1
|
Zhang F, Joiner S, Linehan JM, Pintilii F, Nazari T, Argentina F, Preston C, Taema M, Cunningham TJ, Asante EA, Mok T, Mead S, Brandner S, Collinge J, Wadsworth JD. Isolation of a novel human prion strain from a PRNP codon 129 heterozygous vCJD patient. PLoS Pathog 2025; 21:e1012904. [PMID: 39977481 PMCID: PMC11841882 DOI: 10.1371/journal.ppat.1012904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/13/2025] [Indexed: 02/22/2025] Open
Abstract
The epizootic prion disease of cattle, bovine spongiform encephalopathy (BSE), caused variant Creutzfeldt-Jakob disease (vCJD) in humans following dietary exposure. Codon 129 polymorphism of the human prion protein gene (PRNP), encoding either methionine (M) or valine (V), dictates the propagation of distinct human prion strains and up to now all but one neuropathologically confirmed vCJD patients have had a 129MM genotype. Concordant with this genetic association, transgenic modelling has established that human PrP 129V is incompatible with the vCJD prion strain and that depending on codon 129 genotype, primary human infection with BSE prions may, in addition to vCJD, result in sporadic CJD-like or novel phenotypes. In 2016 we saw the first neuropathologically confirmed case of vCJD in a patient with a codon 129MV genotype. This patient's neuropathology and molecular strain type were pathognomonic of vCJD but their clinical presentation and neuroradiological features were more typical of sporadic CJD, suggestive of possible co-propagation of another prion strain. Here we report the transmission properties of prions from the brain and lymphoreticular tissues of the 129MV vCJD patient. Primary transmissions into transgenic mice expressing human PrP with different codon 129 genotypes mainly produced neuropathological and molecular phenotypes congruent to those observed in the same lines of mice challenged with prions from 129MM vCJD patient brain, indicative that the vCJD prion strain was the dominant propagating prion strain in the patient's brain. Remarkably however, some transgenic mice challenged with 129MV vCJD patient brain propagated a novel prion strain type which at secondary passage was uniformly lethal in mice of all three PRNP codon 129 genotypes after similar short mean incubation periods. These findings establish that cattle BSE prions can trigger the co-propagation of distinct prion strains in humans.
Collapse
Affiliation(s)
- Fuquan Zhang
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
| | - Susan Joiner
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
| | - Jacqueline M. Linehan
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
| | - Florin Pintilii
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
| | - Tamsin Nazari
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
| | - Fabio Argentina
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
| | - Connor Preston
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
| | - Maged Taema
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
| | - Thomas J. Cunningham
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
| | - Emmanuel A. Asante
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
| | - Tzehow Mok
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
- National Prion Clinic, National Hospital For Neurology and Neurosurgery, University College London NHS Foundation Trust, London, United Kingdom
| | - Simon Mead
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
- National Prion Clinic, National Hospital For Neurology and Neurosurgery, University College London NHS Foundation Trust, London, United Kingdom
| | - Sebastian Brandner
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and Division of Neuropathology, the National Hospital For Neurology and Neurosurgery, University College London NHS Foundation Trust, London, United Kingdom
| | - John Collinge
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
- National Prion Clinic, National Hospital For Neurology and Neurosurgery, University College London NHS Foundation Trust, London, United Kingdom
| | - Jonathan D.F. Wadsworth
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
| |
Collapse
|
2
|
Ziaunys M, Sulskis D, Mikalauskaite K, Sakalauskas A, Snieckute R, Smirnovas V. S100A9 inhibits and redirects prion protein 89-230 fragment amyloid aggregation. Arch Biochem Biophys 2024; 758:110087. [PMID: 38977154 DOI: 10.1016/j.abb.2024.110087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/22/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Protein aggregation in the form of amyloid fibrils has long been associated with the onset and development of various amyloidoses, including Alzheimer's, Parkinson's or prion diseases. Recent studies of their fibril formation process have revealed that amyloidogenic protein cross-interactions may impact aggregation pathways and kinetic parameters, as well as the structure of the resulting aggregates. Despite a growing number of reports exploring this type of interaction, they only cover just a small number of possible amyloidogenic protein pairings. One such pair is between two neurodegeneration-associated proteins: the pro-inflammatory S100A9 and prion protein, which are known to co-localize in vivo. In this study, we examined their cross-interaction in vitro and discovered that the fibrillar form of S100A9 modulated the aggregation pathway of mouse prion protein 89-230 fragment, while non-aggregated S100A9 also significantly inhibited its primary nucleation process. These results complement previous observations of the pro-inflammatory protein's role in amyloid aggregation and highlight its potential role against neurodegenerative disorders.
Collapse
Affiliation(s)
- Mantas Ziaunys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257, Vilnius, Lithuania.
| | - Darius Sulskis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257, Vilnius, Lithuania
| | - Kamile Mikalauskaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257, Vilnius, Lithuania
| | - Andrius Sakalauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257, Vilnius, Lithuania
| | - Ruta Snieckute
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257, Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257, Vilnius, Lithuania
| |
Collapse
|
3
|
Zerr I, Ladogana A, Mead S, Hermann P, Forloni G, Appleby BS. Creutzfeldt-Jakob disease and other prion diseases. Nat Rev Dis Primers 2024; 10:14. [PMID: 38424082 DOI: 10.1038/s41572-024-00497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
Prion diseases share common clinical and pathological characteristics such as spongiform neuronal degeneration and deposition of an abnormal form of a host-derived protein, termed prion protein. The characteristic features of prion diseases are long incubation times, short clinical courses, extreme resistance of the transmissible agent to degradation and lack of nucleic acid involvement. Sporadic and genetic forms of prion diseases occur worldwide, of which genetic forms are associated with mutations in PRNP. Human to human transmission of these diseases has occurred due to iatrogenic exposure, and zoonotic forms of prion diseases are linked to bovine disease. Significant progress has been made in the diagnosis of these disorders. Clinical tools for diagnosis comprise brain imaging and cerebrospinal fluid tests. Aggregation assays for detection of the abnormally folded prion protein have a clear potential to diagnose the disease in peripherally accessible biofluids. After decades of therapeutic nihilism, new treatment strategies and clinical trials are on the horizon. Although prion diseases are relatively rare disorders, understanding their pathogenesis and mechanisms of prion protein misfolding has significantly enhanced the field in research of neurodegenerative diseases.
Collapse
Affiliation(s)
- Inga Zerr
- National Reference Center for CJD Surveillance, Department of Neurology, University Medical Center, Georg August University, Göttingen, Germany.
| | - Anna Ladogana
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Simon Mead
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - Peter Hermann
- National Reference Center for CJD Surveillance, Department of Neurology, University Medical Center, Georg August University, Göttingen, Germany
| | - Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Brian S Appleby
- Departments of Neurology, Psychiatry and Pathology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
4
|
Andreotti G, Baur J, Ugrina M, Pfeiffer PB, Hartmann M, Wiese S, Miyahara H, Higuchi K, Schwierz N, Schmidt M, Fändrich M. Insights into the Structural Basis of Amyloid Resistance Provided by Cryo-EM Structures of AApoAII Amyloid Fibrils. J Mol Biol 2024; 436:168441. [PMID: 38199491 DOI: 10.1016/j.jmb.2024.168441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
Amyloid resistance is the inability or the reduced susceptibility of an organism to develop amyloidosis. In this study we have analysed the molecular basis of the resistance to systemic AApoAII amyloidosis, which arises from the formation of amyloid fibrils from apolipoprotein A-II (ApoA-II). The disease affects humans and animals, including SAMR1C mice that express the C allele of ApoA-II protein, whereas other mouse strains are resistant to development of amyloidosis due to the expression of other ApoA-II alleles, such as ApoA-IIF. Using cryo-electron microscopy, molecular dynamics simulations and other methods, we have determined the structures of pathogenic AApoAII amyloid fibrils from SAMR1C mice and analysed the structural effects of ApoA-IIF-specific mutational changes. Our data show that these changes render ApoA-IIF incompatible with the specific fibril morphologies, with which ApoA-II protein can become pathogenic in vivo.
Collapse
Affiliation(s)
- Giada Andreotti
- Institute of Protein Biochemistry, Ulm University, 89081 Ulm, Germany.
| | - Julian Baur
- Institute of Protein Biochemistry, Ulm University, 89081 Ulm, Germany
| | - Marijana Ugrina
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany
| | | | - Max Hartmann
- Institute of Protein Biochemistry, Ulm University, 89081 Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University, 89081 Ulm, Germany
| | - Hiroki Miyahara
- Institute for Biomedical Science, Shinshu University, Matsumoto 390-8621, Japan
| | - Keiichi Higuchi
- Institute for Biomedical Science, Shinshu University, Matsumoto 390-8621, Japan; Faculty of Human Health Sciences, Meio University, Nago 905-8585, Japan
| | - Nadine Schwierz
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany
| | - Matthias Schmidt
- Institute of Protein Biochemistry, Ulm University, 89081 Ulm, Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
5
|
Kumar A, Dixson J, Azad RK. RNA-Seq Analysis of Mammalian Prion Disease. Methods Mol Biol 2024; 2812:367-377. [PMID: 39068373 DOI: 10.1007/978-1-0716-3886-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A protein, which can attain a prion state, differs from standard proteins in terms of structural conformation and aggregation propensity. High-throughput sequencing technology provides an opportunity to gain insight into the prion disease condition when coupled with single-cell RNA-Seq analysis to reveal transcriptional changes during prion-based pathogenicity. In this chapter, we present a protocol for RNA-Seq analysis of mammalian prion disease using a single-cell RNA sequencing dataset procured from the NCBI GEO database. This protocol is a tool that can assist researchers in characterizing mammalian prion disease in a reproducible and reusable manner. Further, the resulting output has the potential to provide transcript biomarkers for mammalian prion diseases, which can be employed for diagnostic and prognostic purposes.
Collapse
Affiliation(s)
- Ambarish Kumar
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - Jamie Dixson
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - Rajeev K Azad
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, USA.
| |
Collapse
|
6
|
Carlson CM, Thomas S, Keating MW, Soto P, Gibbs NM, Chang H, Wiepz JK, Austin AG, Schneider JR, Morales R, Johnson CJ, Pedersen JA. Plants as vectors for environmental prion transmission. iScience 2023; 26:108428. [PMID: 38077138 PMCID: PMC10700824 DOI: 10.1016/j.isci.2023.108428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/01/2023] [Accepted: 11/08/2023] [Indexed: 01/25/2024] Open
Abstract
Prions cause fatal neurodegenerative diseases and exhibit remarkable durability, which engenders a wide array of potential exposure scenarios. In chronic wasting disease of deer, elk, moose, and reindeer and in scrapie of sheep and goats, prions are transmitted via environmental routes and the ability of plants to accumulate and subsequently transmit prions has been hypothesized, but not previously demonstrated. Here, we establish the ability of several crop and other plant species to take up prions via their roots and translocate them to above-ground tissues from various growth media including soils. We demonstrate that plants can accumulate prions in above-ground tissues to levels sufficient to transmit disease after oral ingestion by mice. Our results suggest plants may serve as vectors for prion transmission in the environment-a finding with implications for wildlife conservation, agriculture, and public health.
Collapse
Affiliation(s)
- Christina M. Carlson
- Cellular and Molecular Biology Program, University of Wisconsin – Madison, Madison, WI 53706, USA
- U.S. Geological Survey National Wildlife Health Center, Madison, WI 53711, USA
| | - Samuel Thomas
- Department of Soil Science, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Matthew W. Keating
- Department of Civil and Environmental Engineering, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Paulina Soto
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nicole M. Gibbs
- U.S. Geological Survey National Wildlife Health Center, Madison, WI 53711, USA
| | - Haeyoon Chang
- U.S. Geological Survey National Wildlife Health Center, Madison, WI 53711, USA
| | - Jamie K. Wiepz
- U.S. Geological Survey National Wildlife Health Center, Madison, WI 53711, USA
| | - Annabel G. Austin
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jay R. Schneider
- U.S. Geological Survey National Wildlife Health Center, Madison, WI 53711, USA
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| | | | - Joel A. Pedersen
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
7
|
Mok TH, Nihat A, Majbour N, Sequeira D, Holm-Mercer L, Coysh T, Darwent L, Batchelor M, Groveman BR, Orr CD, Hughson AG, Heslegrave A, Laban R, Veleva E, Paterson RW, Keshavan A, Schott JM, Swift IJ, Heller C, Rohrer JD, Gerhard A, Butler C, Rowe JB, Masellis M, Chapman M, Lunn MP, Bieschke J, Jackson GS, Zetterberg H, Caughey B, Rudge P, Collinge J, Mead S. Seed amplification and neurodegeneration marker trajectories in individuals at risk of prion disease. Brain 2023; 146:2570-2583. [PMID: 36975162 PMCID: PMC10232278 DOI: 10.1093/brain/awad101] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Human prion diseases are remarkable for long incubation times followed typically by rapid clinical decline. Seed amplification assays and neurodegeneration biofluid biomarkers are remarkably useful in the clinical phase, but their potential to predict clinical onset in healthy people remains unclear. This is relevant not only to the design of preventive strategies in those at-risk of prion diseases, but more broadly, because prion-like mechanisms are thought to underpin many neurodegenerative disorders. Here, we report the accrual of a longitudinal biofluid resource in patients, controls and healthy people at risk of prion diseases, to which ultrasensitive techniques such as real-time quaking-induced conversion (RT-QuIC) and single molecule array (Simoa) digital immunoassays were applied for preclinical biomarker discovery. We studied 648 CSF and plasma samples, including 16 people who had samples taken when healthy but later developed inherited prion disease (IPD) ('converters'; range from 9.9 prior to, and 7.4 years after onset). Symptomatic IPD CSF samples were screened by RT-QuIC assay variations, before testing the entire collection of at-risk samples using the most sensitive assay. Glial fibrillary acidic protein (GFAP), neurofilament light (NfL), tau and UCH-L1 levels were measured in plasma and CSF. Second generation (IQ-CSF) RT-QuIC proved 100% sensitive and specific for sporadic Creutzfeldt-Jakob disease (CJD), iatrogenic and familial CJD phenotypes, and subsequently detected seeding activity in four presymptomatic CSF samples from three E200K carriers; one converted in under 2 months while two remain asymptomatic after at least 3 years' follow-up. A bespoke HuPrP P102L RT-QuIC showed partial sensitivity for P102L disease. No compatible RT-QuIC assay was discovered for classical 6-OPRI, A117V and D178N, and these at-risk samples tested negative with bank vole RT-QuIC. Plasma GFAP and NfL, and CSF NfL levels emerged as proximity markers of neurodegeneration in the typically slow IPDs (e.g. P102L), with significant differences in mean values segregating healthy control from IPD carriers (within 2 years to onset) and symptomatic IPD cohorts; plasma GFAP appears to change before NfL, and before clinical conversion. In conclusion, we show distinct biomarker trajectories in fast and slow IPDs. Specifically, we identify several years of presymptomatic seeding positivity in E200K, a new proximity marker (plasma GFAP) and sequential neurodegenerative marker evolution (plasma GFAP followed by NfL) in slow IPDs. We suggest a new preclinical staging system featuring clinical, seeding and neurodegeneration aspects, for validation with larger prion at-risk cohorts, and with potential application to other neurodegenerative proteopathies.
Collapse
Affiliation(s)
- Tze How Mok
- Medical Research Council Prion Unit at University College London, UCL Institute of Prion Diseases, London W1W 7FF, UK
- NHS National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| | - Akin Nihat
- Medical Research Council Prion Unit at University College London, UCL Institute of Prion Diseases, London W1W 7FF, UK
- NHS National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| | - Nour Majbour
- Medical Research Council Prion Unit at University College London, UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Danielle Sequeira
- Medical Research Council Prion Unit at University College London, UCL Institute of Prion Diseases, London W1W 7FF, UK
- NHS National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| | - Leah Holm-Mercer
- Medical Research Council Prion Unit at University College London, UCL Institute of Prion Diseases, London W1W 7FF, UK
- NHS National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| | - Thomas Coysh
- Medical Research Council Prion Unit at University College London, UCL Institute of Prion Diseases, London W1W 7FF, UK
- NHS National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| | - Lee Darwent
- Medical Research Council Prion Unit at University College London, UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Mark Batchelor
- Medical Research Council Prion Unit at University College London, UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Bradley R Groveman
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Christina D Orr
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Andrew G Hughson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- United Kingdom Dementia Research Institute at University College London, London WC1E 6BT, UK
| | - Rhiannon Laban
- United Kingdom Dementia Research Institute at University College London, London WC1E 6BT, UK
| | - Elena Veleva
- United Kingdom Dementia Research Institute at University College London, London WC1E 6BT, UK
| | - Ross W Paterson
- United Kingdom Dementia Research Institute at University College London, London WC1E 6BT, UK
- Dementia Research Centre, Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London WC1N 3AR, UK
| | - Ashvini Keshavan
- United Kingdom Dementia Research Institute at University College London, London WC1E 6BT, UK
- Dementia Research Centre, Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London WC1N 3AR, UK
| | - Jonathan M Schott
- United Kingdom Dementia Research Institute at University College London, London WC1E 6BT, UK
- Dementia Research Centre, Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London WC1N 3AR, UK
| | - Imogen J Swift
- United Kingdom Dementia Research Institute at University College London, London WC1E 6BT, UK
- Dementia Research Centre, Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London WC1N 3AR, UK
| | - Carolin Heller
- United Kingdom Dementia Research Institute at University College London, London WC1E 6BT, UK
- Dementia Research Centre, Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London WC1N 3AR, UK
| | - Jonathan D Rohrer
- United Kingdom Dementia Research Institute at University College London, London WC1E 6BT, UK
- Dementia Research Centre, Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London WC1N 3AR, UK
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester M13 9PL, UK
- Department of Geriatric Medicine, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, 45147 Essen, Germany
- Department of Nuclear Medicine, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, 45147 Essen, Germany
| | - Christopher Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford OX3 9DU, UK
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust and Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Miles Chapman
- Neuroimmunology and CSF Laboratory, University College London Hospitals NHS Trust National Hospital of Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Michael P Lunn
- Neuroimmunology and CSF Laboratory, University College London Hospitals NHS Trust National Hospital of Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Jan Bieschke
- Medical Research Council Prion Unit at University College London, UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Graham S Jackson
- Medical Research Council Prion Unit at University College London, UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- United Kingdom Dementia Research Institute at University College London, London WC1E 6BT, UK
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, S-43180 Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792-2420, USA
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Peter Rudge
- Medical Research Council Prion Unit at University College London, UCL Institute of Prion Diseases, London W1W 7FF, UK
- NHS National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| | - John Collinge
- Medical Research Council Prion Unit at University College London, UCL Institute of Prion Diseases, London W1W 7FF, UK
- NHS National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| | - Simon Mead
- Medical Research Council Prion Unit at University College London, UCL Institute of Prion Diseases, London W1W 7FF, UK
- NHS National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
8
|
Ziaunys M, Mikalauskaite K, Krasauskas L, Smirnovas V. Conformation-Specific Association of Prion Protein Amyloid Aggregates with Tau Protein Monomers. Int J Mol Sci 2023; 24:ijms24119277. [PMID: 37298227 DOI: 10.3390/ijms24119277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Protein aggregation into amyloid fibrils is associated with several amyloidoses, including neurodegenerative Alzheimer's and Parkinson's diseases. Despite years of research and numerous studies, the process is still not fully understood, which significantly impedes the search for cures of amyloid-related disorders. Recently, there has been an increase in reports of amyloidogenic protein cross-interactions during the fibril formation process, which further complicates the already intricate process of amyloid aggregation. One of these reports displayed an interaction involving Tau and prion proteins, which prompted a need for further investigation into the matter. In this work, we generated five populations of conformationally distinct prion protein amyloid fibrils and examined their interaction with Tau proteins. We observed that there was a conformation-specific association between Tau monomers and prion protein fibrils, which increased the aggregate self-association and amyloidophilic dye binding capacity. We also determined that the interaction did not induce the formation of Tau protein amyloid aggregates, but rather caused their electrostatic adsorption to the prion protein fibril surface.
Collapse
Affiliation(s)
- Mantas Ziaunys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Kamile Mikalauskaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Lukas Krasauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| |
Collapse
|
9
|
Manka SW, Wenborn A, Betts J, Joiner S, Saibil HR, Collinge J, Wadsworth JDF. A structural basis for prion strain diversity. Nat Chem Biol 2023; 19:607-613. [PMID: 36646960 PMCID: PMC10154210 DOI: 10.1038/s41589-022-01229-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/18/2022] [Indexed: 01/17/2023]
Abstract
Recent cryogenic electron microscopy (cryo-EM) studies of infectious, ex vivo, prion fibrils from hamster 263K and mouse RML prion strains revealed a similar, parallel in-register intermolecular β-sheet (PIRIBS) amyloid architecture. Rungs of the fibrils are composed of individual prion protein (PrP) monomers that fold to create distinct N-terminal and C-terminal lobes. However, disparity in the hamster/mouse PrP sequence precludes understanding of how divergent prion strains emerge from an identical PrP substrate. In this study, we determined the near-atomic resolution cryo-EM structure of infectious, ex vivo mouse prion fibrils from the ME7 prion strain and compared this with the RML fibril structure. This structural comparison of two biologically distinct mouse-adapted prion strains suggests defined folding subdomains of PrP rungs and the way in which they are interrelated, providing a structural definition of intra-species prion strain-specific conformations.
Collapse
Affiliation(s)
- Szymon W Manka
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, UK
| | - Adam Wenborn
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, UK
| | - Jemma Betts
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, UK
| | - Susan Joiner
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, UK
| | - Helen R Saibil
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK.
| | - John Collinge
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, UK.
| | - Jonathan D F Wadsworth
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, UK.
| |
Collapse
|
10
|
Sun JL, Telling GC. New developments in prion disease research using genetically modified mouse models. Cell Tissue Res 2023; 392:33-46. [PMID: 36929219 DOI: 10.1007/s00441-023-03761-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
While much of what we know about the general principles of protein-based information transfer derives from studies of experimentally adapted rodent prions, these laboratory strains are limited in their ability to recapitulate features of human and animal prions and the diseases they produce. Here, we review how recent approaches using genetically modified mice have informed our understanding of naturally occurring prion diseases, their strain properties, and the factors controlling their transmission and evolution. In light of the increasing importance of chronic wasting disease, the application of mouse transgenesis to study this burgeoning and highly contagious prion disorder, in particular recent insights derived from gene-targeting approaches, will be a major focus of this review.
Collapse
Affiliation(s)
- Julianna L Sun
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, USA
| | - Glenn C Telling
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, USA.
| |
Collapse
|
11
|
Suh JM, Kim M, Yoo J, Han J, Paulina C, Lim MH. Intercommunication between metal ions and amyloidogenic peptides or proteins in protein misfolding disorders. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Manka SW, Wenborn A, Collinge J, Wadsworth JDF. Prion strains viewed through the lens of cryo-EM. Cell Tissue Res 2022; 392:167-178. [PMID: 36028585 PMCID: PMC10113314 DOI: 10.1007/s00441-022-03676-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022]
Abstract
Mammalian prions are lethal transmissible pathogens that cause fatal neurodegenerative diseases in humans and animals. They consist of fibrils of misfolded, host-encoded prion protein (PrP) which propagate through templated protein polymerisation. Prion strains produce distinct clinicopathological phenotypes in the same host and appear to be encoded by distinct misfolded PrP conformations and assembly states. Despite fundamental advances in our understanding of prion biology, key knowledge gaps remain. These include precise delineation of prion replication mechanisms, detailed explanation of the molecular basis of prion strains and inter-species transmission barriers, and the structural definition of neurotoxic PrP species. Central to addressing these questions is the determination of prion structure. While high-resolution definition of ex vivo prion fibrils once seemed unlikely, recent advances in cryo-electron microscopy (cryo-EM) and computational methods for 3D reconstruction of amyloids have now made this possible. Recently, near-atomic resolution structures of highly infectious, ex vivo prion fibrils from hamster 263K and mouse RML prion strains were reported. The fibrils have a comparable parallel in-register intermolecular β-sheet (PIRIBS) architecture that now provides a structural foundation for understanding prion strain diversity in mammals. Here, we review these new findings and discuss directions for future research.
Collapse
Affiliation(s)
- Szymon W Manka
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London, W1W 7FF, UK
| | - Adam Wenborn
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London, W1W 7FF, UK
| | - John Collinge
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London, W1W 7FF, UK.
| | - Jonathan D F Wadsworth
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London, W1W 7FF, UK.
| |
Collapse
|
13
|
Xia K, Shen H, Wang P, Tan R, Xun D. Investigation of the conformation of human prion protein in ethanol solution using molecular dynamics simulations. J Biomol Struct Dyn 2022:1-10. [PMID: 35838152 DOI: 10.1080/07391102.2022.2099466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
When the conformation of protein is changed from its natural state to a misfolded state, some diseases will happen like prion disease. Prion diseases are a set of deadly neurodegenerative diseases caused by prion protein misfolding and aggregation. Monohydric alcohols have a strong influence on the structure of protein. However, whether monohydric alcohols inhibit amyloid fibrosis remains uncertain. Here, to elucidate the effect of ethanol on the structural stability of human prion protein, molecular dynamics simulations were employed to analyze the conformational changes and dynamics characteristics of human prion proteins at different temperatures. The results show that the extension of β-sheet occurs more easily and the α-helix is more easily disrupted at high temperatures. We found that ethanol can destroy the hydrophobic interactions and make the hydrogen bonds stable, which protects the secondary structure of the protein, especially at 500 K.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kui Xia
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Haolei Shen
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Peng Wang
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Rongri Tan
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Damao Xun
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
14
|
Nihat A, Ranson JM, Harris D, McNiven K, Mok T, Rudge P, Collinge J, Llewellyn DJ, Mead S. Development of prognostic models for survival and care status in sporadic Creutzfeldt-Jakob disease. Brain Commun 2022; 4:fcac201. [PMID: 35974795 PMCID: PMC9374480 DOI: 10.1093/braincomms/fcac201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/04/2022] [Accepted: 08/01/2022] [Indexed: 12/03/2022] Open
Abstract
Sporadic Creutzfeldt-Jakob disease, the most common human prion disease, typically presents as a rapidly progressive dementia and has a highly variable prognosis. Despite this heterogeneity, clinicians need to give timely advice on likely prognosis and care needs. No prognostic models have been developed that predict survival or time to increased care status from the point of diagnosis. We aimed to develop clinically useful prognostic models with data from a large prospective observational cohort study. Five hundred and thirty-seven patients were visited by mobile teams of doctors and nurses from the National Health Service National Prion Clinic within 5 days of notification of a suspected diagnosis of sporadic Creutzfeldt-Jakob disease, enrolled to the study between October 2008 and March 2020, and followed up until November 2020. Prediction of survival over 10-, 30- and 100-day periods was the main outcome. Escalation of care status over the same time periods was a secondary outcome for a subsample of 113 patients with low care status at initial assessment. Two hundred and eighty (52.1%) patients were female and the median age was 67.2 (interquartile range 10.5) years. Median survival from initial assessment was 24 days (range 0–1633); 414 patients died within 100 days (77%). Ten variables were included in the final prediction models: sex; days since symptom onset; baseline care status; PRNP codon 129 genotype; Medical Research Council Prion Disease Rating Scale, Motor and Cognitive Examination Scales; count of MRI abnormalities; Mini-Mental State Examination score and categorical disease phenotype. The strongest predictor was PRNP codon 129 genotype (odds ratio 6.65 for methionine homozygous compared with methionine-valine heterozygous; 95% confidence interval 3.02–14.68 for 30-day mortality). Of 113 patients with lower care status at initial assessment, 88 (78%) had escalated care status within 100 days, with a median of 35 days. Area under the curve for models predicting outcomes within 10, 30 and 100 days was 0.94, 0.92 and 0.91 for survival, and 0.87, 0.87 and 0.95 for care status escalation, respectively. Models without PRNP codon 129 genotype, which is not immediately available at initial assessment, were also highly accurate. We have developed a model that can accurately predict survival and care status escalation in sporadic Creutzfeldt-Jakob disease patients using clinical, imaging and genetic data routinely available in a specialist national referral service. The utility and generalizability of these models to other settings could be prospectively evaluated when recruiting to clinical trials and providing clinical care.
Collapse
Affiliation(s)
- Akın Nihat
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases , Cleveland Street, London W1W 7FF , UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust , London WC1N 3BG , UK
| | - Janice M Ranson
- College of Medicine and Health, University of Exeter , Exeter EX1 2HZ , UK
- Deep Dementia Phenotyping Network , Exeter EX1 2LU , UK
| | - Dominique Harris
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases , Cleveland Street, London W1W 7FF , UK
| | - Kirsty McNiven
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust , London WC1N 3BG , UK
| | - TzeHow Mok
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases , Cleveland Street, London W1W 7FF , UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust , London WC1N 3BG , UK
| | - Peter Rudge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases , Cleveland Street, London W1W 7FF , UK
| | - John Collinge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases , Cleveland Street, London W1W 7FF , UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust , London WC1N 3BG , UK
| | - David J Llewellyn
- College of Medicine and Health, University of Exeter , Exeter EX1 2HZ , UK
- Deep Dementia Phenotyping Network , Exeter EX1 2LU , UK
- Alan Turing Institute , London NW1 2DB , UK
| | - Simon Mead
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases , Cleveland Street, London W1W 7FF , UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust , London WC1N 3BG , UK
| |
Collapse
|
15
|
Transmission, Strain Diversity, and Zoonotic Potential of Chronic Wasting Disease. Viruses 2022; 14:v14071390. [PMID: 35891371 PMCID: PMC9316268 DOI: 10.3390/v14071390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic wasting disease (CWD) is a prion disease affecting several species of captive and free-ranging cervids. In the past few decades, CWD has been spreading uncontrollably, mostly in North America, resulting in a high increase of CWD incidence but also a substantially higher number of geographical regions affected. The massive increase in CWD poses risks at several levels, including contamination of the environment, transmission to animals cohabiting with cervids, and more importantly, a putative transmission to humans. In this review, I will describe the mechanisms and routes responsible for the efficient transmission of CWD, the strain diversity of natural CWD, its spillover and zoonotic potential and strategies to minimize the CWD threat.
Collapse
|
16
|
Biomarkers Analysis and Clinical Manifestations in Comorbid Creutzfeldt–Jakob Disease: A Retrospective Study in 215 Autopsy Cases. Biomedicines 2022; 10:biomedicines10030680. [PMID: 35327482 PMCID: PMC8944998 DOI: 10.3390/biomedicines10030680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
Creutzfeldt–Jakob disease (CJD), the most common human prion disorder, may occur as “pure” neurodegeneration with isolated prion deposits in the brain tissue; however, comorbid cases with different concomitant neurodegenerative diseases have been reported. This retrospective study examined correlations of clinical, neuropathological, molecular-genetic, immunological, and neuroimaging biomarkers in pure and comorbid CJD. A total of 215 patients have been diagnosed with CJD during the last ten years by the Czech National Center for Prion Disorder Surveillance. Data were collected from all patients with respect to diagnostic criteria for probable CJD, including clinical description, EEG, MRI, and CSF findings. A detailed neuropathological analysis uncovered that only 11.16% were “pure” CJD, while 62.79% had comorbid tauopathy, 20.47% had Alzheimer’s disease, 3.26% had frontotemporal lobar degeneration, and 2.33% had synucleinopathy. The comorbid subgroup analysis revealed that tauopathy was linked to putaminal hyperintensity on MRIs, and AD mainly impacted the age of onset, hippocampal atrophy on MRIs, and beta-amyloid levels in the CSF. The retrospective data analysis found a surprisingly high proportion of comorbid neuropathologies; only 11% of cases were verified as “pure” CJD, i.e., lacking hallmarks of other neurodegenerations. Comorbid neuropathologies can impact disease manifestation and can complicate the clinical diagnosis of CJD.
Collapse
|
17
|
Jankovska N, Rusina R, Bruzova M, Parobkova E, Olejar T, Matej R. Human Prion Disorders: Review of the Current Literature and a Twenty-Year Experience of the National Surveillance Center in the Czech Republic. Diagnostics (Basel) 2021; 11:1821. [PMID: 34679519 PMCID: PMC8534461 DOI: 10.3390/diagnostics11101821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023] Open
Abstract
Human prion disorders (transmissible spongiform encephalopathies, TSEs) are unique, progressive, and fatal neurodegenerative diseases caused by aggregation of misfolded prion protein in neuronal tissue. Due to the potential transmission, human TSEs are under active surveillance in a majority of countries; in the Czech Republic data are centralized at the National surveillance center (NRL) which has a clinical and a neuropathological subdivision. The aim of our article is to review current knowledge about human TSEs and summarize the experience of active surveillance of human prion diseases in the Czech Republic during the last 20 years. Possible or probable TSEs undergo a mandatory autopsy using a standardized protocol. From 2001 to 2020, 305 cases of sporadic and genetic TSEs including 8 rare cases of Gerstmann-Sträussler-Scheinker syndrome (GSS) were confirmed. Additionally, in the Czech Republic, brain samples from all corneal donors have been tested by the NRL immunology laboratory to increase the safety of corneal transplants since January 2007. All tested 6590 corneal donor brain tissue samples were negative for prion protein deposits. Moreover, the routine use of diagnostic criteria including biomarkers are robust enough, and not even the COVID-19 pandemic has negatively impacted TSEs surveillance in the Czech Republic.
Collapse
Affiliation(s)
- Nikol Jankovska
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, 14059 Prague, Czech Republic; (M.B.); (E.P.); (T.O.); (R.M.)
| | - Robert Rusina
- Department of Neurology, Third Faculty of Medicine, Charles University and Thomayer University Hospital, 14059 Prague, Czech Republic;
| | - Magdalena Bruzova
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, 14059 Prague, Czech Republic; (M.B.); (E.P.); (T.O.); (R.M.)
| | - Eva Parobkova
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, 14059 Prague, Czech Republic; (M.B.); (E.P.); (T.O.); (R.M.)
| | - Tomas Olejar
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, 14059 Prague, Czech Republic; (M.B.); (E.P.); (T.O.); (R.M.)
| | - Radoslav Matej
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, 14059 Prague, Czech Republic; (M.B.); (E.P.); (T.O.); (R.M.)
- Department of Pathology, First Faculty of Medicine, Charles University, and General University Hospital, 12800 Prague, Czech Republic
- Department of Pathology, Third Faculty of Medicine, Charles University, and University Hospital Kralovske Vinohrady, 10034 Prague, Czech Republic
| |
Collapse
|
18
|
Serpa JJ, Popov KI, Petrotchenko EV, Dokholyan NV, Borchers CH. Structure of prion β-oligomers as determined by short-distance crosslinking constraint-guided discrete molecular dynamics simulations. Proteomics 2021; 21:e2000298. [PMID: 34482645 PMCID: PMC9285417 DOI: 10.1002/pmic.202000298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/10/2021] [Accepted: 08/27/2021] [Indexed: 11/08/2022]
Abstract
The conversion of the native monomeric cellular prion protein (PrPC ) into an aggregated pathological β-oligomeric form (PrPβ ) and an infectious form (PrPSc ) is the central element in the development of prion diseases. The structure of the aggregates and the molecular mechanisms of the conformational changes involved in the conversion are still unknown. We applied mass spectrometry combined with chemical crosslinking, hydrogen/deuterium exchange, limited proteolysis, and surface modification for the differential characterization of the native and the urea+acid-converted prion β-oligomer structures to obtain insights into the mechanisms of conversion and aggregation. For the determination of the structure of the monomer and the dimer unit of the β-oligomer, we applied a recently-developed approach for de novo protein structure determination which is based on the incorporation of zero-length and short-distance crosslinking data as intra- and inter-protein constraints in discrete molecular dynamics simulations (CL-DMD). Based on all of the structural-proteomics experimental data and the computationally predicted structures of the monomer units, we propose the potential mode of assembly of the β-oligomer. The proposed β-oligomer assembly provides a clue on the β-sheet nucleation site, and how template-based conversion of the native prion molecule occurs, growth of the prion aggregates, and maturation into fibrils may occur.
Collapse
Affiliation(s)
- Jason J Serpa
- University of Victoria -Genome British Columbia Proteomics Centre, Victoria, British Columbia, Canada
| | - Konstantin I Popov
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Evgeniy V Petrotchenko
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada.,Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Nikolay V Dokholyan
- Department of Pharmacology, Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada.,Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia.,Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Bian J, Kim S, Kane SJ, Crowell J, Sun JL, Christiansen J, Saijo E, Moreno JA, DiLisio J, Burnett E, Pritzkow S, Gorski D, Soto C, Kreeger TJ, Balachandran A, Mitchell G, Miller MW, Nonno R, Vikøren T, Våge J, Madslien K, Tran L, Vuong TT, Benestad SL, Telling GC. Adaptive selection of a prion strain conformer corresponding to established North American CWD during propagation of novel emergent Norwegian strains in mice expressing elk or deer prion protein. PLoS Pathog 2021; 17:e1009748. [PMID: 34310663 PMCID: PMC8341702 DOI: 10.1371/journal.ppat.1009748] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/05/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Prions are infectious proteins causing fatal, transmissible neurodegenerative diseases of animals and humans. Replication involves template-directed refolding of host encoded prion protein, PrPC, by its infectious conformation, PrPSc. Following its discovery in captive Colorado deer in 1967, uncontrollable contagious transmission of chronic wasting disease (CWD) led to an expanded geographic range in increasing numbers of free-ranging and captive North American (NA) cervids. Some five decades later, detection of PrPSc in free-ranging Norwegian (NO) reindeer and moose marked the first indication of CWD in Europe. To assess the properties of these emergent NO prions and compare them with NA CWD we used transgenic (Tg) and gene targeted (Gt) mice expressing PrP with glutamine (Q) or glutamate (E) at residue 226, a variation in wild type cervid PrP which influences prion strain selection in NA deer and elk. Transmissions of NO moose and reindeer prions to Tg and Gt mice recapitulated the characteristic features of CWD in natural hosts, revealing novel prion strains with disease kinetics, neuropathological profiles, and capacities to infect lymphoid tissues and cultured cells that were distinct from those causing NA CWD. In support of strain variation, PrPSc conformers comprising emergent NO moose and reindeer CWD were subject to selective effects imposed by variation at residue 226 that were different from those controlling established NA CWD. Transmission of particular NO moose CWD prions in mice expressing E at 226 resulted in selection of a kinetically optimized conformer, subsequent transmission of which revealed properties consistent with NA CWD. These findings illustrate the potential for adaptive selection of strain conformers with improved fitness during propagation of unstable NO prions. Their potential for contagious transmission has implications for risk analyses and management of emergent European CWD. Finally, we found that Gt mice expressing physiologically controlled PrP levels recapitulated the lymphotropic properties of naturally occurring CWD strains resulting in improved susceptibilities to emergent NO reindeer prions compared with over-expressing Tg counterparts. These findings underscore the refined advantages of Gt models for exploring the mechanisms and impacts of strain selection in peripheral compartments during natural prion transmission. Prions cause fatal, transmissible neurodegenerative diseases in animals and humans. They are composed of an infectious, neurotoxic protein (PrP) which replicates by imposing pathogenic conformations on its normal, host-encoded counterpart. Chronic wasting disease (CWD) is a contagious prion disorder threatening increasing numbers of free-ranging and captive North American deer, elk, and moose. While CWD detection in Norwegian reindeer and moose in 2016 marked the advent of disease in Europe, its origins and relationship to North American CWD were initially unclear. Here we show, using mice engineered to express deer or elk PrP, that Norwegian reindeer and moose CWD are caused by novel prion strains with properties distinct from those of North American CWD. We found that selection and propagation of North American and Norwegian CWD strains was controlled by a key amino acid residue in host PrP. We also found that particular Norwegian isolates adapted during their propagation in mice to produce prions with characteristics of the North American strain. Our findings defining the transmission profiles of novel Norwegian prions and their unstable potential to produce adapted strains with improved fitness for contagious transmission have implications for risk analyses and management of emergent European CWD.
Collapse
Affiliation(s)
- Jifeng Bian
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sehun Kim
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sarah J. Kane
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jenna Crowell
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Julianna L. Sun
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jeffrey Christiansen
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Eri Saijo
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Julie A. Moreno
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - James DiLisio
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Emily Burnett
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sandra Pritzkow
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas, United States of America
| | - Damian Gorski
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas, United States of America
| | - Claudio Soto
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas, United States of America
| | - Terry J. Kreeger
- Wyoming Game and Fish Department, Wheatland, Wyoming, United States of America
| | - Aru Balachandran
- Canadian Food Inspection Agency, National and OIE Reference Laboratory for Scrapie and CWD, Ottawa, Canada
| | - Gordon Mitchell
- Canadian Food Inspection Agency, National and OIE Reference Laboratory for Scrapie and CWD, Ottawa, Canada
| | - Michael W. Miller
- Colorado Parks and Wildlife, Fort Collins, Colorado, United States of America
| | - Romolo Nonno
- Istituto Superiore di Sanità, Department of Veterinary Public Health, Nutrition and Food Safety, Rome, Italy
| | - Turid Vikøren
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Jørn Våge
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Knut Madslien
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Linh Tran
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Tram Thu Vuong
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Sylvie L. Benestad
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Glenn C. Telling
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
20
|
Bandyopadhyay A, Sannigrahi A, Chattopadhyay K. Membrane composition and lipid to protein ratio modulate amyloid kinetics of yeast prion protein. RSC Chem Biol 2021; 2:592-605. [PMID: 34458802 PMCID: PMC8341755 DOI: 10.1039/d0cb00203h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/15/2021] [Indexed: 12/22/2022] Open
Abstract
Understanding of prion aggregation in a membrane environment may help to ameliorate neurodegenerative complications caused by the amyloid forms of prions. Here, we investigated the membrane binding-induced aggregation of yeast prion protein Sup35. Using the combination of fluorescence correlation spectroscopy (FCS) at single molecule resolution and other biophysical studies, we establish that lipid composition and lipid/protein ratio are key modulators of the aggregation kinetics of Sup35. In the presence of a zwitterionic membrane (DMPC), Sup35 exhibited novel biphasic aggregation kinetics at lipid/protein ratios ranging between 20 : 1 and 70 : 1 (termed here as the optimum lipid concentration, OLC). In ratios below (low lipid concentration, LLC) and above (ELC, excess lipid concentration) that range, the aggregation was found to be monophasic. In contrast, in the presence of negatively charged membranes, we did not observe any bi-phasic aggregation kinetics in the entire range of protein to lipid ratios. Our results provide a mechanistic description of the role that membrane concentration/composition-modulated aggregation may play in neurodegenerative diseases.
Collapse
Affiliation(s)
- Arnab Bandyopadhyay
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology 4, Raja S. C. Mullick Road Kolkata 700032 India
| | - Achinta Sannigrahi
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology 4, Raja S. C. Mullick Road Kolkata 700032 India
| | - Krishnananda Chattopadhyay
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology 4, Raja S. C. Mullick Road Kolkata 700032 India
| |
Collapse
|
21
|
Dubey T, Chinnathambi S. Photodynamic sensitizers modulate cytoskeleton structural dynamics in neuronal cells. Cytoskeleton (Hoboken) 2021; 78:232-248. [DOI: 10.1002/cm.21655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 01/10/2023]
Affiliation(s)
- Tushar Dubey
- Neurobiology Group, Division of Biochemical Sciences CSIR‐National Chemical Laboratory Pune India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences CSIR‐National Chemical Laboratory Pune India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
22
|
Willner MJ, Xiao Y, Kim HS, Chen X, Xu B, Leong KW. Modeling SARS-CoV-2 infection in individuals with opioid use disorder with brain organoids. J Tissue Eng 2021; 12:2041731420985299. [PMID: 33738089 PMCID: PMC7934045 DOI: 10.1177/2041731420985299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/13/2020] [Indexed: 01/10/2023] Open
Abstract
The COVID-19 pandemic has aggravated a preexisting epidemic: the opioid crisis. Much literature has shown that the circumstances imposed by COVID-19, such as social distancing regulations, medical and financial instability, and increased mental health issues, have been detrimental to those with opioid use disorder (OUD). In addition, unexpected neurological sequelae in COVID-19 patients suggest that COVID-19 compromises neuroimmunity, induces hypoxia, and causes respiratory depression, provoking similar effects as those caused by opioid exposure. Combined conditions of COVID-19 and OUD could lead to exacerbated complications. With limited human in vivo options to study these complications, we suggest that iPSC-derived brain organoid models may serve as a useful platform to investigate the physiological connection between COVID-19 and OUD. This mini-review highlights the advances of brain organoids in other neuropsychiatric and infectious diseases and suggests their potential utility for investigating OUD and COVID-19, respectively.
Collapse
Affiliation(s)
- Moshe J Willner
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Hye Sung Kim
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, Republic of Korea
| | - Xuejing Chen
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Physics, Tsinghua University, Beijing, China
| | - Bin Xu
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
23
|
Jankovska N, Olejar T, Matej R. Extracellular Amyloid Deposits in Alzheimer's and Creutzfeldt-Jakob Disease: Similar Behavior of Different Proteins? Int J Mol Sci 2020; 22:E7. [PMID: 33374972 PMCID: PMC7792617 DOI: 10.3390/ijms22010007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases are characterized by the deposition of specific protein aggregates, both intracellularly and/or extracellularly, depending on the type of disease. The extracellular occurrence of tridimensional structures formed by amyloidogenic proteins defines Alzheimer's disease, in which plaques are composed of amyloid β-protein, while in prionoses, the same term "amyloid" refers to the amyloid prion protein. In this review, we focused on providing a detailed didactic description and differentiation of diffuse, neuritic, and burnt-out plaques found in Alzheimer's disease and kuru-like, florid, multicentric, and neuritic plaques in human transmissible spongiform encephalopathies, followed by a systematic classification of the morphological similarities and differences between the extracellular amyloid deposits in these disorders. Both conditions are accompanied by the extracellular deposits that share certain signs, including neuritic degeneration, suggesting a particular role for amyloid protein toxicity.
Collapse
Affiliation(s)
- Nikol Jankovska
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer Hospital, 100 00 Prague, Czech Republic; (T.O.); (R.M.)
| | - Tomas Olejar
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer Hospital, 100 00 Prague, Czech Republic; (T.O.); (R.M.)
| | - Radoslav Matej
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer Hospital, 100 00 Prague, Czech Republic; (T.O.); (R.M.)
- Department of Pathology, First Faculty of Medicine, Charles University, and General University Hospital, 100 00 Prague, Czech Republic
- Department of Pathology, Third Faculty of Medicine, Charles University, and University Hospital Kralovske Vinohrady, 100 00 Prague, Czech Republic
| |
Collapse
|
24
|
Jones E, Hummerich H, Viré E, Uphill J, Dimitriadis A, Speedy H, Campbell T, Norsworthy P, Quinn L, Whitfield J, Linehan J, Jaunmuktane Z, Brandner S, Jat P, Nihat A, How Mok T, Ahmed P, Collins S, Stehmann C, Sarros S, Kovacs GG, Geschwind MD, Golubjatnikov A, Frontzek K, Budka H, Aguzzi A, Karamujić-Čomić H, van der Lee SJ, Ibrahim-Verbaas CA, van Duijn CM, Sikorska B, Golanska E, Liberski PP, Calero M, Calero O, Sanchez-Juan P, Salas A, Martinón-Torres F, Bouaziz-Amar E, Haïk S, Laplanche JL, Brandel JP, Amouyel P, Lambert JC, Parchi P, Bartoletti-Stella A, Capellari S, Poleggi A, Ladogana A, Pocchiari M, Aneli S, Matullo G, Knight R, Zafar S, Zerr I, Booth S, Coulthart MB, Jansen GH, Glisic K, Blevins J, Gambetti P, Safar J, Appleby B, Collinge J, Mead S. Identification of novel risk loci and causal insights for sporadic Creutzfeldt-Jakob disease: a genome-wide association study. Lancet Neurol 2020; 19:840-848. [PMID: 32949544 PMCID: PMC8220892 DOI: 10.1016/s1474-4422(20)30273-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Human prion diseases are rare and usually rapidly fatal neurodegenerative disorders, the most common being sporadic Creutzfeldt-Jakob disease (sCJD). Variants in the PRNP gene that encodes prion protein are strong risk factors for sCJD but, although the condition has similar heritability to other neurodegenerative disorders, no other genetic risk loci have been confirmed. We aimed to discover new genetic risk factors for sCJD, and their causal mechanisms. METHODS We did a genome-wide association study of sCJD in European ancestry populations (patients diagnosed with probable or definite sCJD identified at national CJD referral centres) with a two-stage study design using genotyping arrays and exome sequencing. Conditional, transcriptional, and histological analyses of implicated genes and proteins in brain tissues, and tests of the effects of risk variants on clinical phenotypes, were done using deep longitudinal clinical cohort data. Control data from healthy individuals were obtained from publicly available datasets matched for country. FINDINGS Samples from 5208 cases were obtained between 1990 and 2014. We found 41 genome-wide significant single nucleotide polymorphisms (SNPs) and independently replicated findings at three loci associated with sCJD risk; within PRNP (rs1799990; additive model odds ratio [OR] 1·23 [95% CI 1·17-1·30], p=2·68 × 10-15; heterozygous model p=1·01 × 10-135), STX6 (rs3747957; OR 1·16 [1·10-1·22], p=9·74 × 10-9), and GAL3ST1 (rs2267161; OR 1·18 [1·12-1·25], p=8·60 × 10-10). Follow-up analyses showed that associations at PRNP and GAL3ST1 are likely to be caused by common variants that alter the protein sequence, whereas risk variants in STX6 are associated with increased expression of the major transcripts in disease-relevant brain regions. INTERPRETATION We present, to our knowledge, the first evidence of statistically robust genetic associations in sporadic human prion disease that implicate intracellular trafficking and sphingolipid metabolism as molecular causal mechanisms. Risk SNPs in STX6 are shared with progressive supranuclear palsy, a neurodegenerative disease associated with misfolding of protein tau, indicating that sCJD might share the same causal mechanisms as prion-like disorders. FUNDING Medical Research Council and the UK National Institute of Health Research in part through the Biomedical Research Centre at University College London Hospitals National Health Service Foundation Trust.
Collapse
Affiliation(s)
- Emma Jones
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Holger Hummerich
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Emmanuelle Viré
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - James Uphill
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Athanasios Dimitriadis
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Helen Speedy
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Tracy Campbell
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Penny Norsworthy
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Liam Quinn
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Jerome Whitfield
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Jacqueline Linehan
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Zane Jaunmuktane
- Division of Neuropathology, University College London Hospitals National Health Service Foundation Trust, London, UK; Department of Clinical and Movement Neurosciences and Queen Square Brain Bank for Neurological Disorders, University College London Queen Square Institute of Neurology, London, UK
| | - Sebastian Brandner
- Division of Neuropathology, University College London Hospitals National Health Service Foundation Trust, London, UK; Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, UK
| | - Parmjit Jat
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Akin Nihat
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK; National Prion Clinic, University College London Hospitals National Health Service Foundation Trust, London, UK
| | - Tze How Mok
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK; National Prion Clinic, University College London Hospitals National Health Service Foundation Trust, London, UK
| | - Parvin Ahmed
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Steven Collins
- Australian National Creutzfeldt-Jakob Disease Registry, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Christiane Stehmann
- Australian National Creutzfeldt-Jakob Disease Registry, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Shannon Sarros
- Australian National Creutzfeldt-Jakob Disease Registry, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna, Austria; Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada; Laboratory Medicine Program, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Michael D Geschwind
- University of California San Francisco Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Aili Golubjatnikov
- University of California San Francisco Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Karl Frontzek
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Herbert Budka
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland; Medical University Vienna, Vienna, Austria
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | | | - Sven J van der Lee
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, Netherlands
| | | | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, Netherlands; Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Beata Sikorska
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Ewa Golanska
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Pawel P Liberski
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Miguel Calero
- Chronic Disease Programme (UFIEC-CROSADIS) and Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), and Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Centre, Instituto de Salud Carlos III, Madrid, Spain
| | - Olga Calero
- Chronic Disease Programme (UFIEC-CROSADIS) and Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), and Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Centre, Instituto de Salud Carlos III, Madrid, Spain
| | - Pascual Sanchez-Juan
- Neurology Service, University Hospital Marqués de Valdecilla, University of Cantabria, CIBERNED and IDIVAL, Santander, Spain
| | - Antonio Salas
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain
| | - Federico Martinón-Torres
- Translational Paediatrics and Infectious Diseases, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
| | - Elodie Bouaziz-Amar
- Department of Biochemistry and Molecular Biology, Lariboisière Hospital, AP-HP, University of Paris, Paris, France
| | - Stéphane Haïk
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Paris, France; Cellule nationale de référence des maladies de Creutzfeldt-Jakob, AP-HP, University Hospital Pitié-Salpêtrière, Paris, France
| | - Jean-Louis Laplanche
- Department of Biochemistry and Molecular Biology, Lariboisière Hospital, AP-HP, University of Paris, Paris, France
| | - Jean-Phillipe Brandel
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Paris, France; Cellule nationale de référence des maladies de Creutzfeldt-Jakob, AP-HP, University Hospital Pitié-Salpêtrière, Paris, France
| | - Phillipe Amouyel
- INSERM, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE, Labex DISTALZ, University of Lille, Lille, France
| | - Jean-Charles Lambert
- INSERM, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE, Labex DISTALZ, University of Lille, Lille, France
| | - Piero Parchi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | | | - Sabina Capellari
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Anna Poleggi
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Ladogana
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | | | - Serena Aneli
- Department of Medical Sciences, Università degli studi di Torino, Torino, Italy
| | - Giuseppe Matullo
- Department of Medical Sciences, Università degli studi di Torino, Torino, Italy
| | - Richard Knight
- National Creutzfeldt-Jakob Disease Research and Surveillance Unit, Edinburgh, UK
| | - Saima Zafar
- Department of Neurology, Clinical Dementia Centre and National Reference Centre for Creutzfeldt-Jakob Disease Surveillance, University Medical School, Göttingen, Germany; German Centre for Neurodegenerative Diseases (DZNE), Göttingen, Germany; Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Centre and National Reference Centre for Creutzfeldt-Jakob Disease Surveillance, University Medical School, Göttingen, Germany; German Centre for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Stephanie Booth
- Prion Disease Program, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Michael B Coulthart
- Canadian Creutzfeldt-Jakob Disease Surveillance System, Public Health Agency of Canada, Ottawa, ON, Canada
| | - Gerard H Jansen
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Katie Glisic
- Departments of Pathology and Neurology, Case Western Reserve University, Cleveland, OH, USA; National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, OH, USA
| | - Janis Blevins
- Departments of Pathology and Neurology, Case Western Reserve University, Cleveland, OH, USA; National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, OH, USA
| | - Pierluigi Gambetti
- Departments of Pathology and Neurology, Case Western Reserve University, Cleveland, OH, USA; National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, OH, USA
| | - Jiri Safar
- Departments of Pathology and Neurology, Case Western Reserve University, Cleveland, OH, USA; National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, OH, USA
| | - Brian Appleby
- Departments of Pathology and Neurology, Case Western Reserve University, Cleveland, OH, USA; National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, OH, USA
| | - John Collinge
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK; National Prion Clinic, University College London Hospitals National Health Service Foundation Trust, London, UK
| | - Simon Mead
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK; National Prion Clinic, University College London Hospitals National Health Service Foundation Trust, London, UK.
| |
Collapse
|
25
|
Hosszu LLP, Conners R, Sangar D, Batchelor M, Sawyer EB, Fisher S, Cliff MJ, Hounslow AM, McAuley K, Leo Brady R, Jackson GS, Bieschke J, Waltho JP, Collinge J. Structural effects of the highly protective V127 polymorphism on human prion protein. Commun Biol 2020; 3:402. [PMID: 32728168 PMCID: PMC7391680 DOI: 10.1038/s42003-020-01126-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 07/03/2020] [Indexed: 01/02/2023] Open
Abstract
Prion diseases, a group of incurable, lethal neurodegenerative disorders of mammals including humans, are caused by prions, assemblies of misfolded host prion protein (PrP). A single point mutation (G127V) in human PrP prevents prion disease, however the structural basis for its protective effect remains unknown. Here we show that the mutation alters and constrains the PrP backbone conformation preceding the PrP β-sheet, stabilising PrP dimer interactions by increasing intermolecular hydrogen bonding. It also markedly changes the solution dynamics of the β2-α2 loop, a region of PrP structure implicated in prion transmission and cross-species susceptibility. Both of these structural changes may affect access to protein conformers susceptible to prion formation and explain its profound effect on prion disease.
Collapse
Affiliation(s)
- Laszlo L P Hosszu
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Rebecca Conners
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
- University of Bristol, School of Biochemistry, Biomedical Sciences Building, University Walk, Clifton, BS8 1TD, UK
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Daljit Sangar
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Mark Batchelor
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Elizabeth B Sawyer
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Stuart Fisher
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
- ESRF, 71, Avenue des Martyrs, CS 40220, 38043, Grenoble Cedex 9, France
| | - Matthew J Cliff
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Andrea M Hounslow
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Katherine McAuley
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - R Leo Brady
- University of Bristol, School of Biochemistry, Biomedical Sciences Building, University Walk, Clifton, BS8 1TD, UK
| | - Graham S Jackson
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Jan Bieschke
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Jonathan P Waltho
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - John Collinge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK.
| |
Collapse
|
26
|
Abstract
In sheep, scrapie is a fatal neurologic disease that is caused by a misfolded protein called a prion (designated PrPSc). The normal cellular prion protein (PrPC) is encoded by an endogenous gene, PRNP, that is present in high concentrations within the CNS. Although a broad range of functions has been described for PrPC, its entire range of functions has yet to be fully elucidated. Accumulation of PrPSc results in neurodegeneration. The PRNP gene has several naturally occurring polymorphisms, and there is a strong correlation between scrapie susceptibility and PRNP genotype. The cornerstone of scrapie eradication programs is the selection of scrapie-resistant genotypes to eliminate classical scrapie. Transmission of classical scrapie in sheep occurs during the prenatal and periparturient periods when lambs are highly susceptible. Initially, the scrapie agent is disseminated throughout the lymphoid system and into the CNS. Shedding of the scrapie agent occurs before the onset of clinical signs. In contrast to classical scrapie, atypical scrapie is believed to be a spontaneous disease that occurs in isolated instances in older animals within a flock. The agent that causes atypical scrapie is not considered to be naturally transmissible. Transmission of the scrapie agent to species other than sheep, including deer, has been experimentally demonstrated as has the transmission of nonscrapie prion agents to sheep. The purpose of this review is to outline the current methods for diagnosing scrapie in sheep and the techniques used for studying the pathogenesis and host range of the scrapie agent. Also discussed is the US scrapie eradication program including recent updates.
Collapse
|
27
|
Jones E, Mead S. Genetic risk factors for Creutzfeldt-Jakob disease. Neurobiol Dis 2020; 142:104973. [PMID: 32565065 DOI: 10.1016/j.nbd.2020.104973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/18/2020] [Accepted: 06/13/2020] [Indexed: 10/24/2022] Open
Abstract
Prion diseases are a group of fatal neurodegenerative disorders of mammals that share a central role for prion protein (PrP, gene PRNP) in their pathogenesis. Prions are infectious agents that account for the observed transmission of prion diseases between humans and animals in certain circumstances. The prion mechanism invokes a misfolded and multimeric assembly of PrP (a prion) that grows by templating of the normal protein and propagates by fission. Aside from the medical and public health notoriety of acquired prion diseases, the conditions have attracted interest as it has been realized that common neurodegenerative disorders share so-called prion-like mechanisms. In this article we will expand on recent evidence for new genetic loci that alter the risk of human prion disease. The most common human prion disease, sporadic Creutzfeldt-Jakob disease (sCJD), is characterized by the seemingly spontaneous appearance of prions in the brain. Genetic variation within PRNP is associated with all types of prion diseases, in particular, heterozygous genotypes at codons 129 and 219 have long been known to be strong protective factors against sCJD. A large number of rare mutations have been described in PRNP that cause autosomal dominant inherited prion diseases. Two loci recently identified by genome-wide association study increase sCJD risk, including variants in or near to STX6 and GAL3ST1. STX6 encodes syntaxin-6, a component of SNARE complexes with cellular roles that include the fusion of intracellular vesicles with target membranes. GAL3ST1 encodes cerebroside sulfotransferase, the only enzyme that sulfates sphingolipids to make sulfatides, a major lipid component of myelin. We discuss how these roles may modify the pathogenesis of prion diseases and their relevance for other neurodegenerative disorders.
Collapse
Affiliation(s)
- Emma Jones
- MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, 33 Cleveland Street, W1W 7FF, United Kingdom
| | - Simon Mead
- MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, 33 Cleveland Street, W1W 7FF, United Kingdom.
| |
Collapse
|
28
|
Asante EA, Linehan JM, Tomlinson A, Jakubcova T, Hamdan S, Grimshaw A, Smidak M, Jeelani A, Nihat A, Mead S, Brandner S, Wadsworth JDF, Collinge J. Spontaneous generation of prions and transmissible PrP amyloid in a humanised transgenic mouse model of A117V GSS. PLoS Biol 2020; 18:e3000725. [PMID: 32516343 PMCID: PMC7282622 DOI: 10.1371/journal.pbio.3000725] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/06/2020] [Indexed: 12/02/2022] Open
Abstract
Inherited prion diseases are caused by autosomal dominant coding mutations in the human prion protein (PrP) gene (PRNP) and account for about 15% of human prion disease cases worldwide. The proposed mechanism is that the mutation predisposes to conformational change in the expressed protein, leading to the generation of disease-related multichain PrP assemblies that propagate by seeded protein misfolding. Despite considerable experimental support for this hypothesis, to-date spontaneous formation of disease-relevant, transmissible PrP assemblies in transgenic models expressing only mutant human PrP has not been demonstrated. Here, we report findings from transgenic mice that express human PrP 117V on a mouse PrP null background (117VV Tg30 mice), which model the PRNP A117V mutation causing inherited prion disease (IPD) including Gerstmann-Sträussler-Scheinker (GSS) disease phenotypes in humans. By studying brain samples from uninoculated groups of mice, we discovered that some mice (≥475 days old) spontaneously generated abnormal PrP assemblies, which after inoculation into further groups of 117VV Tg30 mice, produced a molecular and neuropathological phenotype congruent with that seen after transmission of brain isolates from IPD A117V patients to the same mice. To the best of our knowledge, the 117VV Tg30 mouse line is the first transgenic model expressing only mutant human PrP to show spontaneous generation of transmissible PrP assemblies that directly mirror those generated in an inherited prion disease in humans. Transgenic mice expressing the human prion protein containing a mutation linked to the inherited prion disease Gerstmann-Sträussler-Scheinker disease develop spontaneous neuropathology. This represents the first human prion protein transgenic model to show spontaneous generation of transmissible prion assemblies that directly mirror those generated in humans.
Collapse
Affiliation(s)
- Emmanuel A. Asante
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
- * E-mail: (EAA); (JDFW); (JC)
| | | | - Andrew Tomlinson
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Tatiana Jakubcova
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Shyma Hamdan
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Andrew Grimshaw
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Michelle Smidak
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Asif Jeelani
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Akin Nihat
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Simon Mead
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Sebastian Brandner
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and Division of Neuropathology, the National Hospital For Neurology and Neurosurgery, University College London NHS Foundation Trust, Queen Square, London United Kingdom
| | - Jonathan D. F. Wadsworth
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
- * E-mail: (EAA); (JDFW); (JC)
| | - John Collinge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
- * E-mail: (EAA); (JDFW); (JC)
| |
Collapse
|
29
|
Dixson JD, Azad RK. Prions: Roles in Development and Adaptive Evolution. J Mol Evol 2020; 88:427-434. [PMID: 32388713 DOI: 10.1007/s00239-020-09944-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/28/2020] [Indexed: 12/14/2022]
Abstract
Prions are often considered as anomalous proteins associated primarily with disease rather than as a fundamental source of diversity within biological proteomes. Whereas this longstanding viewpoint has its genesis in the discovery of the original namesake prions as causative agents of several complex diseases, the underlying assumption of a strict disease basis for prions could not be further from the truth. Prions and the spectrum of functions they comprise, likely represent one of the largest paradigm shifts concerning molecular-encoded phenotypic diversity since identification of DNA as the principle molecule of heredity. The ability of prions to recruit similar proteins to alternate conformations may engender a reservoir of diversity supplementing the genetic diversity resulting from stochastic mutations of DNA and subsequent natural selection. Here we present several currently known prions and how many of their functions as well as modes of transmission are intricately linked to adaptation from an evolutionary perspective. Further, the stability of some prion conformations across generations indicates that heritable prion-based adaptation is a reality.
Collapse
Affiliation(s)
- Jamie D Dixson
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| | - Rajeev K Azad
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA.
- Department of Mathematics, University of North Texas, Denton, TX, 76203, USA.
| |
Collapse
|
30
|
Mok TH, Mead S. Preclinical biomarkers of prion infection and neurodegeneration. Curr Opin Neurobiol 2020; 61:82-88. [PMID: 32109717 DOI: 10.1016/j.conb.2020.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/09/2020] [Accepted: 01/21/2020] [Indexed: 12/01/2022]
Abstract
Therapeutic strategies and study designs for neurodegenerative diseases have started to explore the potential of preventive treatment in healthy people, emphasising characterisation of biomarkers capable of indicating proximity to clinical onset. This need is even more pressing for individuals at risk of prion disease given its rarity which virtually precludes the probability of recruiting enough numbers for well powered preventive trials based on clinical endpoints. Experimental mouse inoculation studies have revealed a rapid exponential rise in infectious titres followed by a relative plateau of considerable duration before clinical onset. This clinically silent incubation period represents a potential window of opportunity for the adaptation of ultrasensitive prion seeding assays to define the onset of prion infection, and for neurodegenerative biomarker discovery through similarly sensitive digital immunoassay platforms.
Collapse
Affiliation(s)
- Tze How Mok
- National Prion Clinic, Box 98, National Hospital for Neurology & Neurosurgery, Queen Square, London WC1N 3BG, United Kingdom; MRC Prion Unit at UCL, Institute of Prion Diseases, Courtauld Building, 33 Cleveland Street, London W1W 7FF, United Kingdom
| | - Simon Mead
- National Prion Clinic, Box 98, National Hospital for Neurology & Neurosurgery, Queen Square, London WC1N 3BG, United Kingdom; MRC Prion Unit at UCL, Institute of Prion Diseases, Courtauld Building, 33 Cleveland Street, London W1W 7FF, United Kingdom.
| |
Collapse
|
31
|
Cassmann ED, Moore SJ, Smith JD, Greenlee JJ. Sheep Are Susceptible to the Bovine Adapted Transmissible Mink Encephalopathy Agent by Intracranial Inoculation and Have Evidence of Infectivity in Lymphoid Tissues. Front Vet Sci 2019; 6:430. [PMID: 31850385 PMCID: PMC6895770 DOI: 10.3389/fvets.2019.00430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/14/2019] [Indexed: 11/13/2022] Open
Abstract
Transmissible mink encephalopathy (TME) is a food borne prion disease. Epidemiological and experimental evidence suggests similarities between the agents of TME and L-BSE. This experiment demonstrates the susceptibility of four different genotypes of sheep to the bovine adapted TME agent by intracranial inoculation. The four genotypes of sheep used in this experiment had polymorphisms corresponding to codons 136, 154, and 171 of the prion gene: V136R154Q171/VRQ, VRQ/ARQ, ARQ/ARQ, and ARQ/ARR. All intracranially inoculated sheep without comorbidities (15/15) developed clinical signs and had detectable PrPSc by immunohistochemistry, western blot, and enzyme immunoassay (EIA). The mean incubation periods in sheep with bovine adapted TME correlated with their relative genotypic susceptibility. There was peripheral distribution of PrPSc in the trigeminal ganglion and neuromuscular spindles; however, unlike classical scrapie and C-BSE in sheep, sheep inoculated with the bovine TME agent did not have immunohistochemically detectable PrPSc in the lymphoid tissue. To rule out the presence of infectivity, the lymph nodes of two sheep genotypes, VRQ/VRQ, and ARQ/ARQ, were bioassayed in transgenic mice expressing ovine prion protein. Mice intracranially inoculated with retropharyngeal lymph node from a VRQ/VRQ sheep were EIA positive (3/17) indicating that sheep inoculated with the bovine TME agent harbor infectivity in their lymph nodes despite a lack of detection with conventional immunoassays. Western blot analysis demonstrated similarities in the migration patterns between bovine TME in sheep, the bovine adapted TME inoculum, and L-BSE. Overall, these results demonstrate that sheep are susceptible to the bovine adapted TME agent, and the tissue distribution of PrPSc in sheep with bovine TME is distinct from classical scrapie.
Collapse
Affiliation(s)
- Eric D Cassmann
- Virus and Prion Research Unit, United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service, Ames, IA, United States
| | - S Jo Moore
- Virus and Prion Research Unit, United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service, Ames, IA, United States
| | - Jodi D Smith
- Department of Veterinary Pathology, Iowa State University, Ames, IA, United States
| | - Justin J Greenlee
- Virus and Prion Research Unit, United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service, Ames, IA, United States
| |
Collapse
|
32
|
Abstract
Mammalian prion diseases are a group of neurodegenerative conditions caused by infection of the central nervous system with proteinaceous agents called prions, including sporadic, variant, and iatrogenic Creutzfeldt-Jakob disease; kuru; inherited prion disease; sheep scrapie; bovine spongiform encephalopathy; and chronic wasting disease. Prions are composed of misfolded and multimeric forms of the normal cellular prion protein (PrP). Prion diseases require host expression of the prion protein gene (PRNP) and a range of other cellular functions to support their propagation and toxicity. Inherited forms of prion disease are caused by mutation of PRNP, whereas acquired and sporadically occurring mammalian prion diseases are controlled by powerful genetic risk and modifying factors. Whereas some PrP amino acid variants cause the disease, others confer protection, dramatically altered incubation times, or changes in the clinical phenotype. Multiple mechanisms, including interference with homotypic protein interactions and the selection of the permissible prion strains in a host, play a role. Several non-PRNP factors have now been uncovered that provide insights into pathways of disease susceptibility or neurotoxicity.
Collapse
Affiliation(s)
- Simon Mead
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom;
| | - Sarah Lloyd
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom;
| | - John Collinge
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom;
| |
Collapse
|
33
|
Terry C, Wadsworth JDF. Recent Advances in Understanding Mammalian Prion Structure: A Mini Review. Front Mol Neurosci 2019; 12:169. [PMID: 31338021 PMCID: PMC6629788 DOI: 10.3389/fnmol.2019.00169] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022] Open
Abstract
Prions are lethal pathogens, which cause fatal neurodegenerative diseases in mammals. They are unique infectious agents and are composed of self-propagating multi-chain assemblies of misfolded host-encoded prion protein (PrP). Understanding prion structure is fundamental to understanding prion disease pathogenesis however to date, the high-resolution structure of authentic ex vivo infectious prions remains unknown. Advances in determining prion structure have been severely impeded by the difficulty in recovering relatively homogeneous prion particles from infected brain and definitively associating infectivity with the PrP assembly state. Recently, however, images of highly infectious ex vivo PrP rods that produce prion-strain specific disease phenotypes in mice have been obtained using cryo-electron microscopy and atomic force microscopy. These images have provided the most detailed description of ex vivo mammalian prions reported to date and have established that prions isolated from multiple strains have a common hierarchical structure. Misfolded PrP is assembled into 20 nm wide rods containing two fibers, each with double helical repeating substructure, separated by a characteristic central gap 8–10 nm in width. Irregularly structured material with adhesive properties distinct to that of the fibers is present within the central gap of the rod. Prions are clearly distinguishable from non-infectious recombinant PrP fibrils generated in vitro and from all other propagating protein structures so far described in other neurodegenerative diseases. The basic architecture of mammalian prions appears to be exceptional and fundamental to their lethal pathogenicity.
Collapse
Affiliation(s)
- Cassandra Terry
- Molecular Systems for Health Research Group, School of Human Sciences, London Metropolitan University, London, United Kingdom
| | - Jonathan D F Wadsworth
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, University College London, London, United Kingdom
| |
Collapse
|
34
|
Lyon A, Mays CE, Borriello F, Telling GC, Soto C, Pritzkow S. Application of PMCA to screen for prion infection in a human cell line used to produce biological therapeutics. Sci Rep 2019; 9:4847. [PMID: 30890734 PMCID: PMC6424962 DOI: 10.1038/s41598-019-41055-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/01/2019] [Indexed: 12/11/2022] Open
Abstract
Advances in biotechnology have led to the development of a number of biological therapies for the treatment of diverse human diseases. Since these products may contain or are made using human or animal (e.g. cattle) derived materials, it is crucial to test their safety by ensuring the absence of infectious agents; specifically prions, which are highly resilient to elimination and produce fatal diseases in humans. Many cases of iatrogenic Creutzfeldt-Jakob disease have been caused by the use of biological materials (e.g. human growth hormone) contaminated with prions. For this reason, it is important to screen cells and biological materials for the presence of prions. Here we show the utility of the Protein Misfolding Cyclic Amplification (PMCA) technology as a screening tool for the presence of human (vCJD) and bovine (BSE) prions in a human cell therapy product candidate. First, we demonstrated the sensitivity of PMCA to detect a single cell infected with prions. For these experiments, we used RKM7 cells chronically infected with murine RML prions. Serial dilutions of an infected cell culture showed that PMCA enabled prion amplification from a sample comprised of only one cell. Next, we determined that PMCA performance was robust and uncompromised by the spiking of large quantities of uninfected cells into the reaction. Finally, to demonstrate the practical application of this technology, we analyzed a human cell line being developed for therapeutic use and found it to be PMCA-negative for vCJD and BSE prions. Our findings demonstrate that the PMCA technology has unparalleled sensitivity and specificity for the detection of prions, making it an ideal quality control procedure in the production of biological therapeutics.
Collapse
Affiliation(s)
- Adam Lyon
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Charles E Mays
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Frank Borriello
- Alloplex Biotherapeutics, Inc., 21 Erie Street, Cambridge, MA, 02139, USA
| | - Glenn C Telling
- Prion Research Center, Colorado State University, Colorado, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Sandra Pritzkow
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, University of Texas McGovern Medical School, Houston, TX, 77030, USA.
| |
Collapse
|
35
|
Wickner RB, Son M, Edskes HK. Prion Variants of Yeast are Numerous, Mutable, and Segregate on Growth, Affecting Prion Pathogenesis, Transmission Barriers, and Sensitivity to Anti-Prion Systems. Viruses 2019; 11:v11030238. [PMID: 30857327 PMCID: PMC6466074 DOI: 10.3390/v11030238] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 02/07/2023] Open
Abstract
The known amyloid-based prions of Saccharomyces cerevisiae each have multiple heritable forms, called "prion variants" or "prion strains". These variants, all based on the same prion protein sequence, differ in their biological properties and their detailed amyloid structures, although each of the few examined to date have an in-register parallel folded β sheet architecture. Here, we review the range of biological properties of yeast prion variants, factors affecting their generation and propagation, the interaction of prion variants with each other, the mutability of prions, and their segregation during mitotic growth. After early differentiation between strong and weak stable and unstable variants, the parameters distinguishing the variants has dramatically increased, only occasionally correlating with the strong/weak paradigm. A sensitivity to inter- and intraspecies barriers, anti-prion systems, and chaperone deficiencies or excesses and other factors all have dramatic selective effects on prion variants. Recent studies of anti-prion systems, which cure prions in wild strains, have revealed an enormous array of new variants, normally eliminated as they arise and so not previously studied. This work suggests that defects in the anti-prion systems, analogous to immune deficiencies, may be at the root of some human amyloidoses.
Collapse
Affiliation(s)
- Reed B Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| | - Moonil Son
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| | - Herman K Edskes
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| |
Collapse
|
36
|
Terry C, Harniman RL, Sells J, Wenborn A, Joiner S, Saibil HR, Miles MJ, Collinge J, Wadsworth JDF. Structural features distinguishing infectious ex vivo mammalian prions from non-infectious fibrillar assemblies generated in vitro. Sci Rep 2019; 9:376. [PMID: 30675000 PMCID: PMC6344479 DOI: 10.1038/s41598-018-36700-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/23/2018] [Indexed: 01/19/2023] Open
Abstract
Seeded polymerisation of proteins forming amyloid fibres and their spread in tissues has been implicated in the pathogenesis of multiple neurodegenerative diseases: so called "prion-like" mechanisms. While ex vivo mammalian prions, composed of multichain assemblies of misfolded host-encoded prion protein (PrP), act as lethal infectious agents, PrP amyloid fibrils produced in vitro generally do not. The high-resolution structure of authentic infectious prions and the structural basis of prion strain diversity remain unknown. Here we use cryo-electron microscopy and atomic force microscopy to examine the structure of highly infectious PrP rods isolated from mouse brain in comparison to non-infectious recombinant PrP fibrils generated in vitro. Non-infectious recombinant PrP fibrils are 10 nm wide single fibres, with a double helical repeating substructure displaying small variations in adhesive force interactions across their width. In contrast, infectious PrP rods are 20 nm wide and contain two fibres, each with a double helical repeating substructure, separated by a central gap of 8-10 nm in width. This gap contains an irregularly structured material whose adhesive force properties are strikingly different to that of the fibres, suggestive of a distinct composition. The structure of the infectious PrP rods, which cause lethal neurodegeneration, readily differentiates them from all other protein assemblies so far characterised in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Cassandra Terry
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
- London Metropolitan University, North Campus, Holloway Road, London, N7 8DB, UK
| | | | - Jessica Sells
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
- King's Centre for Stem Cells & Regenerative Medicine, King's College London, Guy's Campus, London, SE1 9RT, UK
| | - Adam Wenborn
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Susan Joiner
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Helen R Saibil
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK
| | - Mervyn J Miles
- School of Physics, H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, UK
| | - John Collinge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK.
| | - Jonathan D F Wadsworth
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK.
| |
Collapse
|
37
|
Mok TH, Koriath C, Jaunmuktane Z, Campbell T, Joiner S, Wadsworth JDF, Hosszu LLP, Brandner S, Parvez A, Truelsen TC, Lund EL, Saha R, Collinge J, Mead S. Evaluating the causality of novel sequence variants in the prion protein gene by example. Neurobiol Aging 2018; 71:265.e1-265.e7. [PMID: 29861043 PMCID: PMC6175539 DOI: 10.1016/j.neurobiolaging.2018.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/22/2018] [Accepted: 05/06/2018] [Indexed: 11/13/2022]
Abstract
The estimation of pathogenicity and penetrance of novel prion protein gene (PRNP) variants presents significant challenges, particularly in the absence of family history, which precludes the application of Mendelian segregation. Moreover, the ambiguities of prion disease pathophysiology renders conventional in silico predictions inconclusive. Here, we describe 2 patients with rapid cognitive decline progressing to akinetic mutism and death within 10 weeks of symptom onset, both of whom possessed the novel T201S variant in PRNP. Clinically, both satisfied diagnostic criteria for probable sporadic Creutzfeldt-Jakob disease and in one, the diagnosis was confirmed by neuropathology. While computational analyses predicted that T201S was possibly deleterious, molecular strain typing, prion protein structural considerations, and calculations leveraging large-scale population data (gnomAD) indicate that T201S is at best either of low penetrance or nonpathogenic. Thus, we illustrate the utility of harnessing multiple lines of prion disease-specific evidence in the evaluation of the T201S variant, which may be similarly applied to assess other novel variants in PRNP.
Collapse
Affiliation(s)
- Tze How Mok
- MRC Prion Unit, UCL Institute of Prion Diseases, London, UK; National Prion Clinic, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, UK
| | - Carolin Koriath
- Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
| | - Zane Jaunmuktane
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK; Division of Neuropathology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, UK
| | - Tracy Campbell
- MRC Prion Unit, UCL Institute of Prion Diseases, London, UK
| | - Susan Joiner
- MRC Prion Unit, UCL Institute of Prion Diseases, London, UK
| | | | | | - Sebastian Brandner
- Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK; Division of Neuropathology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, UK
| | - Ambereen Parvez
- Department of Neurology, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | | | - Eva Løbner Lund
- Department of Pathology, Rigshospitalet, Copenhagen, Denmark
| | - Romi Saha
- Hurstwood Park Neurological Centre, Sussex, UK
| | - John Collinge
- MRC Prion Unit, UCL Institute of Prion Diseases, London, UK; National Prion Clinic, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, UK
| | - Simon Mead
- MRC Prion Unit, UCL Institute of Prion Diseases, London, UK; National Prion Clinic, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, UK.
| |
Collapse
|
38
|
Butler R, Fleminger S. Creutzfeldt–Jakob disease and its implications for psychiatric management. ACTA ACUST UNITED AC 2018. [DOI: 10.1192/apt.7.1.50] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Creutzfeldt–Jakob disease (CJD) is a devastating illness that is rare and notorious in equal measures. In 1996 a ‘new variant’ (vCJD) was identified (Will et al, 1996), which is likely to be caused by humans eating beef infected with bovine spongiform encephalopathy (BSE). Although the number of new cases of vCJD has not started rising, the long incubation period means that it will be many years before a major epidemic in humans can be ruled out. In the meantime, representatives of patients with vCJD have expressed concerns about the care that sufferers receive. In particular, patients often present with psychiatric symptoms, but there is some delay before the correct diagnosis is made.
Collapse
|
39
|
Joiner S, Asante EA, Linehan JM, Brock L, Brandner S, Bellworthy SJ, Simmons MM, Hope J, Collinge J, Wadsworth JDF. Experimental sheep BSE prions generate the vCJD phenotype when serially passaged in transgenic mice expressing human prion protein. J Neurol Sci 2017; 386:4-11. [PMID: 29406965 PMCID: PMC5946165 DOI: 10.1016/j.jns.2017.12.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/01/2017] [Accepted: 12/28/2017] [Indexed: 11/02/2022]
Abstract
The epizootic prion disease of cattle, bovine spongiform encephalopathy (BSE), causes variant Creutzfeldt-Jakob disease (vCJD) in humans following dietary exposure. While it is assumed that all cases of vCJD attributed to a dietary aetiology are related to cattle BSE, sheep and goats are susceptible to experimental oral challenge with cattle BSE prions and farmed animals in the UK were undoubtedly exposed to BSE-contaminated meat and bone meal during the late 1980s and early 1990s. Although no natural field cases of sheep BSE have been identified, it cannot be excluded that some BSE-infected sheep might have entered the European human food chain. Evaluation of the zoonotic potential of sheep BSE prions has been addressed by examining the transmission properties of experimental brain isolates in transgenic mice that express human prion protein, however to-date there have been relatively few studies. Here we report that serial passage of experimental sheep BSE prions in transgenic mice expressing human prion protein with methionine at residue 129 produces the vCJD phenotype that mirrors that seen when the same mice are challenged with vCJD prions from patient brain. These findings are congruent with those reported previously by another laboratory, and thereby strongly reinforce the view that sheep BSE prions could have acted as a causal agent of vCJD within Europe.
Collapse
Affiliation(s)
- Susan Joiner
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK
| | | | | | - Lara Brock
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK
| | | | | | | | - James Hope
- Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - John Collinge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK
| | | |
Collapse
|
40
|
Species-dependent structural polymorphism of Y145Stop prion protein amyloid revealed by solid-state NMR spectroscopy. Nat Commun 2017; 8:753. [PMID: 28963458 PMCID: PMC5622040 DOI: 10.1038/s41467-017-00794-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 07/28/2017] [Indexed: 11/12/2022] Open
Abstract
One of the most puzzling aspects of the prion diseases is the intricate relationship between prion strains and interspecies transmissibility barriers. Previously we have shown that certain fundamental aspects of mammalian prion propagation, including the strain phenomenon and species barriers, can be reproduced in vitro in seeded fibrillization of the Y145Stop prion protein variant. Here, we use solid-state nuclear magnetic resonance spectroscopy to gain atomic level insight into the structural differences between Y145Stop prion protein amyloids from three species: human, mouse, and Syrian hamster. Remarkably, we find that these structural differences are largely controlled by only two amino acids at positions 112 and 139, and that the same residues appear to be key to the emergence of structurally distinct amyloid strains within the same protein sequence. The role of these residues as conformational switches can be rationalized based on a model for human Y145Stop prion protein amyloid, providing a foundation for understanding cross-seeding specificity. Prion diseases can be transmitted across species. Here the authors use solid-state NMR to study prion protein (PrP) amyloids from human, mouse and Syrian hamster and show that their structural differences are mainly governed by two residues, which helps to understand interspecies PrP propagation on a molecular level.
Collapse
|
41
|
Koeller KK, Shih RY. Viral and Prion Infections of the Central Nervous System: Radiologic-Pathologic Correlation: From the Radiologic Pathology Archives. Radiographics 2017; 37:199-233. [PMID: 28076019 DOI: 10.1148/rg.2017160149] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Viral infections of the central nervous system (CNS) range in clinical severity, with the most severe proving fatal within a matter of days. Some of the more than 100 different viruses known to affect the brain and spinal cord are neurotropic with a predilection for producing CNS infection. The host response to viral infection of the CNS is responsible for the pathophysiology and imaging findings seen in affected patients. Viral CNS infections can take the form of meningitis, encephalitis, encephalomyelitis, or, when involving the spinal cord and nerve roots, encephalomyeloradiculitis. In 1982, an infectious particle termed a prion that lacked nucleic acid and therefore was not a virus was reported to produce the fatal neurodegenerative disease Creutzfeldt-Jakob disease and related disorders. These prion diseases produce characteristic neuroimaging findings that are distinct from those seen in most viral infections. The clinical and imaging findings associated with viral CNS infection are often nonspecific, with microbiologic analysis of cerebrospinal fluid the most useful single test allowing for diagnosis of a specific viral infection. This review details the spectrum of viral CNS infections and uses case material from the archives of the American Institute for Radiologic Pathology, with a focus on the specific clinical characteristics and magnetic resonance imaging features seen in these infections. Where possible, the imaging features that allow distinction of these infections from other CNS inflammatory conditions are highlighted.
Collapse
Affiliation(s)
- Kelly K Koeller
- From the Department of Neuroradiology, American Institute for Radiologic Pathology, Silver Spring, Md (K.K.K., R.Y.S.); Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (K.K.K.); Uniformed Services University of the Health Sciences, Bethesda, Md (R.Y.S.); and Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (R.Y.S.)
| | - Robert Y Shih
- From the Department of Neuroradiology, American Institute for Radiologic Pathology, Silver Spring, Md (K.K.K., R.Y.S.); Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (K.K.K.); Uniformed Services University of the Health Sciences, Bethesda, Md (R.Y.S.); and Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (R.Y.S.)
| |
Collapse
|
42
|
Marchante R, Beal DM, Koloteva-Levine N, Purton TJ, Tuite MF, Xue WF. The physical dimensions of amyloid aggregates control their infective potential as prion particles. eLife 2017; 6. [PMID: 28880146 PMCID: PMC5589414 DOI: 10.7554/elife.27109] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/21/2017] [Indexed: 01/29/2023] Open
Abstract
Transmissible amyloid particles called prions are associated with infectious prion diseases in mammals and inherited phenotypes in yeast. All amyloid aggregates can give rise to potentially infectious seeds that accelerate their growth. Why some amyloid seeds are highly infectious prion particles while others are less infectious or even inert, is currently not understood. To address this question, we analyzed the suprastructure and dimensions of synthetic amyloid fibrils assembled from the yeast (Saccharomyces cerevisiae) prion protein Sup35NM. We then quantified the ability of these particles to induce the [PSI+] prion phenotype in cells. Our results show a striking relationship between the length distribution of the amyloid fibrils and their ability to induce the heritable [PSI+] prion phenotype. Using a simple particle size threshold model to describe transfection activity, we explain how dimensions of amyloid fibrils are able to modulate their infectious potential as prions.
Collapse
Affiliation(s)
- Ricardo Marchante
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - David M Beal
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Tracey J Purton
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Mick F Tuite
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Wei-Feng Xue
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
43
|
Brandner S, Jaunmuktane Z. Prion disease: experimental models and reality. Acta Neuropathol 2017; 133:197-222. [PMID: 28084518 PMCID: PMC5250673 DOI: 10.1007/s00401-017-1670-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 01/04/2023]
Abstract
The understanding of the pathogenesis and mechanisms of diseases requires a multidisciplinary approach, involving clinical observation, correlation to pathological processes, and modelling of disease mechanisms. It is an inherent challenge, and arguably impossible to generate model systems that can faithfully recapitulate all aspects of human disease. It is, therefore, important to be aware of the potentials and also the limitations of specific model systems. Model systems are usually designed to recapitulate only specific aspects of the disease, such as a pathological phenotype, a pathomechanism, or to test a hypothesis. Here, we evaluate and discuss model systems that were generated to understand clinical, pathological, genetic, biochemical, and epidemiological aspects of prion diseases. Whilst clinical research and studies on human tissue are an essential component of prion research, much of the understanding of the mechanisms governing transmission, replication, and toxicity comes from in vitro and in vivo studies. As with other neurodegenerative diseases caused by protein misfolding, the pathogenesis of prion disease is complex, full of conundra and contradictions. We will give here a historical overview of the use of models of prion disease, how they have evolved alongside the scientific questions, and how advancements in technologies have pushed the boundaries of our understanding of prion biology.
Collapse
Affiliation(s)
- Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG UK
| | - Zane Jaunmuktane
- Department of Neurodegenerative Disease, UCL Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG UK
| |
Collapse
|
44
|
Whitfield JT, Pako WH, Collinge J, Alpers MP. Cultural factors that affected the spatial and temporal epidemiology of kuru. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160789. [PMID: 28280581 PMCID: PMC5319347 DOI: 10.1098/rsos.160789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/06/2016] [Indexed: 06/06/2023]
Abstract
Kuru is a prion disease which became epidemic among the Fore and surrounding linguistic groups in Papua New Guinea, peaking in the late 1950s. It was transmitted during the transumption (endocannibalism) of dead family members at mortuary feasts. In this study, we aimed to explain the historical spread and the changing epidemiological patterns of kuru by analysing factors that affected its transmission. We also examined what cultural group principally determined a family's behaviour during mortuary rituals. Our investigations showed that differences in mortuary practices were responsible for the initial pattern of the spread of kuru and the ultimate shape of the epidemic, and for subsequent spatio-temporal differences in the epidemiology of kuru. Before transumption stopped altogether, the South Fore continued to eat the bodies of those who had died of kuru, whereas other linguistic groups, sooner or later, stopped doing so. The linguistic group was the primary cultural group that determined behaviour but at linguistic boundaries the neighbouring group's cultural practices were often adopted. The epidemiological changes were not explained by genetic differences, but genetic studies led to an understanding of genetic susceptibility to kuru and the selection pressure imposed by kuru, and provided new insights into human history and evolution.
Collapse
Affiliation(s)
- J. T. Whitfield
- MRC Prion Unit and Department of Neurodegenerative Diseases, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - W. H. Pako
- Papua New Guinea Institute of Medical Research, PO Box 60, Goroka, Eastern Highlands Province, Papua New Guinea
| | - J. Collinge
- MRC Prion Unit and Department of Neurodegenerative Diseases, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - M. P. Alpers
- MRC Prion Unit and Department of Neurodegenerative Diseases, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
- International Health Research, Curtin University, Room 108, Shenton Park Campus, GPO Box U1987, Perth, Western Australia 6845, Australia
- Papua New Guinea Institute of Medical Research, PO Box 60, Goroka, Eastern Highlands Province, Papua New Guinea
| |
Collapse
|
45
|
Transmissible Spongiform Encephalopathies of Humans and Animals. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00023-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
46
|
Wadsworth JDF, Adamson G, Joiner S, Brock L, Powell C, Linehan JM, Beck JA, Brandner S, Mead S, Collinge J. Methods for Molecular Diagnosis of Human Prion Disease. Methods Mol Biol 2017; 1658:311-346. [PMID: 28861799 DOI: 10.1007/978-1-4939-7244-9_22] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human prion diseases are associated with a range of clinical presentations, and they are classified by both clinicopathological syndrome and etiology, with subclassification according to molecular criteria. Here, we describe updated procedures that are currently used within the MRC Prion Unit at UCL to determine a molecular diagnosis of human prion disease. Sequencing of the PRNP open reading frame to establish the presence of pathogenic mutations is described, together with detailed methods for immunoblot or immunohistochemical determination of the presence of abnormal prion protein in the brain or peripheral tissues.
Collapse
Affiliation(s)
- Jonathan D F Wadsworth
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Queen Square, London, WC1N 3BG, UK.
| | - Gary Adamson
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Queen Square, London, WC1N 3BG, UK
| | - Susan Joiner
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Queen Square, London, WC1N 3BG, UK
| | - Lara Brock
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Queen Square, London, WC1N 3BG, UK
| | - Caroline Powell
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Queen Square, London, WC1N 3BG, UK
| | - Jacqueline M Linehan
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Queen Square, London, WC1N 3BG, UK
| | - Jonathan A Beck
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Queen Square, London, WC1N 3BG, UK
| | - Sebastian Brandner
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Queen Square, London, WC1N 3BG, UK
| | - Simon Mead
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Queen Square, London, WC1N 3BG, UK
| | - John Collinge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
47
|
Moreno JA, Telling GC. Insights into Mechanisms of Transmission and Pathogenesis from Transgenic Mouse Models of Prion Diseases. Methods Mol Biol 2017; 1658:219-252. [PMID: 28861793 DOI: 10.1007/978-1-4939-7244-9_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Prions represent a new paradigm of protein-mediated information transfer. In the case of mammals, prions are the cause of fatal, transmissible neurodegenerative diseases, sometimes referred to as transmissible spongiform encephalopathies (TSEs), which frequently occur as epidemics. An increasing body of evidence indicates that the canonical mechanism of conformational corruption of cellular prion protein (PrPC) by the pathogenic isoform (PrPSc) that is the basis of prion formation in TSEs is common to a spectrum of proteins associated with various additional human neurodegenerative disorders, including the more common Alzheimer's and Parkinson's diseases. The peerless infectious properties of TSE prions, and the unparalleled tools for their study, therefore enable elucidation of mechanisms of template-mediated conformational propagation that are generally applicable to these related disease states. Many unresolved issues remain including the exact molecular nature of the prion, the detailed cellular and molecular mechanisms of prion propagation, and the means by which prion diseases can be both genetic and infectious. In addition, we know little about the mechanism by which neurons degenerate during prion diseases. Tied to this, the physiological role of the normal form of the prion protein remains unclear and it is uncertain whether or not loss of this function contributes to prion pathogenesis. The factors governing the transmission of prions between species remain unclear, in particular the means by which prion strains and PrP primary structure interact to affect interspecies prion transmission. Despite all these unknowns, advances in our understanding of prions have occurred because of their transmissibility to experimental animals, and the development of transgenic (Tg) mouse models has done much to further our understanding about various aspects of prion biology. In this review, we will focus on advances in our understanding of prion biology that occurred in the past 8 years since our last review of this topic.
Collapse
Affiliation(s)
- Julie A Moreno
- Cell and Molecular Biology Graduate Program, Molecular, Cellular and Integrative Neuroscience Graduate Program, Department of Microbiology, Immunology and Pathology, Prion Research Center, Colorado State University, Fort Collins, CO, 80523, USA
| | - Glenn C Telling
- Cell and Molecular Biology Graduate Program, Molecular, Cellular and Integrative Neuroscience Graduate Program, Department of Microbiology, Immunology and Pathology, Prion Research Center, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
48
|
Collinge J. Mammalian prions and their wider relevance in neurodegenerative diseases. Nature 2016; 539:217-226. [PMID: 27830781 DOI: 10.1038/nature20415] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/09/2016] [Indexed: 02/07/2023]
Abstract
Prions are notorious protein-only infectious agents that cause invariably fatal brain diseases following silent incubation periods that can span a lifetime. These diseases can arise spontaneously, through infection or be inherited. Remarkably, prions are composed of self-propagating assemblies of a misfolded cellular protein that encode information, generate neurotoxicity and evolve and adapt in vivo. Although parallels have been drawn with Alzheimer's disease and other neurodegenerative conditions involving the deposition of assemblies of misfolded proteins in the brain, insights are now being provided into the usefulness and limitations of prion analogies and their aetiological and therapeutic relevance.
Collapse
Affiliation(s)
- John Collinge
- Medical Research Council Prion Unit, University College London Institute of Neurology, London WC1N 3BG, UK.,Department of Neurodegenerative Disease, University College London Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
49
|
Schmidt C, Fizet J, Properzi F, Batchelor M, Sandberg MK, Edgeworth JA, Afran L, Ho S, Badhan A, Klier S, Linehan JM, Brandner S, Hosszu LLP, Tattum MH, Jat P, Clarke AR, Klöhn PC, Wadsworth JDF, Jackson GS, Collinge J. A systematic investigation of production of synthetic prions from recombinant prion protein. Open Biol 2016; 5:150165. [PMID: 26631378 PMCID: PMC4703057 DOI: 10.1098/rsob.150165] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
According to the protein-only hypothesis, infectious mammalian prions, which exist as distinct strains with discrete biological properties, consist of multichain assemblies of misfolded cellular prion protein (PrP). A critical test would be to produce prion strains synthetically from defined components. Crucially, high-titre ‘synthetic' prions could then be used to determine the structural basis of infectivity and strain diversity at the atomic level. While there have been multiple reports of production of prions from bacterially expressed recombinant PrP using various methods, systematic production of high-titre material in a form suitable for structural analysis remains a key goal. Here, we report a novel high-throughput strategy for exploring a matrix of conditions, additives and potential cofactors that might generate high-titre prions from recombinant mouse PrP, with screening for infectivity using a sensitive automated cell-based bioassay. Overall, approximately 20 000 unique conditions were examined. While some resulted in apparently infected cell cultures, this was transient and not reproducible. We also adapted published methods that reported production of synthetic prions from recombinant hamster PrP, but again did not find evidence of significant infectious titre when using recombinant mouse PrP as substrate. Collectively, our findings are consistent with the formation of prion infectivity from recombinant mouse PrP being a rare stochastic event and we conclude that systematic generation of prions from recombinant PrP may only become possible once the detailed structure of authentic ex vivo prions is solved.
Collapse
Affiliation(s)
- Christian Schmidt
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Jeremie Fizet
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Francesca Properzi
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Mark Batchelor
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Malin K Sandberg
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Julie A Edgeworth
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Louise Afran
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Sammy Ho
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Anjna Badhan
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Steffi Klier
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Jacqueline M Linehan
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Sebastian Brandner
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Laszlo L P Hosszu
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - M Howard Tattum
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Parmjit Jat
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Anthony R Clarke
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Peter C Klöhn
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Jonathan D F Wadsworth
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Graham S Jackson
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - John Collinge
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
50
|
Mead S, Burnell M, Lowe J, Thompson A, Lukic A, Porter MC, Carswell C, Kaski D, Kenny J, Mok TH, Bjurstrom N, Franko E, Gorham M, Druyeh R, Wadsworth JDF, Jaunmuktane Z, Brandner S, Hyare H, Rudge P, Walker AS, Collinge J. Clinical Trial Simulations Based on Genetic Stratification and the Natural History of a Functional Outcome Measure in Creutzfeldt-Jakob Disease. JAMA Neurol 2016; 73:447-55. [PMID: 26902324 DOI: 10.1001/jamaneurol.2015.4885] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE A major challenge for drug development in neurodegenerative diseases is that adequately powered efficacy studies with meaningful end points typically require several hundred participants and long durations. Prion diseases represent the archetype of brain diseases caused by protein misfolding, the most common subtype being sporadic Creutzfeldt-Jakob disease (sCJD), a rapidly progressive dementia. There is no well-established trial method in prion disease. OBJECTIVE To establish a more powerful and meaningful clinical trial method in sCJD. DESIGN, SETTING, AND PARTICIPANTS A stratified medicine and simulation approach based on a prospective interval-cohort study conducted from October 2008 to June 2014. This study involved 598 participants with probable or definite sCJD followed up over 470 patient-years at a specialist national referral service in the United Kingdom with domiciliary, care home, and hospital patient visits. We fitted linear mixed models to the outcome measurements, and simulated clinical trials involving 10 to 120 patients (no dropouts) with early to moderately advanced prion disease using model parameters to compare the power of various designs. MAIN OUTCOMES AND MEASURES A total of 2681 assessments were done using a functionally orientated composite end point (Medical Research Council Scale) and associated with clinical investigations (brain magnetic resonance imaging, electroencephalography, and cerebrospinal fluid analysis) and molecular data (prion protein [PrP] gene sequencing, PrPSc type). RESULTS Of the 598 participants, 273 were men. The PrP gene sequence was significantly associated with decline relative to any other demographic or investigation factors. Patients with sCJD and polymorphic codon 129 genotypes MM, VV, and MV lost 10% of their function in 5.3 (95% CI, 4.2-6.9), 13.2 (95% CI, 10.9-16.6), and 27.8 (95% CI, 21.9-37.8) days, respectively (P < .001). Simulations indicate that an adequately powered (80%; 2-sided α = .05) open-label randomized trial using 50% reduction in Medical Research Council Scale decline as the primary outcome could be conducted with only 120 participants assessed every 10 days and only 90 participants assessed daily, providing considerably more power than using survival as the primary outcome. Restricting to VV or MV codon 129 genotypes increased power even further. Alternatively, single-arm intervention studies (half the total sample size) could provide similar power in comparison to the natural history cohort. CONCLUSIONS AND RELEVANCE Functional end points in neurodegeneration need not require long and very large clinical studies to be adequately powered for efficacy. Patients with sCJD may be an efficient and cost-effective group for testing disease-modifying therapeutics. Stratified medicine and natural history cohort approaches may transform the feasibility of clinical trials in orphan diseases.
Collapse
Affiliation(s)
- Simon Mead
- Medical Research Council Prion Unit, Department of Neurodegnerative Disease, University College London Institute of Neurology, London, England2National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals, NH
| | - Matthew Burnell
- Department of Statistical Science, Faculty of Mathematical and Physical Sciences, University College London, London, England
| | - Jessica Lowe
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals, NHS Trust, London, England
| | - Andrew Thompson
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals, NHS Trust, London, England
| | - Ana Lukic
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals, NHS Trust, London, England
| | - Marie-Claire Porter
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals, NHS Trust, London, England
| | - Christopher Carswell
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals, NHS Trust, London, England
| | - Diego Kaski
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals, NHS Trust, London, England
| | - Janna Kenny
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals, NHS Trust, London, England
| | - Tze How Mok
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals, NHS Trust, London, England
| | - Nina Bjurstrom
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals, NHS Trust, London, England
| | - Edit Franko
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals, NHS Trust, London, England
| | - Michele Gorham
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals, NHS Trust, London, England
| | - Ronald Druyeh
- Medical Research Council Prion Unit, Department of Neurodegnerative Disease, University College London Institute of Neurology, London, England
| | - Jonathan D F Wadsworth
- Medical Research Council Prion Unit, Department of Neurodegnerative Disease, University College London Institute of Neurology, London, England
| | - Zane Jaunmuktane
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London Hospitals, NHS Trust, London, England
| | - Sebastian Brandner
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London Hospitals, NHS Trust, London, England5Department of Neurodegenerative Disease, University College London Institute of Neurology, London, England
| | - Harpreet Hyare
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals, NHS Trust, London, England
| | - Peter Rudge
- Medical Research Council Prion Unit, Department of Neurodegnerative Disease, University College London Institute of Neurology, London, England2National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals, NH
| | - A Sarah Walker
- MRC Clinical Trials Unit at University College London, London, England
| | - John Collinge
- Medical Research Council Prion Unit, Department of Neurodegnerative Disease, University College London Institute of Neurology, London, England2National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals, NH
| |
Collapse
|