1
|
Gklinos P, Evangelopoulos ME, Velonakis G, Mitsikostas DD. Association between multiple sclerosis lesion location, migraine and tension-type headache: A cross-sectional study. J Clin Neurosci 2025; 136:111250. [PMID: 40262456 DOI: 10.1016/j.jocn.2025.111250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND An increased prevalence of migraine in people with MS (pwMS) has been documented over the past decade, with one of the leading explanations being the presence of lesions within regions, critical for pain modulation. OBJECTIVE To investigate whether lesions within pain areas are associated with primary headaches in pwMS. METHODS PwMS fulfilling the 2017 Mc Donald criteria were recruited prospectively in the study. Patients underwent a detailed neurological examination and assesment for primary headache disorders. Brain MRI scans were obtained and assessed. Odd-ratios (ORs) were calculated to examine the potential association of lesions within pain-perceiving brain regions and primary headache disorders. RESULTS A total of 96 participants were included in the study. After adjusting for potential confounding factors, PAG lesions were statistically significantly associated with migraine (OR = 4.7; 95 % CI: 1.5 to 14.59; p = 0.008). Similarly, thalamic and cortical lesions were also statistically significantly associated with an increased prevalence of migraine (OR = 7.2; 95 %CI: 1.37 to 37.79; p = 0.02 and OR = 9.1; 95 %CI: 1.53 to 54.72; p = 0.02 respectively) CONCLUSIONS: Lesions within critical brain regions are associated with migraine and are possibly the leading cause of the increased prevalence of migraine in pwMS.
Collapse
Affiliation(s)
- Panagiotis Gklinos
- First Neurology Department, Eginition University Hospital, Medical School, National and Kapodistrian University of Athens 11528 Athens, Greece.
| | - Maria-Eleftheria Evangelopoulos
- First Neurology Department, Eginition University Hospital, Medical School, National and Kapodistrian University of Athens 11528 Athens, Greece
| | - Georgios Velonakis
- Research Unit of Radiology and Medical Imaging, National and Kapodistrian University of Athens, Athens, Greece; Department of Radiology, General University Hospital "Attikon", National and Kapodistrian University of Athens, Athens, Greece
| | - Dimos-Dimitrios Mitsikostas
- First Neurology Department, Eginition University Hospital, Medical School, National and Kapodistrian University of Athens 11528 Athens, Greece
| |
Collapse
|
2
|
Xu H, Chen W, Ju Y, Chen H, Yuan P, Ouyang F. Brain structures as potential mediators of the causal effect of COVID 19 on migraine risk. Sci Rep 2024; 14:27895. [PMID: 39537835 PMCID: PMC11560959 DOI: 10.1038/s41598-024-79530-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024] Open
Abstract
Migraine is a common neurological disorder observed after coronavirus disease 2019 (COVID 19) infection. However, the intricate relationship between COVID 19 and migraine, particularly the potential mediating role of brain imaging-derived phenotypes (BIPs), remains unclear. This study used linkage disequilibrium score regression (LDSC), a bidirectional two-sample Mendelian randomization (MR) approach, and two-step MR analysis to investigate potential causal links. The robustness of the MR findings was corroborated through generalized summary-data-based Mendelian randomization (GSMR) and MR-Steiger methods. The results of the LDSC analysis revealed that the genetic correlation coefficient between COVID 19 traits and migraine was 0.0277 for infection (P = 0.0051), 0.1690 for hospitalization (P = 0.0016), and 0.1147 for severity (P = 0.0330). The genetic correlation coefficients between COVID 19 infection, hospitalization, severity and migraine and migraine with aura (MA) were 0.2654 (P = 0.0012), 0.2065 (P = 0.0043), and 0.1537 (P = 0.0230), respectively. Two-sample MR analysis revealed a significant causal association of COVID 19 infection (odds ratio [OR] 1.2502, P = 0.0083; OR 1.4956, P = 0.0084), hospitalization (OR 1.0689, P = 0.0138; OR 1.0919, P = 0.0208), and severity (OR 1.0644, P = 0.0072; OR 1.0844, P = 0.0098) with increased risk of migraine and migraine with aura (MA). Cortical thickness (CT), total surface area (TSA), and fractional anisotropy (FA) were identified as BIP intermediaries in the risk trajectory from COVID 19 to migraine. The TSA exhibited a more pronounced mediating effect than did CT. This study revealed that genetically predicted COVID 19 is associated with an increased risk of migraine and MA, and BIPs act as potential mediators of these causal relationships, offering insights into the neurobiological underpinnings of migraine in the context of COVID 19.
Collapse
Affiliation(s)
- Hongbei Xu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Wei Chen
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yaxin Ju
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongqun Chen
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ping Yuan
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Fu Ouyang
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
3
|
Karsan N, Edvinsson L, Vecsei L, Goadsby PJ. Pituitary cyclase-activating polypeptide targeted treatments for the treatment of primary headache disorders. Ann Clin Transl Neurol 2024; 11:1654-1668. [PMID: 38887982 PMCID: PMC11251486 DOI: 10.1002/acn3.52119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVE Migraine is a complex and disabling neurological disorder. Recent years have witnessed the development and emergence of novel treatments for the condition, namely those targeting calcitonin gene-related peptide (CGRP). However, there remains a substantial need for further treatments for those unresponsive to current therapies. Targeting pituitary adenylate cyclase-activating polypeptide (PACAP) as a possible therapeutic strategy in the primary headache disorders has gained interest over recent years. METHODS This review will summarize what we know about PACAP to date: its expression, receptors, roles in migraine and cluster headache biology, insights gained from preclinical and clinical models of migraine, and therapeutic scope. RESULTS PACAP shares homology with vasoactive intestinal polypeptide (VIP) and is one of several vasoactive neuropeptides along with CGRP and VIP, which has been implicated in migraine neurobiology. PACAP is widely expressed in areas of interest in migraine pathophysiology, such as the thalamus, trigeminal nucleus caudalis, and sphenopalatine ganglion. Preclinical evidence suggests a role for PACAP in trigeminovascular sensitization, while clinical evidence shows ictal release of PACAP in migraine and intravenous infusion of PACAP triggering attacks in susceptible individuals. PACAP leads to dural vasodilatation and secondary central phenomena via its binding to different G-protein-coupled receptors, and intracellular downstream effects through cyclic adenosine monophosphate (cAMP) and phosphokinase C (PKC). Targeting PACAP as a therapeutic strategy in headache has been explored using monoclonal antibodies developed against PACAP and against the PAC1 receptor, with initial positive results. INTERPRETATION Future clinical trials hold considerable promise for a new therapeutic approach using PACAP-targeted therapies in both migraine and cluster headache.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, The Wolfson Sensory, Pain and Regeneration Centre (SPaRC), NIHR King's Clinical Research Facility and SLaM Biomedical Research CentreInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Lars Edvinsson
- Department of Medicine, Institute of Clinical SciencesLund University221 84LundSweden
| | - Laszlo Vecsei
- Department of Neurology, Albert Szent‐Györgyi Medical School, and HUN‐REN‐SZTE Neuroscience Research Group, Hungarian Research NetworkUniversity of SzegedSemmelweis u. 6SzegedH‐6725Hungary
| | - Peter J Goadsby
- Headache Group, The Wolfson Sensory, Pain and Regeneration Centre (SPaRC), NIHR King's Clinical Research Facility and SLaM Biomedical Research CentreInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
- Department of NeurologyUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
4
|
Fila M, Przyslo L, Derwich M, Luniewska-Bury J, Pawlowska E, Blasiak J. Potential of ferroptosis and ferritinophagy in migraine pathogenesis. Front Mol Neurosci 2024; 17:1427815. [PMID: 38915936 PMCID: PMC11195014 DOI: 10.3389/fnmol.2024.1427815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024] Open
Abstract
Objective To assess the potential of ferroptosis and ferritinophagy in migraine pathogenesis. Background Ferroptosis and ferritinophagy are related to increased cellular iron concentration and have been associated with the pathogenesis of several neurological disorders, but their potential in migraine pathogenesis has not been explored. Increased iron deposits in some deep brain areas, mainly periaqueductal gray (PAG), are reported in migraine and they have been associated with the disease severity and chronification as well as poor response to antimigraine drugs. Results Iron deposits may interfere with antinociceptive signaling in the neuronal network in the brain areas affected by migraine, but their mechanistic role is unclear. Independently of the location, increased iron concentration may be related to ferroptosis and ferritinophagy in the cell. Therefore, both phenomena may be related to increased iron deposits in migraine. It is unclear whether these deposits are the reason, consequence, or just a correlate of migraine. Still, due to migraine-related elevated levels of iron, which is a prerequisite of ferroptosis and ferritinophagy, the potential of both phenomena in migraine should be explored. If the iron deposits matter in migraine pathogenesis, they should be mechanically linked with the clinical picture of the disease. As iron is an exogenous essential trace element, it is provided to the human body solely with diet or supplements. Therefore, exploring the role of iron in migraine pathogenesis may help to determine the potential role of iron-rich/poor dietary products as migraine triggers or relievers. Conclusion Ferroptosis and ferritinophagy may be related to migraine pathogenesis through iron deposits in the deep areas of the brain.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| | - Lukasz Przyslo
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| | - Marcin Derwich
- Department of Developmental Dentistry, Medical University of Lodz, Lodz, Poland
| | | | - Elzbieta Pawlowska
- Department of Developmental Dentistry, Medical University of Lodz, Lodz, Poland
| | - Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, Plock, Poland
| |
Collapse
|
5
|
Spekker E, Fejes-Szabó A, Nagy-Grócz G. Models of Trigeminal Activation: Is There an Animal Model of Migraine? Brain Sci 2024; 14:317. [PMID: 38671969 PMCID: PMC11048078 DOI: 10.3390/brainsci14040317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Migraine, recognized as a severe headache disorder, is widely prevalent, significantly impacting the quality of life for those affected. This article aims to provide a comprehensive review of the application of animal model technologies in unraveling the pathomechanism of migraine and developing more effective therapies. It introduces a variety of animal experimental models used in migraine research, emphasizing their versatility and importance in simulating various aspects of the condition. It details the benefits arising from the utilization of these models, emphasizing their role in elucidating pain mechanisms, clarifying trigeminal activation, as well as replicating migraine symptoms and histological changes. In addition, the article consciously acknowledges the inherent limitations and challenges associated with the application of animal experimental models. Recognizing these constraints is a fundamental step toward fine-tuning and optimizing the models for a more accurate reflection of and translatability to the human environment. Overall, a detailed and comprehensive understanding of migraine animal models is crucial for navigating the complexity of the disease. These findings not only provide a deeper insight into the multifaceted nature of migraine but also serve as a foundation for developing effective therapeutic strategies that specifically address the unique challenges arising from migraine pathology.
Collapse
Affiliation(s)
- Eleonóra Spekker
- Interdisciplinary Research Development and Innovation, Center of Excellence, University of Szeged, H-6725 Szeged, Hungary
| | - Annamária Fejes-Szabó
- HUN-REN–SZTE Neuroscience Research Group, University of Szeged, H-6725 Szeged, Hungary;
| | - Gábor Nagy-Grócz
- Department of Theoretical Health Sciences and Health Management, Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári Krt. 31., H-6726 Szeged, Hungary;
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
6
|
He M, Kis-Jakab G, Komáromy H, Perlaki G, Orsi G, Bosnyák E, Rozgonyi R, John F, Trauninger A, Eklics K, Pfund Z. Volumetric alteration of brainstem in female migraineurs with and without aura. Clin Neurol Neurosurg 2024; 236:108089. [PMID: 38141551 DOI: 10.1016/j.clineuro.2023.108089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND AND AIM Brainstem descending modulatory circuits have been postulated to be involved in migraine. Differences in brainstem volume between migraineurs and healthy controls have been demonstrated in previous research, nevertheless, the effect of migraine aura on brainstem volume is still uncertain. The aim of this study was to investigate the brainstem volume in migraineurs and examine the effect of migraine aura on brainstem volume. METHODS Our study included 90 female migraine patients without white matter lesions. (29 migraine patients with aura (MwA) and 61 migraine patients without aura (MwoA) and 32 age-matched female healthy controls (HC). Using the FreeSurfer image analysis suite, the volumes of the entire brainstem and its subfields (medulla, pons, and midbrain) were measured and compared between migraine subgroups (MwA vs. MwoA) and the healthy control group. The possible effects of migraine characteristics (i.e., disease duration and migraine attack frequency) on brainstem volume were also investigated. RESULTS Migraineurs had greater medulla volume (MwoA 3552 ± 459 mm3, MwA 3424 ± 448 mm3) than healthy controls (3236 ± 411 mm3). Statistically, MwA vs. HC p = 0.040, MwoA vs. HC p = 0.002, MwA vs. MwoA p = 0.555. A significant positive correlation was found between disease duration and the volume of medulla in the whole migraine group (r = 0.334, p = 0.001). Neither the whole brainstem nor its subfields were significantly different in volume between migraine subgroups. CONCLUSION Brainstem volume changes in migraine are mainly localized to the medulla and not specific to the presence of aura.
Collapse
Affiliation(s)
| | - Gréta Kis-Jakab
- HUN-REN-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary; Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary; Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | | | - Gábor Perlaki
- Pécs Diagnostic Center, Pécs, Hungary; HUN-REN-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary; Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary; Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Gergely Orsi
- Pécs Diagnostic Center, Pécs, Hungary; HUN-REN-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary; Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary; Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Edit Bosnyák
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Renáta Rozgonyi
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Flóra John
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Anita Trauninger
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Kata Eklics
- Department of Languages for Biomedical Purposes and Communication, University of Pécs, Pécs, Hungary
| | - Zoltán Pfund
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary.
| |
Collapse
|
7
|
de Lahoz ME, Barjola P, Peláez I, Ferrera D, Fernandes-Magalhaes R, Mercado F. Unveiling the Role of Contingent Negative Variation (CNV) in Migraine: A Review of Electrophysiological Studies in Adults and Children. Biomedicines 2023; 11:3030. [PMID: 38002030 PMCID: PMC10669837 DOI: 10.3390/biomedicines11113030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Migraine has been considered a chronic neuronal-based pain disorder characterized by the presence of cortical hyperexcitability. The Contingent Negative Variation (CNV) is the most explored electrophysiological index in migraine. However, the findings show inconsistencies regarding its functional significance. To address this, we conducted a review in both adults and children with migraine without aura to gain a deeper understanding of it and to derive clinical implications. The literature search was conducted in the PubMed, SCOPUS and PsycINFO databases until September 2022m and 34 articles were retrieved and considered relevant for further analysis. The main results in adults showed higher CNV amplitudes (with no habituation) in migraine patients. Electrophysiological abnormalities, particularly focused on the early CNV subcomponent (eCNV), were especially prominent a few days before the onset of a migraine attack, normalizing during and after the attack. We also explored various modulatory factors, including pharmacological treatments-CNV amplitude was lower after the intake of drugs targeting neural hyperexcitability-and other factors such as psychological, hormonal or genetic/familial influences on CNV. Although similar patterns were found in children, the evidence is particularly scarce and less consistent, likely due to the brain's maturation process during childhood. As the first review exploring the relationship between CNV and migraine, this study supports the role of the CNV as a potential neural marker for migraine pathophysiology and the prediction of pain attacks. The importance of further exploring the relationship between this neurophysiological index and childhood migraine is critical for identifying potential therapeutic targets for managing migraine symptoms during its development.
Collapse
Affiliation(s)
| | | | | | | | | | - Francisco Mercado
- Department of Psychology, School of Health Sciences, Universidad Rey Juan Carlos, 28922 Madrid, Spain; (M.E.d.L.); (P.B.); (I.P.); (D.F.); (R.F.-M.)
| |
Collapse
|
8
|
Bahra A. Paroxysmal hemicrania and hemicrania continua: Review on pathophysiology, clinical features and treatment. Cephalalgia 2023; 43:3331024231214239. [PMID: 37950675 DOI: 10.1177/03331024231214239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2023]
Abstract
BACKGROUND Paroxysmal hemicrania and hemicrania continua are indometacin-sensitive trigeminal autonomic cephalalgias, a terminology which reflects the predominant distribution of the pain, observable cranial autonomic features and shared pathophysiology. Understanding the latter is limited, both by low prevalence and the intricacies of studying brain function, requiring multimodal techniques to glean insights into such disorders. Similarly obscure is the curious response to indometacin. This review will address what is currently known about pathophysiology, the rationale for the current classification and, features which may confound the diagnosis, such as lack of cranial autonomic symptoms and those which are typically associated with migraine such as nausea, photophobia, phonophobia and aura. Despite these characteristics, a dramatic response to indometacin, which is not seen in migraine nor the other trigeminal autonomic cephalalgias , provides the hallmark of the diagnosis. The main clinical differential for paroxysmal hemicrania is based on temporal pattern and lies between cluster headache and short-lasting-neuralgiform headache attacks with tearing or additional cranial autonomic symptoms. For hemicrania continua it is more challenging as the main differential for which the disorder is often treated is migraine. A prior episodic pattern, often days at a time, and the tendency to exacerbation with analgesics will further deflect from the diagnosis. The relevance of this is that there is little overlap in therapeutics between paroxysmal hemicrania and hemicrania continua and other headache disorders and there are limited effective alternatives to indometacin. The most effective are other non-steroidal anti-inflammatory drugs including the newer COX-II inhibitors. Even though early reports suggest that a higher indometacin dose-requirement may herald a secondary precipitating pathology, this does not seem to be the case, with syndrome and response to treatment being similar with the primary disorder. In this context imaging of new onset paroxysmal hemicrania or hemicrania continua and implication of the results will be discussed as will alternative treatment options.
Collapse
Affiliation(s)
- Anish Bahra
- Department of Neurology, Barts Health NHS Trust, Whipps Cross Hospital, London, UK
- The Neurosciences Department, John Radcliffe Hospital, Oxford, UK
- Pain Management Centre at National Hospital for Neurology & Neurosurgery, London, UK
| |
Collapse
|
9
|
Merli E, Rustici A, Gramegna LL, Di Donato M, Agati R, Tonon C, Lodi R, Favoni V, Pierangeli G, Cortelli P, Cevoli S, Cirillo L. Vessel-wall MRI in primary headaches: The role of neurogenic inflammation. Headache 2023; 63:1372-1379. [PMID: 35137395 DOI: 10.1111/head.14253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate if vessel-wall magnetic resonance imaging (VW-MRI) could differentiate among primary headaches disorders, such as migraine and cluster headache (CH), and detect the presence of neurogenic inflammation. BACKGROUND The pathophysiology of primary headaches disorders is complex and not completely clarified. The activation of nociceptive trigeminal afferents through the release of vasoactive neuropeptides, termed "neurogenic inflammation," has been hypothesized. VW-MRI can identify vessel wall changes, reflecting the inflammatory remodeling of the vessel walls despite different etiologies. METHODS In this case series, we enrolled seven patients with migraine and eight patients with CH. They underwent a VW-MRI study before and after the intravenous administration of contrast medium, during and outside a migraine attack or cluster period. Two expert neuroradiologists analyzed the magnetic resonance imaging (MRI) studies to identify the presence of vessel wall enhancement or other vascular abnormalities. RESULTS Fourteen out of 15 patients had no enhancement. One out of 15, with migraine, showed a focal parietal enhancement in the intracranial portion of a vertebral artery, unmodified during and outside the attack, thus attributable to atherosclerosis. No contrast enhancement attributable to neurogenic inflammation was observed in VW-MRI, both during and outside the attack/cluster in all patients. Moreover, MRI angiography registered slight diffuse vasoconstriction in one of seven patients with migraine during the attack and in one of eight patients with cluster headache during the cluster period; both patients had taken triptans as symptomatic therapy for pain. CONCLUSIONS These preliminary results suggest that VW-MRI studies are negative in patients with primary headache disorders even during migraine attacks or cluster periods. The VW-MRI studies did not detect signs of neurogenic inflammation in the intracranial intradural vessels of patients with migraine or CH.
Collapse
Affiliation(s)
- Elena Merli
- UOC Neurologia e Rete Stroke metropolitana, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Arianna Rustici
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Laura Ludovica Gramegna
- Programma di Neuroimmagini Funzionali e Molecolari, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Marco Di Donato
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Raffaele Agati
- Programma Neuroradiologia con Tecniche ad Elevata Complessità, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Caterina Tonon
- Programma di Neuroimmagini Funzionali e Molecolari, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Raffaele Lodi
- Programma di Neuroimmagini Funzionali e Molecolari, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Valentina Favoni
- UO Clinica Neurologica NeuroMet, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giulia Pierangeli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- UO Clinica Neurologica NeuroMet, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Pietro Cortelli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- UO Clinica Neurologica NeuroMet, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Sabina Cevoli
- UO Clinica Neurologica NeuroMet, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Luigi Cirillo
- Programma di Neuroimmagini Funzionali e Molecolari, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- Programma Neuroradiologia con Tecniche ad Elevata Complessità, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
10
|
Li Y, Wang Y, Chen M, Jiang R, Ju Y. Eye Movement Abnormalities During Different Periods in Patients with Vestibular Migraine. J Pain Res 2023; 16:3583-3590. [PMID: 37908779 PMCID: PMC10614654 DOI: 10.2147/jpr.s422255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023] Open
Abstract
Purpose The aim of this study was to assess abnormal eye movement signs during different periods, namely, ictal periods and symptom-free intervals, in patients with vestibular migraine. Patients and Methods We assessed oculomotor signs using videonystagmography in 90 patients with VM (40 during ictal periods and 50 during symptom-free intervals) according to validated diagnostic criteria. Results Abnormal saccades, smooth pursuit and optokinetic test results; spontaneous nystagmus; and positional nystagmus were all observed in vestibular migraine patients, and there was no significant difference between different periods. Positional nystagmus was the most common in both the ictal and asymptomatic periods (60% and 36%, respectively). Positional nystagmus was induced in a variety of positions during both periods, and the slow-phase velocity ranged from <2 to 10°/s. The duration of positional nystagmus was over 60s in most cases. Overall, central oculomotor dysfunctions occurred in 27.5% of patients during VM attacks and 4% of patients during symptom-free intervals; this difference was statistically significant (p = 0.002). Conclusion In patients with VM, abnormal oculomotor signs can be found during both vertigo attacks and asymptomatic intervals. Positional nystagmus is the most common of these abnormalities and can be induced in different positions. The amplitude of these patients' positional nystagmus tends to be low, and the duration tends to be long. Observing changes in eye movements by videonystagmography may be helpful in the diagnosis of VM.
Collapse
Affiliation(s)
- Yiqing Li
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yan Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Meimei Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Ruixuan Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yi Ju
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
11
|
Noseda R, Villanueva L. Central generators of migraine and autonomic cephalalgias as targets for personalized pain management: Translational links. Eur J Pain 2023; 27:1126-1138. [PMID: 37421221 PMCID: PMC10979820 DOI: 10.1002/ejp.2158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Migraine oscillates between different states in association with internal homeostatic functions and biological rhythms that become more easily dysregulated in genetically susceptible individuals. Clinical and pre-clinical data on migraine pathophysiology support a primary role of the central nervous system (CNS) through 'dysexcitability' of certain brain networks, and a critical contribution of the peripheral sensory and autonomic signalling from the intracranial meningeal innervation. This review focuses on the most relevant back and forward translational studies devoted to the assessment of CNS dysfunctions involved in primary headaches and discusses the role they play in rendering the brain susceptible to headache states. METHODS AND RESULTS We collected a body of scientific literature from human and animal investigations that provide a compelling perspective on the anatomical and functional underpinnings of the CNS in migraine and trigeminal autonomic cephalalgias. We focus on medullary, hypothalamic and corticofugal modulation mechanisms that represent strategic neural substrates for elucidating the links between trigeminovascular maladaptive states, migraine triggering and the temporal phenotype of the disease. CONCLUSION It is argued that a better understanding of homeostatic dysfunctional states appears fundamental and may benefit the development of personalized therapeutic approaches for improving clinical outcomes in primary headache disorders. SIGNIFICANCE This review focuses on the most relevant back and forward translational studies showing the crucial role of top-down brain modulation in triggering and maintaining primary headache states and how these central dysfunctions may interact with personalized pain management strategies.
Collapse
Affiliation(s)
- Rodrigo Noseda
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Luis Villanueva
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris-Cité, Team Imaging Biomarkers of Brain Disorders (IMA-Brain), INSERM U1266, Paris, France
| |
Collapse
|
12
|
Li ML, Zhang F, Chen YY, Luo HY, Quan ZW, Wang YF, Huang LT, Wang JH. A state-of-the-art review of functional magnetic resonance imaging technique integrated with advanced statistical modeling and machine learning for primary headache diagnosis. Front Hum Neurosci 2023; 17:1256415. [PMID: 37746052 PMCID: PMC10513061 DOI: 10.3389/fnhum.2023.1256415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Primary headache is a very common and burdensome functional headache worldwide, which can be classified as migraine, tension-type headache (TTH), trigeminal autonomic cephalalgia (TAC), and other primary headaches. Managing and treating these different categories require distinct approaches, and accurate diagnosis is crucial. Functional magnetic resonance imaging (fMRI) has become a research hotspot to explore primary headache. By examining the interrelationships between activated brain regions and improving temporal and spatial resolution, fMRI can distinguish between primary headaches and their subtypes. Currently the most commonly used is the cortical brain mapping technique, which is based on blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI). This review sheds light on the state-of-the-art advancements in data analysis based on fMRI technology for primary headaches along with their subtypes. It encompasses not only the conventional analysis methodologies employed to unravel pathophysiological mechanisms, but also deep-learning approaches that integrate these techniques with advanced statistical modeling and machine learning. The aim is to highlight cutting-edge fMRI technologies and provide new insights into the diagnosis of primary headaches.
Collapse
Affiliation(s)
- Ming-Lin Li
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fei Zhang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yi-Yang Chen
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Family Medicine, Liaoning Health Industry Group Fukuang General Hospital, Fushun, Liaoning, China
| | - Han-Yong Luo
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zi-Wei Quan
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yi-Fei Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Le-Tian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jia-He Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
13
|
Karsan N, Goadsby PJ. Neuroimaging in the pre-ictal or premonitory phase of migraine: a narrative review. J Headache Pain 2023; 24:106. [PMID: 37563570 PMCID: PMC10416375 DOI: 10.1186/s10194-023-01617-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND The premonitory phase, or prodrome, of migraine, provides valuable opportunities to study attack initiation and for treating the attack before headache starts. Much that has been learned about this phase in recent times has come from the outcomes of functional imaging studies. This review will summarise these studies to date and use their results to provide some feasible insights into migraine neurobiology. MAIN BODY The ability to scan repeatedly a patient without radiation and with non-invasive imaging modalities, as well as the recognition that human experimental migraine provocation compounds, such as nitroglycerin (NTG) and pituitary adenylate cyclase activating polypeptide (PACAP), can trigger typical premonitory symptoms (PS) and migraine-like headache in patients with migraine, have allowed feasible and reproducible imaging of the premonitory phase using NTG. Some studies have used serial scanning of patients with migraine to image the migraine cycle, including the 'pre-ictal' phase, defined by timing to headache onset rather than symptom phenotype. Direct observation and functional neuroimaging of triggered PS have also revealed compatible neural substrates for PS in the absence of headache. Various imaging methods including resting state functional MRI (rsfMRI), arterial spin labelling (ASL), positron emission tomography (PET) and diffusion tensor imaging (DTI) have been used. The results of imaging the spontaneous and triggered premonitory phase have been largely consistent and support a theory of central migraine attack initiation involving brain areas such as the hypothalamus, midbrain and limbic system. Early dysfunctional pain, sensory, limbic and homeostatic processing via monoaminergic and peptidergic neurotransmission likely manifests in the heterogeneous PS phenotype. CONCLUSION Advances in human migraine research, including the use of functional imaging techniques lacking radiation or radio-isotope exposure, have led to an exciting opportunity to study the premonitory phase using repeated measures imaging designs. These studies have provided novel insights into attack initiation, migraine neurochemistry and therapeutic targets. Emerging migraine-specific therapies, such as those targeting calcitonin gene-related peptide (CGRP), are showing promise acutely when taken during premonitory phase to reduce symptoms and prevent subsequent headache. Therapeutic research in this area using PS for headache onset prediction and early treatment is likely to grow in the future.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, NIHR King's Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9PJ, UK.
| | - Peter J Goadsby
- Headache Group, NIHR King's Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9PJ, UK
- Department of Neurology, University of California, Los Angeles, USA
| |
Collapse
|
14
|
Karsan N, Gosalia H, Goadsby PJ. Molecular Mechanisms of Migraine: Nitric Oxide Synthase and Neuropeptides. Int J Mol Sci 2023; 24:11993. [PMID: 37569369 PMCID: PMC10418996 DOI: 10.3390/ijms241511993] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Migraine is a common condition with disabling attacks that burdens people in the prime of their working lives. Despite years of research into migraine pathophysiology and therapeutics, much remains to be learned about the mechanisms at play in this complex neurovascular condition. Additionally, there remains a relative paucity of specific and targeted therapies available. Many sufferers remain underserved by currently available broad action preventive strategies, which are also complicated by poor tolerance and adverse effects. The development of preclinical migraine models in the laboratory, and the advances in human experimental migraine provocation, have led to the identification of key molecules likely involved in the molecular circuity of migraine, and have provided novel therapeutic targets. Importantly, the identification that vasoconstriction is neither necessary nor required for headache abortion has changed the landscape of migraine treatment and has broadened the therapy targets for patients with vascular risk factors or vascular disease. These targets include nitric oxide synthase (NOS) and several neuropeptides that are involved in migraine. The ability of NO donors and infusion of some of these peptides into humans to trigger typical migraine-like attacks has supported the development of targeted therapies against these molecules. Some of these, such as those targeting calcitonin gene-related peptide (CGRP), have already reached clinical practice and are displaying a positive outcome in migraineurs for the better by offering targeted efficacy without significant adverse effects. Others, such as those targeting pituitary adenylate cyclase activating polypeptide (PACAP), are showing promise and are likely to enter phase 3 clinical trials in the near future. Understanding these nitrergic and peptidergic mechanisms in migraine and their interactions is likely to lead to further therapeutic strategies for migraine in the future.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (H.G.)
| | - Helin Gosalia
- Headache Group, NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (H.G.)
| | - Peter J. Goadsby
- Headache Group, NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (H.G.)
- Department of Neurology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Pellesi L. The human NTG model of migraine in drug discovery and development. Expert Opin Drug Discov 2023; 18:1077-1085. [PMID: 37439036 DOI: 10.1080/17460441.2023.2236545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/11/2023] [Indexed: 07/14/2023]
Abstract
INTRODUCTION Various triggers can originate a migraine attack. In healthy volunteers and patients with migraine, the nitroglycerin (NTG) provocation model induces a headache that resembles migraine in pain characteristics and vascular manifestations. This headache is reversible and treatable in monitored conditions, providing an opportunity to test novel antimigraine medications in early clinical development. AREAS COVERED This perspective covers the main characteristics and applications of the human NTG model of migraine with effective and ineffective antimigraine therapies. EXPERT OPINION The NTG model represents a potential de-risking strategy to test novel hypotheses for antimigraine mechanisms in humans. Considering previous studies conducted with effective and ineffective antimigraine therapies, the sensitivity of the model was 71% while the specificity was 100%. The probability that following an analgesic effect, that compound would truly be efficacious in individuals with migraine was 100%. Following a negative result, the probability that such compound would truly be ineffective in patients with individuals was 33%. A clinical trial testing the analgesic properties of novel compounds after a sublingual and/or intravenous NTG challenge in migraine patients may support a subsequent phase 2 trial for the treatment of migraine.
Collapse
Affiliation(s)
- Lanfranco Pellesi
- Department of Clinical Pharmacology, H. Lundbeck A/S, Copenhagen, Denmark
| |
Collapse
|
16
|
Huang Y, Zhang Y, Hodges S, Li H, Yan Z, Liu X, Hou X, Chen W, Chai-Zhang T, Kong J, Liu B. The modulation effects of repeated transcutaneous auricular vagus nerve stimulation on the functional connectivity of key brainstem regions along the vagus nerve pathway in migraine patients. Front Mol Neurosci 2023; 16:1160006. [PMID: 37333617 PMCID: PMC10275573 DOI: 10.3389/fnmol.2023.1160006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
Background Previous studies have shown a significant response to acute transcutaneous vagus nerve stimulation (taVNS) in regions of the vagus nerve pathway, including the nucleus tractus solitarius (NTS), raphe nucleus (RN) and locus coeruleus (LC) in both healthy human participants and migraine patients. This study aims to investigate the modulation effect of repeated taVNS on these brainstem regions by applying seed-based resting-state functional connectivity (rsFC) analysis. Methods 70 patients with migraine were recruited and randomized to receive real or sham taVNS treatments for 4 weeks. fMRI data were collected from each participant before and after 4 weeks of treatment. The rsFC analyses were performed using NTS, RN and LC as the seeds. Results 59 patients (real group: n = 33; sham group: n = 29) completed two fMRI scan sessions. Compared to sham taVNS, real taVNS was associated with a significant reduction in the number of migraine attack days (p = 0.024) and headache pain intensity (p = 0.008). The rsFC analysis showed repeated taVNS modulated the functional connectivity between the brain stem regions of the vagus nerve pathway and brain regions associated with the limbic system (bilateral hippocampus), pain processing and modulation (bilateral postcentral gyrus, thalamus, and mPFC), and basal ganglia (putamen/caudate). In addition, the rsFC change between the RN and putamen was significantly associated with the reduction in the number of migraine days. Conclusion Our findings suggest that taVNS can significantly modulate the vagus nerve central pathway, which may contribute to the potential treatment effects of taVNS for migraine.Clinical Trial Registration: http://www.chictr.org.cn/hvshowproject.aspx?id=11101, identifier ChiCTR-INR-17010559.
Collapse
Affiliation(s)
- Yiting Huang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Yue Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sierra Hodges
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Hui Li
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhaoxian Yan
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xian Liu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyan Hou
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weicui Chen
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Thalia Chai-Zhang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Bo Liu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
17
|
Puledda F, Silva EM, Suwanlaong K, Goadsby PJ. Migraine: from pathophysiology to treatment. J Neurol 2023:10.1007/s00415-023-11706-1. [PMID: 37029836 DOI: 10.1007/s00415-023-11706-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Migraine is an extremely disabling, common neurological disorder characterized by a complex neurobiology, involving a series of central and peripheral nervous system areas and networks. A growing increase in the understanding of migraine pathophysiology in recent years has facilitated translation of that knowledge into novel treatments, which are currently becoming available to patients in many parts of the world and are substantially changing the clinical approach to the disease. In the first part of this review, we will provide an up to date overview of migraine pathophysiology by analyzing the anatomy and function of the main regions involved in the disease, focusing on how these give rise to the plethora of symptoms characterizing the attacks and overall disease. The second part of the paper will discuss the novel therapeutic agents that have emerged for the treatment of migraine, including molecules targeting calcitonin gene-related peptide (gepants and monoclonal antibodies), serotonin 5-HT1F receptor agonists (ditans) and non-invasive neuromodulation, as well as providing a brief overview of new evidence for classic migraine treatments.
Collapse
Affiliation(s)
- Francesca Puledda
- Headache Group, Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King's College London, and National Institute for Health Research (NIHR) SLaM Clinical Research Facility at King's, Wellcome Foundation Building, King's College Hospital, London, SE5 9PJ, UK
| | | | - Kanokrat Suwanlaong
- Division of Neurology, Department of Medicine, Songkhla Medical Education Center, Songkhla, Thailand
| | - Peter J Goadsby
- Headache Group, Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King's College London, and National Institute for Health Research (NIHR) SLaM Clinical Research Facility at King's, Wellcome Foundation Building, King's College Hospital, London, SE5 9PJ, UK.
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Andreou AP, Pereira AD. Migraine headache pathophysiology. HANDBOOK OF CLINICAL NEUROLOGY 2023; 198:61-69. [PMID: 38043971 DOI: 10.1016/b978-0-12-823356-6.00018-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
In both episodic and chronic migraine, headache is the most disabling symptom that requires medical care. The migraine headache is the most well-studied symptom of migraine pathophysiology. The trigeminal system and the central processing of sensory information transmitted by the trigeminal system are of considerable importance in the pathophysiology of migraine headache. Glutamate is the main neurotransmitter that drives activation of the ascending trigeminal and trigeminothalamic pathways. The neuropeptide, calcitonin gene-related peptide (CGRP) that is released by the trigeminal system, plays a crucial role in the neurobiology of headache. Peripheral and central sensitizations associated with trigeminal sensory processing are neurobiologic states that contribute to both the development of headache during a migraine attack and the maintenance of chronic migraine.
Collapse
Affiliation(s)
- Anna P Andreou
- Headache Research-Wolfson Centre for Age-Related Diseases (CARD), Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Headache Centre, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.
| | - Ana D Pereira
- Headache Research-Wolfson Centre for Age-Related Diseases (CARD), Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
19
|
Almusalam AA, Abdullah NHH, Alshammari MMM. Updates on the Association between Obesity and Migraine: Systematic Review of Observational Studies. INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND ALLIED SCIENCES 2023. [DOI: 10.51847/r9e9inze8d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
20
|
Salahi M, Parsa S, Nourmohammadi D, Razmkhah Z, Salimi O, Rahmani M, Zivary S, Askarzadeh M, Tapak MA, Vaezi A, Sadeghsalehi H, Yaghoobpoor S, Mottahedi M, Garousi S, Deravi N. Immunologic aspects of migraine: A review of literature. Front Neurol 2022; 13:944791. [PMID: 36247795 PMCID: PMC9554313 DOI: 10.3389/fneur.2022.944791] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Migraine headaches are highly prevalent, affecting 15% of the population. However, despite many studies to determine this disease's mechanism and efficient management, its pathophysiology has not been fully elucidated. There are suggested hypotheses about the possible mediating role of mast cells, immunoglobulin E, histamine, and cytokines in this disease. A higher incidence of this disease in allergic and asthma patients, reported by several studies, indicates the possible role of brain mast cells located around the brain vessels in this disease. The mast cells are more specifically within the dura and can affect the trigeminal nerve and cervical or sphenopalatine ganglion, triggering the secretion of substances that cause migraine. Neuropeptides such as calcitonin gene-related peptide (CGRP), neurokinin-A, neurotensin (NT), pituitary adenylate-cyclase-activating peptide (PACAP), and substance P (SP) trigger mast cells, and in response, they secrete pro-inflammatory and vasodilatory molecules such as interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) as a selective result of corticotropin-releasing hormone (CRH) secretion. This stress hormone contributes to migraine or intensifies it. Blocking these pathways using immunologic agents such as CGRP antibody, anti-CGRP receptor antibody, and interleukin-1 beta (IL-1β)/interleukin 1 receptor type 1 (IL-1R1) axis-related agents may be promising as potential prophylactic migraine treatments. This review is going to summarize the immunological aspects of migraine.
Collapse
Affiliation(s)
- Mehrnaz Salahi
- Student Research Committee, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sina Parsa
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Delaram Nourmohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Razmkhah
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Salimi
- Student Research Committee, Faculty of Medicine, Islamic Azad University of Najafabad, Isfahan, Iran
| | | | - Saeid Zivary
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Monireh Askarzadeh
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Tapak
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ali Vaezi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Sadeghsalehi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Sureda-Gibert P, Romero-Reyes M, Akerman S. Nitroglycerin as a model of migraine: Clinical and preclinical review. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 12:100105. [PMID: 36974065 PMCID: PMC10039393 DOI: 10.1016/j.ynpai.2022.100105] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Migraine stands as one of the most disabling neurological conditions worldwide. It is a disorder of great challenge to study given its heterogeneous representation, cyclic nature, and complexity of neural networks involved. Despite this, clinical and preclinical research has greatly benefitted from the use of the nitric oxide donor, nitroglycerin (NTG), to model this disorder, dissect underlying mechanisms, and to facilitate the development and screening of effective therapeutics. NTG is capable of triggering a migraine attack, only in migraineurs or patients with a history of migraine and inducing migraine-like phenotypes in rodent models. It is however unclear to what extent NTG and NO, as its breakdown product, is a determinant factor in the underlying pathophysiology of migraine, and importantly, whether it really does facilitate the translation from the bench to the bedside, and vice-versa. This review provides an insight into the evidence supporting the strengths of this model, as well as its limitations, and shines a light into the possible role of NO-related mechanisms in altered molecular signalling pathways.
Collapse
Affiliation(s)
- Paula Sureda-Gibert
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London SE5 8AF, UK
- Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Marcela Romero-Reyes
- Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Simon Akerman
- Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD 21201, USA
| |
Collapse
|
22
|
Association between Dietary Niacin Intake and Migraine among American Adults: National Health and Nutrition Examination Survey. Nutrients 2022; 14:nu14153052. [PMID: 35893904 PMCID: PMC9330821 DOI: 10.3390/nu14153052] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 12/10/2022] Open
Abstract
Migraine is related to brain energy deficiency. Niacin is a required coenzyme in mitochondrial energy metabolism. However, the relationship between dietary niacin and migraines remains uncertain. We aimed to evaluate the relationship between dietary niacin and migraine. This study used cross-sectional data from people over 20 years old who took part in the National Health and Nutrition Examination Survey between 1999 and 2004, collecting details on their severe headaches or migraines, dietary niacin intake, and several other essential variables. There were 10,246 participants, with 20.1% (2064/10,246) who experienced migraines. Compared with individuals with lower niacin consumption Q1 (≤12.3 mg/day), the adjusted OR values for dietary niacin intake and migraine in Q2 (12.4−18.3 mg/day), Q3 (18.4−26.2 mg/day), and Q4 (≥26.3 mg/day) were 0.83 (95% CI: 0.72−0.97, p = 0.019), 0.74 (95% CI: 0.63−0.87, p < 0.001), and 0.72 (95% CI: 0.58−0.88, p = 0.001), respectively. The association between dietary niacin intake and migraine exhibited an L-shaped curve (nonlinear, p = 0.011). The OR of developing migraine was 0.975 (95% CI: 0.956−0.994, p = 0.011) in participants with niacin intake < 21.0 mg/day. The link between dietary niacin intake and migraine in US adults is L-shaped, with an inflection point of roughly 21.0 mg/day.
Collapse
|
23
|
Noseda R. Cerebro-Cerebellar Networks in Migraine Symptoms and Headache. FRONTIERS IN PAIN RESEARCH 2022; 3:940923. [PMID: 35910262 PMCID: PMC9326053 DOI: 10.3389/fpain.2022.940923] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The cerebellum is associated with the biology of migraine in a variety of ways. Clinically, symptoms such as fatigue, motor weakness, vertigo, dizziness, difficulty concentrating and finding words, nausea, and visual disturbances are common in different types of migraine. The neural basis of these symptoms is complex, not completely known, and likely involve activation of both specific and shared circuits throughout the brain. Posterior circulation stroke, or neurosurgical removal of posterior fossa tumors, as well as anatomical tract tracing in animals, provided the first insights to theorize about cerebellar functions. Nowadays, with the addition of functional imaging, much progress has been done on cerebellar structure and function in health and disease, and, as a consequence, the theories refined. Accordingly, the cerebellum may be useful but not necessary for the execution of motor, sensory or cognitive tasks, but, rather, would participate as an efficiency facilitator of neurologic functions by improving speed and skill in performance of tasks produced by the cerebral area to which it is reciprocally connected. At the subcortical level, critical regions in these processes are the basal ganglia and thalamic nuclei. Altogether, a modulatory role of the cerebellum over multiple brain regions appears compelling, mainly by considering the complexity of its reciprocal connections to common neural networks involved in motor, vestibular, cognitive, affective, sensory, and autonomic processing—all functions affected at different phases and degrees across the migraine spectrum. Despite the many associations between cerebellum and migraine, it is not known whether this structure contributes to migraine initiation, symptoms generation or headache. Specific cerebellar dysfunction via genetically driven excitatory/inhibitory imbalances, oligemia and/or increased risk to white matter lesions has been proposed as a critical contributor to migraine pathogenesis. Therefore, given that neural projections and functions of many brainstem, midbrain and forebrain areas are shared between the cerebellum and migraine trigeminovascular pathways, this review will provide a synopsis on cerebellar structure and function, its role in trigeminal pain, and an updated overview of relevant clinical and preclinical literature on the potential role of cerebellar networks in migraine pathophysiology.
Collapse
Affiliation(s)
- Rodrigo Noseda
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- *Correspondence: Rodrigo Noseda
| |
Collapse
|
24
|
Rocha DN, Carvalho ED, Relvas JB, Oliveira MJ, Pêgo AP. Mechanotransduction: Exploring New Therapeutic Avenues in Central Nervous System Pathology. Front Neurosci 2022; 16:861613. [PMID: 35573316 PMCID: PMC9096357 DOI: 10.3389/fnins.2022.861613] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cells are continuously exposed to physical forces and the central nervous system (CNS) is no exception. Cells dynamically adapt their behavior and remodel the surrounding environment in response to forces. The importance of mechanotransduction in the CNS is illustrated by exploring its role in CNS pathology development and progression. The crosstalk between the biochemical and biophysical components of the extracellular matrix (ECM) are here described, considering the recent explosion of literature demonstrating the powerful influence of biophysical stimuli like density, rigidity and geometry of the ECM on cell behavior. This review aims at integrating mechanical properties into our understanding of the molecular basis of CNS disease. The mechanisms that mediate mechanotransduction events, like integrin, Rho/ROCK and matrix metalloproteinases signaling pathways are revised. Analysis of CNS pathologies in this context has revealed that a wide range of neurological diseases share as hallmarks alterations of the tissue mechanical properties. Therefore, it is our belief that the understanding of CNS mechanotransduction pathways may lead to the development of improved medical devices and diagnostic methods as well as new therapeutic targets and strategies for CNS repair.
Collapse
Affiliation(s)
- Daniela Nogueira Rocha
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Eva Daniela Carvalho
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Faculdade de Engenharia (FEUP), Universidade do Porto, Porto, Portugal
| | - João Bettencourt Relvas
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Maria José Oliveira
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana Paula Pêgo
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
25
|
Lei M, Zhang J, Wu D. A Functional Magnetic Resonance Imaging Study on Activation of Anterior Cingulate Cortex at Episode and Interictal Phases in Migraine. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
<sec> <title>Objective:</title> By using amplitude of low-frequency fluctuations (ALFF) we have analyzed activationsin brain regions at different phases in migraineurs. </sec> <sec> <title>Methods:</title> Participants
included 41 patients with migraine, 19 in episode and 22 in interictal phase, and 22 controls in the healthy condition. To analyze the brain function of patients and controls, ALFF was used for performing the post-processing in the resting state by scores of Montreal Cognitive Assessment (MoCA)
scale, Mini-Mental State Examination (MMSE), Hamilton Anxiety Rating Scale (HAM-A) and Hamilton Depression Rating Scale (HAM-D). </sec> <sec> <title>Results:</title> The comparison between groups of patients with migraine in the episode or interictal phases,
and healthy controls showed that both episode and interictal migraine groups had the similar HAM-A and HAM-D scores (P > 0.05), but higher than that in controls (P < 0.01). For ALFF values of Episode and Interictal groups, the Montreal Neurological Institute (MNI) coordinates
of the decreased ALFF were (−9, 42, 9), the voxel size = 215, including the bilateral anterior cingulate cortex (ACC), T =−4.15, without significant differences. Patients in Interictal group were with a stronger activation at MNI coordinates (12, 51, 12), in the bilateral
ACC, voxel size = 90, T =3.87. </sec> <sec> <title>Conclusion:</title> ACC plays an adaptive, regulatory role in migraine and is related to multiple brain regions, which may mediate activation through descending anti-nociceptive pathways. ACC is related
to opioid receptor and glutamate excitatory regulation. </sec>
Collapse
Affiliation(s)
- Ming Lei
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Dongmei Wu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
26
|
Hsiao FJ, Chen WT, Pan LLH, Liu HY, Wang YF, Chen SP, Lai KL, Coppola G, Wang SJ. Dynamic brainstem and somatosensory cortical excitability during migraine cycles. J Headache Pain 2022; 23:21. [PMID: 35123411 PMCID: PMC8903675 DOI: 10.1186/s10194-022-01392-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/20/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract Background Migraine has complex pathophysiological characteristics and episodic attacks. To decipher the cyclic neurophysiological features of migraine attacks, in this study, we compared neuronal excitability in the brainstem and primary somatosensory (S1) region between migraine phases for 30 consecutive days in two patients with episodic migraine. Methods Both patients underwent EEG recording of event-related potentials with the somatosensory and paired-pulse paradigms for 30 consecutive days. The migraine cycle was divided into the following phases: 24–48 h before headache onset (Pre2), within 24 h before headache onset (Pre1), during the migraine attack (Ictal), within 24 h after headache offset (Post1), and the interval of ˃48 h between the last and next headache phase (Interictal). The normalised current intensity in the brainstem and S1 and gating ratio in the S1 were recorded and examined. Results Six migraine cycles (three for each patient) were analysed. In both patients, the somatosensory excitability in the brainstem (peaking at 12–14 ms after stimulation) and S1 (peaking at 18–19 ms after stimulation) peaked in the Pre1 phase. The S1 inhibitory capability was higher in the Ictal phase than in the Pre1 phase. Conclusion This study demonstrates that migraine is a cyclic excitatory disorder and that the neural substrates involved include the somatosensory system, starting in the brainstem and spanning subsequently to the S1 before the migraine occurs. Further investigations with larger sample sizes are warranted.
Collapse
Affiliation(s)
- Fu-Jung Hsiao
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Ta Chen
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, 201, Shihpai Rd Sec 2, Taipei, 112, Taiwan. .,Department of Neurology, Keelung Hospital, Ministry of Health and Welfare, Keelung, Taiwan.
| | - Li-Ling Hope Pan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hung-Yu Liu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, 201, Shihpai Rd Sec 2, Taipei, 112, Taiwan
| | - Yen-Feng Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, 201, Shihpai Rd Sec 2, Taipei, 112, Taiwan
| | - Shih-Pin Chen
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, 201, Shihpai Rd Sec 2, Taipei, 112, Taiwan
| | - Kuan-Lin Lai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, 201, Shihpai Rd Sec 2, Taipei, 112, Taiwan
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Shuu-Jiun Wang
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, 201, Shihpai Rd Sec 2, Taipei, 112, Taiwan.
| |
Collapse
|
27
|
Decreased Gray Matter Volume in the Frontal Cortex of Migraine Patients with Associated Functional Connectivity Alterations: A VBM and rs-FC Study. Pain Res Manag 2022; 2022:2115956. [PMID: 35126799 PMCID: PMC8808241 DOI: 10.1155/2022/2115956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/01/2021] [Accepted: 01/07/2022] [Indexed: 01/03/2023]
Abstract
Background Resting-state functional MRI is widely used in migraine research. However, the pathophysiology and imaging markers specific for migraine pathologies are not well understood. In this study, we combined both structural and functional images to explore the concurrence and process of migraines. Methods Thirty-four patients with a history of migraine without aura presenting during the interictal period (MwoA-DI), 10 patients with migraine without aura presenting during the acute attack (MwoA-DA), and 32 healthy controls (HCs) were recruited in this study. All participants underwent scanning via MRI. Voxel-based morphometry (VBM) and seed-based resting-state functional connectivity (rs-FC) analysis were used to detect the brain structural and associated brain functional connectivity. Results In VBM analysis, a decrease of gray matter volume (GMV) in the middle frontal cortex was found in MwoA patients compared with HCs. The GMV of the middle frontal cortex had a negative correction with the duration of disease. In rs-FC analysis, the left middle frontal cortex (lower, VBM result) in both the MwoA-DA and the HC groups showed significantly increased functional connectivity with the left middle frontal cortex (upper) and left superior frontal cortex compared with MwoA-DI. The left middle frontal cortex (lower) in the MwoA-DI group also showed decreased functional connectivity in the left posterior cingulate cortex (PCC) compared with the HC group. The left middle frontal cortex (lower) in the MwoA-DA group demonstrated significantly increased functional connectivity in the left cerebellum lobule VI compared with the HC group. Conclusions Our results demonstrated that the middle frontal cortex may serve as an important target in the frequency and severity of migraines due to its role in pain regulation through the default mode network, especially in the PCC. In addition, the cerebellum may modulate the pathophysiology of migraines by serving as a communication point between the cortex and the brainstem.
Collapse
|
28
|
Mínguez-Olaondo A, Quintas S, Morollón Sánchez-Mateos N, López-Bravo A, Vila-Pueyo M, Grozeva V, Belvís R, Santos-Lasaosa S, Irimia P. Cutaneous Allodynia in Migraine: A Narrative Review. Front Neurol 2022; 12:831035. [PMID: 35153995 PMCID: PMC8830422 DOI: 10.3389/fneur.2021.831035] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/29/2021] [Indexed: 11/28/2022] Open
Abstract
Objective In the present work, we conduct a narrative review of the most relevant literature on cutaneous allodynia (CA) in migraine. Background CA is regarded as the perception of pain in response to non-noxious skin stimulation. The number of research studies relating to CA and migraine has increased strikingly over the last few decades. Therefore, the clinician treating migraine patients must recognize this common symptom and have up-to-date knowledge of its importance from the pathophysiological, diagnostic, prognostic and therapeutic point of view. Methods We performed a comprehensive narrative review to analyze existing literature regarding CA in migraine, with a special focus on epidemiology, pathophysiology, assessment methods, risk for chronification, diagnosis and management. PubMed and the Cochrane databases were used for the literature search. Results The prevalence of CA in patients with migraine is approximately 60%. The mechanisms underlying CA in migraine are not completely clarified but include a sensitization phenomenon at different levels of the trigemino-talamo-cortical nociceptive pathway and dysfunction of brainstem and cortical areas that modulate thalamocortical inputs. The gold standard for the assessment of CA is quantitative sensory testing (QST), but the validated Allodynia 12-item questionnaire is preferred in clinical setting. The presence of CA is associated with an increased risk of migraine chronification and has therapeutic implications. Conclusions CA is a marker of central sensitization in patients with migraine that has been associated with an increased risk of chronification and may influence therapeutic decisions.
Collapse
Affiliation(s)
- Ane Mínguez-Olaondo
- Neurology Department, Hospital Universitario Donostia, San Sebastián, Spain
- Athenea Neuroclinics, Policlínica Guipúzcoa, Grupo Quirón Salud Donostia, San Sebastián, Spain
- Neuroscience Area, Biodonostia Health Institute, Donostia, Spain
- Medicine Faculty, University of Deusto, Bilbao, Spain
- Clínica Universidad de Navarra, Pamplona, Spain
| | - Sonia Quintas
- Hospital Universitario de la Princesa, Madrid, Spain
| | | | - Alba López-Bravo
- Hospital Reina Sofía, Tudela, Spain
- Instituto de Investigación Sanitaria Aragón, Zaragoza, Spain
| | - Marta Vila-Pueyo
- Headache and Neurological Pain Research Group, Department of Medicine, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Robert Belvís
- Headache and Neuralgia Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Sonia Santos-Lasaosa
- Instituto de Investigación Sanitaria Aragón, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Pablo Irimia
- Clínica Universidad de Navarra, Pamplona, Spain
- *Correspondence: Pablo Irimia
| |
Collapse
|
29
|
OUP accepted manuscript. Brain 2022; 145:3214-3224. [DOI: 10.1093/brain/awac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/11/2022] [Accepted: 03/04/2022] [Indexed: 11/15/2022] Open
|
30
|
Pourrahimi AM, Abbasnejad M, Raoof M, Esmaeili-Mahani S, Kooshki R. The involvement of orexin 1 and cannabinoid 1 receptors within the ventrolateral periaqueductal gray matter in the modulation of migraine-induced anxiety and social behavior deficits of rats. Peptides 2021; 146:170651. [PMID: 34560171 DOI: 10.1016/j.peptides.2021.170651] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/14/2021] [Accepted: 09/19/2021] [Indexed: 11/26/2022]
Abstract
Orexin 1 receptors (Orx1R) and cannabinoid 1 receptors (CB1R) are implicated in migraine pathophysiology. This study evaluated the potential involvement of Orx1R and CB1R within the ventrolateral periaqueductal gray matter (vlPAG) in the modulation of anxiety-like behavior and social interaction of migraineurs rats. A rat model of migraine induced by recurrent administration of nitroglycerin (NTG) (5 mg/kg/i.p.). The groups of rats (n = 6) were then subjected to intra-vlPAG microinjection of orexin-A (25, 50 pM), and Orx1R antagonist SB334867 (20, 40 nM) or AM 251 (2, 4 μg) as a CB1R antagonist. Behavioral responses were evaluated in elevated plus maze (EPM), open field (OF) and three-chambered social test apparatus. NTG produced a marked anxiety like behaviors, in both EPM and OF tasks. It did also decrease social performance. NTG-related anxiety and social conflicts were attenuated by orexin-A (25, 50 pM). However, NTG effects were exacerbated by SB334867 (40 nM) and AM251 (2, 4 μg). The orexin-A-mediated suppression of NTG-induced anxiety and social conflicts were prevented by either SB334867 (20 nM) or AM251 (2 μg). The findings suggest roles for Orx1R and CB1R signaling within vlPAG in the modulation of migraine-induced anxiety-like behavior and social dysfunction in rats.
Collapse
Affiliation(s)
- Ali Mohammad Pourrahimi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Maryam Raoof
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Endodontology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Razieh Kooshki
- Department of Biology, Faculty of Sciences, Lorestan University, Khorramabad, Iran.
| |
Collapse
|
31
|
Hassan M, Belavadi R, Gudigopuram SVR, Raguthu CC, Gajjela H, Kela I, Kakarala CL, Modi S, Sange I. Migraine and Stroke: In Search of Shared Pathways, Mechanisms, and Risk Factors. Cureus 2021; 13:e20202. [PMID: 34900505 PMCID: PMC8647778 DOI: 10.7759/cureus.20202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 01/01/2023] Open
Abstract
Migraines are one of the emerging causes of disabilities experienced worldwide, and strokes are the second leading cause of death globally. Migraines with aura have been reported to be associated with a higher risk of ischemic strokes, whereas hemorrhagic strokes are more closely associated with migraines without aura, possible mechanisms that link migraines to strokes. These can be categorized into vascular mechanisms such as vasospasm, endothelial and platelet dysfunction, and alteration in the vessel wall seen in migraineurs, further perpetrated by vascular risk factors such as hypertension and hyperlipidemias. Cerebral hypoperfusion that occurs in migraines can cause an electrical aberrance, leading to a phenomenon known as "spreading depression" which can contribute to strokes. In this review, we discuss bloodstream elevation in procoagulants such as antiphospholipid antibodies, homocysteine, von Willebrand factor, and prothrombin. Maintaining pregnant women who actively experience migraines with aura under close observation may be of some value in achieving better outcomes. Women who experience migraines after starting hormonal contraception are at a higher risk of experiencing strokes and stand to benefit from being switched to non-hormonal methods. In this article, we discuss the mechanisms linking migraines and strokes, briefly discuss the pathogenesis, and explore the risk factors contributing to the association therein. In addition, we examine the relationship between migraines and ischemic strokes, as well as hemorrhagic strokes, and review management considerations.
Collapse
Affiliation(s)
- Mohammad Hassan
- Internal Medicine, Mohi-ud-Din Islamic Medical College, Mirpur, PAK
| | - Rishab Belavadi
- Surgery, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, IND
| | | | | | - Harini Gajjela
- Research, Our Lady of Fatima University College of Medicine, Valenzuela, PHL
| | - Iljena Kela
- Family Medicine, Jagiellonian University Medical College, Krakow, POL
| | - Chandra L Kakarala
- Internal Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, IND
| | - Srimy Modi
- Research, K. J. Somaiya Medical College, Mumbai, IND
| | - Ibrahim Sange
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Research, K. J. Somaiya Medical College, Mumbai, IND
| |
Collapse
|
32
|
A Narrative Review of Neuroimaging Studies in Acupuncture for Migraine. Pain Res Manag 2021; 2021:9460695. [PMID: 34804268 PMCID: PMC8598357 DOI: 10.1155/2021/9460695] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/10/2021] [Indexed: 12/18/2022]
Abstract
Acupuncture has been widely used as an alternative and complementary therapy for migraine. With the development of neuroimaging techniques, the central mechanism of acupuncture for migraine has gained increasing attention. This review aimed to analyze the study design and main findings of neuroimaging studies of acupuncture for migraine to provide the reference for future research. The original studies were collected and screened in three English databases (PubMed, Embase, and Cochrane Library) and four Chinese databases (Chinese National Knowledge Infrastructure, Chinese Biomedical Literature database, the Chongqing VIP database, and Wanfang database). As a result, a total of 28 articles were included. Functional magnetic resonance imaging was the most used neuroimaging technique to explore the cerebral activities of acupuncture for migraine. This review manifested that acupuncture could elicit cerebral responses on patients with migraine, different from sham acupuncture. The results indicated that the pain systems, including the medial pain pathway, lateral pain pathway, and descending pain modulatory system, participated in the modulation of the cerebral activities of migraine by acupuncture.
Collapse
|
33
|
Erdener ŞE, Kaya Z, Dalkara T. Parenchymal neuroinflammatory signaling and dural neurogenic inflammation in migraine. J Headache Pain 2021; 22:138. [PMID: 34794382 PMCID: PMC8600694 DOI: 10.1186/s10194-021-01353-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background Pain is generally concomitant with an inflammatory reaction at the site where the nociceptive fibers are activated. Rodent studies suggest that a sterile meningeal inflammatory signaling cascade may play a role in migraine headache as well. Experimental studies also suggest that a parenchymal inflammatory signaling cascade may report the non-homeostatic conditions in brain to the meninges to induce headache. However, how these signaling mechanisms function in patients is unclear and debated. Our aim is to discuss the role of inflammatory signaling in migraine pathophysiology in light of recent developments. Body Rodent studies suggest that a sterile meningeal inflammatory reaction can be initiated by release of peptides from active trigeminocervical C-fibers and stimulation of resident macrophages and dendritic/mast cells. This inflammatory reaction might be needed for sustained stimulation and sensitization of meningeal nociceptors after initial activation along with ganglionic and central mechanisms. Most migraines likely have cerebral origin as suggested by prodromal neurologic symptoms. Based on rodent studies, a parenchymal inflammatory signaling cascade has been proposed as a potential mechanism linking cortical spreading depolarization (CSD) to meningeal nociception. A recent PET/MRI study using a sensitive inflammation marker showed the presence of meningeal inflammatory activity in migraine with aura patients over the occipital cortex generating the visual aura. These studies also suggest the presence of a parenchymal inflammatory activity, supporting the experimental findings. In rodents, parenchymal inflammatory signaling has also been shown to be activated by migraine triggers such as sleep deprivation without requiring a CSD because of the resultant transcriptional changes, predisposing to inadequate synaptic energy supply during intense excitatory transmission. Thus, it may be hypothesized that neuronal stress created by either CSD or synaptic activity-energy mismatch could both initiate a parenchymal inflammatory signaling cascade, propagating to the meninges, where it is converted to a lasting headache with or without aura. Conclusion Experimental studies in animals and emerging imaging findings from patients warrant further research to gain deeper insight to the complex role of inflammatory signaling in headache generation in migraine.
Collapse
Affiliation(s)
- Şefik Evren Erdener
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Zeynep Kaya
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Turgay Dalkara
- Institute of Neurological Sciences and Psychiatry, and Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
34
|
Dönder A, Cafer V, Yilmaz A, Aslanhan H, Arikanoğlu A. Investigation of serum vaspin, visfatin, chemerin and IL-18 levels in migraine patients. ARQUIVOS DE NEURO-PSIQUIATRIA 2021; 79:789-794. [PMID: 34669816 DOI: 10.1590/0004-282x-anp-2020-0425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Migraines are headaches caused by changes in the trigeminovascular metabolic pathway. Migraine headache attacks are associated with neurovascular inflammation, but their pathophysiological mechanisms have not been fully explained. OBJECTIVE To investigate the relationship between serum vaspin, visfatin, chemerin and interleukin-18 (IL-18) levels and the frequency of attacks in migraine headache. METHODS Three groups were established: migraine with aura (n = 50), migraine without aura (n = 50) and control group (n = 50). The migraine diagnosis was made in accordance with the International Classification of Headache Disorders-III beta diagnostic criteria. The analyses on serum vaspin, visfatin, chemerin and IL-18 levels were performed using the enzyme-linked immunosorbent assay method. RESULTS The serum vaspin, visfatin, chemerin and IL-18 levels were found to be significantly higher in the migraine patients than in the control group (p < 0.01). No statistically significant differences in serum vaspin, visfatin, chemerin and IL-18 levels were found among the migraine patients during attacks or in the interictal period (p>0.05). The serum visfatin and chemerin levels of the migraine patients were positively correlated with their serum IL-18 levels (p < 0.01), while their serum chemerin and visfatin levels were positively correlated with their serum vaspin levels (p < 0.05). CONCLUSIONS This study showed that these biomarkers may be related to migraine pathogenesis. Nonetheless, we believe that more comprehensive studies are needed in order to further understand the role of vaspin, visfatin, chemerin and IL-18 levels in the pathophysiology of migraine headaches.
Collapse
Affiliation(s)
- Ahmet Dönder
- Mardin Artuklu University, Vocational School of Health Services, Department of Medical Laboratory, Mardin, Turkey
| | - Vugar Cafer
- Istinye University, Department of Neurology, Istanbul, Turkey
| | - Ahmet Yilmaz
- Dicle University, Faculty of Medicine, Department of Family Medicine, Diyarbakır, Turkey
| | - Hamza Aslanhan
- Dicle University, Faculty of Medicine, Department of Family Medicine, Diyarbakır, Turkey
| | - Adalet Arikanoğlu
- Dicle University, Faculty of Medicine, Department of Neurology, Diyarbakır, Turkey
| |
Collapse
|
35
|
Nikolova S, Schwedt TJ, Li J, Wu T, Dumkrieger GM, Ross KB, Berisha V, Chong CD. T2* reduction in patients with acute post-traumatic headache. Cephalalgia 2021; 42:357-365. [PMID: 34644192 DOI: 10.1177/03331024211048509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Although iron accumulation in pain-processing brain regions has been associated with repeated migraine attacks, brain structural changes associated with post-traumatic headache have yet to be elucidated. To determine whether iron accumulation is associated with acute post-traumatic headache, magnetic resonance transverse relaxation rates (T2*) associated with iron accumulation were investigated between individuals with acute post-traumatic headache attributed to mild traumatic brain injury and healthy controls. METHODS Twenty individuals with acute post-traumatic headache and 20 age-matched healthy controls underwent 3T brain magnetic resonance imaging including quantitative T2* maps. T2* differences between individuals with post-traumatic headache versus healthy controls were compared using age-matched paired t-tests. Associations of T2* values with headache frequency and number of mild traumatic brain injuries were investigated using multiple linear regression in individuals with post-traumatic headache. Significance was determined using uncorrected p-value and cluster size threshold. RESULTS Individuals with post-traumatic headache had lower T2* values compared to healthy controls in cortical (bilateral frontal, bilateral anterior and posterior cingulate, right postcentral, bilateral temporal, right supramarginal, right rolandic, left insula, left occipital, right parahippocampal), subcortical (left putamen, bilateral hippocampal) and brainstem regions (pons). Within post-traumatic headache subjects, multiple linear regression showed a negative association between T2* in the right inferior parietal/supramarginal regions and number of mild traumatic brain injuries and a negative association between T2* in bilateral cingulate, bilateral precuneus, bilateral supplementary motor areas, bilateral insula, right middle temporal and right lingual areas and headache frequency. CONCLUSIONS Acute post-traumatic headache is associated with iron accumulation in multiple brain regions. Correlations with headache frequency and number of lifetime mild traumatic brain injuries suggest that iron accumulation is part of the pathophysiology or a marker of mild traumatic brain injury and post-traumatic headache.
Collapse
Affiliation(s)
| | - Todd J Schwedt
- Department of Neurology, Mayo Clinic, Phoenix, AZ, USA.,ASU-Mayo Center for Innovative Imaging, Tempe, AZ, USA
| | - Jing Li
- Georgia Tech, School of Industrial and Systems Engineering, 1372Georgia Tech, Georgia, USA
| | - Teresa Wu
- ASU-Mayo Center for Innovative Imaging, Tempe, AZ, USA.,School of Computing, Informatics, Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | | | | | - Visar Berisha
- ASU-Mayo Center for Innovative Imaging, Tempe, AZ, USA.,School of Electrical, Computer and Energy Engineering and College of Health Solutions, Arizona State University, Tempe, AZ, USA.,College of Health Solutions, Phoenix, AZ, USA
| | - Catherine D Chong
- Department of Neurology, Mayo Clinic, Phoenix, AZ, USA.,ASU-Mayo Center for Innovative Imaging, Tempe, AZ, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
36
|
Kim YE, Kim MK, Suh SI, Kim JH. Altered trigeminothalamic spontaneous low-frequency oscillations in migraine without aura: a resting-state fMRI study. BMC Neurol 2021; 21:342. [PMID: 34493235 PMCID: PMC8422747 DOI: 10.1186/s12883-021-02374-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Background Recent resting-state fMRI studies demonstrated functional dysconnectivity within the central pain matrix in migraineurs. This study aimed to investigate the spatial distribution and amplitude of low-frequency oscillations (LFOs) using fractional amplitude of low-frequency fluctuation (fALFF) analysis in migraine patients without aura, and to examine relationships between regional LFOs and clinical variables. Methods Resting-state fMRI data were obtained and preprocessed in 44 migraine patients without aura and 31 matched controls. fALFF was computed according to the original method, z-transformed for standardization, and compared between migraineurs and controls. Correlation analysis between regional fALFF and clinical variables was performed in migraineurs as well. Results Compared with controls, migraineurs had significant fALFF increases in bilateral ventral posteromedial (VPM) thalamus and brainstem encompassing rostral ventromedial medulla (RVM) and trigeminocervical complex (TCC). Regional fALFF values of bilateral VPM thalamus and brainstem positively correlated with disease duration, but not with migraine attack frequency or Migraine Disability Assessment Scale score. Conclusions We have provided evidence for abnormal LFOs in the brainstem including RVM/TCC and thalamic VPM nucleus in migraine without aura, implicating trigeminothalamic network oscillations in migraine pathophysiology. Our results suggest that enhanced LFO activity may underpin the interictal trigeminothalamic dysrhythmia that could contribute to the impairments of pain transmission and modulation in migraine. Given our finding of increasing fALFF in relation to increasing disease duration, the observed trigeminothalamic dysrhythmia may indicate either an inherent pathology leading to migraine headaches or a consequence of repeated attacks on the brain.
Collapse
Affiliation(s)
- Ye Eun Kim
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, 152-703, Guro-dong gil 97, Guro-dong, Guro-gu, Seoul, Republic of Korea
| | - Min Kyung Kim
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, 152-703, Guro-dong gil 97, Guro-dong, Guro-gu, Seoul, Republic of Korea
| | - Sang-Il Suh
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Ji Hyun Kim
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, 152-703, Guro-dong gil 97, Guro-dong, Guro-gu, Seoul, Republic of Korea.
| |
Collapse
|
37
|
Valenzuela-Fuenzalida JJ, Suazo-Santibañez A, Semmler MG, Cariseo-Avila C, Santana-Machuca E, Orellana-Donoso M. The structural and functional importance of the thalamus in migraine processes with and without aura. A literature review. TRANSLATIONAL RESEARCH IN ANATOMY 2021. [DOI: 10.1016/j.tria.2021.100130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
38
|
Guarnera A, Bottino F, Napolitano A, Sforza G, Cappa M, Chioma L, Pasquini L, Rossi-Espagnet MC, Lucignani G, Figà-Talamanca L, Carducci C, Ruscitto C, Valeriani M, Longo D, Papetti L. Early alterations of cortical thickness and gyrification in migraine without aura: a retrospective MRI study in pediatric patients. J Headache Pain 2021; 22:79. [PMID: 34294048 PMCID: PMC8296718 DOI: 10.1186/s10194-021-01290-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background Migraine is the most common neurological disease, with high social-economical burden. Although there is growing evidence of brain structural and functional abnormalities in patients with migraine, few studies have been conducted on children and no studies investigating cortical gyrification have been conducted on pediatric patients affected by migraine without aura. Methods Seventy-two pediatric patients affected by migraine without aura and eighty-two controls aged between 6 and 18 were retrospectively recruited with the following inclusion criteria: MRI exam showing no morphological or signal abnormalities, no systemic comorbidities, no abnormal neurological examination. Cortical thickness (CT) and local gyrification index (LGI) were obtained through a dedicated algorithm, consisting of a combination of voxel-based and surface-based morphometric techniques. The statistical analysis was performed separately on CT and LGI between: patients and controls; subgroups of controls and subgroups of patients. Results Patients showed a decreased LGI in the left superior parietal lobule and in the supramarginal gyrus, compared to controls. Female patients presented a decreased LGI in the right superior, middle and transverse temporal gyri, right postcentral gyrus and supramarginal gyrus compared to male patients. Compared to migraine patients younger than 12 years, the ≥ 12-year-old subjects showed a decreased CT in the superior and middle frontal gyri, pre- and post-central cortex, paracentral lobule, superior and transverse temporal gyri, supramarginal gyrus and posterior insula. Migraine patients experiencing nausea and/or vomiting during headache attacks presented an increased CT in the pars opercularis of the left inferior frontal gyrus. Conclusions Differences in CT and LGI in patients affected by migraine without aura may suggest the presence of congenital and acquired abnormalities in migraine and that migraine might represent a vast spectrum of different entities. In particular, ≥ 12-year-old pediatric patients showed a decreased CT in areas related to the executive function and nociceptive networks compared to younger patients, while female patients compared to males showed a decreased CT of the auditory cortex compared to males. Therefore, early and tailored therapies are paramount to obtain migraine control, prevent cerebral reduction of cortical thickness and preserve executive function and nociception networks to ensure a high quality of life.
Collapse
Affiliation(s)
- Alessia Guarnera
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy.,Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Via di Grottarossa, 1035-1039, 00189, Rome, Italy
| | - Francesca Bottino
- Medical Physics Department, Bambino Gesù Children's Hospital, Rome, Italy
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children's Hospital, Rome, Italy.
| | - Giorgia Sforza
- Pediatric Headache Center, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Marco Cappa
- Unit of Endocrinology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Laura Chioma
- Unit of Endocrinology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Luca Pasquini
- Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Via di Grottarossa, 1035-1039, 00189, Rome, Italy.,Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 10065, New York City, NY, USA
| | - Maria Camilla Rossi-Espagnet
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy.,Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Via di Grottarossa, 1035-1039, 00189, Rome, Italy
| | - Giulia Lucignani
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Lorenzo Figà-Talamanca
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Chiara Carducci
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Claudia Ruscitto
- Child Neurology Unit, Systems Medicine Department, Tor Vergata University Hospital of Rome, 00133, Rome, Italy
| | - Massimiliano Valeriani
- Pediatric Headache Center, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy.,Center for Sensory-Motor Interaction, Aalborg University, 9220, Aalborg, Denmark
| | - Daniela Longo
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Laura Papetti
- Pediatric Headache Center, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| |
Collapse
|
39
|
Abstract
Background Key structures for the pathophysiology of primary headache disorders such as migraine, cluster headache, and other trigeminal autonomic cephalalgias were identified by imaging in the past years. Objective Available data on functional imaging in primary headache disorders are summarized in this review. Material and Methods We performed a MEDLINE search on December 27th, 2020 using the search terms "primary headache" AND "imaging" that returned 453 results in English, out of which 137 were labeled reviews. All articles were evaluated for content and relevance for this narrative review. Results The structure depicted most consistently using functional imaging in different states of primary headaches (without and with pain) was the posterior hypothalamus. Whole-brain imaging techniques such as resting-state functional resonance imaging showed a wide-ranging association of cortical and subcortical areas with human nociceptive processing in the pathophysiological mechanisms underlying the different TACs. Similarities of distinct groups of primary headache disorders, as well as their differences in brain activation across these disorders, were highlighted. Conclusion The importance of neuroimaging research from clinical practice point of view remains the reliable and objective distinction of each individual pain syndrome from one another. This will help to make the correct clinical diagnosis and pave the way for better and effective treatment in the future. More research will be necessary to fulfill this unmet need.
Collapse
Affiliation(s)
- Steffen Naegel
- Department of Neurology, Martin Luther University Halle- Wittenberg and University Hospital Halle, Halle (Saale), Germany
| | - Mark Obermann
- Department of Neurology, Klinikum Weser-Egge, Höxter, Germany
| |
Collapse
|
40
|
Karsan N, Goadsby PJ. Migraine Is More Than Just Headache: Is the Link to Chronic Fatigue and Mood Disorders Simply Due to Shared Biological Systems? Front Hum Neurosci 2021; 15:646692. [PMID: 34149377 PMCID: PMC8209296 DOI: 10.3389/fnhum.2021.646692] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Migraine is a symptomatically heterogeneous condition, of which headache is just one manifestation. Migraine is a disorder of altered sensory thresholding, with hypersensitivity among sufferers to sensory input. Advances in functional neuroimaging have highlighted that several brain areas are involved even prior to pain onset. Clinically, patients can experience symptoms hours to days prior to migraine pain, which can warn of impending headache. These symptoms can include mood and cognitive change, fatigue, and neck discomfort. Some epidemiological studies have suggested that migraine is associated in a bidirectional fashion with other disorders, such as mood disorders and chronic fatigue, as well as with other pain conditions such as fibromyalgia. This review will focus on the literature surrounding alterations in fatigue, mood, and cognition in particular, in association with migraine, and the suggested links to disorders such as chronic fatigue syndrome and depression. We hypothesize that migraine should be considered a neural disorder of brain function, in which alterations in aminergic networks integrating the limbic system with the sensory and homeostatic systems occur early and persist after headache resolution and perhaps interictally. The associations with some of these other disorders may allude to the inherent sensory sensitivity of the migraine brain and shared neurobiology and neurotransmitter systems rather than true co-morbidity.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, Wolfson Centre for Age-Related Diseases, Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,NIHR-Wellcome Trust King's Clinical Research Facility, SLaM Biomedical Research Centre, King's College Hospital, London, United Kingdom
| | - Peter J Goadsby
- Headache Group, Wolfson Centre for Age-Related Diseases, Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,NIHR-Wellcome Trust King's Clinical Research Facility, SLaM Biomedical Research Centre, King's College Hospital, London, United Kingdom.,Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
41
|
Altamura C, Corbelli I, de Tommaso M, Di Lorenzo C, Di Lorenzo G, Di Renzo A, Filippi M, Jannini TB, Messina R, Parisi P, Parisi V, Pierelli F, Rainero I, Raucci U, Rubino E, Sarchielli P, Li L, Vernieri F, Vollono C, Coppola G. Pathophysiological Bases of Comorbidity in Migraine. Front Hum Neurosci 2021; 15:640574. [PMID: 33958992 PMCID: PMC8093831 DOI: 10.3389/fnhum.2021.640574] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Despite that it is commonly accepted that migraine is a disorder of the nervous system with a prominent genetic basis, it is comorbid with a plethora of medical conditions. Several studies have found bidirectional comorbidity between migraine and different disorders including neurological, psychiatric, cardio- and cerebrovascular, gastrointestinal, metaboloendocrine, and immunological conditions. Each of these has its own genetic load and shares some common characteristics with migraine. The bidirectional mechanisms that are likely to underlie this extensive comorbidity between migraine and other diseases are manifold. Comorbid pathologies can induce and promote thalamocortical network dysexcitability, multi-organ transient or persistent pro-inflammatory state, and disproportionate energetic needs in a variable combination, which in turn may be causative mechanisms of the activation of an ample defensive system with includes the trigeminovascular system in conjunction with the neuroendocrine hypothalamic system. This strategy is designed to maintain brain homeostasis by regulating homeostatic needs, such as normal subcortico-cortical excitability, energy balance, osmoregulation, and emotional response. In this light, the treatment of migraine should always involves a multidisciplinary approach, aimed at identifying and, if necessary, eliminating possible risk and comorbidity factors.
Collapse
Affiliation(s)
- Claudia Altamura
- Headache and Neurosonology Unit, Neurology, Campus Bio-Medico University Hospital, Rome, Italy
| | - Ilenia Corbelli
- Clinica Neurologica, Dipartimento di Medicina, Ospedale S.M. Misericordia, Università degli Studi di Perugia, Perugia, Italy
| | - Marina de Tommaso
- Applied Neurophysiology and Pain Unit, SMBNOS Department, Bari Aldo Moro University, Policlinico General Hospital, Bari, Italy
| | - Cherubino Di Lorenzo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Giorgio Di Lorenzo
- Laboratory of Psychophysiology and Cognitive Neuroscience, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS-Fondazione Santa Lucia, Rome, Italy
| | | | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, Institute of Experimental Neurology, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Tommaso B Jannini
- Laboratory of Psychophysiology and Cognitive Neuroscience, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Roberta Messina
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Pasquale Parisi
- Child Neurology, Department of Neuroscience, Mental Health and Sense Organs (NESMOS), Faculty of Medicine & Psychology, c/o Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | | | - Francesco Pierelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy.,Headache Clinic, IRCCS-Neuromed, Pozzilli, Italy
| | - Innocenzo Rainero
- Neurology I, Department of Neuroscience "Rita Levi Montalcini," University of Torino, Torino, Italy
| | - Umberto Raucci
- Department of Emergency, Acceptance and General Pediatrics, Bambino Gesù Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Elisa Rubino
- Neurology I, Department of Neuroscience "Rita Levi Montalcini," University of Torino, Torino, Italy
| | - Paola Sarchielli
- Clinica Neurologica, Dipartimento di Medicina, Ospedale S.M. Misericordia, Università degli Studi di Perugia, Perugia, Italy
| | - Linxin Li
- Nuffield Department of Clinical Neurosciences, Centre for Prevention of Stroke and Dementia, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Fabrizio Vernieri
- Headache and Neurosonology Unit, Neurology, Campus Bio-Medico University Hospital, Rome, Italy
| | - Catello Vollono
- Department of Neurology, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Catholic University, Rome, Italy
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| |
Collapse
|
42
|
Meylakh N, Marciszewski KK, Di Pietro F, Macefield VG, Macey PM, Henderson LA. Brainstem functional oscillations across the migraine cycle: A longitudinal investigation. NEUROIMAGE-CLINICAL 2021; 30:102630. [PMID: 33770547 PMCID: PMC8024773 DOI: 10.1016/j.nicl.2021.102630] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/30/2022]
Abstract
Individual migraineurs’ brainstem function alters through the migraine cycle. Functional changes occurred in the 24-hour period immediately prior to a migraine. Greater resting activity variability was found in the SpV, pons and PAG. Increased infra-slow oscillations and regional homogeneity in the SpV and pons.
Although the mechanisms responsible for migraine initiation remain unknown, recent evidence shows that brain function is different immediately preceding a migraine. This is consistent with the idea that altered brain function, particularly in brainstem sites, may either trigger a migraine or facilitate a peripheral trigger that activates the brain, resulting in pain. The aim of this longitudinal study is therefore to expand on the above findings, and to determine if brainstem function oscillates over a migraine cycle in individual subjects. We performed resting state functional magnetic resonance imaging in three migraineurs and five controls each weekday for four weeks. We found that although resting activity variability was similar in controls and interictal migraineurs, brainstem variability increased dramatically during the 24-hour period preceding a migraine. This increase occurred in brainstem areas in which orofacial afferents terminate: the spinal trigeminal nucleus and dorsal pons. These increases were characterized by increased power at infra-slow frequencies, principally between 0.03 and 0.06 Hz. Furthermore, these power increases were associated with increased regional homogeneity, a measure of local signal coherence. The results show within-individual alterations in brain activity immediately preceding migraine onset and support the hypothesis that altered regional brainstem function before a migraine attack is involved in underlying migraine neurobiology.
Collapse
Affiliation(s)
- Noemi Meylakh
- Department of Anatomy and Histology, University of Sydney, Sydney, NSW 2006, Australia.
| | - Kasia K Marciszewski
- Department of Anatomy and Histology, University of Sydney, Sydney, NSW 2006, Australia
| | - Flavia Di Pietro
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia
| | | | - Paul M Macey
- UCLA School of Nursing and Brain Research Institute, University of California, Los Angeles, CA 90095, United States
| | - Luke A Henderson
- Department of Anatomy and Histology, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
43
|
Abstract
Migraine is a prevalent primary headache disorder and is usually considered as benign. However, structural and functional changes in the brain of individuals with migraine have been reported. High frequency of white matter abnormalities, silent infarct-like lesions, and volumetric changes in both gray and white matter in individuals with migraine compared to controls have been demonstrated. Functional magnetic resonance imaging (MRI) studies found altered connectivity in both the interictal and ictal phase of migraine. MR spectroscopy and positron emission tomography studies suggest abnormal energy metabolism and mitochondrial dysfunction, as well as other metabolic changes in individuals with migraine. In this review, we provide a brief overview of neuroimaging studies that have helped us to characterize some of these changes and discuss their limitations, including small sample sizes and poorly defined control groups. A better understanding of alterations in the brains of patients with migraine could help not only in the diagnosis but may potentially lead to the optimization of a targeted anti-migraine therapy.
Collapse
|
44
|
de Tommaso M, Vecchio E, Quitadamo SG, Coppola G, Di Renzo A, Parisi V, Silvestro M, Russo A, Tedeschi G. Pain-Related Brain Connectivity Changes in Migraine: A Narrative Review and Proof of Concept about Possible Novel Treatments Interference. Brain Sci 2021; 11:brainsci11020234. [PMID: 33668449 PMCID: PMC7917911 DOI: 10.3390/brainsci11020234] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 01/07/2023] Open
Abstract
A neuronal dysfunction based on the imbalance between excitatory and inhibitory cortical-subcortical neurotransmission seems at the basis of migraine. Intercritical neuronal abnormal excitability can culminate in the bioelectrical phenomenon of Cortical Spreading Depression (CSD) with secondary involvement of the vascular system and release of inflammatory mediators, modulating in turn neuronal activity. Neuronal dysfunction encompasses the altered connectivity between the brain areas implicated in the genesis, maintenance and chronic evolution of migraine. Advanced neuroimaging techniques allow to identify changes in functional connectivity (FC) between brain areas involved in pain processes. Through a narrative review, we re-searched case-control studies on FC in migraine, between 2015 and 2020, by inserting the words migraine, fMRI, EEG, MEG, connectivity, pain in Pubmed. Studies on FC have shown that cortical processes, in the neurolimbic pain network, are likely to be prevalent for triggering attacks, in response to predisposing factors, and that these lead to a demodulation of the subcortical areas, at the basis of migraine maintenance. The link between brain dysfunction and peripheral interactions through the inhibition of CGRP, the main mediator of sterile migraine inflammation needs to be further investigated. Preliminary evidence could suggest that peripheral nerves inference at somatic and trigeminal levels, appears to change brain FC.
Collapse
Affiliation(s)
- Marina de Tommaso
- Applied Neurophysiology and Pain Unit, Bari Aldo Moro University, 70121 Bari, Italy; (E.V.); (S.G.Q.)
- Correspondence: ; Tel.: +39-080-5596739
| | - Eleonora Vecchio
- Applied Neurophysiology and Pain Unit, Bari Aldo Moro University, 70121 Bari, Italy; (E.V.); (S.G.Q.)
| | - Silvia Giovanna Quitadamo
- Applied Neurophysiology and Pain Unit, Bari Aldo Moro University, 70121 Bari, Italy; (E.V.); (S.G.Q.)
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, 00185 Rome, Italy;
| | | | - Vincenzo Parisi
- IRCCS—Fondazione Bietti, 00198 Rome, Italy; (A.D.R.); (V.P.)
| | - Marcello Silvestro
- Clinica Neurologica e Neurofisiopatologia Università della Campania ‘Luigi Vanvitelli’, 81100 Napoli, Italy; (M.S.); (A.R.); (G.T.)
| | - Antonio Russo
- Clinica Neurologica e Neurofisiopatologia Università della Campania ‘Luigi Vanvitelli’, 81100 Napoli, Italy; (M.S.); (A.R.); (G.T.)
| | - Gioacchino Tedeschi
- Clinica Neurologica e Neurofisiopatologia Università della Campania ‘Luigi Vanvitelli’, 81100 Napoli, Italy; (M.S.); (A.R.); (G.T.)
| |
Collapse
|
45
|
González-Hernández A, Condés-Lara M, García-Boll E, Villalón CM. An outlook on the trigeminovascular mechanisms of action and side effects concerns of some potential neuropeptidergic antimigraine therapies. Expert Opin Drug Metab Toxicol 2021; 17:179-199. [DOI: 10.1080/17425255.2021.1856366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Miguel Condés-Lara
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Enrique García-Boll
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Carlos M. Villalón
- Departamento de Farmacobiología, Cinvestav-Coapa, Ciudad de México, México
| |
Collapse
|
46
|
Tiseo C, Vacca A, Felbush A, Filimonova T, Gai A, Glazyrina T, Hubalek IA, Marchenko Y, Overeem LH, Piroso S, Tkachev A, Martelletti P, Sacco S. Migraine and sleep disorders: a systematic review. J Headache Pain 2020; 21:126. [PMID: 33109076 PMCID: PMC7590682 DOI: 10.1186/s10194-020-01192-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Migraine and sleep disorders are common and often burdensome chronic conditions with a high prevalence in the general population, and with considerable socio-economic impact and costs.The existence of a relationship between migraine and sleep disorders has been recognized from centuries by clinicians and epidemiological studies. Nevertheless, the exact nature of this association, the underlying mechanisms and interactions are complex and not completely understood. Recent biochemical and functional imaging studies identified central nervous system structures and neurotransmitters involved in the pathophysiology of migraine and also important for the regulation of normal sleep architecture, suggesting a possible causative role, in the pathogenesis of both disorders, of a dysregulation in these common nervous system pathways.This systematic review summarizes the existing data on migraine and sleep disorders with the aim to evaluate the existence of a causal relationship and to assess the presence of influencing factors. The identification of specific sleep disorders associated with migraine should induce clinicians to systematically assess their presence in migraine patients and to adopt combined treatment strategies.
Collapse
Affiliation(s)
- Cindy Tiseo
- Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, L'Aquila, Italy
- Regional Referral Headache Centre, S.S. Filippo e Nicola Hospital, Avezzano, L'Aquila, Italy
| | - Alessandro Vacca
- Headache Center, Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Anton Felbush
- Pain Treatment Center, OOO "Vertebra", Samara City, Russia
| | - Tamara Filimonova
- Federal State Budget Educational Institution of Higher Education "Academician Ye. A. Vagner Perm State Medical University" of the Ministry of Healthcare of the Russian Federation, Perm, Russia
| | - Annalisa Gai
- Headache Center, Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | | | - Irina Anna Hubalek
- Department of Neurology, Headache Center, Charité University Medicine Berlin, Berlin, Germany
| | - Yelena Marchenko
- V. A. Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - Lucas Hendrik Overeem
- Charité - Universitätsmedizin Berlin Charité Centrum Neurologie, Neurochirurgie und Psychiatrie CC, Berlin, Germany
| | - Serena Piroso
- Department of Human Neurosciences, Sapienza University of Rome, Roma, Italy
| | - Alexander Tkachev
- Department of Neurology, Neurosurgery, medical genetics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Paolo Martelletti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Roma, Italy
- Regional Referral Headache Centre, Sant'Andrea Hospital, Rome, Italy
| | - Simona Sacco
- Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, L'Aquila, Italy.
- Regional Referral Headache Centre, S.S. Filippo e Nicola Hospital, Avezzano, L'Aquila, Italy.
| |
Collapse
|
47
|
Schulte LH, Menz MM, Haaker J, May A. The migraineur’s brain networks: Continuous resting state fMRI over 30 days. Cephalalgia 2020; 40:1614-1621. [DOI: 10.1177/0333102420951465] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Objective The aim of the current study was to identify typical alterations in resting state connectivity within different stages of the migraine cycle and to thus explore task-free mechanisms of headache attack generation in migraineurs. Background Recent evidence in migraine pathophysiology suggests that hours and even days before headache certain changes in brain activity take place, ultimately leading to an attack. Here, we investigate changes before headache onset using resting state functional magnetic resonance imaging (fMRI). Methods Nine episodic migraineurs underwent daily resting state functional magnetic resonance imaging for a minimum period of 30 consecutive days, leading to a cumulative number of 282 total days scanned. Thus, data from 15 spontaneous headache attacks were acquired. This allows analysing not only the ictal and the interictal phase of migraine but also the preictal phase. ROI-to-ROI (region of interest) and ROI-to-voxel connectivity was calculated over the migraine cycle. Results Within the ROI-to-ROI analysis, the right nucleus accumbens showed enhanced functional connectivity to the left amygdala, hippocampus and gyrus parahippocampalis in the preictal phase compared to the interictal phase. ROI-to-voxel connectivity of the right accumbens with the dorsal rostral pons was enhanced during the preictal phase compared to interictally. Regarding custom defined ROIs, the dorsal pons was ictally functionally more strongly coupled to the hypothalamic area than interictally. Conclusions This unique data set suggests that particularly connectivity changes in dopaminergic centres and between the dorsal pons and the hypothalamus are important within migraine attack generation and sustainment.
Collapse
Affiliation(s)
- Laura H Schulte
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Clinic for Psychiatry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mareike M Menz
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Haaker
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arne May
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
48
|
Wattiez AS, O'Shea SA, Ten Eyck P, Sowers LP, Recober A, Russo AF, Fattal D. Patients With Vestibular Migraine are More Likely to Have Occipital Headaches than those With Migraine Without Vestibular Symptoms. Headache 2020; 60:1581-1591. [PMID: 32712960 DOI: 10.1111/head.13898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/28/2020] [Accepted: 06/07/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To determine whether patients with vestibular migraine are more likely to suffer from an occipital headache than patients with migraine without vestibular symptoms. BACKGROUND Vestibular migraine is an underdiagnosed disorder in which migraine is associated with vestibular symptoms. Anatomical evidence and symptomatology hint at the involvement of brain structures in the posterior fossa (back of the head location). We hypothesized that vestibular migraine patients are more likely than migraineurs without vestibular symptoms to experience headaches located in the back of the head, that is, occipital headaches. METHODS A retrospective cross-sectional study was conducted at the University of Iowa Hospital and Clinics. Chart analysis of 169 patients was performed. The primary outcome was the location of the headache in vestibular migraine patients and migraineurs without vestibular symptoms. The secondary outcomes included the association of vestibular migraine with gender, age at onset of headache, age at onset of vestibular symptoms (such as vertigo, head motion-induced dizziness), aura, motion sickness, other associated symptoms, family history of headaches, and family history of motion sickness. RESULTS In vestibular migraine group, 45/103 (44%) had occipital location for their headaches vs 12/66 (18%) in migraine patients without vestibular symptoms, for an odd's ratio of 3.5 (95% CI = 1.7-7.2, P < .001). Additionally, the age at onset of headache was greater in the vestibular migraine group (28 ± 12 vs 18 ± 9 years, P < .001) and motion sickness was more common (41/98 (42%) in the vestibular migraine group, 1/64 (2%) in the migraine without vestibular symptoms group, P < .001). CONCLUSIONS This study suggests that patients with vestibular migraine are more likely to have occipital headaches than patients with migraine without vestibular symptoms. Our data support the initiation of a prospective study to determine whether a patient presenting with occipital headaches, with late onset of age of headache, and with a history of motion sickness is at an increased risk for the possible development of vestibular migraine.
Collapse
Affiliation(s)
- Anne-Sophie Wattiez
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,Center for the Prevention and Treatment of Visual Loss, Iowa VA Health Care System, Iowa City, IA, USA
| | - Sarah A O'Shea
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Patrick Ten Eyck
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, IA, USA
| | - Levi P Sowers
- Center for the Prevention and Treatment of Visual Loss, Iowa VA Health Care System, Iowa City, IA, USA
| | - Ana Recober
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,Center for the Prevention and Treatment of Visual Loss, Iowa VA Health Care System, Iowa City, IA, USA.,Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Deema Fattal
- Department of Neurology, University of Iowa, Iowa City, IA, USA.,Neurology Section Iowa City VA Medical Center, Iowa City, IA, USA
| |
Collapse
|
49
|
Karsan N, Bose PR, O’Daly O, Zelaya FO, Goadsby PJ. Alterations in Functional Connectivity During Different Phases of the Triggered Migraine Attack. Headache 2020; 60:1244-1258. [DOI: 10.1111/head.13865] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Nazia Karsan
- Headache Group Department of Basic and Clinical Neuroscience Institute of Psychiatry, Psychology and Neuroscience King’s College London London UK
- NIHR‐Wellcome Trust King’s Clinical Research Facility SLaM Biomedical Research Centre King’s College Hospital London UK
| | - Pyari R. Bose
- Headache Group Department of Basic and Clinical Neuroscience Institute of Psychiatry, Psychology and Neuroscience King’s College London London UK
- NIHR‐Wellcome Trust King’s Clinical Research Facility SLaM Biomedical Research Centre King’s College Hospital London UK
| | - Owen O’Daly
- Department of Neuroimaging Centre for Neuroimaging Sciences Institute of Psychiatry, Psychology and Neuroscience King’s College London London UK
| | - Fernando O. Zelaya
- Department of Neuroimaging Centre for Neuroimaging Sciences Institute of Psychiatry, Psychology and Neuroscience King’s College London London UK
| | - Peter J. Goadsby
- Headache Group Department of Basic and Clinical Neuroscience Institute of Psychiatry, Psychology and Neuroscience King’s College London London UK
- NIHR‐Wellcome Trust King’s Clinical Research Facility SLaM Biomedical Research Centre King’s College Hospital London UK
| |
Collapse
|
50
|
Abstract
Migraine is the most common disabling primary headache globally. Attacks typically present with unilateral throbbing headache and associated symptoms including, nausea, multisensory hypersensitivity, and marked fatigue. In this article, the authors address the underlying neuroanatomical basis for migraine-related headache, associated symptomatology, and discuss key clinical and preclinical findings that indicate that migraine likely results from dysfunctional homeostatic mechanisms. Whereby, abnormal central nervous system responses to extrinsic and intrinsic cues may lead to increased attack susceptibility.
Collapse
Affiliation(s)
- Peter J Goadsby
- Headache Group, Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.
| | - Philip R Holland
- Headache Group, Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| |
Collapse
|