACR in vitro were associated with a significant decrease of oocyte maturation, significant increase of chromosome misalignment rate, occurrence of abnormal spindle configurations, and the inhibition of oocyte parthenogenetic activation. Furthermore, apoptosis of cumulus cells was determined by TUNEL and CASPASE-3 assay. Results showed that apoptosis in cumulus cells was enhanced and the expression of CASPASE-3 was increased after cumulus–oocyte complexes were exposed to ACR. Therefore, ACR may affect the nuclear maturation of oocytes via the apoptosis of cumulus cells in vitro.
Collapse
|
49
|
Zhao Q, Guo Z, Piao S, Wang C, An T. Discovery of porcine maternal factors related to nuclear reprogramming and early embryo development by proteomic analysis. Proteome Sci 2015; 13:18. [PMID: 26155198 PMCID: PMC4493956 DOI: 10.1186/s12953-015-0074-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/18/2015] [Indexed: 02/06/2023] Open
Abstract
Background Differentiated cell nuclei can be reprogrammed to a pluripotent state in several ways, including incubation with oocyte extracts, transfer into enucleated oocytes, and induced pluripotent stem cell technology. Nuclear transfer-mediated reprogramming has been proven to be the most efficient method. Maternal factors stored in oocytes have critical roles on nuclear reprogramming and early embryo development, but remain elusive. Results In this study, we showed most of porcine oocytes became nuclear matured at 33 h of IVM and the rate had no significant difference with oocytes at 42 h of IVM (p > 0.05). Moreover, the cleavage and blastocyst rates of SCNT and PA embryos derived from 42O were significantly higher than that of 33O (p < 0.05). But 33O could sustain IVF embryo development with higher cleavage and blastocyst rates comparing to 42O (p < 0.05). To clarify the development potential difference between 33O and 42O, 18 differentially expressed proteins were identified by proteomic analysis, and randomly selected proteins were confirmed by Western blot. Bioinformatic analysis of these proteins revealed that 33O highly synthesized proteins related to fertilization, and 42O was rich in nuclear reprogramming factors. Conclusions These results present a unique insight into maternal factors related to nuclear reprogramming and early embryo development. Electronic supplementary material The online version of this article (doi:10.1186/s12953-015-0074-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qi Zhao
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Xiangfang Dist., Harbin, Helongjiang 150040 China
| | - Zheng Guo
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Xiangfang Dist., Harbin, Helongjiang 150040 China
| | - Shanhua Piao
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Xiangfang Dist., Harbin, Helongjiang 150040 China
| | - Chunsheng Wang
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Xiangfang Dist., Harbin, Helongjiang 150040 China
| | - Tiezhu An
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Xiangfang Dist., Harbin, Helongjiang 150040 China
| |
Collapse
|
50
|
Bovine non-competent oocytes (BCB–) negatively impact the capacity of competent (BCB+) oocytes to undergo in vitro maturation, fertilisation and embryonic development. ZYGOTE 2015; 24:245-51. [DOI: 10.1017/s0967199415000118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SummaryCompetent oocyte selection remains a bottleneck in the in vitro production (IVP) of mammalian embryos. Among the vital assays described for selecting competent oocytes for IVP, the brilliant cresyl blue (BCB) test has shown consistent results. The aim of the first experiment was to observe if oocytes directly submitted to IVM show similar cleavage and blastocyst rates as those obtained with oocytes maintained under the same in vitro conditions as the oocytes that undergo the BCB test. Bovine cumulus–oocyte complexes (COCs) were recovered from slaughterhouse-derived ovaries and, after morphological evaluation, were randomised grouped into three groups: (1) directly submitted to IVM; (2) oocytes submitted to the BCB test without the addition of BCB stain (BCB control group); and (3) submitted to the BCB test. The results showed that oocytes directly submitted to IVM reached similar cleavage (48/80 – 60%) and embryonic development rates to the blastocyst stage (10/48 – 21%) as the results obtained with the BCB control group oocytes (45/77 – 58% and 08/45 – 18%, respectively). The aim of the second experiment was to determine the cleavage and blastocyst rates obtained from BCB+ oocytes undergoing IVM in the presence of BCB– oocytes at a ratio of 10:1. COCs were recovered from slaughterhouse-derived ovaries and, after morphological evaluation, were randomised into two groups that were submitted to IVM either directly (1: control group) or submitted to the BCB test prior to IVM. After the BCB test, the COCs were classified as either BCB+ (blue cytoplasm) or BCB– (colourless cytoplasm) and then divided into four experimental groups: (2) BCB+; (3) BCB–; and (4) BCB+ matured in same IVM medium drop as (5) BCB– at a ratio of 10:1. After IVM (24 h), oocytes from the different experimental groups were submitted to in vitro fertilisation (IVF) and in vitro culture (IVC) under the same culture conditions until they reached the blastocyst stage (D7). With regards to the cleavage rate (48 h after IVF), only group 3 (102/229 – 44%) differed (P < 0.05) from the other groups [1 (145/241 – 60%); 2 (150/225 – 67%); 4 (201/318 – 63%) and 5 (21/33 – 63%)]. On day 7, the embryos from group 2 (BCB+) achieved the highest blastocyst rate (46/150 – 31%) (P < 0.05) when compared with the embryo development capacity of the other experimental groups (1: 31/145 – 21%; group 3: 17/102 – 17%; group 4: 46/201 – 23%; and group 5: 2/21 – 10%). In conclusion, submitting BCB+ oocytes that were separated from BCB– oocytes to IVM increases the rate of embryonic development to the blastocyst stage when compared to the control group, BCB– oocyte group, BCB+ paracrine group and BCB– paracrine group. The presence of non-competent oocytes during IVM, even in low proportion (1:10), reduces the capacity of competent oocytes to undergo embryo development and achieve blastocyst stage during IVC.
Collapse
|