1
|
Wu Y, De Asis-Cruz J, Limperopoulos C. Brain structural and functional outcomes in the offspring of women experiencing psychological distress during pregnancy. Mol Psychiatry 2024; 29:2223-2240. [PMID: 38418579 PMCID: PMC11408260 DOI: 10.1038/s41380-024-02449-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 03/01/2024]
Abstract
In-utero exposure to maternal psychological distress is increasingly linked with disrupted fetal and neonatal brain development and long-term neurobehavioral dysfunction in children and adults. Elevated maternal psychological distress is associated with changes in fetal brain structure and function, including reduced hippocampal and cerebellar volumes, increased cerebral cortical gyrification and sulcal depth, decreased brain metabolites (e.g., choline and creatine levels), and disrupted functional connectivity. After birth, reduced cerebral and cerebellar gray matter volumes, increased cerebral cortical gyrification, altered amygdala and hippocampal volumes, and disturbed brain microstructure and functional connectivity have been reported in the offspring months or even years after exposure to maternal distress during pregnancy. Additionally, adverse child neurodevelopment outcomes such as cognitive, language, learning, memory, social-emotional problems, and neuropsychiatric dysfunction are being increasingly reported after prenatal exposure to maternal distress. The mechanisms by which prenatal maternal psychological distress influences early brain development include but are not limited to impaired placental function, disrupted fetal epigenetic regulation, altered microbiome and inflammation, dysregulated hypothalamic pituitary adrenal axis, altered distribution of the fetal cardiac output to the brain, and disrupted maternal sleep and appetite. This review will appraise the available literature on the brain structural and functional outcomes and neurodevelopmental outcomes in the offspring of pregnant women experiencing elevated psychological distress. In addition, it will also provide an overview of the mechanistic underpinnings of brain development changes in stress response and discuss current treatments for elevated maternal psychological distress, including pharmacotherapy (e.g., selective serotonin reuptake inhibitors) and non-pharmacotherapy (e.g., cognitive-behavior therapy). Finally, it will end with a consideration of future directions in the field.
Collapse
Affiliation(s)
- Yao Wu
- Developing Brain Institute, Children's National Hospital, Washington, DC, 20010, USA
| | | | - Catherine Limperopoulos
- Developing Brain Institute, Children's National Hospital, Washington, DC, 20010, USA.
- Department of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, 20010, USA.
| |
Collapse
|
2
|
Harford EE, Holt LL, Abel TJ. Unveiling the development of human voice perception: Neurobiological mechanisms and pathophysiology. CURRENT RESEARCH IN NEUROBIOLOGY 2024; 6:100127. [PMID: 38511174 PMCID: PMC10950757 DOI: 10.1016/j.crneur.2024.100127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
The human voice is a critical stimulus for the auditory system that promotes social connection, informs the listener about identity and emotion, and acts as the carrier for spoken language. Research on voice processing in adults has informed our understanding of the unique status of the human voice in the mature auditory cortex and provided potential explanations for mechanisms that underly voice selectivity and identity processing. There is evidence that voice perception undergoes developmental change starting in infancy and extending through early adolescence. While even young infants recognize the voice of their mother, there is an apparent protracted course of development to reach adult-like selectivity for human voice over other sound categories and recognition of other talkers by voice. Gaps in the literature do not allow for an exact mapping of this trajectory or an adequate description of how voice processing and its neural underpinnings abilities evolve. This review provides a comprehensive account of developmental voice processing research published to date and discusses how this evidence fits with and contributes to current theoretical models proposed in the adult literature. We discuss how factors such as cognitive development, neural plasticity, perceptual narrowing, and language acquisition may contribute to the development of voice processing and its investigation in children. We also review evidence of voice processing abilities in premature birth, autism spectrum disorder, and phonagnosia to examine where and how deviations from the typical trajectory of development may manifest.
Collapse
Affiliation(s)
- Emily E. Harford
- Department of Neurological Surgery, University of Pittsburgh, USA
| | - Lori L. Holt
- Department of Psychology, The University of Texas at Austin, USA
| | - Taylor J. Abel
- Department of Neurological Surgery, University of Pittsburgh, USA
- Department of Bioengineering, University of Pittsburgh, USA
| |
Collapse
|
3
|
Menn KH, Männel C, Meyer L. Does Electrophysiological Maturation Shape Language Acquisition? PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2023; 18:1271-1281. [PMID: 36753616 PMCID: PMC10623610 DOI: 10.1177/17456916231151584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Infants master temporal patterns of their native language at a developmental trajectory from slow to fast: Shortly after birth, they recognize the slow acoustic modulations specific to their native language before tuning into faster language-specific patterns between 6 and 12 months of age. We propose here that this trajectory is constrained by neuronal maturation-in particular, the gradual emergence of high-frequency neural oscillations in the infant electroencephalogram. Infants' initial focus on slow prosodic modulations is consistent with the prenatal availability of slow electrophysiological activity (i.e., theta- and delta-band oscillations). Our proposal is consistent with the temporal patterns of infant-directed speech, which initially amplifies slow modulations, approaching the faster modulation range of adult-directed speech only as infants' language has advanced sufficiently. Moreover, our proposal agrees with evidence from premature infants showing maturational age is a stronger predictor of language development than ex utero exposure to speech, indicating that premature infants cannot exploit their earlier availability of speech because of electrophysiological constraints. In sum, we provide a new perspective on language acquisition emphasizing neuronal development as a critical driving force of infants' language development.
Collapse
Affiliation(s)
- Katharina H. Menn
- Research Group Language Cycles, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany
| | - Claudia Männel
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Audiology and Phoniatrics, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Lars Meyer
- Research Group Language Cycles, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Clinic for Phoniatrics and Pedaudiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
4
|
Pollatou A, Filippi CA, Aydin E, Vaughn K, Thompson D, Korom M, Dufford AJ, Howell B, Zöllei L, Martino AD, Graham A, Scheinost D, Spann MN. An ode to fetal, infant, and toddler neuroimaging: Chronicling early clinical to research applications with MRI, and an introduction to an academic society connecting the field. Dev Cogn Neurosci 2022; 54:101083. [PMID: 35184026 PMCID: PMC8861425 DOI: 10.1016/j.dcn.2022.101083] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/17/2021] [Accepted: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
Fetal, infant, and toddler neuroimaging is commonly thought of as a development of modern times (last two decades). Yet, this field mobilized shortly after the discovery and implementation of MRI technology. Here, we provide a review of the parallel advancements in the fields of fetal, infant, and toddler neuroimaging, noting the shifts from clinical to research use, and the ongoing challenges in this fast-growing field. We chronicle the pioneering science of fetal, infant, and toddler neuroimaging, highlighting the early studies that set the stage for modern advances in imaging during this developmental period, and the large-scale multi-site efforts which ultimately led to the explosion of interest in the field today. Lastly, we consider the growing pains of the community and the need for an academic society that bridges expertise in developmental neuroscience, clinical science, as well as computational and biomedical engineering, to ensure special consideration of the vulnerable mother-offspring dyad (especially during pregnancy), data quality, and image processing tools that are created, rather than adapted, for the young brain.
Collapse
Affiliation(s)
- Angeliki Pollatou
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Courtney A Filippi
- Section on Development and Affective Neuroscience, National Institute of Mental Health, Bethesda, MD, USA; Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, USA
| | - Ezra Aydin
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; Department of Psychology, University of Cambridge, Cambridge, UK
| | - Kelly Vaughn
- Department of Pediatrics, University of Texas Health Sciences Center, Houston, TX, USA
| | - Deanne Thompson
- Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Marta Korom
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Alexander J Dufford
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Brittany Howell
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, USA
| | - Lilla Zöllei
- Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | | | - Alice Graham
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Dustin Scheinost
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Marisa N Spann
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
5
|
Rajagopalan V, Deoni S, Panigrahy A, Thomason ME. Is fetal MRI ready for neuroimaging prime time? An examination of progress and remaining areas for development. Dev Cogn Neurosci 2021; 51:100999. [PMID: 34391003 PMCID: PMC8365463 DOI: 10.1016/j.dcn.2021.100999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/08/2021] [Accepted: 08/03/2021] [Indexed: 11/25/2022] Open
Abstract
A major challenge in designing large-scale, multi-site studies is developing a core, scalable protocol that retains the innovation of scientific advances while also lending itself to the variability in experience and resources across sites. In the development of a common Healthy Brain and Child Development (HBCD) protocol, one of the chief questions is "is fetal MRI ready for prime-time?" While there is agreement about the value of prenatal data obtained non-invasively through MRI, questions about practicality abound. There has been rapid progress over the past years in fetal and placental MRI methodology but there is uncertainty about whether the gains afforded outweigh the challenges in supporting fetal MRI protocols at scale. Here, we will define challenges inherent in building a common protocol across sites with variable expertise and will propose a tentative framework for evaluation of design decisions. We will compare and contrast various design considerations for both normative and high-risk populations, in the setting of the post-COVID era. We will conclude with articulation of the benefits of overcoming these challenges and would lend to the primary questions articulated in the HBCD initiative.
Collapse
Affiliation(s)
- Vidya Rajagopalan
- Department of Radiology, Keck School of Medicine, University of Southern California and Childrens Hospital of Los Angeles, United States.
| | - Sean Deoni
- Department of Pediatrics, Memorial Hospital of Rhode Island, United States
| | - Ashok Panigrahy
- Department of Radiology, University of Pittsburgh Medical School and Children's Hospital of Pittsburgh, United States
| | - Moriah E Thomason
- Departments of Child and Adolescent Psychiatry and Population Health, Hassenfeld Children's Hospital at NYU Langone, United States
| |
Collapse
|
6
|
Poćwierz-Marciniak I, Harciarek M. The Effect of Musical Stimulation and Mother's Voice on the Early Development of Musical Abilities: A Neuropsychological Perspective. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8467. [PMID: 34444216 PMCID: PMC8393253 DOI: 10.3390/ijerph18168467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 11/16/2022]
Abstract
An infant's early contact with music affects its future development in a broad sense, including the development of musical aptitude. Contact with the mother's voice, both prenatally and after birth, is also extremely important for creating an emotional bond between the infant and the mother. This article discusses the role that auditory experience-both typically musical and that associated with the mother's voice-plays in fetal, neonatal, and infant development, particularly in terms of musical aptitude. Attempts have also been made to elucidate the neuropsychological mechanisms underlying the positive effects that appropriate musical stimulation can have on a child's development.
Collapse
|
7
|
Inocencio IM, Tran NT, Khor SJ, Wiersma M, Nakamura S, Walker DW, Wong FY. The cerebral haemodynamic response to somatosensory stimulation in preterm newborn lambs is reduced with dopamine or dobutamine infusion. Exp Neurol 2021; 341:113687. [PMID: 33713656 DOI: 10.1016/j.expneurol.2021.113687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND In the adult brain, increases in neural activity lead to increases in local blood flow. However, in the preterm neonate, studies of cerebral functional haemodynamics have yielded inconsistent results, including negative responses suggesting decreased perfusion and localised tissue hypoxia, probably due to immature neurovascular coupling. Furthermore, the impact of vasoactive medications, such as dopamine and dobutamine used as inotropic therapies in preterm neonates, on cerebrovascular responses to somatosensory input is unknown. We aimed to characterise the cerebral haemodynamic functional response after somatosensory stimulation in the preterm newborn brain, with and without dopamine or dobutamine treatment. METHODS We studied the cerebral haemodynamic functional response in 13 anaesthetised preterm lambs, using near infrared spectroscopy to measure changes in cerebral oxy- and deoxyhaemoglobin (ΔoxyHb, ΔdeoxyHb) following left median nerve stimulation using stimulus trains of 1.8, 4.8 and 7.8 s. The 4.8 and 7.8 s stimulations were repeated during dopamine or dobutamine infusion. RESULTS Stimulation always produced a somatosensory evoked response. Majority of preterm lambs demonstrated positive functional responses (i.e. increased ΔoxyHb) in the contralateral cortex following stimulus trains of all durations. Dopamine increased baseline oxyHb and total Hb, whereas dobutamine increased baseline deoxyHb. Both dopamine and dobutamine reduced the evoked ΔoxyHb responses to 4.8 and 7.8 s stimulations. CONCLUSIONS Somatosensory stimulation increases cerebral oxygenation in the preterm brain, consistent with increased cerebral blood flow due to neurovascular coupling. Notably, our results show that dopamine/dobutamine reduces oxygen delivery relative to consumption in the preterm brain during somatosensory stimulations, suggesting there may be a risk of intermittent localised tissue hypoxia which has clear implications for clinical practice and warrants further investigation.
Collapse
Affiliation(s)
- Ishmael M Inocencio
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia
| | - Nhi T Tran
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia; School of Health & Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Song J Khor
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia
| | - Manon Wiersma
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia
| | - Shinji Nakamura
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia; Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - David W Walker
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia; School of Health & Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Flora Y Wong
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia; Monash Newborn, Monash Medical Centre, Melbourne, Australia.
| |
Collapse
|
8
|
Aberrant auditory system and its developmental implications for autism. SCIENCE CHINA-LIFE SCIENCES 2021; 64:861-878. [DOI: 10.1007/s11427-020-1863-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/06/2020] [Indexed: 12/26/2022]
|
9
|
Goldberg E, McKenzie CA, de Vrijer B, Eagleson R, de Ribaupierre S. Fetal Response to a Maternal Internal Auditory Stimulus. J Magn Reson Imaging 2020; 52:139-145. [PMID: 31951084 DOI: 10.1002/jmri.27033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Functional MRI (fMRI) is a noninvasive method to investigate the neural correlates of brain development. Insight into the rapidly developing brain in utero is limited, and fetal fMRI can be used to gain a greater understanding of the developmental process. Fetal brain fMRI is typically limited to resting-state fMRI due to the difficulty to instruct or provide a stimulus to the fetus. Previous studies have employed auditory task fMRI with an external sound stimulus directly on the abdomen of the mother; however, this practice has since been deemed unsafe for the developing fetus. PURPOSE To investigate a reliable and safe paradigm to study the development of fetal brain networks, we postulated that an internal task, such as the mother's singing, as the auditory stimulus would result in activation in the fetal primary auditory cortex. STUDY TYPE Cohort. POPULATION Pregnant women with singleton pregnancies (n = 9; 33-38 weeks gestational age). FIELD STRENGTH/SEQUENCE All subjects underwent two task-based block design blood oxygen level-dependent (BOLD) at 1.5T or 3T. ASSESSMENT Each volume was assessed for fetal motion and manually reoriented and realigned to correct for fetal motion. Once the motion was corrected, a gestational age-matched parcellated atlas with regions of interest overlaid onto the activation map was used to determine which regions in the brain had activation during task phases. STATISTICAL TESTS First Level Analysis. MRI data were analyzed using SPM 12 as a task fMRI. RESULTS Eight subjects had activation on the right Heschl's gyrus; six fetuses demonstrated activation on the left when exposed to the internal acoustic stimulus. Additionally, activation was found on the right and left middle cingulate cortex (MCC) and the left putamen. DATA CONCLUSION Maternal singing can be used as an internal stimulus to activate the auditory network and Heschl's gyrus during fetal fMRI. Level of Evidence 2 Technical Efficacy Stage 2 J. Magn. Reson. Imaging 2020;52:139-145.
Collapse
Affiliation(s)
- Estee Goldberg
- Biomedical Engineering, Western University, London, Ontario, Canada
| | - Charles A McKenzie
- Biomedical Engineering, Western University, London, Ontario, Canada.,Medical Biophysics, Western University, London, Ontario, Canada.,Children's Health Research Institute, Western University, London, Ontario, Canada
| | - Barbra de Vrijer
- Children's Health Research Institute, Western University, London, Ontario, Canada.,Department of Obstetrics and Gynaecology, Western University, London, Ontario, Canada
| | - Roy Eagleson
- Biomedical Engineering, Western University, London, Ontario, Canada.,Brain and Mind Institute, Professor of Engineering, Western University, London, Ontario, Canada
| | - Sandrine de Ribaupierre
- Biomedical Engineering, Western University, London, Ontario, Canada.,Medical Biophysics, Western University, London, Ontario, Canada.,Children's Health Research Institute, Western University, London, Ontario, Canada.,Brain and Mind Institute, Professor of Engineering, Western University, London, Ontario, Canada.,Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| |
Collapse
|
10
|
Abstract
Developmental pathoconnectomics is an emerging field that aims to unravel the events leading to and outcome from disrupted brain connectivity development. Advanced magnetic resonance imaging (MRI) technology enables the portrayal of human brain connectivity before birth and has the potential to offer novel insights into normal and pathological human brain development. This review gives an overview of the currently used MRI techniques for connectomic imaging, with a particular focus on recent studies that have successfully translated these to the in utero or postmortem fetal setting. Possible mechanisms of how pathologies, maternal, or environmental factors may interfere with the emergence of the connectome are considered. The review highlights the importance of advanced image post processing and the need for reproducibility studies for connectomic imaging. Further work and novel data-sharing efforts would be required to validate or disprove recent observations from in utero connectomic studies, which are typically limited by low case numbers and high data drop out. Novel knowledge with regard to the ontogenesis, architecture, and temporal dynamics of the human brain connectome would lead to the more precise understanding of the etiological background of neurodevelopmental and mental disorders. To achieve this goal, this review considers the growing evidence from advanced fetal connectomic imaging for the increased vulnerability of the human brain during late gestation for pathologies that might lead to impaired connectome development and subsequently interfere with the development of neural substrates serving higher cognition.
Collapse
|
11
|
Seghier ML, Fahim MA, Habak C. Educational fMRI: From the Lab to the Classroom. Front Psychol 2019; 10:2769. [PMID: 31866920 PMCID: PMC6909003 DOI: 10.3389/fpsyg.2019.02769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/25/2019] [Indexed: 12/23/2022] Open
Abstract
Functional MRI (fMRI) findings hold many potential applications for education, and yet, the translation of fMRI findings to education has not flowed. Here, we address the types of fMRI that could better support applications of neuroscience to the classroom. This 'educational fMRI' comprises eight main challenges: (1) collecting artifact-free fMRI data in school-aged participants and in vulnerable young populations, (2) investigating heterogenous cohorts with wide variability in learning abilities and disabilities, (3) studying the brain under natural and ecological conditions, given that many practical topics of interest for education can be addressed only in ecological contexts, (4) depicting complex age-dependent associations of brain and behaviour with multi-modal imaging, (5) assessing changes in brain function related to developmental trajectories and instructional intervention with longitudinal designs, (6) providing system-level mechanistic explanations of brain function, so that useful individualized predictions about learning can be generated, (7) reporting negative findings, so that resources are not wasted on developing ineffective interventions, and (8) sharing data and creating large-scale longitudinal data repositories to ensure transparency and reproducibility of fMRI findings for education. These issues are of paramount importance to the development of optimal fMRI practices for educational applications.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Cognitive Neuroimaging Unit, Emirates College for Advanced Education (ECAE), Abu Dhabi, United Arab Emirates
| | - Mohamed A Fahim
- Cognitive Neuroimaging Unit, Emirates College for Advanced Education (ECAE), Abu Dhabi, United Arab Emirates
| | - Claudine Habak
- Cognitive Neuroimaging Unit, Emirates College for Advanced Education (ECAE), Abu Dhabi, United Arab Emirates
| |
Collapse
|
12
|
Chorna O, Filippa M, De Almeida JS, Lordier L, Monaci MG, Hüppi P, Grandjean D, Guzzetta A. Neuroprocessing Mechanisms of Music during Fetal and Neonatal Development: A Role in Neuroplasticity and Neurodevelopment. Neural Plast 2019; 2019:3972918. [PMID: 31015828 PMCID: PMC6446122 DOI: 10.1155/2019/3972918] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/06/2019] [Accepted: 02/24/2019] [Indexed: 01/17/2023] Open
Abstract
The primary aim of this viewpoint article is to examine recent literature on fetal and neonatal processing of music. In particular, we examine the behavioral, neurophysiological, and neuroimaging literature describing fetal and neonatal music perception and processing to the first days of term equivalent life. Secondly, in light of the recent systematic reviews published on this topic, we discuss the impact of music interventions on the potential neuroplasticity pathways through which the early exposure to music, live or recorded, may impact the fetal, preterm, and full-term infant brain. We conclude with recommendations for music stimuli selection and its role within the framework of early socioemotional development and environmental enrichment.
Collapse
Affiliation(s)
- O. Chorna
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - M. Filippa
- Division of Development and Growth, Department of Pediatrics, University Hospital of Geneva, Geneva, Switzerland
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
- Social Science Department, University of Valle d'Aosta, Aosta, Italy
| | - J. Sa De Almeida
- Division of Development and Growth, Department of Pediatrics, University Hospital of Geneva, Geneva, Switzerland
| | - L. Lordier
- Division of Development and Growth, Department of Pediatrics, University Hospital of Geneva, Geneva, Switzerland
| | - M. G. Monaci
- Social Science Department, University of Valle d'Aosta, Aosta, Italy
| | - P. Hüppi
- Division of Development and Growth, Department of Pediatrics, University Hospital of Geneva, Geneva, Switzerland
| | - D. Grandjean
- Swiss Center for Affective Sciences and Department of Psychology and Educational Sciences, University of Geneva, Switzerland
| | - A. Guzzetta
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
13
|
Abstract
Historically, newborns, and especially premature newborns, were thought to "feel nothing." However, over the past decades, a growing body of evidence has shown that newborns are aware of their environment, but the extent and the onset of some sensory capacities remain largely unknown. The goal of this review is to update our current knowledge concerning newborns' perceptual world and how ready they are to cope with an entirely different sensory environment following birth. We aim to establish not only how and when each sensory ability arises during the pre-/postbirth period but also discuss how senses are studied. We conclude that although many studies converge to show that newborns are clearly sentient beings, much is still unknown. Further, we identify a series of internal and external factors that could explain discrepancies between studies, and we propose perspectives for future studies. Finally, through examples from animal studies, we illustrate the importance of this detailed knowledge to pursue the enhancement of newborns' daily living conditions. Indeed, this is a prerequisite for assessing the effects of the physical environment and routine procedures on newborns' welfare.
Collapse
|
14
|
Fetal auditory evoked responses to onset of amplitude modulated sounds. A fetal magnetoencephalography (fMEG) study. Hear Res 2018. [DOI: 10.1016/j.heares.2018.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Spence MJ, Granier-Deferre C, Schaal B. L’étude du comportement est unique pour comprendre la cognition fœtale et néonatale – L’imagerie cérébrale la complète lorsqu’elle s’inspire de validité écologique. ENFANCE 2017. [DOI: 10.3917/enf1.173.0307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
16
|
Nunes RG, Ferrazzi G, Price AN, Hutter J, Gaspar AS, Rutherford MA, Hajnal JV. Inner-volume echo volumar imaging (IVEVI) for robust fetal brain imaging. Magn Reson Med 2017; 80:279-285. [PMID: 29115686 DOI: 10.1002/mrm.26998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 11/08/2022]
Abstract
PURPOSE Fetal functional MRI studies using conventional 2-dimensional single-shot echo-planar imaging sequences may require discarding a large data fraction as a result of fetal and maternal motion. Increasing the temporal resolution using echo volumar imaging (EVI) could provide an effective alternative strategy. Echo volumar imaging was combined with inner volume (IV) imaging (IVEVI) to locally excite the fetal brain and acquire full 3-dimensional images, fast enough to freeze most fetal head motion. METHODS IVEVI was implemented by modifying a standard multi-echo echo-planar imaging sequence. A spin echo with orthogonal excitation and refocusing ensured localized excitation. To introduce T2* weighting and to save time, the k-space center was shifted relative to the spin echo. Both single and multi-shot variants were tested. Acoustic noise was controlled by adjusting the amplitude and switching frequency of the readout gradient. Image-based shimming was used to minimize B0 inhomogeneities within the fetal brain. RESULTS The sequence was first validated in an adult. Eight fetuses were scanned using single-shot IVEVI at a 3.5 × 3.5 × 5.0 mm3 resolution with a readout duration of 383 ms. Multishot IVEVI showed reduced geometric distortions along the second phase-encode direction. CONCLUSIONS Fetal EVI remains challenging. Although effective echo times comparable to the T2* values of fetal cortical gray matter at 3 T could be achieved, controlling acoustic noise required longer readouts, leading to substantial distortions in single-shot images. Although multishot variants enabled us to reduce susceptibility-induced geometric distortions, sensitivity to motion was increased. Future studies should therefore focus on improvements to multishot variants. Magn Reson Med 80:279-285, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Rita G Nunes
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Institute for Systems and Robotics and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Giulio Ferrazzi
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,Centre for the Developing Brain, King's College London, London, United Kingdom
| | - Anthony N Price
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,Centre for the Developing Brain, King's College London, London, United Kingdom
| | - Jana Hutter
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,Centre for the Developing Brain, King's College London, London, United Kingdom
| | - Andreia S Gaspar
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Institute for Systems and Robotics and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Mary A Rutherford
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,Centre for the Developing Brain, King's College London, London, United Kingdom
| | - Joseph V Hajnal
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,Centre for the Developing Brain, King's College London, London, United Kingdom
| |
Collapse
|
17
|
Nakamura S, Walker DW, Wong FY. Cerebral haemodynamic response to somatosensory stimulation in neonatal lambs. J Physiol 2017. [PMID: 28643877 DOI: 10.1113/jp274244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Cerebral haemodynamic response to neural stimulation has been extensively studied in adults, but little is known about cerebral haemodynamic response in the fetal and neonatal brain. The present study describes the cerebral haemodynamic response measured by near infrared spectroscopy to somatosensory stimulation in newborn lambs, in comparison to recent findings in fetal sheep. The cerebral haemodynamic responses in the newborn lamb brain can involve an increase in oxyhaemoglobin (oxyHb), or a decrease of oxyHb suggestive of reduced perfusion and oxygenation. Positive correlations between changes in oxyHb and mean arterial blood pressure were found in newborn but not fetal sheep, which suggests the result is unlikely to be due to immature autoregulation alone. In contrast to adult studies, hypercapnia increased the changes in cerebral blood flow and oxyHb in most of the lambs in response to somatosensory stimulation. ABSTRACT The neurovascular coupling response has been defined for the adult brain, but in the neonate non-invasive measurement of local cerebral perfusion using near infrared spectroscopy or blood oxygen level-dependent functional magnetic resonance imaging have yielded variable and inconsistent results, including negative responses suggesting decreased perfusion and localized tissue tissue hypoxia. Also, the impact of permissive hypercapnia (P aC O2 > 50 mmHg) in the management of neonates on cerebrovascular responses to somatosensory input is unknown. Using near infrared spectroscopy to measure changes in cerebral oxy- and deoxyhaemoglobin (ΔoxyHb, ΔdeoxyHb) in eight anaesthetized newborn lambs, we studied the cerebral haemodynamic functional response to left median nerve stimulation using stimulus trains of 1.8, 4.8 and 7.8 s. Stimulation always produced a somatosensory evoked response, and superficial cortical perfusion measured by laser Doppler flowmetry predominantly increased following median nerve stimulation. However, with 1.8 s stimulation, oxyHb responses in the contralateral hemisphere were either positive (i.e. increased oxyHb), negative, or absent; and with 4.8 and 7.8 s stimulations, both positive and negative responses were observed. Hypercapnia increased baseline oxyHb and total Hb consistent with cerebral vasodilatation, and six of seven lambs tested showed increased Δtotal Hb responses after the 7.8 s stimulation, among which four lambs also showed increased ΔoxyHb responses. In two of three lambs, the negative ΔoxyHb response became a positive pattern during hypercapnia. These results show that instead of functional hyperaemia, somatosensory stimulation can evoke negative (decreased oxyHb, total Hb) functional responses in the neonatal brain suggestive of decreased local perfusion and vasoconstriction, and that hypercapnia produces both baseline hyperperfusion and increased functional hyperaemia.
Collapse
Affiliation(s)
- Shinji Nakamura
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan.,The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Melbourne, Victoria, 3168, Australia
| | - David W Walker
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Melbourne, Victoria, 3168, Australia.,School of Health & Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria, 3083, Australia
| | - Flora Y Wong
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Melbourne, Victoria, 3168, Australia.,Department of Paediatrics, Monash University, Clayton, Melbourne, Victoria, 3168, Australia.,Monash Newborn, Monash Medical Centre, Clayton, Melbourne, Victoria, 3168, Australia
| |
Collapse
|
18
|
Mishra S, Roy TS, Wadhwa S. Morphological and morphometrical maturation of ventral cochlear nucleus in human foetus. J Chem Neuroanat 2017; 93:38-47. [PMID: 28341180 DOI: 10.1016/j.jchemneu.2017.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/06/2017] [Accepted: 03/16/2017] [Indexed: 11/15/2022]
Abstract
Auditory impulses perceived by the hair cells of the organ of corti are relayed in the cochlear nucleus, the first relay station in the brainstem, by the cochlear nerve. The human foetus is well known to respond to sound during the last trimester of gestation. On the contrary, studies conducted in rat, cat and mouse have shown that these mammals have an immature auditory system at the time of birth. There are very few reports available regarding the morphological and functional maturation of the cochlear nucleus in human. Although the human cochlear nucleus neurons attain adult morphological characters by mid-gestation, there are hardly any studies discussing the functional maturation of the cochlear nucleus. Hence the present study was aimed at observing the morphological as well as functional maturation of the human foetal cochlear nuclei at various gestational ages. Morphological maturation was observed qualitatively while stereological estimation of the volume of well defined ventral cochlear nucleus (VCN) was calculated by the Cavalieri principle; neuronal count and density was estimated by dissector principle. The functional maturation was assessed by observing the expression of synaptophysin, a synaptic marker, at different gestational ages and by the presence of parvalbumin, a calcium binding functional neuronal marker by immunohistochemistry. Neurons showed coarse Nissl's substance and well developed cell processes and gradual increase in cell size by the 24th-30th gestational week. Synaptophysin labeling in the complete cochlear nucleus was observed at 20 weeks of gestation. Adult pattern of synaptophysin labeling was observed finally at37weeks of gestation. Earliest presence of parvalbumin expression was detected at 16 weeks of gestation and a distinct adult pattern was seen at 37 weeks of gestation. This study concluded that morphological and functional maturation of the human cochlear nuclei occurs simultaneously during mid-gestation which represents the critical period of development and continues up to term.
Collapse
Affiliation(s)
- Sabita Mishra
- All India Institute of Medical Sciences, New Delhi, India.
| | - T S Roy
- All India Institute of Medical Sciences, New Delhi, India
| | - Shashi Wadhwa
- All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
19
|
Nakamura S, Walker DW, Wong FY. Cerebral haemodynamic response to somatosensory stimulation in near-term fetal sheep. J Physiol 2016; 595:1289-1303. [PMID: 27805787 DOI: 10.1113/jp273163] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/20/2016] [Indexed: 01/03/2023] Open
Abstract
KEY POINTS Cerebral haemodynamic response to neural stimulation has been extensively investigated in animal and clinical studies, in both adult and paediatric populations, but little is known about cerebral haemodynamic functional response in the fetal brain. The present study describes the cerebral haemodynamic response measured by near-infrared spectroscopy to somatosensory stimulation in fetal sheep. The cerebral haemodynamic response in the fetal sheep brain changes from a positive (increase in oxyhaemoglobin (oxyHb)) response pattern to a negative or biphasic response pattern when the duration of somatosensory stimulation is increased, probably due to cerebral vasoconstriction with prolonged stimulations. In contrast to adult studies, we have found that changes in fetal cerebral blood flow and oxyHb are positively increased in response to somatosensory stimulation during hypercapnia. We propose this is related to reduced vascular resistance and recruitment of cerebral vasculature in the fetal brain during hypercapnia. ABSTRACT Functional hyperaemia induced by a localised increase in neuronal activity has been suggested to occur in the fetal brain owing to a positive blood oxygen level-dependent (BOLD) signal recorded by functional magnetic resonance imaging following acoustic stimulation. To study the effect of somatosensory input on local cerebral perfusion we used near-infrared spectroscopy (NIRS) in anaesthetised, partially exteriorised fetal sheep where the median nerve was stimulated with trains of pulses (2 ms, 3.3 Hz) for durations of 1.8, 4.8 and 7.8 s. Signal averaging of cerebral NIRS responses to 20 stimulus trains repeated every 60 s revealed that a short duration of stimulation (1.8 s) increased oxyhaemoglobin in the contralateral cortex consistent with a positive functional response, whereas longer durations of stimulation (4.8, 7.8 s) produced more variable oxyhaemoglobin responses including positive, negative and biphasic patterns of change. Mean arterial blood pressure and cerebral perfusion as monitored by laser Doppler flowmetry always showed small, but coincident increases following median nerve stimulation regardless of the type of response detected by the NIRS in the contralateral cortex. Hypercapnia significantly increased the baseline total haemoglobin and deoxyhaemoglobin, and in 7 of 8 fetal sheep positively increased the changes in contralateral total haemoglobin and oxyhaemoglobin in response to the 7.8 s stimulus train, compared to the response recorded during normocapnia. These results show that activity-driven changes in cerebral perfusion and oxygen delivery are present in the fetal brain, and persist even during periods of hypercapnia-induced cerebral vasodilatation.
Collapse
Affiliation(s)
- S Nakamura
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan.,The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Melbourne, Victoria, 3168, Australia
| | - D W Walker
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Melbourne, Victoria, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Melbourne, Victoria, 3168, Australia
| | - F Y Wong
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Melbourne, Victoria, 3168, Australia.,Department of Paediatrics, Monash University, Clayton, Melbourne, Victoria, 3168, Australia.,Monash Newborn, Monash Medical Centre, Clayton, Melbourne, Victoria, 3168, Australia
| |
Collapse
|
20
|
Jakab A, Pogledic I, Schwartz E, Gruber G, Mitter C, Brugger PC, Langs G, Schöpf V, Kasprian G, Prayer D. Fetal Cerebral Magnetic Resonance Imaging Beyond Morphology. Semin Ultrasound CT MR 2015; 36:465-75. [DOI: 10.1053/j.sult.2015.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Pediatric applications of functional magnetic resonance imaging. Pediatr Radiol 2015; 45 Suppl 3:S382-96. [PMID: 26346144 DOI: 10.1007/s00247-015-3365-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/31/2014] [Accepted: 02/23/2015] [Indexed: 01/05/2023]
Abstract
Pediatric functional MRI has been used for the last 2 decades but is now gaining wide acceptance in the preoperative workup of children with brain tumors and medically refractory epilepsy. This review covers pediatrics-specific difficulties such as sedation and task paradigm selection according to the child's age and cognitive level. We also illustrate the increasing uses of functional MRI in the depiction of cognitive function, neuropsychiatric disorders and response to pharmacological agents. Finally, we review the uses of resting-state fMRI in the evaluation of children and in the detection of epileptogenic regions.
Collapse
|
22
|
The functional foetal brain: A systematic preview of methodological factors in reporting foetal visual and auditory capacity. Dev Cogn Neurosci 2015; 13:43-52. [PMID: 25967364 PMCID: PMC6990098 DOI: 10.1016/j.dcn.2015.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 02/07/2023] Open
Abstract
Due to technological advancements in functional brain imaging, foetal brain responses to visual and auditory stimuli is a growing area of research despite being relatively small with much variation between research laboratories. A number of inconsistencies between studies are, nonetheless, present in the literature. This article aims to explore the potential contribution of methodological factors to variation in reports of foetal neural responses to external stimuli. Some of the variation in reports can be explained by methodological differences in aspects of study design, such as brightness and wavelength of light source. In contrast to visual foetal processing, auditory foetal processing has been more frequently investigated and findings are more consistent between different studies. This is an early preview of an emerging field with many articles reporting small sample sizes with techniques that are yet to be replicated. We suggest areas for improvement for the field as a whole, such as the standardisation of stimulus delivery and a more detailed reporting of methods and results. This will improve our understanding of foetal functional response to light and sound. We suggest that enhanced technology will allow for a more reliable description of the developmental trajectory of foetal processing of light stimuli.
Collapse
|
23
|
Tocchio S, Kline-Fath B, Kanal E, Schmithorst VJ, Panigrahy A. MRI evaluation and safety in the developing brain. Semin Perinatol 2015; 39:73-104. [PMID: 25743582 PMCID: PMC4380813 DOI: 10.1053/j.semperi.2015.01.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Magnetic resonance imaging (MRI) evaluation of the developing brain has dramatically increased over the last decade. Faster acquisitions and the development of advanced MRI sequences, such as magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), perfusion imaging, functional MR imaging (fMRI), and susceptibility-weighted imaging (SWI), as well as the use of higher magnetic field strengths has made MRI an invaluable tool for detailed evaluation of the developing brain. This article will provide an overview of the use and challenges associated with 1.5-T and 3-T static magnetic fields for evaluation of the developing brain. This review will also summarize the advantages, clinical challenges, and safety concerns specifically related to MRI in the fetus and newborn, including the implications of increased magnetic field strength, logistics related to transporting and monitoring of neonates during scanning, and sedation considerations, and a discussion of current technologies such as MRI conditional neonatal incubators and dedicated small-foot print neonatal intensive care unit (NICU) scanners.
Collapse
Affiliation(s)
- Shannon Tocchio
- Pediatric Imaging Research Center, Department of Radiology Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Beth Kline-Fath
- Department of Radiology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Emanuel Kanal
- Director, Magnetic Resonance Services; Professor of Neuroradiology; Department of Radiology, University of Pittsburgh Medical Center (UPMC)
| | - Vincent J. Schmithorst
- Pediatric Imaging Research Center, Department of Radiology Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Ashok Panigrahy
- Pediatric Imaging Research Center, Department of Radiology Children׳s Hospital of Pittsburgh of UPMC, University of Pittsburgh Medical Center, Pittsburgh, PA.
| |
Collapse
|
24
|
Intersubject variability of and genetic effects on the brain's functional connectivity during infancy. J Neurosci 2014; 34:11288-96. [PMID: 25143609 DOI: 10.1523/jneurosci.5072-13.2014] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Infancy is a period featuring a high level of intersubject variability but the brain basis for such variability and the potential genetic/environmental contributions remain largely unexplored. The assessment of the brain's functional connectivity during infancy by the resting state functional magnetic resonance imaging (rsfMRI) technique (Biswal et al., 1995) provides a unique means to probe the brain basis of intersubject variability during infancy. In this study, an unusually large typically developing human infant sample including 58 singletons, 132 dizygotic twins, and 98 monozygotic twins with rsfMRI scans during the first 2 years of life was recruited to delineate the spatial and temporal developmental patterns of both the intersubject variability of and genetic effects on the brain's functional connectivity. Through systematic voxelwise functional connectivity analyses, our results revealed that the intersubject variability at birth features lower variability in primary functional areas but higher values in association areas. Although the relative pattern remains largely consistent, the magnitude of intersubject variability undergoes an interesting U-shaped growth during the first 2 years of life. Overall, the intersubject variability patterns during infancy show both adult-like and infant-specific characteristics (Mueller et al., 2013). On the other hand, age-dependent genetic effects were observed showing significant but bidirectional relationships with intersubject variability. The temporal and spatial patterns of the intersubject variability of and genetic contributions to the brain's functional connectivity documented in this study shed light on the largely uncharted functional development of the brain during infancy.
Collapse
|
25
|
Gao W, Alcauter S, Elton A, Hernandez-Castillo CR, Smith JK, Ramirez J, Lin W. Functional Network Development During the First Year: Relative Sequence and Socioeconomic Correlations. Cereb Cortex 2014; 25:2919-28. [PMID: 24812084 DOI: 10.1093/cercor/bhu088] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The first postnatal year is characterized by the most dramatic functional network development of the human lifespan. Yet, the relative sequence of the maturation of different networks and the impact of socioeconomic status (SES) on their development during this critical period remains poorly characterized. Leveraging a large, normally developing infant sample with multiple longitudinal resting-state functional magnetic resonance imaging scans during the first year (N = 65, scanned every 3 months), we aimed to delineate the relative maturation sequence of 9 key brain functional networks and examine their SES correlations. Our results revealed a maturation sequence from primary sensorimotor/auditory to visual to attention/default-mode, and finally to executive control networks. Network-specific critical growth periods were also identified. Finally, marginally significant positive SES-brain correlations were observed at 6 months of age for both the sensorimotor and default-mode networks, indicating interesting SES effects on functional brain maturation. To the best of our knowledge, this is the first study delineating detailed longitudinal growth trajectories of all major functional networks during the first year of life and their SES correlations. Insights from this study not only improve our understanding of early brain development, but may also inform the critical periods for SES expression during infancy.
Collapse
Affiliation(s)
- Wei Gao
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, NC, USA Department of Radiology, University of North Carolina at Chapel Hill, NC, USA
| | - Sarael Alcauter
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, NC, USA
| | - Amanda Elton
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, NC, USA
| | - Carlos R Hernandez-Castillo
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, NC, USA Instituto de Neuroetologia, Universipaternal Veracruzana, Xalapa, Mexico
| | - J Keith Smith
- Department of Radiology, University of North Carolina at Chapel Hill, NC, USA
| | - Juanita Ramirez
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, NC, USA
| | - Weili Lin
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, NC, USA Department of Radiology, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
26
|
Chaudhury S, Nag TC, Jain S, Wadhwa S. Role of sound stimulation in reprogramming brain connectivity. J Biosci 2014; 38:605-14. [PMID: 23938392 DOI: 10.1007/s12038-013-9341-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sensory stimulation has a critical role to play in the development of an individual. Environmental factors tend to modify the inputs received by the sensory pathway. The developing brain is most vulnerable to these alterations and interacts with the environment to modify its neural circuitry. In addition to other sensory stimuli, auditory stimulation can also act as external stimuli to provide enrichment during the perinatal period. There is evidence that suggests that enriched environment in the form of auditory stimulation can play a substantial role in modulating plasticity during the prenatal period. This review focuses on the emerging role of prenatal auditory stimulation in the development of higher brain functions such as learning and memory in birds and mammals. The molecular mechanisms of various changes in the hippocampus following sound stimulation to effect neurogenesis, learning and memory are described. Sound stimulation can also modify neural connectivity in the early postnatal life to enhance higher cognitive function or even repair the secondary damages in various neurological and psychiatric disorders. Thus, it becomes imperative to examine in detail the possible ameliorating effects of prenatal sound stimulation in existing animal models of various psychiatric disorders, such as autism.
Collapse
Affiliation(s)
- Sraboni Chaudhury
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India.
| | | | | | | |
Collapse
|
27
|
Barón Birchenall L, Galindo Ó, Müller O. La percepción del habla durante el primer año de vida. REVISTA LATINOAMERICANA DE PSICOLOGIA 2014. [DOI: 10.1016/s0120-0534(14)70002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Abstract
This review focuses on the application of magnetic resonance imaging methods in utero studying functional brain development of spontaneous brain activity generated under resting conditions and of task-evoked activity using stimulation. These imaging approaches have been useful to explore the brain's functional organization during development, as already shown in different substantial resting-state studies in preterms. We also discuss emerging future directions regarding analyzing methods and combination of functional and structural connectivity approaches.
Collapse
|
29
|
Abstract
Magnetic resonance imaging (MRI) has been used to image the in utero fetus for the past 3 decades. Although not as commonplace as other patient-oriented MRI, it is a growing field and demonstrating a role in the clinical care of the fetus. Indeed, the body of literature involving fetal MRI exceeds 3000 published articles. Indeed, there is interest in accessing even the healthy fetus with MRI to further understand the development of humans during the fetal stage. On the horizon is fetal imaging using 3.0-T clinical systems. Although a clear path is not necessarily determined, experiments, theoretical calculations, advances in pulse sequence design, new hardware, and experience from imaging at 1.5 T help define the path.
Collapse
Affiliation(s)
- Robert C Welsh
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109-5667, USA.
| | | | | |
Collapse
|
30
|
Functional plasticity before the cradle: a review of neural functional imaging in the human fetus. Neurosci Biobehav Rev 2013; 37:2220-32. [PMID: 23542738 DOI: 10.1016/j.neubiorev.2013.03.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 03/13/2013] [Accepted: 03/20/2013] [Indexed: 01/17/2023]
Abstract
The organization of the brain is highly plastic in fetal life. Establishment of healthy neural functional systems during the fetal period is essential to normal growth and development. Across the last several decades, remarkable progress has been made in understanding the development of human fetal functional brain systems. This is largely due to advances in imaging methodologies. Fetal neuroimaging began in the 1950-1970's with fetal electroencephalography (EEG) applied during labor. Later, in the 1980's, magnetoencephalography (MEG) emerged as an effective approach for investigating fetal brain function. Most recently, functional magnetic resonance imaging (fMRI) has arisen as an additional powerful approach for examining fetal brain function. This review will discuss major developmental findings from fetal imaging studies such as the maturation of prenatal sensory system functions, functional hemispheric asymmetry, and sensory-driven neurodevelopment. We describe how with improved imaging and analysis techniques, functional imaging of the fetus has the potential to assess the earliest point of neural maturation and provide insight into the patterning and sequence of normal and abnormal brain development.
Collapse
|
31
|
|
32
|
Clouchoux C, Limperopoulos C. Novel applications of quantitative MRI for the fetal brain. Pediatr Radiol 2012; 42 Suppl 1:S24-32. [PMID: 22395718 DOI: 10.1007/s00247-011-2178-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 04/27/2011] [Indexed: 11/30/2022]
Abstract
The advent of ultrafast MRI acquisitions is offering vital insights into the critical maturational events that occur throughout pregnancy. Concurrent with the ongoing enhancement of ultrafast imaging has been the development of innovative image-processing techniques that are enabling us to capture and quantify the exuberant growth, and organizational and remodeling processes that occur during fetal brain development. This paper provides an overview of the role of advanced neuroimaging techniques to study in vivo brain maturation and explores the application of a range of new quantitative imaging biomarkers that can be used clinically to monitor high-risk pregnancies.
Collapse
Affiliation(s)
- Cédric Clouchoux
- Division of Diagnostic Imaging and Radiology, Children's National Medical Center, Washington, DC, USA.
| | | |
Collapse
|
33
|
Studholme C. Mapping fetal brain development in utero using magnetic resonance imaging: the Big Bang of brain mapping. Annu Rev Biomed Eng 2011; 13:345-68. [PMID: 21568716 PMCID: PMC3682118 DOI: 10.1146/annurev-bioeng-071910-124654] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The development of tools to construct and investigate probabilistic maps of the adult human brain from magnetic resonance imaging (MRI) has led to advances in both basic neuroscience and clinical diagnosis. These tools are increasingly being applied to brain development in adolescence and childhood, and even to neonatal and premature neonatal imaging. Even earlier in development, parallel advances in clinical fetal MRI have led to its growing use as a tool in challenging medical conditions. This has motivated new engineering developments encompassing optimal fast MRI scans and techniques derived from computer vision, the combination of which allows full 3D imaging of the moving fetal brain in utero without sedation. These promise to provide a new and unprecedented window into early human brain growth. This article reviews the developments that have led us to this point, examines the current state of the art in the fields of fast fetal imaging and motion correction, and describes the tools to analyze dynamically changing fetal brain structure. New methods to deal with developmental tissue segmentation and the construction of spatiotemporal atlases are examined, together with techniques to map fetal brain growth patterns.
Collapse
Affiliation(s)
- Colin Studholme
- Biomedical Image Computing Group, Departments of Pediatrics, Bioengineering, and Radiology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
34
|
Kisilevsky BS, Hains SM. Onset and maturation of fetal heart rate response to the mother’s voice over late gestation. Dev Sci 2011; 14:214-23. [DOI: 10.1111/j.1467-7687.2010.00970.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Abstract
Fetal MRI is clinically performed to evaluate the brain in cases where an abnormality is detected by prenatal sonography. These most commonly include ventriculomegaly, abnormalities of the corpus callosum, and abnormalities of the posterior fossa. Fetal MRI is also increasingly performed to evaluate fetuses who have normal brain findings on prenatal sonogram but who are at increased risk for neurodevelopmental abnormalities, such as complicated monochorionic twin pregnancies. This paper will briefly discuss the common clinical conditions imaged by fetal MRI as well as recent advances in fetal MRI research.
Collapse
|
36
|
Kisilevsky BS, Hains SMJ. Exploring the relationship between fetal heart rate and cognition. INFANT AND CHILD DEVELOPMENT 2010. [DOI: 10.1002/icd.655] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Micheli C, McCubbin J, Murphy P, Eswaran H, Lowery CL, Ortiz E, Preissl H. Verification of fetal brain responses by coregistration of fetal ultrasound and fetal magnetoencephalography data. Neuroimage 2009; 49:1469-78. [PMID: 19778620 DOI: 10.1016/j.neuroimage.2009.09.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 09/01/2009] [Accepted: 09/15/2009] [Indexed: 10/20/2022] Open
Abstract
Fetal magnetoencephalography (fMEG) is used to study neurological functions of the developing fetus by measuring magnetic signals generated by electrical sources within the fetal brain. For this aim either auditory or visual stimuli are presented and evoked brain activity or spontaneous activity is measured at the sensor level. However a limiting factor of this approach is the low signal to noise ratio (SNR) of recorded signals. To overcome this limitation, advanced signal processing techniques such as spatial filters (e.g., beamformer) can be used to increase SNR. One crucial aspect of this technique is the forward model and, in general, a simple spherical head model is used. This head model is an integral part of a model search approach to analyze the data due to the lack of exact knowledge about the location of the fetal head. In the present report we overcome this limitation by a coregistration of volumetric ultrasound images with fMEG data. In a first step we validated the ultrasound to fMEG coregistration with a phantom and were able to show that the coregistration error is below 2 cm. In the second step we compared the results gained by the model search approach to the exact location of the fetal head determined on pregnant mothers by ultrasound. The results of this study clearly show that the results of the model search approach are in accordance with the location of the fetal head.
Collapse
Affiliation(s)
- C Micheli
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Although functional magnetic resonance imaging is a technique that is widely used in adult populations, its use within a fetal environment has been extremely limited. Problems associated with movement and technical scanning issues have limited its effectiveness in providing reliable and spatially accurate details of fetal brain activity. However, initial research has indicated that it is a viable tool for assessing functional maturation in the fetus, and recent advances in echo-planar imaging sequences on the abdomen at 3-T provide the potential for more reliable activation detection and higher resolution spatial information. If the technique can be further developed such that a similar reliability in activity patterns is observed as in conventional functional MRI, then fetal functional MRI could offer a useful contribution at a clinical level as well as at a research one in the assessment of brain development and maturation.
Collapse
Affiliation(s)
- Jon Fulford
- Peninsula NIHR Clinical Research Facility, Magnetic Resonance Centre, University of Exeter, Exeter, Devon, United Kingdom.
| | | |
Collapse
|
39
|
Kisilevsky B, Hains S, Brown C, Lee C, Cowperthwaite B, Stutzman S, Swansburg M, Lee K, Xie X, Huang H, Ye HH, Zhang K, Wang Z. Fetal sensitivity to properties of maternal speech and language. Infant Behav Dev 2009; 32:59-71. [DOI: 10.1016/j.infbeh.2008.10.002] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 08/18/2008] [Accepted: 10/17/2008] [Indexed: 11/27/2022]
|
40
|
Sharma V, Nag TC, Wadhwa S, Roy TS. Stereological investigation and expression of calcium-binding proteins in developing human inferior colliculus. J Chem Neuroanat 2008; 37:78-86. [PMID: 19095058 DOI: 10.1016/j.jchemneu.2008.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2008] [Revised: 09/24/2008] [Accepted: 11/07/2008] [Indexed: 10/21/2022]
Abstract
The mammalian inferior colliculus (IC) is a major relay nucleus in the auditory pathway. Prenatal development of the human IC has been inadequately studied. The present study reports the morphometric development and maturation of the human IC using unbiased stereology, in 18 aborted fetuses of various gestational ages (12-29 weeks) and two babies aged 40 postnatal days (PND) and 5 months (that died of postoperative complications). It also demonstrates the functional maturation of the IC by examining the expression of calcium-binding proteins--parvalbumin (PV) and calbindin (CB). There was a significant increase in the total number of neurons and glia from 18 weeks of gestation (WG). The glia and neuron volume increased significantly from 16 WG to 22 WG, respectively. The total volume of IC also increased significantly from 18 WG onwards. On the other hand, the number and volume of undifferentiated cell bodies across all ages decreased significantly. Expression of CB was concentrated in the dorsal cortex while that of PV was mainly confined to the central nucleus of the IC, possibly indicating an early segregation of parallel processing of information in the auditory pathways. Intense staining for CB in the soma and dendrites appeared earlier than that of the PV. The morphological maturation appeared to overlap the onset of functional maturation suggesting an activity-dependent mechanism in the development of IC.
Collapse
Affiliation(s)
- Vikram Sharma
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | | | | |
Collapse
|
41
|
Jardri R, Pins D, Houfflin-Debarge V, Chaffiotte C, Rocourt N, Pruvo JP, Steinling M, Delion P, Thomas P. Fetal cortical activation to sound at 33 weeks of gestation: a functional MRI study. Neuroimage 2008; 42:10-8. [PMID: 18539048 DOI: 10.1016/j.neuroimage.2008.04.247] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 04/17/2008] [Accepted: 04/25/2008] [Indexed: 10/22/2022] Open
Abstract
Hearing already functions before birth, but little is known about the neural basis of fetal life experiences. Recent imaging studies have validated the use of functional magnetic resonance imaging (fMRI) in pregnant women at 38-weeks of gestation. The aim of the present study was to examine fetal brain activation to sound, using fMRI at the beginning of the third trimester of pregnancy. 6 pregnant women between 28- and 34-weeks of gestation were scanned using a magnetic strength of 1.5 T, with an auditory stimulus applied to their abdomen. 3 fetuses with a gestational age of 33 weeks, showed significant activation to sound in the left temporal lobe, measured using a new data-driven approach (Independent Component Analysis for fMRI time series). Only 2 of these fetuses showed left temporal activation, when the standard voxel-wise analysis method was used (p=0.007; p=0.001). Moreover, motion parameters added as predictors of the General Linear Model confirmed that motion cannot account for the signal variance in the fetal temporal cortex (p=0.01). Comparison between the statistical maps obtained from MRI scans of the fetuses with those obtained from adults, made it possible to confirm our hypothesis, that there is brain activation in the primary auditory cortex in response to sound. Measurement of the fetal hemodynamic response revealed an average fMRI signal change of +3.5%. This study shows that it is possible to use fMRI to detect early fetal brain function, but also confirms that sound processing occurs beyond the reflexive sub-cortical level, at the beginning of the third trimester of pregnancy.
Collapse
Affiliation(s)
- Renaud Jardri
- Laboratoire de Neurosciences Fonctionnelles et Pathologies, CNRS UMR 8160, Université Lille 2, CHRU de Lille, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Development of hemodynamic responses and functional connectivity in rat somatosensory cortex. Nat Neurosci 2007; 11:72-9. [DOI: 10.1038/nn2017] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 10/26/2007] [Indexed: 11/09/2022]
|
43
|
Kisilevsky BS, Davies GAL. Auditory processing deficits in growth restricted fetuses affect later language development. Med Hypotheses 2007; 68:620-8. [PMID: 17010528 DOI: 10.1016/j.mehy.2006.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 08/04/2006] [Indexed: 10/24/2022]
Abstract
An increased risk for language deficits in infants born growth restricted has been reported in follow-up studies for more than 20 years, suggesting a relation between fetal auditory system development and later language learning. Work with animal models indicate that there are at least two ways in which growth restriction could affect the development of auditory perception in human fetuses: a delay in myelination or conduction and an increase in sensorineural threshold. Systematic study of auditory function in growth restricted human fetuses has not been reported. However, results of studies employing low-risk fetuses delivering as healthy full-term infants demonstrate that, by late gestation, the fetus can hear, sound properties modulate behavior, and sensory information is available from both inside (e.g., maternal vascular) and outside (e.g., noise, voices, music) of the maternal body. These data provide substantive evidence that the auditory system is functioning and that environmental sounds are available for shaping neural networks and laying the foundation for language acquisition before birth. We hypothesize that fetal growth restriction affects auditory system development, resulting in atypical auditory information processing in growth restricted fetuses compared to healthy, appropriately-grown-for-gestational-age fetuses. Speech perception that lays the foundation for later language competence will differ in growth restricted compared to normally grown fetuses and be associated with later language abilities.
Collapse
Affiliation(s)
- Barbara S Kisilevsky
- School of Nursing, Queen's University and Kingston General Hospital, 92 Barrie Street, Kingston, Ont., Canada K7L 3N6.
| | | |
Collapse
|
44
|
Abstract
In order to provide accurate prognosis and developmental intervention to newborns, new methods of assessing cerebral functions are needed. The non-invasive technique of functional magnetic resonance imaging (fMRI) can be considered as the leading technique for functional exploration of the infant's brain. Several studies have previously applied fMRI in both healthy and diseased newborns with different sensory and cognitive tasks. In this chapter, the methodological issues that are proper to the use of fMRI in the newborn are detailed. In addition, an overview of the major findings of previous fMRI studies is provided, with a focus on notable differences from those in adult subjects. More specifically, the functional responses and the localization of cortical activations in healthy and diseased newborns are discussed. We expect a rapid expansion of this field and the establishment of fMRI as a valid clinical diagnostic tool in the newborn.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Wellcome Department of Imaging Neuroscience, Institute of Neurology, UCL, 12 Queen Square, London WC1N 3BG, UK.
| | | | | |
Collapse
|
45
|
|
46
|
Wedegärtner U, Tchirikov M, Schäfer S, Priest AN, Walther M, Adam G, Schröder HJ. Fetal Sheep Brains: Findings at Functional Blood Oxygen Level–Dependent 3-T MR Imaging—Relationship to Maternal Oxygen Saturation during Hypoxia. Radiology 2005; 237:919-26. [PMID: 16304112 DOI: 10.1148/radiol.2373041625] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To quantify the dependence of the signal intensity (SI) at blood oxygen level-dependent (BOLD) magnetic resonance (MR) imaging of fetal sheep brains on maternal oxygen saturation and to investigate the influence of positions of regions of interest (ROIs). MATERIALS AND METHODS All experimental protocols were reviewed and approved by the local authorities on animal protection. The brains of singleton fetuses of five anesthetized sheep were subjected to rapid sequences (single-shot echo-planar imaging) of BOLD measurements with a 3-T MR imaging unit. Maternal oxygen saturation and heart rate were recorded continuously. After a normoxic phase, hypoxia was induced by reducing the oxygen in a ventilated gas mixture. ROIs were placed in the cerebrum at a reference level and in the cerebellum. Normalized BOLD SI values were calculated from the mean values of steady-state BOLD SIs at the control (SI(c)) and hypoxic (SI(h)) plateaus as follows: normalized BOLD SI = (SI(h)/ SI(c)) x 100. Normalized BOLD SI values were correlated with maternal oxygen saturation, and linear regression (slope) analysis was performed. Additionally, ROIs were varied in section level and position. Differences in normalized BOLD SI values for ROI placements were calculated by using analysis of variance. A t test was performed to evaluate differences. RESULTS Mean maternal oxygen saturation (as the percentage of oxygen in the blood) was 88% (95% confidence interval [CI]: 80%, 96%) in the control period. During hypoxia, it was reduced to 62% (95% CI: 50%, 75%), while fetal normalized BOLD SI decreased to 64% (95% CI: 44%, 85%) in the cerebrum and 56% (95% CI: 32%, 80%) in the cerebellum. Correlations between normalized BOLD SI values and maternal oxygen saturation were as follows: r2 = 0.84 and slope = 1.27 (95% CI: 1.17, 1.36) in the cerebrum and r2 = 0.83 and slope = 1.54 (95% CI: 1.44, 1.63) in the cerebellum. Normalized BOLD SI was 4% lower in the section above the reference level. Variations in normalized BOLD SI for different ROI positions ranged between 0% and 12%. CONCLUSION The depletion of oxygen supply is reflected by decreases in fetal brain BOLD SIs that are more distinct in the cerebellum than in the cerebrum. Normalized BOLD SI is influenced only slightly by ROI position.
Collapse
Affiliation(s)
- Ulrike Wedegärtner
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
47
|
Romero R. Imaging: a discovery tool in obstetrics and gynecology. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2005; 26:207-13. [PMID: 16116559 DOI: 10.1002/uog.1988] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
|
48
|
Gutiérrez D, Nehorai A, Preissl H. Ellipsoidal head model for fetal magnetoencephalography: forward and inverse solutions. Phys Med Biol 2005; 50:2141-57. [PMID: 15843742 DOI: 10.1088/0031-9155/50/9/015] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fetal magnetoencephalography (fMEG) is a non-invasive technique where measurements of the magnetic field outside the maternal abdomen are used to infer the source location and signals of the fetus' neural activity. There are a number of aspects related to fMEG modelling that must be addressed, such as the conductor volume, fetal position and orientation, gestation period, etc. We propose a solution to the forward problem of fMEG based on an ellipsoidal head geometry. This model has the advantage of highlighting special characteristics of the field that are inherent to the anisotropy of the human head, such as the spread and orientation of the field in relationship with the localization and position of the fetal head. Our forward solution is presented in the form of a kernel matrix that facilitates the solution of the inverse problem through decoupling of the dipole localization parameters from the source signals. Then, we use this model and the maximum likelihood technique to solve the inverse problem assuming the availability of measurements from multiple trials. The applicability and performance of our methods are illustrated through numerical examples based on a real 151-channel SQUID fMEG measurement system (SARA). SARA is an MEG system especially designed for fetal assessment and is currently used for heart and brain studies. Finally, since our model requires knowledge of the best-fitting ellipsoid's centre location and semiaxes lengths, we propose a method for estimating these parameters through a least-squares fit on anatomical information obtained from three-dimensional ultrasound images.
Collapse
Affiliation(s)
- David Gutiérrez
- Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan St (M/C 063), Chicago, IL 60607-7053, USA
| | | | | |
Collapse
|
49
|
Kok RD, de Vries MM, Heerschap A, van den Berg PP. Absence of harmful effects of magnetic resonance exposure at 1.5 T in utero during the third trimester of pregnancy: a follow-up study. Magn Reson Imaging 2004; 22:851-4. [PMID: 15234454 DOI: 10.1016/j.mri.2004.01.047] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Accepted: 01/27/2004] [Indexed: 10/26/2022]
Abstract
In this study the possible adverse effects of in utero exposure to magnetic resonance (MR) conditions at 1.5 Tesla were examined. Thirty-five children between 1 and 3 years of age, and nine children between 8 and 9 years of age, that were exposed to MR during the third trimester of pregnancy, were checked for possible adverse effects in a follow-up study. Data on pregnancy and birth, the results of a neurological examination at 3 months, their medical documentary with emphasis on eye and ear functioning, and a questionnaire answered by their mothers were collected and evaluated. In five children abnormal test results were observed, that had no relation to the MR exposure. No harmful effects of prenatal MR exposure in the third trimester of pregnancy were detected in this study.
Collapse
Affiliation(s)
- René D Kok
- Department of Obstetrics and Gynecology, University Medical Center, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
50
|
Preissl H, Lowery CL, Eswaran H. Fetal magnetoencephalography: current progress and trends. Exp Neurol 2004; 190 Suppl 1:S28-36. [PMID: 15498539 DOI: 10.1016/j.expneurol.2004.06.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 06/04/2004] [Accepted: 06/07/2004] [Indexed: 11/15/2022]
Abstract
Multimodal testing is the key to successful fetal neurological assessment. New mutichannel SQUID (Superconducting Quantum Interference Device) sensor devices can now be used to effectively record fetal auditory evoked responses (fAER) and visual evoked responses (VER), spontaneous brain activity, and heart activity. In this paper, we review the current progress in the area of fetal magnetoencephalography (fMEG) and also present an overview of the studies performed using a system called SARA that is specifically designed for fetal MEG studies. With the capability of recording spontaneous and evoked magnetic fields, we believe the monitoring of the neurological status of the fetus can be effectively implemented and can encourage the development of new strategies of intervention for the high-risk fetus.
Collapse
Affiliation(s)
- Hubert Preissl
- Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | |
Collapse
|