1
|
Kordbacheh H, Katbab AA, Aghvami-Panah M, Haghighipour N. Piezoelectric scaffold based on polycaprolactone/thermoplastic polyurethane/barium titanate/cellulose nanocrystal for bone tissue engineering. Int J Biol Macromol 2025; 288:138681. [PMID: 39672423 DOI: 10.1016/j.ijbiomac.2024.138681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 11/29/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
This study presents the development of a novel piezoelectric scaffold for bone tissue engineering composed of poly(ε-caprolactone) (PCL), thermoplastic polyurethane (TPU), barium titanate (BT), and cellulose nanocrystals (CNC). PCL and TPU are considered advantageous materials because of their ease of processing, versatility in design, and ability to degrade over time; however, their inherent immiscibility poses challenges to achieving optimal porous structures. In this study, porous scaffolds were produced using gas foaming and salt leaching techniques, resulting in highly porous interconnected scaffolds exhibiting considerable elasticity that is suitable for dynamic cell culture while avoiding the use of toxic solvents. Given the piezoelectric nature of bone tissue, incorporating electric biosignals into scaffolds is essential to enhance bone regeneration. Therefore, BT was incorporated as a piezoelectric material. CNC, derived from cotton, assisted in BT distribution and acted as a reinforcing agent, imparting mechanoelectrical signaling properties to the scaffolds. The optimized scaffolds PCL/TPU (75/25) featuring 100 μm pores were integrated with varying BT and CNC ratios and were subjected to multiple analyses. The results showed a measurable electrical output of 1.2 mV and enhanced cell adhesion, viability, and proliferation under dynamic culture conditions, underscoring their potential for bone tissue regeneration.
Collapse
Affiliation(s)
- Hamta Kordbacheh
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Ali Asghar Katbab
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran, Iran.
| | - Mohammad Aghvami-Panah
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran, Iran
| | | |
Collapse
|
2
|
Baudequin T, Legallais C, Bedoui F. In Vitro Bone Cell Response to Tensile Mechanical Solicitations: Is There an Optimal Protocol? Biotechnol J 2018; 14:e1800358. [PMID: 30350925 DOI: 10.1002/biot.201800358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/10/2018] [Indexed: 11/07/2022]
Abstract
Bone remodeling is strongly linked to external mechanical signals. Such stimuli are widely used in vitro for bone tissue engineering by applying mechanical solicitations to cell cultures so as to trigger specific cell responses. However, the literature highlights considerable variability in devices and protocols. Here the major biological, mechanical, and technical parameters implemented for in vitro tensile loading applications are reviewed. The objective is to identify which values are used most, and whether there is an optimal protocol to obtain a functional tissue-engineering construct. First, a shift that occurred from fundamental comprehension of bone formation, to its application in rebuilt tissues and clinical fields is shown. Despite the lack of standardized protocols, consensual conditions relevant for in vitro bone development, in particular cell differentiation, could be highlighted. Culture processes are guided by physiological considerations, although out-of-range conditions are sometimes used without implying negative results for the development of rebuilt tissue. Consensus can be found on several parameters, such as strain frequency (1 Hz) or the use of rest periods, but other points have not yet been fully established, especially synergies with other solicitations. It is believed that the present work will be useful to develop new tissue-engineering processes based on stretching.
Collapse
Affiliation(s)
- Timothée Baudequin
- Sorbonne Universités, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomécanique - Bioingénierie, Compiègne 60205, France
| | - Cécile Legallais
- Sorbonne Universités, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomécanique - Bioingénierie, Compiègne 60205, France
| | - Fahmi Bedoui
- Sorbonne Universités, Université de Technologie de Compiègne, CNRS, UMR 7337 Laboratoire Roberval, Compiègne 60205, France
| |
Collapse
|
3
|
Markovic M, Van Hoorick J, Hölzl K, Tromayer M, Gruber P, Nürnberger S, Dubruel P, Van Vlierberghe S, Liska R, Ovsianikov A. Hybrid Tissue Engineering Scaffolds by Combination of Three-Dimensional Printing and Cell Photoencapsulation. J Nanotechnol Eng Med 2015; 6:0210011-210017. [PMID: 26858826 DOI: 10.1115/1.4031466] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 08/25/2015] [Indexed: 11/08/2022]
Abstract
Three-dimensional (3D) printing offers versatile possibilities for adapting the structural parameters of tissue engineering scaffolds. However, it is also essential to develop procedures allowing efficient cell seeding independent of scaffold geometry and pore size. The aim of this study was to establish a method for seeding the scaffolds using photopolymerizable cell-laden hydrogels. The latter facilitates convenient preparation, and handling of cell suspension, while distributing the hydrogel precursor throughout the pores, before it is cross-linked with light. In addition, encapsulation of living cells within hydrogels can produce constructs with high initial cell loading and intimate cell-matrix contact, similar to that of the natural extra-cellular matrix (ECM). Three dimensional scaffolds were produced from poly(lactic) acid (PLA) by means of fused deposition modeling. A solution of methacrylamide-modified gelatin (Gel-MOD) in cell culture medium containing photoinitiator Li-TPO-L was used as a hydrogel precursor. Being an enzymatically degradable derivative of natural collagen, gelatin-based matrices are biomimetic and potentially support the process of cell-induced remodeling. Preosteoblast cells MC3T3-E1 at a density of 10 × 106 cells per 1 mL were used for testing the seeding procedure and cell proliferation studies. Obtained results indicate that produced constructs support cell survival and proliferation over extended duration of our experiment. The established two-step approach for scaffold seeding with the cells is simple, rapid, and is shown to be highly reproducible. Furthermore, it enables precise control of the initial cell density, while yielding their uniform distribution throughout the scaffold. Such hybrid tissue engineering constructs merge the advantages of rigid 3D printed constructs with the soft hydrogel matrix, potentially mimicking the process of ECM remodeling.
Collapse
Affiliation(s)
- Marica Markovic
- Austrian Cluster for Tissue Regeneration, Institute of Materials Science and Technology, Technische Universität Wien (TU Wien), Getreidemarkt 9, Vienna 1060, Austria e-mail:
| | - Jasper Van Hoorick
- Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281 S4-bis, Ghent 9000, Belgium; Brussels Photonics Team, Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, Elsene 1050, Belgium e-mail:
| | - Katja Hölzl
- Austrian Cluster for Tissue Regeneration, Institute of Materials Science and Technology, Technische Universität Wien (TU Wien), Getreidemarkt 9, Vienna 1060, Austria e-mail:
| | - Maximilian Tromayer
- Austrian Cluster for Tissue Regeneration, Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, Vienna 1060, Austria e-mail:
| | - Peter Gruber
- Austrian Cluster for Tissue Regeneration, Institute of Materials Science and Technology, Technische Universität Wien (TU Wien), Getreidemarkt 9, Vienna 1060, Austria e-mail:
| | - Sylvia Nürnberger
- Austrian Cluster for Tissue Regeneration, Medical University of Vienna, Department of Trauma Surgery, Währinger Gürtel 18-20, Vienna 1090, Austria e-mail:
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281 S4-bis, Ghent 9000, Belgium e-mail:
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281 S4-bis, 9000 Ghent, Brussels, Photonics Team, Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, Elsene 1050, Belgium e-mail:
| | - Robert Liska
- Austrian Cluster for Tissue Regeneration, Institute of Applied Synthetic Chemistry Division of Macromolecular Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, Vienna 1060, Austria e-mail:
| | - Aleksandr Ovsianikov
- Austrian Cluster for Tissue Regeneration, Institute of Materials Science and Technology, Technische Universität Wien (TU Wien), Getreidemarkt 9, Vienna 1060, Austria e-mail:
| |
Collapse
|
4
|
Bruinink A, Luginbuehl R. Evaluation of biocompatibility using in vitro methods: interpretation and limitations. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 126:117-52. [PMID: 21989487 DOI: 10.1007/10_2011_111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The in vitro biocompatibility of novel materials has to be proven before a material can be used as component of a medical device. This must be done in cell culture tests according to internationally recognized standard protocols. Subsequently, preclinical and clinical tests must be performed to verify the safety of the new material and device. The present chapter focuses on the first step, the in vitro testing according to ISO 10993-5, and critically discusses its limited significance. Alternative strategies and a brief overview of activities to improve the current in vitro tests are presented in the concluding section.
Collapse
Affiliation(s)
- Arie Bruinink
- Laboratory for Materials - Biology Interactions, Empa - Materials Science and Technology, Lerchenfeldstasse 5, CH-9014 St, Gallen, Switzerland,
| | | |
Collapse
|
5
|
Moczulska M, Bitar M, Swięszkowski W, Bruinink A. Biological characterization of woven fabric using two- and three-dimensional cell cultures. J Biomed Mater Res A 2012; 100:882-93. [PMID: 22275338 DOI: 10.1002/jbm.a.34023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 10/21/2011] [Indexed: 11/07/2022]
Abstract
The integration and long-term functional retention of tissue implants are both strongly linked to the implant material characteristics. As a first approach, the cytocompatibility and bioactivity of such materials are evaluated using in vitro-based cell culture models. Typically, in vitro bioactivity is assessed by seeding single cells onto the test material to evaluate certain parameters such as cell adhesion, survival, proliferation, and functional differentiation. Probably, due to the reduction from three dimensional (3D) toward the two dimensional (2D) situation the data obtained from 2D culture models falls short of predicting the in vivo behavior of the biomaterial in question. In this study, a three dimensional (3D) in vitro cell culture model was applied to evaluate the bioactivity of well characterized fiber-based scaffolds using scaffold colonization as a bioactivity indicator. Cell behavior in this culture model was evaluated against a classical comparable, 2D cell culture system using polyethylene terephthalat and polyamide 6.6 fabrics. By using the 3D culture model, however, differences in cell population performance as a function of fiber diameter and mesh angle were evident. The use of 3D cell culture model clearly outperformed typical cell culture setup as means to evaluate cell population-scaffold interaction.
Collapse
Affiliation(s)
- M Moczulska
- Faculty of Materials Science of Engineering, Warsaw University of Technology, Warsaw, Poland
| | | | | | | |
Collapse
|
6
|
Adebiyi AA, Taslim ME, Crawford KD. The use of computational fluid dynamic models for the optimization of cell seeding processes. Biomaterials 2011; 32:8753-70. [DOI: 10.1016/j.biomaterials.2011.08.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 08/10/2011] [Indexed: 11/15/2022]
|
7
|
Schuurman W, Khristov V, Pot MW, van Weeren PR, Dhert WJA, Malda J. Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication 2011; 3:021001. [PMID: 21597163 DOI: 10.1088/1758-5082/3/2/021001] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Tissue/organ printing aims to recapitulate the intrinsic complexity of native tissues. For a number of tissues, in particular those of musculoskeletal origin, adequate mechanical characteristics are an important prerequisite for their initial handling and stability, as well as long-lasting functioning. Hence, organized implants, possessing mechanical characteristics similar to the native tissue, may result in improved clinical outcomes of regenerative approaches. Using a bioprinter, grafts were constructed by alternate deposition of thermoplastic fibers and (cell-laden) hydrogels. Constructs of different shapes and sizes were manufactured and mechanical properties, as well as cell viability, were assessed. This approach yields novel organized viable hybrid constructs, which possess favorable mechanical characteristics, within the same range as those of native tissues. Moreover, the approach allows the use of multiple hydrogels and can thus produce constructs containing multiple cell types or bioactive factors. Furthermore, since the hydrogel is supported by the thermoplastic material, a broader range of hydrogel types can be used compared to bioprinting of hydrogels alone. In conclusion, we present an innovative and versatile approach for bioprinting, yielding constructs of which the mechanical stiffness provided by thermoplastic polymers can potentially be tailored, and combined specific cell placement patterns of multiple cell types embedded in a wide range of hydrogels.
Collapse
Affiliation(s)
- W Schuurman
- Department of Orthopaedics, University Medical Center Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
8
|
Self-assembled composite matrix in a hierarchical 3-D scaffold for bone tissue engineering. Acta Biomater 2011; 7:2244-55. [PMID: 21195810 DOI: 10.1016/j.actbio.2010.12.031] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 12/27/2010] [Accepted: 12/29/2010] [Indexed: 11/21/2022]
Abstract
It is of high clinical relevance in bone tissue engineering that scaffolds promote a high seeding efficiency of cells capable of osteogenic differentiation, such as human bone marrow-derived mesenchymal stem cells (hMSCs). We evaluated the effects of a novel polycaprolactone (PCL) scaffold on hMSC seeding efficiency, proliferation, distribution and differentiation. Porous PCL meshes prepared by fused deposition modeling (FDM) were embedded in matrix of hyaluronic acid, methylated collagen and terpolymer via polyelectrolyte complex coacervation. Scaffolds were cultured statically and dynamically in osteogenic stimulation medium for up to 28 days. Compared to naked PCL scaffolds, embedded scaffolds provided a higher cell seeding efficiency (t-test, P<0.05), a more homogeneous cell distribution and more osteogenically differentiated cells, verified by a more pronounced gene expression of the bone markers alkaline phosphatase, osteocalcin, bone sialoprotein I and bone sialoprotein II. Dynamic culture resulted in higher amounts of DNA (day 14 and day 21) and calcium (day 21 and day 28), compared to static culture. Dynamic culture and the embedding synergistically enhanced the calcium deposition of hMSC on day 21 and day 28. This in vitro study provides evidence that hybrid scaffolds made from natural and synthetic polymers improve cellular seeding efficiency, proliferation, distribution and osteogenic differentiation.
Collapse
|
9
|
Yamamoto M, James D, Li H, Butler J, Rafii S, Rabbany S. Generation of stable co-cultures of vascular cells in a honeycomb alginate scaffold. Tissue Eng Part A 2010; 16:299-308. [PMID: 19705957 PMCID: PMC3120091 DOI: 10.1089/ten.tea.2009.0010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 08/24/2009] [Indexed: 01/24/2023] Open
Abstract
Scaffold-guided vascular tissue engineering has been investigated as a means to generate functional and transplantable vascular tissue grafts that increase the efficacy of cell-based therapeutic strategies in regenerative medicine. In this study, we employed confocal microscopy and three-dimensional reconstruction to assess the engraftment and growth potential of vascular cells within an alginate scaffold with aligned pores. We fabricated honeycomb alginate scaffolds with aligned pores, whose surface was immobilized with fibronectin and subsequently coated with matrigel. Endothelial cells were seeded into aligned pore scaffolds in the presence and absence of human smooth muscle cells. We showed that endothelial cells seeded into alginate scaffolds attach on the surface of aligned pores in vitro, giving rise to stable co-cultures of vascular cells. Moreover, the three-dimensional alginate depots containing the cells were exposed to laminar flow in order to recapitulate physiological shear stress found in the vasculature in vivo. After the flow exposure, the scaffold remained intact and some cells remained adherent to the scaffold and aligned in the flow direction. These studies demonstrate that alginate scaffolds provide a suitable matrix for establishing durable angiogenic modules that may ultimately enhance organ revascularization.
Collapse
Affiliation(s)
- Masaya Yamamoto
- Department of Genetics Medicine, Weill Medical College of Cornell University, New York, New York
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Daylon James
- Howard Hughes Medical Institute, Weill Medical College of Cornell University, New York, New York
| | - Hui Li
- Department of Genetics Medicine, Weill Medical College of Cornell University, New York, New York
| | - Jason Butler
- Department of Genetics Medicine, Weill Medical College of Cornell University, New York, New York
| | - Shahin Rafii
- Department of Genetics Medicine, Weill Medical College of Cornell University, New York, New York
- Howard Hughes Medical Institute, Weill Medical College of Cornell University, New York, New York
| | - Sina Rabbany
- Department of Genetics Medicine, Weill Medical College of Cornell University, New York, New York
- Bioengineering Program, Hofstra University, Hempstead, New York
| |
Collapse
|
10
|
Mastrangelo F, Nargi E, Carone L, Dolci M, Caciagli F, Ciccarelli R, Lutiis MAD, Karapanou V, Shaik BY, Conti P, Teté S. Tridimensional Response of human Dental Follicular Stem Cells onto a Synthetic Hydroxyapatite Scaffold. ACTA ACUST UNITED AC 2008. [DOI: 10.1248/jhs.54.154] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Filiberto Mastrangelo
- Department of Stomatology and Oral Science, Division of Oral Surgery, University “G. d'Annunzio,”
| | - Elena Nargi
- Department of Biomedical Scienze, Division of Pharmacology and Toxicology, University “G. d'Annunzio,”
| | - Luigi Carone
- Department of Stomatology and Oral Science, Division of Oral Surgery, University “G. d'Annunzio,”
| | - Marco Dolci
- Department of Stomatology and Oral Science, Division of Oral Surgery, University “G. d'Annunzio,”
| | - Francesco Caciagli
- Department of Biomedical Scienze, Division of Pharmacology and Toxicology, University “G. d'Annunzio,”
| | - Renata Ciccarelli
- Department of Biomedical Scienze, Division of Pharmacology and Toxicology, University “G. d'Annunzio,”
| | | | | | - Basha Y. Shaik
- Department of Oral Biology, Dental Medicine, Boston University
| | - Pio Conti
- Immunology Division, University “G. d'Annunzio,”
| | - Stefano Teté
- Department of Stomatology and Oral Science, Division of Oral Surgery, University “G. d'Annunzio,”
| |
Collapse
|
11
|
Timmins NE, Scherberich A, Früh JA, Heberer M, Martin I, Jakob M. Three-dimensional cell culture and tissue engineering in a T-CUP (tissue culture under perfusion). ACTA ACUST UNITED AC 2007; 13:2021-8. [PMID: 17590148 DOI: 10.1089/ten.2006.0158] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aim of this study was to develop and validate a simple and compact bioreactor system for perfusion cell seeding and culture through 3-dimensional porous scaffolds. The developed Tissue Culture Under Perfusion (T-CUP) bioreactor is based on the concept of controlled and confined alternating motion of scaffolds through a cell suspension or culture medium, as opposed to pumping of the fluid through the scaffolds. Via the T-CUP, articular chondrocytes and bone marrow stromal cells could be seeded into porous scaffolds of different compositions and architectures (chronOS, Hyaff-11, and Polyactive) at high efficiency (greater than 75%), uniformity (cells were well distributed throughout the scaffold pores), and viability (greater than 97%). Culture of articular chondrocytes seeded into 4-mm thick Polyactive scaffolds for 2 weeks in the T-CUP resulted in uniform deposition of cartilaginous matrix. Cultivation of freshly isolated human bone marrow nucleated cells seeded into ENGipore ceramic scaffolds for 19 days in the T-CUP resulted in stromal cell-populated constructs capable of inducing ectopic bone formation in nude mice. The T-CUP bioreactor represents an innovative approach to simple, efficient, and reliable 3D cell culture, and could be used either as a model to investigate mechanisms of tissue development or as a graft manufacturing system in the context of regenerative medicine.
Collapse
Affiliation(s)
- Nicholas E Timmins
- Tissue Engineering, Laboratory 405, Departments of Surgery and of Research, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
12
|
Raeber GP, Mayer J, Hubbell JA. Part I: A novel in-vitro system for simultaneous mechanical stimulation and time-lapse microscopy in 3D. Biomech Model Mechanobiol 2007; 7:203-14. [PMID: 17487518 DOI: 10.1007/s10237-007-0086-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2006] [Accepted: 04/04/2007] [Indexed: 11/25/2022]
Abstract
To investigate the migration response of cells to changes in their biophysical environment, a novel uniaxial cell stimulation device (UCSD) has been designed and tested. The device is capable of applying very precise user-defined static or dynamic mechanical stimuli in a physiologically relevant strain window (up to 50%) and frequency bandwidth (up to 2 Hz) to cells residing in a three-dimensional (3D) environment while single-cell migration is simultaneously measured by time-lapse microscopy. The system is an advancement over uniaxial loading devices reported to date in that it allows temporal and spatial quantification of migration as a function of the micromechanical environment. We make use of the favorable physical and biological properties of poly(ethylene glycol) hydrogels as model matrix and present a method for fabricating cell-containing hydrogel constructs. The 3D strain field within these constructs is modeled by finite element analysis. Fibroblasts reversibly altered their morphology and orientation in response to the strain field. In the succeeding companion paper we then exploit the system to analyze fibroblast motility induced by different stimulation regimes (refer to part II).
Collapse
Affiliation(s)
- G P Raeber
- Institute of Bioengineering and Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), LMRP, Lausanne, Switzerland
| | | | | |
Collapse
|
13
|
Shimizu K, Ito A, Honda H. Enhanced cell-seeding into 3D porous scaffolds by use of magnetite nanoparticles. J Biomed Mater Res B Appl Biomater 2006; 77:265-72. [PMID: 16245291 DOI: 10.1002/jbm.b.30443] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To engineer functional tissues, a large number of cells must be successfully seeded into scaffolds. We previously proposed a methodology for tissue engineering using magnetite nanoparticles and magnetic force, which we termed "Mag-TE." In the present study, we applied the Mag-TE technique to a cell seeding process and have termed the technique "Mag-seeding." The cell-seeding efficiency of NIH/3T3 fibroblasts (FBs) by Mag-seeding was investigated using six types of commercially available scaffolds (5 collagen sponges and 1 D,D-L,L polylactic acid sponge) having various pore sizes. FBs were magnetically labeled with our original magnetite cationic liposomes (MCLs), which have a positive surface charge, to improve adsorption onto the cell surface. FBs labeled with MCLs were seeded onto a scaffold, and a magnet (4 kG) was placed under the scaffold. Mag-seeding facilitated successful cell seeding into the deep internal space of the scaffolds. Cell-seeding efficiency increased significantly in all scaffolds when compared to those without magnetic force. Moreover, when a high-intensity magnet (10 kG) was used, cell-seeding efficiency was significantly enhanced. These results suggest that Mag-seeding is a promising approach for tissue engineering.
Collapse
Affiliation(s)
- Kazunori Shimizu
- Department of Biotechnology, School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | | | | |
Collapse
|
14
|
Tang XJ, Wu QY. Mesenchymal stem cellular adhesion and cytotoxicity study of random biopolyester scaffolds for tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2006; 17:627-32. [PMID: 16770547 DOI: 10.1007/s10856-006-9225-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 08/09/2005] [Indexed: 05/10/2023]
Abstract
Mesenchymal stem cells (MSCs) were isolated from the bone marrow of rabbits and inoculated respectively on 3D scaffolds of poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) (PHBV), poly(butylenes succinate) (PBS) and different blends (100/0, 80/20, 50/50, 20/80, 0/100) (Wt%) in vitro. It was found that the (50/50) blends possessed the best performance on adhesion and cytotoxicity of MSCs. The scanning electronic microscopy (SEM) results showed that the (50/50) blends had the appropriate roughness for MSCs to attach and grow, which may be used as a suitable biomaterial to create small caliber vascular grafts.
Collapse
Affiliation(s)
- X J Tang
- Department of Cardiac Surgery, Cardiovascular Institute and Fu Wai Hospital, CAMS and PUMC, 100037, Beijing, Peoples Republic of China.
| | | |
Collapse
|
15
|
Abstract
This paper reviews reports on three-dimensional mammalian tissue growth in bioreactors and the corresponding mammalian tissue growth requirements. The needs for nutrient and waste removal of several mammalian tissues are reviewed and compared with the environment of many reactors currently in use such as the continuous stirred tank, the hollow fiber, the Couette-Taylor, the airlift, and the rotating-wall reactors developed by NASA. Many studies conclude that oxygen supply appears to be one of the most important factors limiting tissue growth. Various correlations to describe oxygen mass transfer are presented and discussed with the aim to provide some guidance to design, construct, and test reactors for tissue mass culture. To obtain tissue thickness clinically valuable, dimensionless and other types of analysis tend to point out that diffusive transport will have to be matched with an important convection to bring sufficient oxygen molecular flux to the growing cells located within a tissue mass. As learned from solid-state fermentation and hairy root culture, during the growth of large biomass, heterogeneity (i.e., channeling, temperature gradients, non-uniform cell growth, transfer gradients, etc.) can cause some important problems and these should be addressed in tissue engineering as well. Reactors (along with the scaffolds) should be designed to minimize these issues. The role of the uterus, the reactor built by Nature, is examined, and the environment provided to a growing embryo is reported, yielding possible paths for further reactor developments. Finally, the importance of cell seeding methods is also addressed.
Collapse
Affiliation(s)
- Yves Martin
- Laboratoire de Bioingénierie et de Biophysique de l'Université de Sherbrooke, Department of Chemical Engineering, Université de Sherbrooke, Sherbrooke, Qué., Canada J1K 2R1
| | | |
Collapse
|
16
|
Abstract
Ex vivo engineering of living tissues is a rapidly developing area with the potential to impact significantly on a wide-range of biomedical applications. Major obstacles to the generation of functional tissues and their widespread clinical use are related to a limited understanding of the regulatory role of specific physicochemical culture parameters on tissue development, and the high manufacturing costs of the few commercially available engineered tissue products. By enabling reproducible and controlled changes of specific environmental factors, bioreactor systems provide both the technological means to reveal fundamental mechanisms of cell function in a 3D environment, and the potential to improve the quality of engineered tissues. In addition, by automating and standardizing tissue manufacture in controlled closed systems, bioreactors could reduce production costs, thus facilitating a wider use of engineered tissues.
Collapse
Affiliation(s)
- Ivan Martin
- Departments of Surgery and of Research, University Hospital Basel, Hebelstrasse 20, ZLF, Room 405, 4031, Basel, Switzerland.
| | | | | |
Collapse
|
17
|
Wendt D, Marsano A, Jakob M, Heberer M, Martin I. Oscillating perfusion of cell suspensions through three-dimensional scaffolds enhances cell seeding efficiency and uniformity. Biotechnol Bioeng 2003; 84:205-14. [PMID: 12966577 DOI: 10.1002/bit.10759] [Citation(s) in RCA: 298] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We developed a bioreactor for automated cell seeding of three-dimensional scaffolds by continuous perfusion of a cell suspension through the scaffold pores in oscillating directions. Using quantitative biochemical and image analysis techniques, we then evaluated the efficiency and uniformity of perfusion seeding of Polyactive foams as compared to conventional static and spinner flask methods. Finally, we assessed the efficacy of the perfusion seeding technique for different scaffolds and cell types. Perfusion seeding of chondrocytes into Polyactive foams resulted in "viable cell seeding efficiencies," defined as the percentages of initially loaded cells that were seeded and remained viable, that were significantly higher (75 +/- 6%) than those by static (57% +/- 5%) and spinner flask seeding (55% +/- 8%). In addition, as compared to static and spinner flask methods, cells seeded by perfusion were respectively 2.6-fold and 3.8-fold more uniformly distributed and formed more homogeneously sized cell clusters. Chondrocytes seeded by perfusion into Hyaff-11 nonwoven meshes were 26% and 63%, respectively, more uniformly distributed than following static and spinner flask seeding. Bone marrow stromal cells seeded by perfusion into ChronOS porous ceramics were homogeneously distributed throughout the scaffold volume, while following the static method, cells were found only near the top surface of the ceramic. In summary, we demonstrated that our cell seeding perfusion bioreactor generated constructs with remarkably uniform cell distributions at high efficiencies, and was effective for a variety of scaffolds and different mesenchymal cell types.
Collapse
Affiliation(s)
- D Wendt
- Departments of Surgery and of Research, University Hospital Basel, Hebelstrasse 20, ZLF, Room 405, 4031 Basel, Switzerland
| | | | | | | | | |
Collapse
|
18
|
Takahashi Y, Tabata Y. Homogeneous Seeding of Mesenchymal Stem Cells into Nonwoven Fabric for Tissue Engineering. ACTA ACUST UNITED AC 2003; 9:931-8. [PMID: 14633377 DOI: 10.1089/107632703322495574] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mesenchymal stem cells (MSCs) were isolated from the bone marrow of rats and seeded into a nonwoven fabric of polyethylene terephtalate (PET) by agitation and static methods. MSC attachment was investigated in terms of the number of cells attached to the fabric, their distribution inside the fabric, and cell damage. The number of MSCs attached was greater for the agitation seeding method than for the static seeding method. The higher the rotating speed in the agitation seeding method, the greater the number of cells attached. When the cell suspension was seeded into the fabric in culture medium volumes of 50 and 200 microL per well of the culture plate or per culture tube, the best cell attachment was observed for the tube culture group at the larger volume. These cells attached more homogeneously throughout the fabric in greater numbers than was the case for the other culture groups. It is possible that agitation of the cell suspension allows cells to infiltrate uniformly inside the fabric, resulting in a homogeneous distribution of the cells in the fabric. A biochemical study revealed that neither the agitation nor static seeding method damaged cells, irrespective of the medium volume and the type of culture vessel. We conclude that the agitation seeding method is a promising method by which to formulate a homogeneous construct of fabric and MSCs.
Collapse
Affiliation(s)
- Yoshitake Takahashi
- Tissue Engineering, Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | |
Collapse
|