1
|
Bains S, Giudicessi JR, Odening KE, Ackerman MJ. Gene therapy for cardiac arrhythmias. Nat Rev Cardiol 2025:10.1038/s41569-025-01168-5. [PMID: 40410593 DOI: 10.1038/s41569-025-01168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2025] [Indexed: 05/25/2025]
Abstract
Cardiovascular diseases are the leading cause of death globally, with cardiac arrhythmias contributing substantially to this burden. Gene therapy, which directly targets the underlying disease pathobiology, offers an appealing treatment strategy for cardiac arrhythmias owing to its potential as a one-time, curative solution. Over the past two decades, substantial efforts have been made to develop new gene therapy approaches that overcome the limitations of conventional treatments. In this Review, we describe the rationale for gene therapy to treat cardiac arrhythmias; discuss advantages and disadvantages of gene silencing, gene replacement, gene suppression-and-replacement and gene editing technologies; summarize vector modalities and delivery approaches used in the field; present examples of gene therapy strategies used for atrial and ventricular arrhythmias; and highlight the current challenges and limitations in the gene therapy field.
Collapse
Affiliation(s)
- Sahej Bains
- Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - John R Giudicessi
- Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA
| | - Katja E Odening
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Michael J Ackerman
- Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA.
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA.
- Department of Paediatric and Adolescent Medicine, Division of Paediatric Cardiology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
2
|
Patel Y, Orogun L, Yocum N, Rodino‐Klapac LR, East L. A Population Pharmacokinetic Model to Inform Extension of the Eteplirsen Dosing Regimen Across the Broad DMD Population. CPT Pharmacometrics Syst Pharmacol 2025; 14:891-903. [PMID: 40009522 PMCID: PMC12072230 DOI: 10.1002/psp4.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/28/2025] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterized by progressive, irreversible muscle damage that usually leads to premature death from cardiac or respiratory failure. Eteplirsen is a phosphorodiamidate morpholino oligomer and the first antisense oligonucleotide (ASO) approved for the treatment of patients with exon 51 skip-amenable DMD. This analysis presents the first population pharmacokinetics (PK) modeling and simulation performed for the ASO drug class in DMD. Study objectives were to characterize the population PK of eteplirsen in patients with DMD across a broad age range and to identify the impact of covariates on eteplirsen exposure to guide clinical dosing. Plasma concentration data were pooled from six clinical studies of male patients with DMD across the age range of 6 months to 4 years (1 study) and 4-16 years (5 studies). Doses ranged from 0.5 to 50 mg/kg/week across different studies. A three-compartment model with a linear elimination described the eteplirsen plasma concentration data well. Body weight effect on all PK parameters and eGFR, and age (≤ 4 years vs. > 4 years) effect on systemic clearance were key determinants of variability in the final model. Simulations showed similar exposures for eteplirsen (30 mg/kg intravenously once weekly) across different age groups (0.5 to < 2, 2 to < 4, 4 to < 7, and 7 to ≤ 16 years). These findings support the existing eteplirsen dosing paradigm of uniform weight-based dosing at 30 mg/kg/week across the broad age range of the target DMD population (6 months to adolescence).
Collapse
Affiliation(s)
- Yogesh Patel
- Sarepta Therapeutics, Inc.CambridgeMassachusettsUSA
| | - Larry Orogun
- Sarepta Therapeutics, Inc.CambridgeMassachusettsUSA
| | - Nicole Yocum
- Sarepta Therapeutics, Inc.CambridgeMassachusettsUSA
| | | | - Lilly East
- Sarepta Therapeutics, Inc.CambridgeMassachusettsUSA
| |
Collapse
|
3
|
Yamamura T, Nozu K. Exon Skipping Therapies for Rare Kidney Diseases. J Am Soc Nephrol 2025; 36:967-969. [PMID: 39774852 PMCID: PMC12059097 DOI: 10.1681/asn.0000000623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Affiliation(s)
- Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | | |
Collapse
|
4
|
Atterton C, Trew I, Cale JM, Aung-Htut MT, Grens K, Kiernan J, Delagrammatikas CG, Piper M. Overgrowth-intellectual disability disorders: progress in biology, patient advocacy and innovative therapies. Dis Model Mech 2025; 18:dmm052300. [PMID: 40353642 DOI: 10.1242/dmm.052300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
Overgrowth-intellectual disability (OGID) syndromes encompass a group of rare neurodevelopmental disorders that frequently share common clinical presentations. Although the genetic causes of many OGID syndromes are now known, we lack a clear mechanistic understanding of how such variants disrupt developmental processes and ultimately culminate in overgrowth and neurological symptoms. Patient advocacy groups, such as the Overgrowth Syndromes Alliance (OSA), are mobilising patients, families, clinicians and researchers to work together towards a deeper understanding of the clinical needs of patients with OGID, as well as to understand the fundamental biology of the relevant genes, with the goal of developing treatments. In this Review, we summarise three OGID syndromes encompassed by the OSA, namely Sotos syndrome, Malan syndrome and Tatton-Brown-Rahman syndrome. We discuss similarities and differences in the biology behind each disorder and explore future approaches that could potentially provide a way to ameliorate some of the unmet clinical needs of patients with OGID.
Collapse
Affiliation(s)
- Cooper Atterton
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Isabella Trew
- Personalised Medicine Centre, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Jessica M Cale
- Personalised Medicine Centre, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - May T Aung-Htut
- Personalised Medicine Centre, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Kerry Grens
- TBRS Community, Stanfordville, NY 12581, USA
| | | | | | - Michael Piper
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
5
|
Sarvutiene J, Ramanavicius A, Ramanavicius S, Prentice U. Advances in Duchenne Muscular Dystrophy: Diagnostic Techniques and Dystrophin Domain Insights. Int J Mol Sci 2025; 26:3579. [PMID: 40332074 PMCID: PMC12027135 DOI: 10.3390/ijms26083579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/27/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Abnormalities in X chromosomes, either numerical or structural, cause X-linked disorders, such as Duchenne muscular dystrophy (DMD). Recent molecular and cytogenetic techniques can help identify DMD gene mutations. The accurate diagnosis of Duchenne is crucial, directly impacting patient treatment management, genetics, and the establishment of effective prevention strategies. This review provides an overview of X chromosomal disorders affecting Duchenne and discusses how mutations in Dystrophin domains can impact detection accuracy. Firstly, the efficiency and use of cytogenetic and molecular techniques for the genetic diagnosis of Duchenne disease have, thus, become increasingly important. Secondly, artificial intelligence (AI) will be instrumental in developing future therapies by enabling the aggregation and synthesis of extensive and heterogeneous datasets, thereby elucidating underlying molecular mechanisms. However, despite advances in diagnostic technology, understanding the role of Dystrophin in Duchenne disease remains a challenge. Therefore, this review aims to synthesize this complex information to significantly advance the understanding of DMD and how it could affect patient care.
Collapse
Affiliation(s)
- Julija Sarvutiene
- State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio Av. 3, LT-10257 Vilnius, Lithuania; (J.S.); (A.R.); (S.R.)
| | - Arunas Ramanavicius
- State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio Av. 3, LT-10257 Vilnius, Lithuania; (J.S.); (A.R.); (S.R.)
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko St. 24, LT-03225 Vilnius, Lithuania
| | - Simonas Ramanavicius
- State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio Av. 3, LT-10257 Vilnius, Lithuania; (J.S.); (A.R.); (S.R.)
| | - Urte Prentice
- State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio Av. 3, LT-10257 Vilnius, Lithuania; (J.S.); (A.R.); (S.R.)
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko St. 24, LT-03225 Vilnius, Lithuania
- Department of Personalised Medicine, State Research Institute Center for Innovative Medicine, Santariskiu St. 5, LT-08410 Vilnius, Lithuania
| |
Collapse
|
6
|
Anand P, Zhang Y, Patil S, Kaur K. Metabolic Stability and Targeted Delivery of Oligonucleotides: Advancing RNA Therapeutics Beyond The Liver. J Med Chem 2025; 68:6870-6896. [PMID: 39772535 PMCID: PMC11998008 DOI: 10.1021/acs.jmedchem.4c02528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
Oligonucleotides have emerged as a formidable new class of nucleic acid therapeutics. Fully modified oligonucleotides exhibit enhanced metabolic stability and display successful clinical applicability for targets formerly considered "undruggable". Accumulating studies show that conjugation to targeting modalities of stabilized oligonucleotides, especially small interfering RNAs (siRNAs), has enabled robust delivery to intended cells/tissues. However, the major challenge in the field has been the stability and targeted delivery of oligonucleotides (siRNAs and antisense oligonucleotides (ASOs)) to extrahepatic tissues. In this Perspective, we review chemistry innovations and emerging delivery approaches that have revolutionized oligonucleotide drug discovery and development. We explore findings from both academia and industry that highlight the potential of oligonucleotides for indications involving different extrahepatic organs─including skeletal muscles, brain, lungs, skin, heart, adipose tissue, and eyes. In all, continued advances in chemistry coupled with conjugation-based approaches or novel administration routes will further advance the delivery of oligonucleotides to extrahepatic tissues.
Collapse
Affiliation(s)
- Puneet Anand
- Regeneron Genetic Medicines, Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591, United States
| | - Yu Zhang
- Regeneron Genetic Medicines, Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591, United States
| | - Spoorthi Patil
- Regeneron Genetic Medicines, Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591, United States
| | - Keerat Kaur
- Regeneron Genetic Medicines, Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591, United States
| |
Collapse
|
7
|
Arechavala-Gomeza V, López-Martínez A, Aartsma-Rus A. Antisense RNA therapies for muscular dystrophies. J Neuromuscul Dis 2025:22143602251324858. [PMID: 40150900 DOI: 10.1177/22143602251324858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Inherited muscular dystrophies are a heterogeneous group of diseases, caused by different types of genetic mutations. RNA therapies, and particularly antisense oligonucleotides, offer a palette of therapeutic strategies to either reduce the production of harmful proteins or to restore or increase protein expression. Consequently, they offer therapeutic promise for multiple forms of muscular dystrophies. This review outlines the different RNA therapy types considered for the treatment of Duchenne muscular dystrophy, facioscapulohumeral muscular dystrophy and myotonic dystrophy, emphasizing the strategies used to deliver these therapies to skeletal muscle with a focus on approaches that have reached the clinical trial stage.
Collapse
Affiliation(s)
- Virginia Arechavala-Gomeza
- Nucleic Acid Therapeutics for Rare Diseases (NAT-RD), Biobizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Andrea López-Martínez
- Nucleic Acid Therapeutics for Rare Diseases (NAT-RD), Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
8
|
Aartsma-Rus A, Takeda S. A historical perspective on the development of antisense oligonucleotide treatments for Duchenne muscular dystrophy and spinal muscular atrophy. J Neuromuscul Dis 2025:22143602251317422. [PMID: 40034011 DOI: 10.1177/22143602251317422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Splice modulating antisense oligonucleotides (ASOs) have been approved for the treatment of spinal muscular atrophy (nusinersen) and Duchenne muscular dystrophy (eteplirsen) since 2016. Nusinersen obtained full approval based on convincing functional evidence in treated patients. The treatment is currently approved in over 40 countries. By contrast, eteplirsen received accelerated approval and functional evidence from clinical trials that treatment slows down disease progression is still lacking. Approval and access is restricted to the USA and several countries in the Middle-East. In this historical perspective we look back to the development paths of these two ASOs focusing on the differences between the approaches, the target tissues and the diseases. Based on this we propose learnings for future development of ASOs for progressive neuromuscular diseases.
Collapse
Affiliation(s)
- Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Shin'ichi Takeda
- National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| |
Collapse
|
9
|
Oppeneer T, Qi Y, Henshaw J, Larimore K, Melton A, Puoliväli J, Carter C, Fant P, Brennan S, Wetzel LA, Sigg MA, Crawford BE, Magat J, Froelich S, Woloszynek JC, O'Neill CA. Targeting a Novel Site in Exon 51 with Antisense Oligonucleotides Induces Enhanced Exon Skipping in a Mouse Model of Duchenne Muscular Dystrophy. Nucleic Acid Ther 2025; 35:68-80. [PMID: 39916530 DOI: 10.1089/nat.2024.0049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Exon skipping with antisense oligonucleotides (ASOs) can correct disease-causing mutations of Duchenne muscular dystrophy (DMD) through RNA-targeted splice correction. This correction restores the reading frame and supports expression of near full-length dystrophin. First-generation exon 51-skipping ASOs targeted the same binding site, with limited clinical efficacy. We characterized a novel binding site within exon 51 that induced highly efficient exon skipping. A precursor ASO (AON-C12) and clinical ASO (BMN 351) were designed using 2'-O-methyl-modified phosphorothioate (2'OMePS) RNA and locked nucleic acids. hDMDdel52/mdx mice were given AON-C12 or BMN 351 for 13 weeks and evaluated for molecular and phenotypic correction of dystrophin deficiency. BMN 351 treatment induced durable, dose-dependent levels of exon skipping and dystrophin production in all muscles evaluated. In the heart, 8 weeks after the last BMN 351 dose at 18 mg/kg, exon-skipped transcripts remained at 44.3% of total, and dystrophin levels were 21.8% of wild type. BMN 351 reached higher tissue concentrations and percent exon skipping in the heart than a clinically relevant peptide-conjugated phosphorodiamidate morpholino oligomer comparator. BMN 351 also improved gait scores and clinical and anatomical muscle pathology parameters compared with vehicle-treated hDMDdel52/mdx mice. The pharmacologic activity and safety of BMN 351 warrant further nonclinical and clinical development.
Collapse
MESH Headings
- Animals
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/therapy
- Muscular Dystrophy, Duchenne/pathology
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/pharmacology
- Oligonucleotides, Antisense/administration & dosage
- Exons/genetics
- Dystrophin/genetics
- Dystrophin/metabolism
- Mice
- Mice, Inbred mdx
- Disease Models, Animal
- Humans
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/drug effects
- RNA Splicing
- Binding Sites
- Genetic Therapy
- Male
Collapse
Affiliation(s)
| | - Yulan Qi
- BioMarin Pharmaceutical Inc., San Rafael, CA, USA
| | | | | | | | | | | | - Pierluigi Fant
- Charles River Laboratories France Safety Assessment SAS, Saint-Germain-Nuelles, France
| | | | | | | | | | - Jenna Magat
- BioMarin Pharmaceutical Inc., San Rafael, CA, USA
| | | | | | | |
Collapse
|
10
|
Butson C, Ntekim N, Acord S, Marks W. Genetic Panel Reveals Coexisting Neuromuscular Disorders in Patients With Duchenne Muscular Dystrophy. J Child Neurol 2025; 40:83-90. [PMID: 39429168 DOI: 10.1177/08830738241284683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Duchenne muscular dystrophy is a genetically based neuromuscular disorder characterized by progressive physical impairment and cardiomyopathy in children, leading to fatal cardiac or respiratory failure. Duchenne muscular dystrophy shares some overlapping clinical features with other disorders, complicating clinical differentiation. We hypothesized that some Duchenne muscular dystrophy patients may have a secondary neuromuscular disorders that could negatively skew data during pharmaceutical clinical trials and lead to incomplete treatment plans. Consecutive genetic panels on 353 patients were reviewed. Thirty-two (32; 9.1%) patients with Duchenne muscular dystrophy were identified. Three (3; 9.4%) were found to have at least 1 genetically confirmed secondary neuromuscular disorder. Overlooking these coexisting disorders could lead to unexpected treatment failures, potentially affecting medication efficacy in trials or commercial use. Secondary neuromuscular disorders should be considered in Duchenne muscular dystrophy patients before clinical trial enrollment or treatment planning, with expanded genetic testing, such as whole exome sequencing or whole genome sequencing, likely to reveal even more secondary disorders.
Collapse
Affiliation(s)
- Carter Butson
- Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, TX, USA
| | - Nedeke Ntekim
- Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, TX, USA
| | - Stephanie Acord
- Department of Neurology, Cook Children's Medical Center, Fort Worth, TX, USA
| | - Warren Marks
- Department of Neurology, Cook Children's Medical Center, Fort Worth, TX, USA
| |
Collapse
|
11
|
Chwalenia K, Wood MJA, Roberts TC. Progress and prospects in antisense oligonucleotide-mediated exon skipping therapies for Duchenne muscular dystrophy. J Muscle Res Cell Motil 2025:10.1007/s10974-024-09688-2. [PMID: 39883376 DOI: 10.1007/s10974-024-09688-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/11/2024] [Indexed: 01/31/2025]
Abstract
Recent years have seen enormous progress in the field of advanced therapeutics for the progressive muscle wasting disease Duchenne muscular dystrophy (DMD). In particular, four antisense oligonucleotide (ASO) therapies targeting various DMD-causing mutations have achieved FDA approval, marking major milestones in the treatment of this disease. These compounds are designed to induce alternative splicing events that restore the translation reading frame of the dystrophin gene, leading to the generation of internally-deleted, but mostly functional, pseudodystrophin proteins with the potential to compensate for the genetic loss of dystrophin. However, the efficacy of these compounds is very limited, with delivery remaining a key obstacle to effective therapy. There is therefore an urgent need for improved ASO technologies with better efficacy, and with applicability to a wider range of patient mutations. Here we discuss recent developments in ASO therapies for DMD, and future prospects with a focus on ASO chemical modification and bioconjugation strategies.
Collapse
Affiliation(s)
- Katarzyna Chwalenia
- Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Dr, Headington, Oxford, OX3 7TY, UK
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Matthew J A Wood
- Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Dr, Headington, Oxford, OX3 7TY, UK
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
- MDUK Oxford Neuromuscular Centre, Oxford, OX3 7TY, UK
| | - Thomas C Roberts
- Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Dr, Headington, Oxford, OX3 7TY, UK.
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
- MDUK Oxford Neuromuscular Centre, Oxford, OX3 7TY, UK.
| |
Collapse
|
12
|
Komaki H, Takeshita E, Kunitake K, Ishizuka T, Shimizu-Motohashi Y, Ishiyama A, Sasaki M, Yonee C, Maruyama S, Hida E, Aoki Y. Phase 1/2 trial of brogidirsen: Dual-targeting antisense oligonucleotides for exon 44 skipping in Duchenne muscular dystrophy. Cell Rep Med 2025; 6:101901. [PMID: 39793573 PMCID: PMC11866436 DOI: 10.1016/j.xcrm.2024.101901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/01/2024] [Accepted: 12/12/2024] [Indexed: 01/13/2025]
Abstract
Duchenne muscular dystrophy (DMD) is a severe muscle disorder caused by mutations in the DMD gene, leading to dystrophin deficiency. Antisense oligonucleotide (ASO)-mediated exon skipping offers potential by partially restoring dystrophin, though current therapies remain mutation specific with limited efficacy. To overcome those limitations, we developed brogidirsen, a dual-targeting ASO composed of two directly connected 12-mer sequences targeting exon 44 using phosphorodiamidate morpholino oligomers. An open-label, dose-escalation, phase 1/2 trial assessed the safety, pharmacokinetics, and efficacy of brogidirsen in six ambulant patients with DMD amenable to exon 44 skipping. Following dose escalation, extended 24-week treatment with 40 mg/kg and 80 mg/kg yielded dose-dependent increases in dystrophin (16.63% and 24.47% of normal). Functional assessments indicated motor stabilization, and plasma proteomics revealed reductions in peptidyl arginine deiminase 2 (PADI2), titin (TTN), and myomesin 2 (MYOM2), highlighting potential biomarkers. Brogidirsen's efficacy was supported in vitro using urine-derived cells from patients with DMD. These promising results warrant a subsequent trial for DMD. This study was registered at ClinicalTrials.gov (NCT04129294).
Collapse
Affiliation(s)
- Hirofumi Komaki
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo 187-8551, Japan; Translational Medical Center, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo 187-8502, Japan
| | - Eri Takeshita
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo 187-8551, Japan
| | - Katsuhiko Kunitake
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo 187-8502, Japan
| | - Takami Ishizuka
- Translational Medical Center, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo 187-8502, Japan
| | - Yuko Shimizu-Motohashi
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo 187-8551, Japan
| | - Akihiko Ishiyama
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo 187-8551, Japan
| | - Masayuki Sasaki
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo 187-8551, Japan
| | - Chihiro Yonee
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima 890-8520, Japan
| | - Shinsuke Maruyama
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima 890-8520, Japan
| | - Eisuke Hida
- Department of Biostatistics and Data Science, Graduate School of Medicine, Osaka University, Suita-Shi, Osaka 565-0871, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo 187-8502, Japan.
| |
Collapse
|
13
|
Brown SD, Klimi E, Bakker WAM, Beqqali A, Baker AH. Non-coding RNAs to treat vascular smooth muscle cell dysfunction. Br J Pharmacol 2025; 182:246-280. [PMID: 38773733 DOI: 10.1111/bph.16409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/19/2024] [Accepted: 03/14/2024] [Indexed: 05/24/2024] Open
Abstract
Vascular smooth muscle cell (vSMC) dysfunction is a critical contributor to cardiovascular diseases, including atherosclerosis, restenosis and vein graft failure. Recent advances have unveiled a fascinating range of non-coding RNAs (ncRNAs) that play a pivotal role in regulating vSMC function. This review aims to provide an in-depth analysis of the mechanisms underlying vSMC dysfunction and the therapeutic potential of various ncRNAs in mitigating this dysfunction, either preventing or reversing it. We explore the intricate interplay of microRNAs, long-non-coding RNAs and circular RNAs, shedding light on their roles in regulating key signalling pathways associated with vSMC dysfunction. We also discuss the prospects and challenges associated with developing ncRNA-based therapies for this prevalent type of cardiovascular pathology. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
MESH Headings
- Animals
- Humans
- Cardiovascular Diseases/drug therapy
- Cardiovascular Diseases/genetics
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/pathology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- RNA, Circular/genetics
- RNA, Circular/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- RNA, Untranslated/pharmacology
- RNA, Untranslated/therapeutic use
Collapse
Affiliation(s)
- Simon D Brown
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Eftychia Klimi
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | - Abdelaziz Beqqali
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Andrew H Baker
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
14
|
Sun X, Setrerrahmane S, Li C, Hu J, Xu H. Nucleic acid drugs: recent progress and future perspectives. Signal Transduct Target Ther 2024; 9:316. [PMID: 39609384 PMCID: PMC11604671 DOI: 10.1038/s41392-024-02035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 09/20/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
High efficacy, selectivity and cellular targeting of therapeutic agents has been an active area of investigation for decades. Currently, most clinically approved therapeutics are small molecules or protein/antibody biologics. Targeted action of small molecule drugs remains a challenge in medicine. In addition, many diseases are considered 'undruggable' using standard biomacromolecules. Many of these challenges however, can be addressed using nucleic therapeutics. Nucleic acid drugs (NADs) are a new generation of gene-editing modalities characterized by their high efficiency and rapid development, which have become an active research topic in new drug development field. However, many factors, including their low stability, short half-life, high immunogenicity, tissue targeting, cellular uptake, and endosomal escape, hamper the delivery and clinical application of NADs. Scientists have used chemical modification techniques to improve the physicochemical properties of NADs. In contrast, modified NADs typically require carriers to enter target cells and reach specific intracellular locations. Multiple delivery approaches have been developed to effectively improve intracellular delivery and the in vivo bioavailability of NADs. Several NADs have entered the clinical trial recently, and some have been approved for therapeutic use in different fields. This review summarizes NADs development and evolution and introduces NADs classifications and general delivery strategies, highlighting their success in clinical applications. Additionally, this review discusses the limitations and potential future applications of NADs as gene therapy candidates.
Collapse
Affiliation(s)
- Xiaoyi Sun
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Chencheng Li
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Jialiang Hu
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Hanmei Xu
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
15
|
Fang P, Han J, An D, Bu Y, Ji G, Liu M, Deng J, Guo M, Han X, Wu H, Ma S, Song X. Research hotspots and trends for Duchenne muscular dystrophy: a machine learning bibliometric analysis from 2004 to 2023. Front Immunol 2024; 15:1429609. [PMID: 39669562 PMCID: PMC11634759 DOI: 10.3389/fimmu.2024.1429609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024] Open
Abstract
Aims The aim of this study was to conduct a bibliometric analysis of the relevant literature on Duchenne muscular dystrophy (DMD) to ascertain its current status, identify key areas of research and demonstrate the evolution of the field. Methods The analysis sourced documents from the Science Citation Index Expanded in the Web of Science core collection, utilizing CiteSpace software and an online bibliometric platform to analyze collaborative networks among authors, institutions and countries, and to map out the research landscape through journal and reference evaluations. Keyword analyses, including clustering and emergent term identification, were conducted, alongside the development of knowledge maps. Results The study included 9,277 documents, indicating a rising publication trend in the field. The Institut National de la Santé et de la Recherche Médicale emerged as the top publishing institution, with Francesco Muntoni as the most prolific author. The United States dominated in publication output, showcasing significant leadership. The keyword analysis highlighted 786 key emergent terms, primarily focusing on the mechanisms, diagnostics and treatment approaches in DMD. Conclusion The field of DMD research is experiencing robust growth, drawing keen interest globally. A thorough analysis of current research and trends is essential for advancing knowledge and therapeutic strategies in this domain.
Collapse
Affiliation(s)
- Pingping Fang
- Department of Neurology, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Neurology, Handan Central Hospital, Handan, Hebei, China
| | - Jingzhe Han
- Department of Neurology, Hengshui People’s Hospital, Hengshui, Hebei, China
| | - Di An
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yi Bu
- Department of Neurology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Guang Ji
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Mingjuan Liu
- Department of Neurology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jinliang Deng
- Department of Neurology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Moran Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xu Han
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Hongran Wu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shaojuan Ma
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xueqin Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| |
Collapse
|
16
|
Alonso-Puyo J, Izagirre-Fernandez O, Crende O, Valdivia A, García-Gallastegui P, Sanz B. Experimental models as a tool for research on sarcopenia: A narrative review. Ageing Res Rev 2024; 101:102534. [PMID: 39369798 DOI: 10.1016/j.arr.2024.102534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Sarcopenia is a musculoskeletal disorder related to muscle mass and function; as the worldwide population ages, its growing prevalence means a decline in quality of life and an increased burden for public health systems. As sarcopenia is a reversible condition, its early diagnosis is of utmost importance. Consensus definitions and diagnosis protocols for sarcopenia have been evolving for a long time, and the identification of molecular pathways subjacent to sarcopenia is a growing research area. The use of liquid biopsies to identify circulating molecules does not provide information about specific regulatory pathways or biomarkers in relevant tissue, and the use of skeletal muscle biopsies from older people has many limitations. Complementary tools are therefore necessary to advance the knowledge of relevant molecular aspects. The development of experimental models, such as animal, cellular, or bioengineered tissue, together with knock-in or knock-out strategies, could therefore be of great interest. This narrative review will explore experimental models of healthy muscle and aged muscle cells as a tool for research on sarcopenia. We will summarize the literature and present relevant experimental models in terms of their advantages and disadvantages. All of the presented approaches could potentially contribute to the accurate and early diagnosis, follow-up, and possible treatment of sarcopenia.
Collapse
Affiliation(s)
- Janire Alonso-Puyo
- Physiology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., Leioa 48940, Spain
| | - Oihane Izagirre-Fernandez
- Physiology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., Leioa 48940, Spain
| | - Olatz Crende
- Cell Biology and Histology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., Leioa 48940, Spain
| | - Asier Valdivia
- Cell Biology and Histology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., Leioa 48940, Spain
| | - Patricia García-Gallastegui
- Physiology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., Leioa 48940, Spain.
| | - Begoña Sanz
- Physiology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., Leioa 48940, Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia 48903, Spain.
| |
Collapse
|
17
|
Ma H, Zhou X, Zhang Z, Weng Z, Li G, Zhou Y, Yao Y. AI-Driven Design of Cell-Penetrating Peptides for Therapeutic Biotechnology. Int J Pept Res Ther 2024; 30:69. [DOI: 10.1007/s10989-024-10654-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2024] [Indexed: 01/05/2025]
|
18
|
McDowall S, Aung-Htut M, Wilton S, Li D. Antisense oligonucleotides and their applications in rare neurological diseases. Front Neurosci 2024; 18:1414658. [PMID: 39376536 PMCID: PMC11456401 DOI: 10.3389/fnins.2024.1414658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/20/2024] [Indexed: 10/09/2024] Open
Abstract
Rare diseases affect almost 500 million people globally, predominantly impacting children and often leading to significantly impaired quality of life and high treatment costs. While significant contributions have been made to develop effective treatments for those with rare diseases, more rapid drug discovery strategies are needed. Therapeutic antisense oligonucleotides can modulate target gene expression with high specificity through various mechanisms determined by base sequences and chemical modifications; and have shown efficacy in clinical trials for a few rare neurological conditions. Therefore, this review will focus on the applications of antisense oligonucleotides, in particular splice-switching antisense oligomers as promising therapeutics for rare neurological diseases, with key examples of Duchenne muscular dystrophy and spinal muscular atrophy. Challenges and future perspectives in developing antisense therapeutics for rare conditions including target discovery, antisense chemical modifications, animal models for therapeutic validations, and clinical trial designs will also be briefly discussed.
Collapse
Affiliation(s)
- Simon McDowall
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA, Australia
| | - May Aung-Htut
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Steve Wilton
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Dunhui Li
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
19
|
McCormack NM, Calabrese KA, Sun CM, Tully CB, Heier CR, Fiorillo AA. Deletion of miR-146a enhances therapeutic protein restoration in model of dystrophin exon skipping. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102228. [PMID: 38975000 PMCID: PMC11225849 DOI: 10.1016/j.omtn.2024.102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 05/22/2024] [Indexed: 07/09/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle disease caused by the absence of dystrophin protein. One current DMD therapeutic strategy, exon skipping, produces a truncated dystrophin isoform using phosphorodiamidate morpholino oligomers (PMOs). However, the potential of exon skipping therapeutics has not been fully realized as increases in dystrophin protein have been minimal in clinical trials. Here, we investigate how miR-146a-5p, which is highly elevated in dystrophic muscle, impacts dystrophin protein levels. We find inflammation strongly induces miR-146a in dystrophic, but not wild-type myotubes. Bioinformatics analysis reveals that the dystrophin 3' UTR harbors a miR-146a binding site, and subsequent luciferase assays demonstrate miR-146a binding inhibits dystrophin translation. In dystrophin-null mdx52 mice, co-injection of miR-146a reduces dystrophin restoration by an exon 51 skipping PMO. To directly investigate how miR-146a impacts therapeutic dystrophin rescue, we generated mdx52 with body-wide miR-146a deletion (146aX). Administration of an exon skipping PMO via intramuscular or intravenous injection markedly increases dystrophin protein levels in 146aX vs. mdx52 muscles while skipped dystrophin transcript levels are unchanged supporting a post-transcriptional mechanism of action. Together, these data show that miR-146a expression opposes therapeutic dystrophin restoration, suggesting miR-146a inhibition warrants further research as a potential DMD exon skipping co-therapy.
Collapse
Affiliation(s)
- Nikki M. McCormack
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| | - Kelsey A. Calabrese
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| | - Christina M. Sun
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| | - Christopher B. Tully
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| | - Christopher R. Heier
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| | - Alyson A. Fiorillo
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| |
Collapse
|
20
|
Auger M, Sorroza-Martinez L, Brahiti N, Huppé CA, Faucher-Giguère L, Arbi I, Hervault M, Cheng X, Gaillet B, Couture F, Guay D, Soultan AH. Enhancing peptide and PMO delivery to mouse airway epithelia by chemical conjugation with the amphiphilic peptide S10. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102290. [PMID: 39233851 PMCID: PMC11372590 DOI: 10.1016/j.omtn.2024.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/26/2024] [Indexed: 09/06/2024]
Abstract
Delivery of antisense oligonucleotides (ASOs) to airway epithelial cells is arduous due to the physiological barriers that protect the lungs and the endosomal entrapment phenomenon, which prevents ASOs from reaching their intracellular targets. Various delivery strategies involving peptide-, lipid-, and polymer-based carriers are being investigated, yet the challenge remains. S10 is a peptide-based delivery agent that enables the intracellular delivery of biomolecules such as GFP, CRISPR-associated nuclease ribonucleoprotein (RNP), base editor RNP, and a fluorescent peptide into lung cells after intranasal or intratracheal administrations to mice, ferrets, and rhesus monkeys. Herein, we demonstrate that covalently attaching S10 to a fluorescently labeled peptide or a functional splice-switching phosphorodiamidate morpholino oligomer improves their intracellular delivery to airway epithelia in mice after a single intranasal instillation. Data reveal a homogeneous delivery from the trachea to the distal region of the lungs, specifically into the cells lining the airway. Quantitative measurements further highlight that conjugation via a disulfide bond through a pegylated (PEG) linker was the most beneficial strategy compared with direct conjugation (without the PEG linker) or conjugation via a permanent thiol-maleimide bond. We believe that S10-based conjugation provides a great strategy to achieve intracellular delivery of peptides and ASOs with therapeutic properties in lungs.
Collapse
Affiliation(s)
- Maud Auger
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
- Département de génie chimique, Faculté des Sciences et de Génie, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine, Bureau 3550, Québec, QC G1V 0A6, Canada
| | - Luis Sorroza-Martinez
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
- Département de génie chimique, Faculté des Sciences et de Génie, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine, Bureau 3550, Québec, QC G1V 0A6, Canada
| | - Nadine Brahiti
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
| | - Carole-Ann Huppé
- Centre Collégial de Transfert de Technologie en Biotechnologies TransBIOTech, 201 Rue Monseigneur-Bourget, Lévis, QC G6V 6Z3, Canada
| | | | - Imen Arbi
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
| | - Maxime Hervault
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
| | - Xue Cheng
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
| | - Bruno Gaillet
- Département de génie chimique, Faculté des Sciences et de Génie, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine, Bureau 3550, Québec, QC G1V 0A6, Canada
| | - Frédéric Couture
- Centre Collégial de Transfert de Technologie en Biotechnologies TransBIOTech, 201 Rue Monseigneur-Bourget, Lévis, QC G6V 6Z3, Canada
| | - David Guay
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
- Département de génie chimique, Faculté des Sciences et de Génie, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine, Bureau 3550, Québec, QC G1V 0A6, Canada
| | - Al-Halifa Soultan
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
| |
Collapse
|
21
|
Çakan E, Lara OD, Szymanowska A, Bayraktar E, Chavez-Reyes A, Lopez-Berestein G, Amero P, Rodriguez-Aguayo C. Therapeutic Antisense Oligonucleotides in Oncology: From Bench to Bedside. Cancers (Basel) 2024; 16:2940. [PMID: 39272802 PMCID: PMC11394571 DOI: 10.3390/cancers16172940] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/15/2024] Open
Abstract
Advancements in our comprehension of tumor biology and chemoresistance have spurred the development of treatments that precisely target specific molecules within the body. Despite the expanding landscape of therapeutic options, there persists a demand for innovative approaches to address unmet clinical needs. RNA therapeutics have emerged as a promising frontier in this realm, offering novel avenues for intervention such as RNA interference and the utilization of antisense oligonucleotides (ASOs). ASOs represent a versatile class of therapeutics capable of selectively targeting messenger RNAs (mRNAs) and silencing disease-associated proteins, thereby disrupting pathogenic processes at the molecular level. Recent advancements in chemical modification and carrier molecule design have significantly enhanced the stability, biodistribution, and intracellular uptake of ASOs, thereby bolstering their therapeutic potential. While ASO therapy holds promise across various disease domains, including oncology, coronary angioplasty, neurological disorders, viral, and parasitic diseases, our review manuscript focuses specifically on the application of ASOs in targeted cancer therapies. Through a comprehensive examination of the latest research findings and clinical developments, we delve into the intricacies of ASO-based approaches to cancer treatment, shedding light on their mechanisms of action, therapeutic efficacy, and prospects.
Collapse
Affiliation(s)
- Elif Çakan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Olivia D Lara
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
- Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Anna Szymanowska
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Emine Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Medical Biology, Faculty of Medicine, University of Gaziantep, Gaziantep 27310, Turkey
| | | | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
22
|
Wai HA, Svobodova E, Herrera NR, Douglas AGL, Holloway JW, Baralle FE, Baralle M, Baralle D. Tailored antisense oligonucleotides designed to correct aberrant splicing reveal actionable groups of mutations for rare genetic disorders. Exp Mol Med 2024; 56:1816-1825. [PMID: 39085356 PMCID: PMC11371919 DOI: 10.1038/s12276-024-01292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 08/02/2024] Open
Abstract
Effective translation of rare disease diagnosis knowledge into therapeutic applications is achievable within a reasonable timeframe; where mutations are amenable to current antisense oligonucleotide technology. In our study, we identified five distinct types of abnormal splice-causing mutations in patients with rare genetic disorders and developed a tailored antisense oligonucleotide for each mutation type using phosphorodiamidate morpholino oligomers with or without octa-guanidine dendrimers and 2'-O-methoxyethyl phosphorothioate. We observed variations in treatment effects and efficiencies, influenced by both the chosen chemistry and the specific nature of the aberrant splicing patterns targeted for correction. Our study demonstrated the successful correction of all five different types of aberrant splicing. Our findings reveal that effective correction of aberrant splicing can depend on altering the chemical composition of oligonucleotides and suggest a fast, efficient, and feasible approach for developing personalized therapeutic interventions for genetic disorders within short time frames.
Collapse
Affiliation(s)
- Htoo A Wai
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Eliska Svobodova
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Natalia Romero Herrera
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Andrew G L Douglas
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Francisco E Baralle
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- Fondazione Fegato, Area Science Park Basovizza, 34149, Trieste, Italy
| | - Marco Baralle
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149, Trieste, Italy
| | - Diana Baralle
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
23
|
Morrow JM, Shah S, Cristiano L, Evans MRB, Doherty CM, Alnaemi T, Saab A, Emira A, Klickovic U, Hammam A, Altuwaijri A, Wastling S, Reilly MM, Hanna MG, Yousry TA, Thornton JS. Development of an initial training and evaluation programme for manual lower limb muscle MRI segmentation. Eur Radiol Exp 2024; 8:85. [PMID: 39060637 PMCID: PMC11282017 DOI: 10.1186/s41747-024-00475-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/26/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Magnetic resonance imaging (MRI) quantification of intramuscular fat accumulation is a responsive biomarker in neuromuscular diseases. Despite emergence of automated methods, manual muscle segmentation remains an essential foundation. We aimed to develop a training programme for new observers to demonstrate competence in lower limb muscle segmentation and establish reliability benchmarks for future human observers and machine learning segmentation packages. METHODS The learning phase of the training programme comprised a training manual, direct instruction, and eight lower limb MRI scans with reference standard large and small regions of interest (ROIs). The assessment phase used test-retest scans from two patients and two healthy controls. Interscan and interobserver reliability metrics were calculated to identify underperforming outliers and to determine competency benchmarks. RESULTS Three experienced observers undertook the assessment phase, whilst eight new observers completed the full training programme. Two of the new observers were identified as underperforming outliers, relating to variation in size or consistency of segmentations; six had interscan and interobserver reliability equivalent to those of experienced observers. The calculated benchmark for the Sørensen-Dice similarity coefficient between observers was greater than 0.87 and 0.92 for individual thigh and calf muscles, respectively. Interscan and interobserver reliability were significantly higher for large than small ROIs (all p < 0.001). CONCLUSIONS We developed, implemented, and analysed the first formal training programme for manual lower limb muscle segmentation. Large ROI showed superior reliability to small ROI for fat fraction assessment. RELEVANCE STATEMENT Observers competent in lower limb muscle segmentation are critical to application of quantitative muscle MRI biomarkers in neuromuscular diseases. This study has established competency benchmarks for future human observers or automated segmentation methods. KEY POINTS • Observers competent in muscle segmentation are critical for quantitative muscle MRI biomarkers. • A training programme for muscle segmentation was undertaken by eight new observers. • We established competency benchmarks for future human observers or automated segmentation methods.
Collapse
Affiliation(s)
- Jasper M Morrow
- Department of Neuromuscular Diseases, Queen Square UCL Institute of Neurology, London, UK
- Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCLH, London, WC1N 3BG, UK
| | - Sachit Shah
- Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, UCLH, London, UK
| | - Lara Cristiano
- Neuroradiological Academic Unit, Queen Square UCL Institute of Neurology, London, UK
- Department of Radiology and Pediatric Neurology, Policlinico Universitario A. Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Matthew R B Evans
- Department of Neuromuscular Diseases, Queen Square UCL Institute of Neurology, London, UK
| | - Carolynne M Doherty
- Department of Neuromuscular Diseases, Queen Square UCL Institute of Neurology, London, UK
| | - Talal Alnaemi
- Neuroradiological Academic Unit, Queen Square UCL Institute of Neurology, London, UK
| | - Abeer Saab
- Neuroradiological Academic Unit, Queen Square UCL Institute of Neurology, London, UK
| | - Ahmed Emira
- Neuroradiological Academic Unit, Queen Square UCL Institute of Neurology, London, UK
| | - Uros Klickovic
- Department of Neuromuscular Diseases, Queen Square UCL Institute of Neurology, London, UK
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ahmed Hammam
- Neuroradiological Academic Unit, Queen Square UCL Institute of Neurology, London, UK
| | - Afnan Altuwaijri
- Neuroradiological Academic Unit, Queen Square UCL Institute of Neurology, London, UK
| | - Stephen Wastling
- Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, UCLH, London, UK
| | - Mary M Reilly
- Department of Neuromuscular Diseases, Queen Square UCL Institute of Neurology, London, UK
- Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCLH, London, WC1N 3BG, UK
| | - Michael G Hanna
- Department of Neuromuscular Diseases, Queen Square UCL Institute of Neurology, London, UK
- Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCLH, London, WC1N 3BG, UK
| | - Tarek A Yousry
- Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, UCLH, London, UK.
- Neuroradiological Academic Unit, Queen Square UCL Institute of Neurology, London, UK.
| | - John S Thornton
- Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, UCLH, London, UK
- Neuroradiological Academic Unit, Queen Square UCL Institute of Neurology, London, UK
| |
Collapse
|
24
|
Aldharee H. Duchenne muscular dystrophy in Saudi Arabia: a review of the current literature. Front Neurol 2024; 15:1392274. [PMID: 39087004 PMCID: PMC11288836 DOI: 10.3389/fneur.2024.1392274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
In the past three decades, significant improvements have occurred in the study of Duchenne muscular dystrophy (DMD). DMD is a rare, severe neuromuscular disease that causes death due to cardiovascular and respiratory complications among affected boys. Since the 1980s, ongoing preclinical and clinical studies have been conducted to explore the disease in depth and discover potential therapeutic strategies. In Saudi Arabia, it is unclear whether health services and research efforts are keeping pace with global achievements. Therefore, this review aims to explore the diagnostic and management strategies and research efforts in Saudi Arabia over the past three decades. I searched the PubMed/Medline, Scopus, and Web of Science databases and included all published articles on the epidemiology, genetics, diagnosis, and management of DMD/BMD in this review. The findings suggest a lack of local standardized diagnostic strategies, a poor understanding of epidemiology and common pathogenic variants, and a critical need for preclinical and clinical research. At the time of writing, no such comprehensive review has been published. Challenges, limitations, and future perspectives are also discussed in this article.
Collapse
Affiliation(s)
- Hitham Aldharee
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
25
|
MacNair CR, Rutherford ST, Tan MW. Alternative therapeutic strategies to treat antibiotic-resistant pathogens. Nat Rev Microbiol 2024; 22:262-275. [PMID: 38082064 DOI: 10.1038/s41579-023-00993-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 04/19/2024]
Abstract
Resistance threatens to render antibiotics - which are essential for modern medicine - ineffective, thus posing a threat to human health. The discovery of novel classes of antibiotics able to overcome resistance has been stalled for decades, with the developmental pipeline relying almost entirely on variations of existing chemical scaffolds. Unfortunately, this approach has been unable to keep pace with resistance evolution, necessitating new therapeutic strategies. In this Review, we highlight recent efforts to discover non-traditional antimicrobials, specifically describing the advantages and limitations of antimicrobial peptides and macrocycles, antibodies, bacteriophages and antisense oligonucleotides. These approaches have the potential to stem the tide of resistance by expanding the physicochemical property space and target spectrum occupied by currently approved antibiotics.
Collapse
Affiliation(s)
- Craig R MacNair
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | - Steven T Rutherford
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
26
|
Bains S, Giudicessi JR, Odening KE, Ackerman MJ. State of Gene Therapy for Monogenic Cardiovascular Diseases. Mayo Clin Proc 2024; 99:610-629. [PMID: 38569811 DOI: 10.1016/j.mayocp.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/22/2023] [Accepted: 11/03/2023] [Indexed: 04/05/2024]
Abstract
Over the past 2 decades, significant efforts have been made to advance gene therapy into clinical practice. Although successful examples exist in other fields, gene therapy for the treatment of monogenic cardiovascular diseases lags behind. In this review, we (1) highlight a brief history of gene therapy, (2) distinguish between gene silencing, gene replacement, and gene editing technologies, (3) discuss vector modalities used in the field with a special focus on adeno-associated viruses, (4) provide examples of gene therapy approaches in cardiomyopathies, channelopathies, and familial hypercholesterolemia, and (5) present current challenges and limitations in the gene therapy field.
Collapse
Affiliation(s)
- Sahej Bains
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, MN; Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN
| | - John R Giudicessi
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN; Department of Cardiovascular Medicine (Division of Heart Rhythm Services and Circulatory Failure and the Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, MN
| | - Katja E Odening
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Michael J Ackerman
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN; Department of Cardiovascular Medicine (Division of Heart Rhythm Services and Circulatory Failure and the Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, MN; Department of Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), Mayo Clinic, Rochester, MN.
| |
Collapse
|
27
|
Spangsberg Petersen US, Dembic M, Martínez-Pizarro A, Richard E, Holm LL, Havelund JF, Doktor TK, Larsen MR, Færgeman NJ, Desviat LR, Andresen BS. Regulating PCCA gene expression by modulation of pseudoexon splicing patterns to rescue enzyme activity in propionic acidemia. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102101. [PMID: 38204914 PMCID: PMC10776996 DOI: 10.1016/j.omtn.2023.102101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Pseudoexons are nonfunctional intronic sequences that can be activated by deep-intronic sequence variation. Activation increases pseudoexon inclusion in mRNA and interferes with normal gene expression. The PCCA c.1285-1416A>G variation activates a pseudoexon and causes the severe metabolic disorder propionic acidemia by deficiency of the propionyl-CoA carboxylase enzyme encoded by PCCA and PCCB. We characterized this pathogenic pseudoexon activation event in detail and identified hnRNP A1 to be important for normal repression. The PCCA c.1285-1416A>G variation disrupts an hnRNP A1-binding splicing silencer and simultaneously creates a splicing enhancer. We demonstrate that blocking this region of regulation with splice-switching antisense oligonucleotides restores normal splicing and rescues enzyme activity in patient fibroblasts and in a cellular model created by CRISPR gene editing. Interestingly, the PCCA pseudoexon offers an unexploited potential to upregulate gene expression because healthy tissues show relatively high inclusion levels. By blocking inclusion of the nonactivated wild-type pseudoexon, we can increase both PCCA and PCCB protein levels, which increases the activity of the heterododecameric enzyme. Surprisingly, we can increase enzyme activity from residual levels in not only patient fibroblasts harboring PCCA missense variants but also those harboring PCCB missense variants. This is a potential treatment strategy for propionic acidemia.
Collapse
Affiliation(s)
- Ulrika Simone Spangsberg Petersen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Maja Dembic
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
- Department of Clinical Genetics, Odense University Hospital, 5000 Odense C, Denmark
- Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense M, Denmark
| | - Ainhoa Martínez-Pizarro
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC, CEDEM, CIBERER, IdiPaz, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Eva Richard
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC, CEDEM, CIBERER, IdiPaz, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Lise Lolle Holm
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Jesper Foged Havelund
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Thomas Koed Doktor
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Martin Røssel Larsen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Nils J. Færgeman
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Lourdes Ruiz Desviat
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC, CEDEM, CIBERER, IdiPaz, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Brage Storstein Andresen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
28
|
Psaras Y, Toepfer CN. Targeted genetic therapies for inherited disorders that affect both cardiac and skeletal muscle. Exp Physiol 2024; 109:175-189. [PMID: 38095849 PMCID: PMC10988723 DOI: 10.1113/ep090436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/27/2023] [Indexed: 12/21/2023]
Abstract
Skeletal myopathies and ataxias with secondary cardiac involvement are complex, progressive and debilitating conditions. As life expectancy increases across these conditions, cardiac involvement often becomes more prominent. This highlights the need for targeted therapies that address these evolving cardiac pathologies. Musculopathies by and large lack cures that directly target the genetic basis of the diseases; however, as our understanding of the genetic causes of these conditions has evolved, it has become tractable to develop targeted therapies using biologics, to design precision approaches to target the primary genetic causes of these varied diseases. Using the examples of Duchenne muscular dystrophy, Friedreich ataxia and Pompe disease, we discuss how the genetic causes of such diseases derail diverse homeostatic, energetic and signalling pathways, which span multiple cellular systems in varied tissues across the body. We outline existing therapeutics and treatments in the context of emerging novel genetic approaches. We discuss the hurdles that the field must overcome to deliver targeted therapies across the many tissue types affected in primary myopathies.
Collapse
Affiliation(s)
- Yiangos Psaras
- Division of Cardiovascular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Christopher N. Toepfer
- Division of Cardiovascular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
29
|
Dratch L, Azage M, Baldwin A, Johnson K, Paul RA, Bardakjian TM, Michon SC, Amado DA, Baer M, Deik AF, Elman LB, Gonzalez-Alegre P, Guo MH, Hamedani AG, Irwin DJ, Lasker A, Orthmann-Murphy J, Quinn C, Tropea TF, Scherer SS, Ellis CA. Genetic testing in adults with neurologic disorders: indications, approach, and clinical impacts. J Neurol 2024; 271:733-747. [PMID: 37891417 PMCID: PMC11095966 DOI: 10.1007/s00415-023-12058-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
The role of genetic testing in neurologic clinical practice has increased dramatically in recent years, driven by research on genetic causes of neurologic disease and increased availability of genetic sequencing technology. Genetic testing is now indicated for adults with a wide range of common neurologic conditions. The potential clinical impacts of a genetic diagnosis are also rapidly expanding, with a growing list of gene-specific treatments and clinical trials, in addition to important implications for prognosis, surveillance, family planning, and diagnostic closure. The goals of this review are to provide practical guidance for clinicians about the role of genetics in their practice and to provide the neuroscience research community with a broad survey of current progress in this field. We aim to answer three questions for the neurologist in practice: Which of my patients need genetic testing? What testing should I order? And how will genetic testing help my patient? We focus on common neurologic disorders and presentations to the neurology clinic. For each condition, we review the most current guidelines and evidence regarding indications for genetic testing, expected diagnostic yield, and recommended testing approach. We also focus on clinical impacts of genetic diagnoses, highlighting a number of gene-specific therapies recently approved for clinical use, and a rapidly expanding landscape of gene-specific clinical trials, many using novel nucleotide-based therapeutic modalities like antisense oligonucleotides and gene transfer. We anticipate that more widespread use of genetic testing will help advance therapeutic development and improve the care, and outcomes, of patients with neurologic conditions.
Collapse
Affiliation(s)
- Laynie Dratch
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - Meron Azage
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - Aaron Baldwin
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - Kelsey Johnson
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - Rachel A Paul
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - Tanya M Bardakjian
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
- Sarepta Therapeutics Inc, Cambridge, MA, 02142, USA
| | - Sara-Claude Michon
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - Defne A Amado
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - Michael Baer
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - Andres F Deik
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - Lauren B Elman
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - Pedro Gonzalez-Alegre
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
- Spark Therapeutics Inc, Philadelphia, PA, 19104, USA
| | - Michael H Guo
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - Ali G Hamedani
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - David J Irwin
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - Aaron Lasker
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - Jennifer Orthmann-Murphy
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - Colin Quinn
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - Thomas F Tropea
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - Steven S Scherer
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - Colin A Ellis
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA.
| |
Collapse
|
30
|
Omarmeli V, Lewandrowski KU, Assefi M, Faizmahdavi H, Sharafshah A, Mansouri N. A Novel Mutation (Lys31Arg) in the DMD Gene Impacts on Neuromuscular Dysfunctions Found by Whole Exome Sequencing and In Silico Analyses in an Iranian Family. Curr Aging Sci 2024; 17:169-174. [PMID: 38265407 DOI: 10.2174/0118746098280408240112112414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/06/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Duchene Muscular Disorder (DMD) is a severe X-linked recessive neuromuscular disease. Previous reports predicted that one-third of cases with a fatal X-linked recessive disease will be caused by a novel mutation, and the mutation rate for DMD seems to be higher in males. OBJECTIVE A novel mutation in the DMD gene DMD (NM_004006.3):c.92A>G (p.Lys31Arg) is suggested for males because of their heterozygous mothers carrying the mutant alleles. METHOD Whole Exome Sequencing (WES) was done for a 25-year-old female followed by the screening of the novel mutation in her parents and her brother by the Sanger sequencing technique. Some in silico analyses were run to find the putative alterations in wild-type and mutant structures by PolyPhen-2 and Mupro. Notably, SWISS-MODEL was performed to build a reliable model for the mutant allele based on the PDB ID: 1DXX structure. Also, superimposition was done by PyMol. RESULTS WES analysis revealed three novel mutations including DLD (exon13:c.G1382A:p. G461E), ABCA3 (exon12:c.G1404C:p.W468C), and DMD (exon2:c.A92G:p.K31R) in the case. Focusing on DMD mutation, Sanger sequencing of the patient's parents and brother indicated no mutant allele in her mother and brother but a mutant allele in her father as a hemizygous pattern. In silico analyses showed no considerable change regarding pathogenic impact. CONCLUSION In conclusion, our findings revealed no pathogenic effect of the new mutation (K31R) of the DMD gene in an Iranian 25-year-old woman. Because of the DMD importance in preclinical diagnosis, these data may shed a light on the diagnosis of this mutation in future pregnancies.
Collapse
Affiliation(s)
- Vahid Omarmeli
- Dr. Shaveisi-zadeh Medical Genetic Lab, Kermanshah, Iran
- Biology Department, College of Bioscience, Islamic Azad University, Tehran North Branch, Tehran, Iran
| | - Kai-Uwe Lewandrowski
- Center for Advanced Spinal Surgery of Southern Arizona, Tucson, United States
- Department of Orthopaedics, Fundación Universitaria Sanitas, Colombia
- Department of Orthopedics, Hospital Universitário Gaffre e Guinle, Universidade Federal do Estado do Rio de Janeiro, Brazil
| | - Marjan Assefi
- Department of Biology, University of North Carolina, Greensboro, USA
| | - Hanieh Faizmahdavi
- Department of Obstetrics and Gynecology, Clinical Research Development Center, Imam Reza hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Sharafshah
- Dr. Shaveisi-zadeh Medical Genetic Lab, Kermanshah, Iran
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nasrin Mansouri
- Department of Obstetrics and Gynecology, Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
31
|
Le BT, Chen S, Veedu RN. Evaluation of Chemically Modified Nucleic Acid Analogues for Splice Switching Application. ACS OMEGA 2023; 8:48650-48661. [PMID: 38162739 PMCID: PMC10753547 DOI: 10.1021/acsomega.3c07618] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
In recent years, several splice switching antisense oligonucleotide (ASO)-based therapeutics have gained significant interest, and several candidates received approval for clinical use for treating rare diseases, in particular, Duchenne muscular dystrophy and spinal muscular atrophy. These ASOs are fully modified; in other words, they are composed of chemically modified nucleic acid analogues instead of natural RNA oligomers. This has significantly improved drug-like properties of these ASOs in terms of efficacy, stability, pharmacokinetics, and safety. Although chemical modifications of oligonucleotides have been discussed previously for numerous applications including nucleic acid aptamers, small interfering RNA, DNAzyme, and ASO, to the best of our knowledge, none of them have solely focused on the analogues that have been utilized for splice switching applications. To this end, we present here a comprehensive review of different modified nucleic acid analogues that have been explored for developing splice switching ASOs. In addition to the antisense chemistry, we also endeavor to provide a brief historical overview of the approved spice switching ASO drugs, including a list of drugs that have entered human clinical trials. We hope this work will inspire further investigations into expanding the potential of novel nucleic acid analogues for constructing splice switching ASOs.
Collapse
Affiliation(s)
- Bao T. Le
- Centre
for Molecular Medicine and Innovative Therapeutics, Health Futures
Institute, Murdoch University, Murdoch, Western Australia 6150, Australia
- Precision
Nucleic Acid Therapeutics, Perron Institute
for Neurological and Translational Science, Nedlands, Western Australia 6009, Australia
- ProGenis
Pharmaceuticals Pty Ltd., Bentley, Western Australia 6102, Australia
| | - Suxiang Chen
- Centre
for Molecular Medicine and Innovative Therapeutics, Health Futures
Institute, Murdoch University, Murdoch, Western Australia 6150, Australia
- Precision
Nucleic Acid Therapeutics, Perron Institute
for Neurological and Translational Science, Nedlands, Western Australia 6009, Australia
| | - Rakesh N. Veedu
- Centre
for Molecular Medicine and Innovative Therapeutics, Health Futures
Institute, Murdoch University, Murdoch, Western Australia 6150, Australia
- Precision
Nucleic Acid Therapeutics, Perron Institute
for Neurological and Translational Science, Nedlands, Western Australia 6009, Australia
- ProGenis
Pharmaceuticals Pty Ltd., Bentley, Western Australia 6102, Australia
| |
Collapse
|
32
|
Tominari T, Takatoya M, Matsubara T, Matsunobe M, Arai D, Matsumoto C, Hirata M, Yoshinouchi S, Miyaura C, Itoh Y, Komaki H, Takeda S, Aoki Y, Inada M. Establishment of a Triple Quadrupole HPLC-MS Quantitation Method for Dystrophin Protein in Mouse and Human Skeletal Muscle. Int J Mol Sci 2023; 25:303. [PMID: 38203473 PMCID: PMC10779312 DOI: 10.3390/ijms25010303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most common type of neuromuscular disease caused by mutations in the DMD gene encoding dystrophin protein. To quantitively assess human dystrophin protein in muscle biopsy samples, it is imperative to consistently detect as low as 0.003% of the dystrophin protein relative to the total muscle protein content. The quantitation of dystrophin protein has traditionally been conducted using semiquantitative immunoblotting or immunohistochemistry; however, there is a growing need to establish a more precise quantitative method by employing liquid chromatography-mass spectrometry (LC-MS) to measure dystrophin protein. In this study, a novel quantification method was established using a mouse experiment platform applied to the clinical quantification of human dystrophin protein. The method using a spike-in approach with a triple quadrupole LC-MS quantitated the amount of dystrophin in wild-type and human DMD transgenic mice but not in DMD-null mice. In conclusion, we established a quantitating method of dystrophin using HPLC-LC-MS with a novel spike-in approach. These results indicate that our methodology could be applied to several LC-MS devices to enable the accurate measurement of dystrophin protein in patients with DMD.
Collapse
Affiliation(s)
- Tsukasa Tominari
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Masaru Takatoya
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Toshiya Matsubara
- Life Science Research Center, Shimadzu Corporation, Nakagyo, Kyoto 604-8511, Japan
| | - Michio Matsunobe
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Daichi Arai
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Chiho Matsumoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Michiko Hirata
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Shosei Yoshinouchi
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Chisato Miyaura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Yoshifumi Itoh
- Inada Research Unit, Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Hirofumi Komaki
- Translational Medical Center, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan
| | - Shin’ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Masaki Inada
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
- Inada Research Unit, Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
33
|
Cavazza A, Hendel A, Bak RO, Rio P, Güell M, Lainšček D, Arechavala-Gomeza V, Peng L, Hapil FZ, Harvey J, Ortega FG, Gonzalez-Martinez C, Lederer CW, Mikkelsen K, Gasiunas G, Kalter N, Gonçalves MA, Petersen J, Garanto A, Montoliu L, Maresca M, Seemann SE, Gorodkin J, Mazini L, Sanchez R, Rodriguez-Madoz JR, Maldonado-Pérez N, Laura T, Schmueck-Henneresse M, Maccalli C, Grünewald J, Carmona G, Kachamakova-Trojanowska N, Miccio A, Martin F, Turchiano G, Cathomen T, Luo Y, Tsai SQ, Benabdellah K, on behalf of the COST Action CA21113. Progress and harmonization of gene editing to treat human diseases: Proceeding of COST Action CA21113 GenE-HumDi. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102066. [PMID: 38034032 PMCID: PMC10685310 DOI: 10.1016/j.omtn.2023.102066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The European Cooperation in Science and Technology (COST) is an intergovernmental organization dedicated to funding and coordinating scientific and technological research in Europe, fostering collaboration among researchers and institutions across countries. Recently, COST Action funded the "Genome Editing to treat Human Diseases" (GenE-HumDi) network, uniting various stakeholders such as pharmaceutical companies, academic institutions, regulatory agencies, biotech firms, and patient advocacy groups. GenE-HumDi's primary objective is to expedite the application of genome editing for therapeutic purposes in treating human diseases. To achieve this goal, GenE-HumDi is organized in several working groups, each focusing on specific aspects. These groups aim to enhance genome editing technologies, assess delivery systems, address safety concerns, promote clinical translation, and develop regulatory guidelines. The network seeks to establish standard procedures and guidelines for these areas to standardize scientific practices and facilitate knowledge sharing. Furthermore, GenE-HumDi aims to communicate its findings to the public in accessible yet rigorous language, emphasizing genome editing's potential to revolutionize the treatment of many human diseases. The inaugural GenE-HumDi meeting, held in Granada, Spain, in March 2023, featured presentations from experts in the field, discussing recent breakthroughs in delivery methods, safety measures, clinical translation, and regulatory aspects related to gene editing.
Collapse
Affiliation(s)
- Alessia Cavazza
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, WC1N 1EH London, UK
| | - Ayal Hendel
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Rasmus O. Bak
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Paula Rio
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), 28040 Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Marc Güell
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Integra Therapeutics S.L., Barcelona, Spain
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Virginia Arechavala-Gomeza
- Nucleic Acid Therapeutics for Rare Disorders (NAT-RD), Biobizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Ling Peng
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
| | - Fatma Zehra Hapil
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Joshua Harvey
- Institute of Ophthalmology, University College London, London, UK
| | - Francisco G. Ortega
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Avenida de la Ilustración 114, 18016 Granada, Spain
- IBS Granada, Institute of Biomedical Research, Avenida de Madrid 15, 18012 Granada, Spain
| | - Coral Gonzalez-Martinez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Avenida de la Ilustración 114, 18016 Granada, Spain
- IBS Granada, Institute of Biomedical Research, Avenida de Madrid 15, 18012 Granada, Spain
| | - Carsten W. Lederer
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kasper Mikkelsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Nechama Kalter
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Manuel A.F.V. Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Julie Petersen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Alejandro Garanto
- Department of Pediatrics and Department of Human Genetics, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lluis Montoliu
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - Marcello Maresca
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Stefan E. Seemann
- Center for Non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan Gorodkin
- Center for Non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Loubna Mazini
- Laboratory of Genetic Engineering, Technologic, Medical and Academic Park (TMAP), Marrakech, Morocco
| | - Rosario Sanchez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry Applied to Biomedicine and the Environment," Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Universidad de Granada, Granada, Spain
| | - Juan R. Rodriguez-Madoz
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), Madrid, Spain
| | | | - Torella Laura
- DNA & RNA Medicine Division, Center for Applied Medical Research (CIMA) Universidad de Navarra, 31008 Pamplona, Spain
| | - Michael Schmueck-Henneresse
- Berlin Institute for Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany
| | - Cristina Maccalli
- Laboratory of Immune Biological Therapy, Research Branch, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Julian Grünewald
- Department of Medicine, Cardiology, Angiology, Pneumology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, TranslaTUM, MIBE, Munich, Germany
- Center for Organoid Systems, Munich, Germany
| | - Gloria Carmona
- Red Andaluza de diseño y traslación de Terapias Avanzadas-RAdytTA, Fundación Pública Andaluza Progreso y Salud-FPS, Sevilla, España
| | | | - Annarita Miccio
- Imagine Institute, Laboratory of Chromatin and Gene Regulation During Development, Université de Paris Cité, INSERM UMR 1163, 75015 Paris, France
| | - Francisco Martin
- Bioquímica y Biología Molecular III e Immunology Department, Facultad de Medicina, Universidad de Granada and Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Av. de la Ilustración 114, 18016 Granada, Spain
| | - Giandomenico Turchiano
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, WC1N 1EH London, UK
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany
- Medical Faculty, University of Freiburg, 79106 Freiburg, Germany
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Shengdar Q. Tsai
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Karim Benabdellah
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Av. de la Ilustración 114, 18016 Granada, Spain
| | - on behalf of the COST Action CA21113
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, WC1N 1EH London, UK
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), 28040 Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Integra Therapeutics S.L., Barcelona, Spain
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Nucleic Acid Therapeutics for Rare Disorders (NAT-RD), Biobizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
- Institute of Ophthalmology, University College London, London, UK
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Avenida de la Ilustración 114, 18016 Granada, Spain
- IBS Granada, Institute of Biomedical Research, Avenida de Madrid 15, 18012 Granada, Spain
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- CasZyme, 10224 Vilnius, Lithuania
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
- Department of Pediatrics and Department of Human Genetics, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
- Center for Non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- Laboratory of Genetic Engineering, Technologic, Medical and Academic Park (TMAP), Marrakech, Morocco
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry Applied to Biomedicine and the Environment," Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Universidad de Granada, Granada, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), Madrid, Spain
- DNA & RNA Medicine Division, Center for Applied Medical Research (CIMA) Universidad de Navarra, 31008 Pamplona, Spain
- Berlin Institute for Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany
- Laboratory of Immune Biological Therapy, Research Branch, Sidra Medicine, PO Box 26999, Doha, Qatar
- Department of Medicine, Cardiology, Angiology, Pneumology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, TranslaTUM, MIBE, Munich, Germany
- Center for Organoid Systems, Munich, Germany
- Red Andaluza de diseño y traslación de Terapias Avanzadas-RAdytTA, Fundación Pública Andaluza Progreso y Salud-FPS, Sevilla, España
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
- Imagine Institute, Laboratory of Chromatin and Gene Regulation During Development, Université de Paris Cité, INSERM UMR 1163, 75015 Paris, France
- Bioquímica y Biología Molecular III e Immunology Department, Facultad de Medicina, Universidad de Granada and Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Av. de la Ilustración 114, 18016 Granada, Spain
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany
- Medical Faculty, University of Freiburg, 79106 Freiburg, Germany
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Av. de la Ilustración 114, 18016 Granada, Spain
| |
Collapse
|
34
|
Banerjee S, Galarza-Muñoz G, Garcia-Blanco MA. Role of RNA Alternative Splicing in T Cell Function and Disease. Genes (Basel) 2023; 14:1896. [PMID: 37895245 PMCID: PMC10606310 DOI: 10.3390/genes14101896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Alternative RNA splicing, a ubiquitous mechanism of gene regulation in eukaryotes, expands genome coding capacity and proteomic diversity. It has essential roles in all aspects of human physiology, including immunity. This review highlights the importance of RNA alternative splicing in regulating immune T cell function. We discuss how mutations that affect the alternative splicing of T cell factors can contribute to abnormal T cell function and ultimately lead to autoimmune diseases. We also explore the potential applications of strategies that target the alternative splicing changes of T cell factors. These strategies could help design therapeutic approaches to treat autoimmune disorders and improve immunotherapy.
Collapse
Affiliation(s)
- Shefali Banerjee
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22903, USA;
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77550, USA
| | | | - Mariano A. Garcia-Blanco
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22903, USA;
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77550, USA
| |
Collapse
|
35
|
Potter RA, Griffin DA, Heller KN, Mendell JR, Rodino-Klapac LR. Expression and function of four AAV-based constructs for dystrophin restoration in the mdx mouse model of Duchenne muscular dystrophy. Biol Open 2023; 12:bio059797. [PMID: 37670674 PMCID: PMC10538294 DOI: 10.1242/bio.059797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
Robust expression of shortened, functional dystrophin provided impetus to develop adeno-associated virus (AAV)-based constructs for clinical application. Because several cassettes are being tested in clinical trials, this study compared the efficacies of four shortened dystrophin-promoter combinations with implications for outcomes in clinical trials: MHCK7 or MCK promoter with a shortened dystrophin transgene containing the N-terminus and spectrin repeats R1, R2, R3 and R24 (rAAVrh74.MHCK7.micro-dystrophin and rAAVrh74.MCK.micro-dystrophin, respectively); shortened dystrophin construct containing the neuronal nitric oxide (nNOS) binding site (rAAVrh74.MHCK7.DV.mini-dystrophin); and shortened dystrophin containing the C-terminus (rAAVrh74.MHCK7.micro-dystrophin.Cterm). Functional and histological benefit were examined at 4 weeks following intramuscular delivery in mdx mice. rAAVrh74.MHCK7.micro-dystrophin provided the most robust transgene expression and significantly increased specific force output in the tibialis anterior muscle. Muscle environment was normalized (i.e. reductions in central nucleation), indicating functional and histological advantages of rAAVrh74.MHCK7.micro-dystrophin. Thus, promoter choice and transgene design are critical for optimal dystrophin expression/distribution for maximal functional improvement.
Collapse
Affiliation(s)
- Rachael A. Potter
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Sarepta Therapeutics, Inc., Cambridge, MA 02142, USA
| | - Danielle A. Griffin
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Sarepta Therapeutics, Inc., Cambridge, MA 02142, USA
| | - Kristin N. Heller
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Jerry R. Mendell
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics and Neurology, The Ohio State University, Columbus, OH 43210, USA
| | - Louise R. Rodino-Klapac
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Sarepta Therapeutics, Inc., Cambridge, MA 02142, USA
- Department of Pediatrics and Neurology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
36
|
Gapinske M, Winter J, Swami D, Gapinske L, Woods WS, Shirguppe S, Miskalis A, Busza A, Joulani D, Kao CJ, Kostan K, Bigot A, Bashir R, Perez-Pinera P. Targeting Duchenne muscular dystrophy by skipping DMD exon 45 with base editors. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:572-586. [PMID: 37637209 PMCID: PMC10448430 DOI: 10.1016/j.omtn.2023.07.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
Duchenne muscular dystrophy is an X-linked monogenic disease caused by mutations in the dystrophin gene (DMD) characterized by progressive muscle weakness, leading to loss of ambulation and decreased life expectancy. Since the current standard of care for Duchenne muscular dystrophy is to merely treat symptoms, there is a dire need for treatment modalities that can correct the underlying genetic mutations. While several gene replacement therapies are being explored in clinical trials, one emerging approach that can directly correct mutations in genomic DNA is base editing. We have recently developed CRISPR-SKIP, a base editing strategy to induce permanent exon skipping by introducing C > T or A > G mutations at splice acceptors in genomic DNA, which can be used therapeutically to recover dystrophin expression when a genomic deletion leads to an out-of-frame DMD transcript. We now demonstrate that CRISPR-SKIP can be adapted to correct some forms of Duchenne muscular dystrophy by disrupting the splice acceptor in human DMD exon 45 with high efficiency, which enables open reading frame recovery and restoration of dystrophin expression. We also demonstrate that AAV-delivered split-intein base editors edit the splice acceptor of DMD exon 45 in cultured human cells and in vivo, highlighting the therapeutic potential of this strategy.
Collapse
Affiliation(s)
- Michael Gapinske
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jackson Winter
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Devyani Swami
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lauren Gapinske
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick J. Holonyak Micro and Nano Technology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wendy S. Woods
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shraddha Shirguppe
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Angelo Miskalis
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anna Busza
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Dana Joulani
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Collin J. Kao
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kurt Kostan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anne Bigot
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick J. Holonyak Micro and Nano Technology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, Champaign, IL 61820, USA
| | - Pablo Perez-Pinera
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, Champaign, IL 61820, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
37
|
Bede P, Lulé D, Müller HP, Tan EL, Dorst J, Ludolph AC, Kassubek J. Presymptomatic grey matter alterations in ALS kindreds: a computational neuroimaging study of asymptomatic C9orf72 and SOD1 mutation carriers. J Neurol 2023; 270:4235-4247. [PMID: 37178170 PMCID: PMC10421803 DOI: 10.1007/s00415-023-11764-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND The characterisation of presymptomatic disease-burden patterns in asymptomatic mutation carriers has a dual academic and clinical relevance. The understanding of disease propagation mechanisms is of considerable conceptual interests, and defining the optimal time of pharmacological intervention is essential for improved clinical trial outcomes. METHODS In a prospective, multimodal neuroimaging study, 22 asymptomatic C9orf72 GGGGCC hexanucleotide repeat carriers, 13 asymptomatic subjects with SOD1, and 54 "gene-negative" ALS kindreds were enrolled. Cortical and subcortical grey matter alterations were systematically appraised using volumetric, morphometric, vertex, and cortical thickness analyses. Using a Bayesian approach, the thalamus and amygdala were further parcellated into specific nuclei and the hippocampus was segmented into anatomically defined subfields. RESULTS Asymptomatic GGGGCC hexanucleotide repeat carriers in C9orf72 exhibited early subcortical changes with the preferential involvement of the pulvinar and mediodorsal regions of the thalamus, as well as the lateral aspect of the hippocampus. Volumetric approaches, morphometric methods, and vertex analyses were anatomically consistent in capturing focal subcortical changes in asymptomatic C9orf72 hexanucleotide repeat expansion carriers. SOD1 mutation carriers did not exhibit significant subcortical grey matter alterations. In our study, none of the two asymptomatic cohorts exhibited cortical grey matter alterations on either cortical thickness or morphometric analyses. DISCUSSION The presymptomatic radiological signature of C9orf72 is associated with selective thalamic and focal hippocampal degeneration which may be readily detectable before cortical grey matter changes ensue. Our findings confirm selective subcortical grey matter involvement early in the course of C9orf72-associated neurodegeneration.
Collapse
Affiliation(s)
- Peter Bede
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Dublin, D02 RS90, Ireland.
- Department of Neurology, St James's Hospital, Dublin, Ireland.
| | - Dorothée Lulé
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Ee Ling Tan
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Dublin, D02 RS90, Ireland
| | - Johannes Dorst
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Albert C Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany
- German Centre of Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
- German Centre of Neurodegenerative Diseases (DZNE), Ulm, Germany
| |
Collapse
|
38
|
Petian-Alonso DC, de Castro AC, Barroso de Queiroz Davoli G, Martinez EZ, Mattiello-Sverzut AC. Defining ambulation status in patients with Duchenne muscular dystrophy using the 10-metre walk test and the motor function measure scale. Disabil Rehabil 2023; 45:2984-2988. [PMID: 35980858 DOI: 10.1080/09638288.2022.2112098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/02/2022] [Accepted: 08/07/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Timed functional tests have been explored to understand the natural history of Duchenne muscular dystrophy (DMD) and to establish warning signs of loss of gait. This study verified whether the combination of the 10-metre walk test (10MWT) and the motor function measure (MFM) could classify the ambulation status of DMD patients. METHOD Thirty-two patients, aged between 5 and 22 years, with independent gait initially evaluated over 11 years participated in the study. Two groups were created: ambulators and non-ambulators. For both groups, we calculated a 10MWT ratio, by dividing the time spent to perform the last evaluation by the penultimate evaluation, and a MFM dimension-1 score (MFM-D1), collected in the same period. For the statistical analysis, the CART algorithm ("rpart" package in R) classified the patients into ambulators and non-ambulators according to two continuous variables: the 10MWT ratio and the MFM-D1 score. RESULTS The cut-off points were 1.1 for the 10MWT ratio and 26 points for the MFM-D1, which distinguished 70% of the patients as either ambulators or non-ambulators. CONCLUSION This simple measurement strategy can be used by therapists to adjust their rehabilitation strategies and goals.Implications for rehabilitationCombination of 10MWT ratio with MFM-D1 reveal an "indicator" for the ambulation status of patients with DMD.Physiotherapists can guide clinical care and prepare the patient and family for loss of gait.CART algorithm describes how we classified the patients according to two continuous variables.70% Of the patients with DMD can be distinguished as either ambulators or non-ambulators.
Collapse
Affiliation(s)
- Danila Cristina Petian-Alonso
- Department of Health Science, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ani Caroline de Castro
- Department of Health Science, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Edson Zangiacomi Martinez
- Department of Social Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana Claudia Mattiello-Sverzut
- Department of Health Science, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
39
|
Zheng Y, Zhong G, He C, Li M. Targeted splicing therapy: new strategies for colorectal cancer. Front Oncol 2023; 13:1222932. [PMID: 37664052 PMCID: PMC10470845 DOI: 10.3389/fonc.2023.1222932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
RNA splicing is the process of forming mature mRNA, which is an essential phase necessary for gene expression and controls many aspects of cell proliferation, survival, and differentiation. Abnormal gene-splicing events are closely related to the development of tumors, and the generation of oncogenic isoform in splicing can promote tumor progression. As a main process of tumor-specific splicing variants, alternative splicing (AS) can promote tumor progression by increasing the production of oncogenic splicing isoforms and/or reducing the production of normal splicing isoforms. This is the focus of current research on the regulation of aberrant tumor splicing. So far, AS has been found to be associated with various aspects of tumor biology, including cell proliferation and invasion, resistance to apoptosis, and sensitivity to different chemotherapeutic drugs. This article will review the abnormal splicing events in colorectal cancer (CRC), especially the tumor-associated splicing variants arising from AS, aiming to offer an insight into CRC-targeted splicing therapy.
Collapse
Affiliation(s)
| | | | - Chengcheng He
- Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | | |
Collapse
|
40
|
Heezen LGM, Abdelaal T, van Putten M, Aartsma-Rus A, Mahfouz A, Spitali P. Spatial transcriptomics reveal markers of histopathological changes in Duchenne muscular dystrophy mouse models. Nat Commun 2023; 14:4909. [PMID: 37582915 PMCID: PMC10427630 DOI: 10.1038/s41467-023-40555-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/02/2023] [Indexed: 08/17/2023] Open
Abstract
Duchenne muscular dystrophy is caused by mutations in the DMD gene, leading to lack of dystrophin. Chronic muscle damage eventually leads to histological alterations in skeletal muscles. The identification of genes and cell types driving tissue remodeling is a key step to developing effective therapies. Here we use spatial transcriptomics in two Duchenne muscular dystrophy mouse models differing in disease severity to identify gene expression signatures underlying skeletal muscle pathology and to directly link gene expression to muscle histology. We perform deconvolution analysis to identify cell types contributing to histological alterations. We show increased expression of specific genes in areas of muscle regeneration (Myl4, Sparc, Hspg2), fibrosis (Vim, Fn1, Thbs4) and calcification (Bgn, Ctsk, Spp1). These findings are confirmed by smFISH. Finally, we use differentiation dynamic analysis in the D2-mdx muscle to identify muscle fibers in the present state that are predicted to become affected in the future state.
Collapse
Affiliation(s)
- L G M Heezen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - T Abdelaal
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Systems and Biomedical Engineering Department, Faculty of Engineering Cairo University, Giza, Egypt
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - M van Putten
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - A Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - A Mahfouz
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - P Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
41
|
McCormack NM, Calabrese KA, Sun CM, Tully CB, Heier CR, Fiorillo AA. Deletion of miR-146a enhances therapeutic protein restoration in model of dystrophin exon skipping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540042. [PMID: 37214870 PMCID: PMC10197665 DOI: 10.1101/2023.05.09.540042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle disease caused by the absence of dystrophin protein. One current DMD therapeutic strategy, exon skipping, produces a truncated dystrophin isoform using phosphorodiamidate morpholino oligomers (PMOs). However, the potential of exon skipping therapeutics has not been fully realized as increases in dystrophin protein have been minimal in clinical trials. Here, we investigate how miR-146a-5p, which is highly elevated in dystrophic muscle, impacts dystrophin protein levels. We find inflammation strongly induces miR-146a in dystrophic, but not wild-type myotubes. Bioinformatics analysis reveals that the dystrophin 3'UTR harbors a miR-146a binding site, and subsequent luciferase assays demonstrate miR-146a binding inhibits dystrophin translation. In dystrophin-null mdx52 mice, co-injection of miR-146a reduces dystrophin restoration by an exon 51 skipping PMO. To directly investigate how miR-146a impacts therapeutic dystrophin rescue, we generated mdx52 with body-wide miR-146a deletion (146aX). Administration of an exon skipping PMO via intramuscular or intravenous injection markedly increases dystrophin protein levels in 146aX versus mdx52 muscles; skipped dystrophin transcript levels are unchanged, suggesting a post-transcriptional mechanism-of-action. Together, these data show that miR-146a expression opposes therapeutic dystrophin restoration, suggesting miR-146a inhibition warrants further research as a potential DMD exon skipping co-therapy.
Collapse
Affiliation(s)
- Nikki M. McCormack
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, District of Columbia, USA
| | - Kelsey A. Calabrese
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, District of Columbia, USA
| | - Christina M. Sun
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, District of Columbia, USA
| | - Christopher B. Tully
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, District of Columbia, USA
| | - Christopher R. Heier
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, District of Columbia, USA
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Alyson A. Fiorillo
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, District of Columbia, USA
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
42
|
Gajewski CR, Chen KY, Chang E, Levine D, Valdes JW, Thompson RM. Management and Outcomes of Femur Fractures in Patients with Duchenne Muscular Dystrophy. JOURNAL OF THE PEDIATRIC ORTHOPAEDIC SOCIETY OF NORTH AMERICA 2023; 5:664. [PMID: 40433328 PMCID: PMC12088147 DOI: 10.55275/jposna-2023-664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/01/2023] [Indexed: 05/29/2025]
Abstract
Background: Duchenne muscular dystrophy (DMD) is a severe, progressive X-linked recessive neuromuscular disorder characterized by muscle weakness and atrophy. Additionally, patients with DMD have significant reductions in bone mineral density compared to age-matched controls, which is exacerbated by concomitant steroid use. These findings dramatically increase fracture risk, which may irreparably decrease functional status. The aim of this case series is to examine outcomes of operative versus nonoperative management of femur fractures in this patient population.Methods: An IRB-approved retrospective chart review was completed for patients with DMD treated at a single institution for a femur fracture between 2013-2022. Patients were excluded for incomplete documentation, treatment initiation at an outside hospital, or diagnosis of a different muscular dystrophy. Demographic variables, treatment information, functional status, and adverse events were collected for each patient. Descriptive statistics were used to summarize demographic and outcome variables.Results: A total of 10 patients with 11 femur fractures were included for analysis. All patients were male with an average age of 12.7 years and clinical follow-up of 286 days. Five fractures in five patients underwent operative fixation (Group A), and six fractures in five patients underwent nonoperative management (Group B). In Group A, three patients were short-distance ambulators prior to injury, and all patients regained a similar functional status postoperatively. All three patients were treated with a locked intramedullary nail. One patient in Group B was a short-distance ambulator prior to injury; the remainder were nonambulatory. All patients in Group B were primary wheelchair users at final follow-up. There were no adverse events as a result of treatment in either group.Conclusion: Nonoperative management with cast immobilization remains an acceptable option for nonambulatory patients and those with minimally displaced fractures not amenable to surgical intervention. Surgical intervention is recommended for higher-functioning patients with the goal of restoring ambulatory status. Regardless of treatment modality, patients should receive aggressive physical therapy directed at early weight-bearing, range of motion, and mobilization to preserve strength, muscle mass, and mobility.Level of Evidence: Level IV case series. Key Concepts •Management of femur fractures in Duchenne muscular dystrophy should account for fracture morphology as well as patient functional status.•Surgical management is safe and effective in promoting fracture union and preserving functional status.•Nonoperative management is preferred in nonambulatory patients and for minimally displaced fractures.
Collapse
Affiliation(s)
| | - Kevin Y Chen
- David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Eric Chang
- UCLA Department of Orthopedic Surgery, Los Angeles, CA
| | - Doug Levine
- CureDuchenne, Department of Professional Development, Newport Beach, CA
| | | | - Rachel M Thompson
- UCLA Department of Orthopedic Surgery, Los Angeles, CA
- Luskin Orthopaedic Institute for Children, Los Angeles, CA
| |
Collapse
|
43
|
Bouchard C, Tremblay JP. Limb-Girdle Muscular Dystrophies Classification and Therapies. J Clin Med 2023; 12:4769. [PMID: 37510884 PMCID: PMC10381329 DOI: 10.3390/jcm12144769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Limb-girdle muscular dystrophies (LGMDs) are caused by mutations in multiple genes. This review article presents 39 genes associated with LGMDs. Some forms are inherited in a dominant fashion, while for others this occurs recessively. The classification of LGMDs has evolved through time. Lately, to be considered an LGMD, the mutation has to cause a predominant proximal muscle weakness and must be found in two or more unrelated families. This article also presents therapies for LGMDs, examining both available treatments and those in development. For now, only symptomatic treatments are available for patients. The goal is now to solve the problem at the root of LGMDs instead of treating each symptom individually. In the last decade, multiple other potential treatments were developed and studied, such as stem-cell transplantation, exon skipping, gene delivery, RNAi, and gene editing.
Collapse
Affiliation(s)
- Camille Bouchard
- Departement de Médecine Moléculaire, Université Laval, Quebec, QC G1V 0A6, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Quebec, Quebec, QC G1E 6W2, Canada
| | - Jacques P Tremblay
- Departement de Médecine Moléculaire, Université Laval, Quebec, QC G1V 0A6, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Quebec, Quebec, QC G1E 6W2, Canada
| |
Collapse
|
44
|
Gu Y, Wu L, Hameed Y, Nabi-Afjadi M. Overcoming the challenge: cell-penetrating peptides and membrane permeability. BIOMATERIALS AND BIOSENSORS 2023; 2. [DOI: 10.58567/bab02010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
<p>Cell-penetrating peptides (CPPs) have emerged as a promising strategy for enhancing the membrane permeability of bioactive molecules, particularly in the treatment of central nervous system diseases. CPPs possess the ability to deliver a diverse array of bioactive molecules into cells using either covalent or non-covalent approaches, with a preference for non-covalent methods to preserve the biological activity of the transported molecules. By effectively traversing various physiological barriers, CPPs have exhibited significant potential in preclinical and clinical drug development. The discovery of CPPs represents a valuable solution to the challenge of limited membrane permeability of bioactive molecules and will continue to exert a crucial influence on the field of biomedical science.</p>
Collapse
Affiliation(s)
- Yuan Gu
- The Statistics Department, The George Washington University, Washington, United States
| | - Long Wu
- Department of Surgery, University of Maryland, Baltimore, United States
| | - Yasir Hameed
- Department of Applied Biological Sciences, Tokyo University of Science, Tokyo, Japan
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
45
|
Eisen B, Binah O. Modeling Duchenne Muscular Dystrophy Cardiomyopathy with Patients' Induced Pluripotent Stem-Cell-Derived Cardiomyocytes. Int J Mol Sci 2023; 24:ijms24108657. [PMID: 37240001 DOI: 10.3390/ijms24108657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked progressive muscle degenerative disease caused by mutations in the dystrophin gene, resulting in death by the end of the third decade of life at the latest. A key aspect of the DMD clinical phenotype is dilated cardiomyopathy, affecting virtually all patients by the end of the second decade of life. Furthermore, despite respiratory complications still being the leading cause of death, with advancements in medical care in recent years, cardiac involvement has become an increasing cause of mortality. Over the years, extensive research has been conducted using different DMD animal models, including the mdx mouse. While these models present certain important similarities to human DMD patients, they also have some differences which pose a challenge to researchers. The development of somatic cell reprograming technology has enabled generation of human induced pluripotent stem cells (hiPSCs) which can be differentiated into different cell types. This technology provides a potentially endless pool of human cells for research. Furthermore, hiPSCs can be generated from patients, thus providing patient-specific cells and enabling research tailored to different mutations. DMD cardiac involvement has been shown in animal models to include changes in gene expression of different proteins, abnormal cellular Ca2+ handling, and other aberrations. To gain a better understanding of the disease mechanisms, it is imperative to validate these findings in human cells. Furthermore, with the recent advancements in gene-editing technology, hiPSCs provide a valuable platform for research and development of new therapies including the possibility of regenerative medicine. In this article, we review the DMD cardiac-related research performed so far using human hiPSCs-derived cardiomyocytes (hiPSC-CMs) carrying DMD mutations.
Collapse
Affiliation(s)
- Binyamin Eisen
- Cardiac Research Laboratory, Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Ofer Binah
- Cardiac Research Laboratory, Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
46
|
Kong X, Zhang H, Li G, Wang Z, Kong X, Wang L, Xue M, Zhang W, Wang Y, Lin J, Zhou J, Shen X, Wei Y, Zhong N, Bai W, Yuan Y, Shi L, Zhou Y, Yang H. Engineered CRISPR-OsCas12f1 and RhCas12f1 with robust activities and expanded target range for genome editing. Nat Commun 2023; 14:2046. [PMID: 37041195 PMCID: PMC10090079 DOI: 10.1038/s41467-023-37829-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/31/2023] [Indexed: 04/13/2023] Open
Abstract
The type V-F CRISPR-Cas12f system is a strong candidate for therapeutic applications due to the compact size of the Cas12f proteins. In this work, we identify six uncharacterized Cas12f1 proteins with nuclease activity in mammalian cells from assembled bacterial genomes. Among them, OsCas12f1 (433 aa) from Oscillibacter sp. and RhCas12f1 (415 aa) from Ruminiclostridium herbifermentans, which respectively target 5' T-rich Protospacer Adjacent Motifs (PAMs) and 5' C-rich PAMs, show the highest editing activity. Through protein and sgRNA engineering, we generate enhanced OsCas12f1 (enOsCas12f1) and enRhCas12f1 variants, with 5'-TTN and 5'-CCD (D = not C) PAMs respectively, exhibiting much higher editing efficiency and broader PAMs, compared with the engineered variant Un1Cas12f1 (Un1Cas12f1_ge4.1). Furthermore, by fusing the destabilized domain with enOsCas12f1, we generate inducible-enOsCas12f1 and demonstate its activity in vivo by single adeno-associated virus delivery. Finally, dead enOsCas12f1-based epigenetic editing and gene activation can also be achieved in mammalian cells. This study thus provides compact gene editing tools for basic research with remarkable promise for therapeutic applications.
Collapse
Affiliation(s)
- Xiangfeng Kong
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Hainan Zhang
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Guoling Li
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Zikang Wang
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Xuqiang Kong
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Lecong Wang
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Mingxing Xue
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Weihong Zhang
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Yao Wang
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Jiajia Lin
- Department of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jingxing Zhou
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Xiaowen Shen
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Yinghui Wei
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Na Zhong
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Weiya Bai
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Yuan Yuan
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Linyu Shi
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Yingsi Zhou
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China.
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China.
| | - Hui Yang
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China.
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China.
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
47
|
Morelli KH, Smargon AA, Yeo GW. Programmable macromolecule-based RNA-targeting therapies to treat human neurological disorders. RNA (NEW YORK, N.Y.) 2023; 29:489-497. [PMID: 36693761 PMCID: PMC10019361 DOI: 10.1261/rna.079519.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Disruptions in RNA processing play critical roles in the pathogenesis of neurological diseases. In this Perspective, we discuss recent progress in the development of RNA-targeting therapeutic modalities. We focus on progress, limitations, and opportunities in a new generation of therapies engineered from RNA binding proteins and other endogenous RNA regulatory macromolecules to treat human neurological disorders.
Collapse
Affiliation(s)
- Kathryn H Morelli
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, California 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92039, USA
| | - Aaron A Smargon
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, California 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92039, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, California 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92039, USA
| |
Collapse
|
48
|
Patterson G, Conner H, Groneman M, Blavo C, Parmar MS. Duchenne muscular dystrophy: Current treatment and emerging exon skipping and gene therapy approach. Eur J Pharmacol 2023; 947:175675. [PMID: 36963652 DOI: 10.1016/j.ejphar.2023.175675] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/01/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive neuromuscular disorder that causes debilitating muscle weakness and atrophy due to a loss of the dystrophin protein. Patients with DMD are commonly diagnosed at about 3-5 years of age and progressively decline until complications of the disease often result in death at about 20 years of age. While there is no current cure for DMD, several treatment options focus on improving the quality of life and slowing progression of symptoms associated with the disease. The current treatment for DMD is glucocorticoids and physical therapy. Respiratory therapy, cardiac management, bone health maintenance, orthopedic interventions, and dietary considerations are also utilized in managing DMD patients. Emerging therapeutic approaches include gene transfer therapy, using adeno-associated virus (AAV) vectors, and exon skipping agents. Both approaches have been shown to be relatively safe, with few significant side effects. Even though exon skipping agents produce a smaller dystrophin protein, they effectively preserve a significant portion of its function. Exon skipping agents have clinical advantages over traditional therapies, such as corticosteroids, because they slow the progression of DMD in addition to relieving symptoms. This review discusses the pathogenesis of DMD and explores the current treatment options as well as new and emerging therapies.
Collapse
Affiliation(s)
- Grant Patterson
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, 33759, USA
| | - Haley Conner
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, 33759, USA
| | - Mecham Groneman
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, 33759, USA
| | - Cyril Blavo
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, 33759, USA; Department of Public Health, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314, USA; Department of Pediatrics, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314, USA
| | - Mayur S Parmar
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, 33759, USA.
| |
Collapse
|
49
|
Wang P, Li H, Zhu M, Han RY, Guo S, Han R. Correction of DMD in human iPSC-derived cardiomyocytes by base-editing-induced exon skipping. Mol Ther Methods Clin Dev 2023; 28:40-50. [PMID: 36588820 PMCID: PMC9792405 DOI: 10.1016/j.omtm.2022.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene. Previously, we showed that adenine base editing (ABE) can efficiently correct a nonsense point mutation in a DMD mouse model. Here, we explored the feasibility of base-editing-mediated exon skipping as a therapeutic strategy for DMD using cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs). We first generated a DMD hiPSC line with a large deletion spanning exon 48 through 54 (ΔE48-54) using CRISPR-Cas9 gene editing. Dystrophin expression was disrupted in DMD hiPSC-derived cardiomyocytes (iCMs) as examined by RT-PCR, western blot, and immunofluorescence staining. Transfection of ABE and a guide RNA (gRNA) targeting the splice acceptor led to efficient conversion of AG to GG (35.9% ± 5.7%) and enabled exon 55 skipping. Complete AG to GG conversion in a single clone restored dystrophin expression (42.5% ± 11% of wild type [WT]) in DMD iCMs. Moreover, we designed gRNAs to target the splice sites of exons 6, 7, 8, 43, 44, 46, and 53 in the mutational hotspots and demonstrated their efficiency to induce exon skipping in iCMs. These results highlight the great promise of ABE-mediated exon skipping as a promising therapeutic approach for DMD.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Haiwen Li
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Mandi Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Rena Y. Han
- Olentangy Liberty High School, Powell, OH 43065, USA
| | - Shuliang Guo
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Renzhi Han
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
50
|
Mercuri E, Seferian A, Servais L, Deconinck N, Stevenson H, Ni X, Zhang W, East L, Yonren S, Muntoni F, Deconinck N, Van Coster R, Vanlander A, Seferian A, De Lucia S, Gidaro T, Brande LV, Servais L, Kirschner J, Borell S, Mercuri E, Brogna C, Pane M, Fanelli L, Norcia G, Muntoni F, Brusa C, Chesshyre M, Maresh K, Pitchforth J, Schottlaender L, Scoto M, Silwal A, Trucco F. Safety, tolerability and pharmacokinetics of eteplirsen in young boys aged 6–48 months with Duchenne muscular dystrophy amenable to exon 51 skipping. Neuromuscul Disord 2023; 33:476-483. [PMID: 37207382 DOI: 10.1016/j.nmd.2023.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
Eteplirsen is FDA-approved for the treatment of Duchenne muscular dystrophy (DMD) in exon 51 skip-amenable patients. Previous studies in boys > 4 years of age indicate eteplirsen is well tolerated and attenuates pulmonary and ambulatory decline compared with matched natural history cohorts. Here the safety, tolerability and pharmacokinetics of eteplirsen in boys aged 6-48 months is evaluated. In this open-label, multicenter, dose-escalation study (NCT03218995), boys with a confirmed mutation of the DMD gene amenable to exon 51 skipping (Cohort 1: aged 24-48 months, n = 9; Cohort 2: aged 6 to < 24 months, n = 6) received ascending doses (2, 4, 10, 20, 30 mg/kg) of once-weekly eteplirsen intravenously over 10 weeks, continuing at 30 mg/kg up to 96 weeks. Endpoints included safety (primary) and pharmacokinetics (secondary). All 15 participants completed the study. Eteplirsen was well tolerated with no treatment-related discontinuations, deaths or evidence of kidney toxicity. Most treatment-emergent adverse events were mild; most common were pyrexia, cough, nasopharyngitis, vomiting, and diarrhea. Eteplirsen pharmacokinetics were consistent between both cohorts and with previous clinical experience in boys with DMD > 4 years of age. These data support the safety and tolerability of eteplirsen at the approved 30-mg/kg dose in boys as young as 6 months old.
Collapse
|