1
|
Duman Y, Erarslan A. Acetonitrile-induced modulation of alkaline protease as a biological macromolecule: Micro- and macro-scale effects on catalysis and stability. Int J Biol Macromol 2025; 310:143066. [PMID: 40239780 DOI: 10.1016/j.ijbiomac.2025.143066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/25/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
This study investigated the effects of acetonitrile as an activator solvent on the kinetic and thermodynamic properties of alkaline protease at both micro and macro levels. Micro-level effects were examined using solvatochromic parameters (π*, α, β), while macro-level effects were analyzed based on log P values and dielectric constants at varying solvent concentrations. Multiple linear regression analysis revealed the relationships between these physicochemical parameters and enzymatic behavior. Increasing acetonitrile concentrations led to decreased activation free energy (ΔG#) and transition-state binding free energy (ΔG#ES), indicating the stabilization of the alkaline protease-substrate complex. A reduction in dielectric constant correlated with enhanced catalytic efficiency, as reflected by increased kcat and kcat/Km values. The solvatochromic parameter π* played a key role in modulating enzyme activity through dipolarity/polarizability interactions, while β significantly influenced substrate binding affinity. Furthermore, the log P value of acetonitrile enhanced enzyme activity by reducing microenvironmental polarity, strengthening electrostatic interactions, and stabilizing the catalytic conformation. The observed relationships between solvent concentration, decreasing Km values, and improved thermodynamic properties confirmed the activator role of acetonitrile. These findings provide novel insights into solvent-driven modulation of alkaline protease catalysis, emphasizing the interplay between micro and macro physicochemical factors.
Collapse
Affiliation(s)
- Yonca Duman
- Kocaeli Univ, Fac Arts & Sci, Dept Chem, Biochem Sect, Umuttepe Campus, TR-41380 Izmit, Turkey.
| | - Altan Erarslan
- Formerly at Department of Chem. Kocaeli Univ, Fac Arts & Sci, now independent researcher, Istanbul,Turkey
| |
Collapse
|
2
|
Lee PY, Singh O, Bermudez H, Matysiak S. Recovery of enzyme structure and activity following rehydration from ionic liquid. Phys Chem Chem Phys 2022; 24:10365-10372. [PMID: 35438103 DOI: 10.1039/d2cp00608a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Long-term preservation of proteins at room temperature continues to be a major challenge. Towards using ionic liquids (ILs) to address this challenge, here we present a combination of experiments and simulations to investigate changes in lysozyme upon rehydration from IL mixtures using two imidazolium-based ILs (1-ethyl-3-methylimidazolium ethylsulfate, [EMIM][EtSO4] and 1-ethyl-3-methylimidazolium diethylphosphate, [EMIM][Et2PO4]). Various spectroscopic experiments and molecular dynamics simulations are performed to ascertain the structure and activity of lysozyme. Circular dichroism spectroscopy confirms that lysozyme maintains its secondary structure upon rehydration, even after 295 days. Increasing the IL concentration decreases the activity of lysozyme and is ultimately quenched at sufficiently high IL concentrations, but the rehydration of lysozyme from high IL concentrations completely restores its activity. Such rehydration occurs in the most common lysozyme activity assay, but without careful attention, this effect on the IL concentration can be overlooked. From simulations we observe occupation of [EMIM+] ions near the vicinity of the active site and the ligand-lysozyme complex is less stable in the presence of ILs, which results in the reduction of lysozyme activity. Upon rehydration, fast leaving of [EMIM+] is observed and the availability of active site is restored. In addition, suppression of structural fluctuations is also observed when in high IL concentrations, which also explains the decrease of activity. This structure suppression is recovered after undergoing rehydration. The return of native protein structure and activity indicates that after rehydration lysozyme returns to its original state. Our results also suggest a simple route to protein recovery following extended storage.
Collapse
Affiliation(s)
- Pei-Yin Lee
- Chemical Physics Program, Institute for Physical Science and Technology, University of Maryland, College Park, USA
| | - Onkar Singh
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, USA.
| | - Harry Bermudez
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, USA.
| | - Silvina Matysiak
- Fischell Department of Bioengineering, University of Maryland, College Park, USA.
| |
Collapse
|
3
|
Penicillin Acylase from Streptomyces lavendulae and Aculeacin A Acylase from Actinoplanes utahensis: Two Versatile Enzymes as Useful Tools for Quorum Quenching Processes. Catalysts 2020. [DOI: 10.3390/catal10070730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many Gram-negative bacteria produce N-acyl-homoserine lactones (AHLs), quorum sensing (QS) molecules that can be enzymatically inactivated by quorum quenching (QQ) processes; this approach is considered an emerging antimicrobial alternative. In this study, kinetic parameters of several AHLs hydrolyzed by penicillin acylase from Streptomyces lavendulae (SlPA) and aculeacin A acylase from Actinoplanes utahensis (AuAAC) have been determined. Both enzymes catalyze efficiently the amide bond hydrolysis in AHLs with different acyl chain moieties (with or without 3-oxo modification) and exhibit a clear preference for AHLs with long acyl chains (C12-HSL > C14-HSL > C10-HSL > C8-HSL for SlPA, whereas C14-HSL > C12-HSL > C10-HSL > C8-HSL for AuAAC). Involvement of SlPA and AuAAC in QQ processes was demonstrated by Chromobacterium violaceum CV026-based bioassays and inhibition of biofilm formation by Pseudomonas aeruginosa, a process controlled by QS molecules, suggesting the application of these multifunctional enzymes as quorum quenching agents, this being the first time that quorum quenching activity was shown by an aculeacin A acylase. In addition, a phylogenetic study suggests that SlPA and AuAAC could be part of a new family of actinomycete acylases, with a preference for substrates with long aliphatic acyl chains, and likely involved in QQ processes.
Collapse
|
4
|
Hormigo D, López-Conejo MT, Serrano-Aguirre L, García-Martín A, Saborido A, de la Mata I, Arroyo M. Kinetically controlled acylation of 6-APA catalyzed by penicillin acylase from Streptomyces lavendulae: effect of reaction conditions in the enzymatic synthesis of penicillin V. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2019.1652274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Daniel Hormigo
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Enzyme Biotechnology Group, Universidad Complutense de Madrid, Madrid, Spain
| | - María Teresa López-Conejo
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Enzyme Biotechnology Group, Universidad Complutense de Madrid, Madrid, Spain
| | - Lara Serrano-Aguirre
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Enzyme Biotechnology Group, Universidad Complutense de Madrid, Madrid, Spain
| | - Alberto García-Martín
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Enzyme Biotechnology Group, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Saborido
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Enzyme Biotechnology Group, Universidad Complutense de Madrid, Madrid, Spain
| | - Isabel de la Mata
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Enzyme Biotechnology Group, Universidad Complutense de Madrid, Madrid, Spain
| | - Miguel Arroyo
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Enzyme Biotechnology Group, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
5
|
Salari AA, Talebi Tari M, Noei M, Tahan A. The ab initio study and NBO interpretation of solvent effects on the structural stability and the chemical reactivity of penicillin-V conformations. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2013.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
6
|
Overexpression of penicillin V acylase from Streptomyces lavendulae and elucidation of its catalytic residues. Appl Environ Microbiol 2016; 81:1225-33. [PMID: 25501472 DOI: 10.1128/aem.02352-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pva gene from Streptomyces lavendulae ATCC 13664, encoding a novel penicillin V acylase (SlPVA), has been isolated and characterized. The gene encodes an inactive precursor protein containing a secretion signal peptide that is activated by two internal autoproteolytic cleavages that release a 25-amino-acid linker peptide and two large domains of 18.79 kDa (alpha-subunit) and 60.09 kDA (beta-subunit). Based on sequence alignments and the three-dimensional model of SlPVA, the enzyme contains a hydrophobicpocket involved in catalytic activity, including Serbeta1, Hisbeta23, Valbeta70, and Asnbeta272, which were confirmed by site-directed mutagenesis studies. The heterologous expression of pva in S. lividans led to the production of an extracellularly homogeneous heterodimeric enzyme at a 5-fold higher concentration (959 IU/liter) than in the original host and in a considerably shorter time. According to the catalytic properties of SlPVA, the enzyme must be classified as a new member of the Ntn-hydrolase superfamily, which belongs to a novel subfamily of acylases that recognize substrates with long hydrophobic acyl chains and have biotechnological applications in semisynthetic antifungal production.
Collapse
|
7
|
Penicillin V acylase from Pectobacterium atrosepticum exhibits high specific activity and unique kinetics. Int J Biol Macromol 2015; 79:1-7. [PMID: 25931393 DOI: 10.1016/j.ijbiomac.2015.04.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 01/18/2023]
Abstract
Penicillin V acylases (PVAs, E.C.3.5.11) belong to the Ntn hydrolase super family of enzymes that catalyze the deacylation of the side chain from phenoxymethyl penicillin (penicillin V). Penicillin acylases find use in the pharmaceutical industry for the production of semi-synthetic antibiotics. PVAs employ the N-terminal cysteine residue as catalytic nucleophile and are structurally and evolutionarily related to bile salt hydrolases (BSHs). Here, we report the cloning and characterization of a PVA enzyme from the Gram-negative plant pathogen, Pectobacterium atrosepticum (PaPVA). The enzyme was cloned and expressed in Escherichia coli attaining a very high yield (250 mg/l) and a comparatively high specific activity (430 IU/mg). The enzyme showed marginally better pH and thermo-stability over PVAs characterized from Gram-positive bacteria. The enzyme also showed enhanced activity in presence of organic solvents and detergents. The enzyme kinetics turned out to be significantly different from that of previously reported PVAs, displaying positive cooperativity and substrate inhibition. The presence of bile salts had a modulating effect on PaPVA activity. Sequence analysis and characterization reveal the distinctive nature of these enzymes and underscore the need to study PVAs from Gram-negative bacteria.
Collapse
|
8
|
Ren F, Wang P, Huang J, He J. Enzymatic Resolution of Racemic Ethyl-2,2- Dimethylcyclopropanecarboxylate ToS-(+)-2,2- Dimethylcyclopropanecarboxylic Acid in a Polar Organic Solvent—Water Medium. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2012.0109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
9
|
Improved activity and pH stability of E. coli ATCC 11105 penicillin acylase by error-prone PCR. Appl Microbiol Biotechnol 2014; 98:4467-77. [DOI: 10.1007/s00253-013-5476-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/13/2013] [Accepted: 12/15/2013] [Indexed: 11/27/2022]
|
10
|
Water miscible mono alcohols' effect on the proteolytic performance of Bacillus clausii serine alkaline protease. Appl Biochem Biotechnol 2013; 172:469-86. [PMID: 24092453 DOI: 10.1007/s12010-013-0525-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/15/2013] [Indexed: 10/26/2022]
Abstract
In this study, our investigations showed that the increasing concentrations of all examined mono alcohols caused a decrease in the Vm, kcat and kcat/Km values of Bacillus clausii GMBE 42 serine alkaline protease for casein hydrolysis. However, the Km value of the enzyme remained almost the same, which was an indicator of non-competitive inhibition. Whereas inhibition by methanol was partial non-competitive, inhibition by the rest of the alcohols tested was simple non-competitive. The inhibition constants (KI) were in the range of 1.32-3.10 M, and the order of the inhibitory effect was 1-propanol>2-propanol>methanol>ethanol. The ΔG(≠) and ΔG(≠)E-T values of the enzyme increased at increasing concentrations of all alcohols examined, but the ΔG(≠)ES value of the enzyme remained almost the same. The constant Km and ΔG(≠)ES values in the presence and absence of mono alcohols indicated the existence of different binding sites for mono alcohols and casein on enzyme the molecule. The kcat of the enzyme decreased linearly by increasing log P and decreasing dielectric constant (D) values, but the ΔG(≠) and ΔG(≠)E-T values of the enzyme increased by increasing log P and decreasing D values of the reaction medium containing mono alcohols.
Collapse
|
11
|
Kumar A, Gowda NM, Gaikwad S, Pundle A. Rhodotorula aurantiaca penicillin V acylase: active site characterization and fluorometric studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2009; 97:109-16. [PMID: 19819716 DOI: 10.1016/j.jphotobiol.2009.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 08/05/2009] [Accepted: 08/18/2009] [Indexed: 11/27/2022]
Abstract
Penicillin V acylase (PVA), a member of newly evolved Ntn-hydrolase superfamily, is a pharmaceutically important enzyme to produce 6-aminopenicillanic acid. Active site characterization of recently purified monomeric PVA from Rhodotorula aurantiaca (Ra-PVA), the yeast source, showed the involvement of serine and tryptophan in the enzyme activity. Modification of the protein with serine and tryptophan specific reagents such as PMSF and NBS showed partial loss of PVA activity and substrate protection. Ra-PVA was found to be a multi-tryptophan protein exhibiting one tryptophan, in native and, four in its denatured condition. Various solute quenchers and substrate were used to probe the microenvironment of the putative reactive tryptophan through fluorescence quenching. The results obtained indicate that the tryptophan residues of Ra-PVA were largely buried in hydrophobic core of the protein matrix. Quenching of the fluorescence by acrylamide was collisional. Acrylamide was the most effective quencher amongst all the used quenchers, which quenched 71.6% of the total intrinsic fluorescence of the protein, at a very less final concentration of 0.1M. Surface tryptophan residues were found to have predominantly more electropositively charged amino acids around them, however differentially accessible for ionic quenchers. Denaturation led to shift in lambda(max) from 336, in native state, to 357 nm and more exposed to the solvent, consequently increase in fluorescence quenching with all quenchers. This is an attempt towards the conformational studies of Ra-PVA.
Collapse
Affiliation(s)
- Atul Kumar
- Division of Biochemical Sciences, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
| | | | | | | |
Collapse
|
12
|
Hormigo D, De La Mata I, Castillón M, Acebal C, Arroyo M. Kinetic and microstructural characterization of immobilized penicillin acylase fromStreptomyces lavendulaeon Sepabeads EC-EP. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420903051891] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Torres-Guzmán R, De La Mata I, Arroyo M, Torres-Bacete J, Castillon MP, Acebal C. The Kinetic Mechanism of Penicillin V Acylase from Streptomyces Lavendulae. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.3109/10242420109003646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Effect of organic solvents on cell-bound penicillin V acylase activity of Erwinia aroideae (DSMZ 30186): A permeabilization effect. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2008.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Penicillin acylase immobilization depending on macromolecular crowding and catalysis in aqueous–organic medium. Bioprocess Biosyst Eng 2009; 32:765-72. [DOI: 10.1007/s00449-009-0301-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 01/12/2009] [Indexed: 10/21/2022]
|
16
|
Kumar A, Prabhune A, Suresh C, Pundle A. Characterization of smallest active monomeric penicillin V acylase from new source: A yeast, Rhodotorula aurantiaca (NCIM 3425). Process Biochem 2008. [DOI: 10.1016/j.procbio.2008.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Mislovičová D, Masárová J, Bučko M, Gemeiner P. Stability of penicillin G acylase modified with various polysaccharides. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2005.11.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Hirakawa H, Kamiya N, Kawarabayashi Y, Nagamune T. Log P effect of organic solvents on a thermophilic alcohol dehydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1748:94-9. [PMID: 15752697 DOI: 10.1016/j.bbapap.2004.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 12/16/2004] [Accepted: 12/17/2004] [Indexed: 11/30/2022]
Abstract
An alcohol dehydrogenase from the hyperthermophilic archaeon Aeropyrum pernix was activated by water-miscible organic solvents. This activation was influenced by the kind and the concentration of the added organic solvents. The k(cat) was increased by a factor of over ten when the mole fraction of acetonitrile was 0.1. This effect was large when organic solvents with large log P values were added. In fact, the k(cat) showed a strong positive correlation with the log P value of the mixed solvent at a constant mole fraction of water, while it was not affected by the kind of organic solvents added. Both the activation enthalpy and the entropy decreased with an increase in log P. The contribution of the activation enthalpy to the free energy of activation was larger than that of the activation entropy, and the free energy of activation decreased with an increase in log P.
Collapse
Affiliation(s)
- Hidehiko Hirakawa
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | |
Collapse
|
19
|
Chen Y, Xu JH, Pan J, Xu Y, Shi JB. Catalytic resolution of (RS)-HMPC acetate by immobilized cells of Acinetobacter sp. CGMCC 0789 in a medium with organic cosolvent. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.molcatb.2004.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
De León A, Garcı́a B, Barba de la Rosa A, Villaseñor F, Estrada A, López-Revilla R. Periplasmic penicillin G acylase activity in recombinant Escherichia coli cells permeabilized with organic solvents. Process Biochem 2003. [DOI: 10.1016/s0032-9592(03)00079-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Sehgal AC, Tompson R, Cavanagh J, Kelly RM. Structural and catalytic response to temperature and cosolvents of carboxylesterase EST1 from the extremely thermoacidophilic archaeon Sulfolobus solfataricus P1. Biotechnol Bioeng 2002; 80:784-93. [PMID: 12402324 DOI: 10.1002/bit.10433] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The interactive effects of temperature and cosolvents on the kinetic and structural features of a carboxylesterase from the extremely thermoacidophilic archaeon Sulfolobus solfataricus P1 (Sso EST1) were examined. While dimethylformamide, acetonitrile, and dioxane were all found to be deleterious to enzyme function, dimethyl sulfoxide (DMSO) activated Sso EST1 to various extents. This was particularly true at 3.5% (v/v) DMSO, where k(cat) was 20-30% higher than at 1.2% DMSO, over the temperature range of 50-85 degrees C. DMSO compensated for thermal activation in some cases; for example, k(cat) at 60 degrees C in 3.5% DMSO was comparable to k(cat) at 85 degrees C in 1.2% DMSO. The relationship between DMSO activation and enzyme structural characteristics was also investigated. Nuclear magnetic resonance spectroscopy and circular dichroism showed no gross change in enzyme conformation with 3.5% DMSO between 50 and 80 degrees C. However, low levels of DMSO were shown to have a small yet significant change in enzyme conformation. This was evident through the reduction of Sso EST1's melting temperature and changes in the microenvironment of the enzyme's tyrosine and tryptophan residues at 3.5% versus 1.2% (v/v) solvent. Finally, activation parameter analysis based on kinetic data, at 1.2% and 3.5% DMSO, implied an increase in conformational flexibility with additional cosolvent. These results suggest the activating effect of DMSO was related to small changes in the enzyme's structure resulting in an increase in its conformational flexibility. Thus, in addition to their use for solubilizing hydrophobic substrates in water, cosolvents may also serve as activators in applications involving thermostable biocatalysts at sub-optimal temperatures.
Collapse
Affiliation(s)
- Amitabh C Sehgal
- Department of Chemical Engineering, North Carolina State University, Raleigh 27695-7905, USA
| | | | | | | |
Collapse
|
22
|
Torres-Guzmán R, de la Mata I, Torres-Bacete J, Arroyo M, Castillón MP, Acebal C. Substrate specificity of penicillin acylase from Streptomyces lavendulae. Biochem Biophys Res Commun 2002; 291:593-7. [PMID: 11855830 DOI: 10.1006/bbrc.2002.6485] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The kinetic parameters of several substrates of penicillin acylase from Streptomyces lavendulae have been determined. The enzyme hydrolyses phenoxymethyl penicillin (penicillin V) and other penicillins with aliphatic acyl-chains such as penicillin F, dihydroF, and K. The best substrate was penicillin K (octanoyl penicillin) with a k(cat)/K(m) of 165.3 mM(-1) s(-1). The enzyme hydrolyses also chromogenic substrates as NIPOAB (2-nitro-5-phenoxyacetamido benzoic acid), NIHAB (2-nitro-5-hexanoylamido benzoic acid) or NIOAB (2-nitro-5-octanoylamido benzoic acid), however failed to hydrolyse phenylacetil penicillin (penicillin G) or NIPAB (2-nitro-5-phenylacetamido benzoic acid) and penicillins with polar substituents in the acyl moiety. These results suggest that the structure of the acyl moiety of the substrate is more determinant than the amino moiety for enzyme specificity. The enzyme was inhibited by several organic acids and the extent of inhibition changed with the hydrophobicity of the acid. The best inhibitor was octanoic acid with a K(i) of 0.8 mM. All the results, taking together, point to an active site highly hydrophobic for this penicillin acylase from Streptomyces lavendulae.
Collapse
Affiliation(s)
- Raquel Torres-Guzmán
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, 28040, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Arroyo M, Torres-Guzmán R, Torres-Bacete J, de la Mata I, Pilar Castillón M, Acebal C. Kinetic mechanism of penicillin V acylase activation byshort-chain alcohols. Enzyme Microb Technol 2001. [DOI: 10.1016/s0141-0229(01)00391-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Prediction of penicillin V acylase stability in water-organic co-solvent monophasic systems as a function of solvent composition. Enzyme Microb Technol 2000; 27:122-126. [PMID: 10862911 DOI: 10.1016/s0141-0229(00)00183-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Hydrolytic activity of penicillin V acylase (EC 3.5.1.11) can be improved by using organic cosolvents in monophasic systems. However, the addition of these solvents may result in loss of stability of the enzyme. The thermal stability of penicillin V acylase from Streptomyces lavendulae in water-organic cosolvent monophasic systems depends on the nature of the organic solvent and its concentration in the media. The threshold solvent concentration (at which half enzymatic activity is displayed) is related to the denaturing capacity of the solvent. We found out linear correlations between the free energy of denaturation at 40 degrees C and the concentration of the solvent in the media. On one hand, those solvents with logP values lower than -1.8 have a protective effect that is enhanced when its concentration is increased in the medium. On the other hand, those solvents with logP values higher than -1.8 have a denaturing effect: the higher this value and concentration, the more deleterious. Deactivation constants of PVA at 40 degrees C can be predicted in any monophasic system containing a water-miscible solvent.
Collapse
|