1
|
Boehm E, Summermatter K, Kaiser L. Orthopox viruses: is the threat growing? Clin Microbiol Infect 2024; 30:883-887. [PMID: 38387500 DOI: 10.1016/j.cmi.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Smallpox was a major cause of human mortality until its eradication, but the threat of orthopox viruses has not disappeared. Since the eradication of smallpox and the cessation of the related vaccination campaigns, the threat has been growing, as evidenced by the currently ongoing worldwide Mpox outbreak. In addition to threats of an evolving Mpox, we must also be aware of a myriad of other threats that remain. Many countries still lack biosecurity regulations reflecting the recent technological advances, and the threat of bioterrorism remains ever present. Reconstruction of smallpox is a distinct possibility, as are other scenarios whereby other orthopox viruses may be made more fit for transmission in humans. OBJECTIVES To outline and discuss potential biosafety and biosecurity threats posed by orthopox viruses. SOURCES Published scientific literature, news articles, and international agreements. CONTENT AND IMPLICATIONS It would be wise to take steps to mitigate these threats now. Vaccination campaigns should be considered in areas with frequent orthopox outbreaks, and more efforts must be made to put a final end to the Mpox outbreak. In many countries, national biosafety and biosecurity regulations may need to be revised and strengthened to better reflect the threats posed by new technologies, including controls on synthesis of smallpox sequences. Furthermore, more international cooperation and aid is needed. The present global Mpox outbreak could likely have been prevented had areas where Mpox is endemic not been neglected. Future outbreaks could be much worse.
Collapse
Affiliation(s)
- Erik Boehm
- Centre for Emerging Viral Diseases, Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland.
| | | | - Laurent Kaiser
- Centre for Emerging Viral Diseases, Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
2
|
Johnson RF, Hammoud DA, Perry DL, Solomon J, Moore IN, Lackemeyer MG, Bohannon JK, Sayre PJ, Minai M, Papaneri AB, Hagen KR, Janosko KB, Jett C, Cooper K, Blaney JE, Jahrling PB. Exposure of rhesus monkeys to cowpox virus Brighton Red by large-particle aerosol droplets results in an upper respiratory tract disease. J Gen Virol 2016; 97:1942-1954. [PMID: 27166137 PMCID: PMC5764124 DOI: 10.1099/jgv.0.000501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/07/2016] [Indexed: 01/13/2023] Open
Abstract
We previously demonstrated that small-particle (0.5-3.0 µm) aerosol infection of rhesus monkeys (Macaca mulatta) with cowpox virus (CPXV)-Brighton Red (BR) results in fulminant respiratory tract disease characterized by severe lung parenchymal pathology but only limited systemic virus dissemination and limited classic epidermal pox-like lesion development (Johnson et al., 2015). Based on these results, and to further develop CPXV as an improved model of human smallpox, we evaluated a novel large-particle aerosol (7.0-9.0 µm) exposure of rhesus monkeys to CPXV-BR and monitored for respiratory tract disease by serial computed tomography (CT). As expected, the upper respiratory tract and large airways were the major sites of virus-induced pathology following large-particle aerosol exposure. Large-particle aerosol CPXV exposure of rhesus macaques resulted in severe upper airway and large airway pathology with limited systemic dissemination.
Collapse
Affiliation(s)
- Reed F. Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Dima A. Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Donna L. Perry
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Jeffrey Solomon
- Clinical Research Directorate/Clinical Monitoring Research Program Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ian N. Moore
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew G. Lackemeyer
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Jordan K. Bohannon
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Philip J. Sayre
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy B. Papaneri
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Katie R. Hagen
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Krisztina B. Janosko
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Catherine Jett
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Kurt Cooper
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Joseph E. Blaney
- Office of the Scientific Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter B. Jahrling
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|