1
|
Geldner J, Papenkort S, Kiem S, Böl M, Siebert T. Active and passive material response of urinary bladder smooth muscle tissue in uniaxial and biaxial tensile testing. Acta Biomater 2025; 193:255-266. [PMID: 39706540 DOI: 10.1016/j.actbio.2024.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
The urinary bladder is a hollow organ that undergoes significant deformation as it receives, stores, and releases urine. To understand the organ mechanics, it is necessary to obtain information about the material properties of the tissues involved. In displacement-controlled tensile tests, tissue samples are mounted on a device that applies stretches to the tissue in one or more directions, resulting in a specific stress response. For this study, we performed uniaxial and biaxial stretch experiments on tissue samples (n = 36) from the body region of the porcine urinary bladder. We analyzed the stress-relaxation, activation dynamics, and passive and active stretch-stress response. Main findings of our experiments are: (1) For uniaxial and biaxial stretching, the time constants for stress-relaxation depend on the stretch amplitude, (2) biaxially stretched samples experienced slower activation with τact increasing by +63% compared to uniaxial stretching, (3) biaxial tests are characterized by reduced optimum stretches λopt by -18%, and (4) biaxial and uniaxial tests showed no significant difference in maximum active stresses σopt. To interpret the results, we present a continuum mechanical model based on a viscoelastic, isotropic solid extended by a set of active muscle fibers. Model predictions show that results (3) and (4) can be explained by a uniform distribution of fiber orientations and a specific shape of the active fiber stress-stretch relationship. This study highlights how deformation modes during tensile testing affects smooth muscle mechanics, proving insights for interpreting experimental data and improving organ modeling. STATEMENT OF SIGNIFICANCE: In this study, we examined the mechanical properties of porcine bladder smooth muscle using uniaxial and equibiaxial tensile tests. To our knowledge, this is the first instance where the active stress-stretch relationships of smooth muscle tissue have been analysed under equibiaxial stretch. The data collected offer a detailed understanding of the connection between deformation and active stress production, surpassing the insights provided by existing uniaxial tests in the literature. These findings are crucial for comprehending the physiology of smooth muscle tissue and for developing constitutive muscle models that can make more accurate predictions about the functionality of hollow organs in both health and disease. Additionally, our findings on smooth muscle active stress could aid in the creation of biomaterials that interact with or even replace natural muscle.
Collapse
Affiliation(s)
- Julian Geldner
- Department of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany.
| | - Stefan Papenkort
- Department of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany
| | - Simon Kiem
- Department of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany
| | - Markus Böl
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Tobias Siebert
- Department of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany; Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
2
|
Diaz EC. Editorial commentary to "Assessing the effects of bladder decellularization protocols on extracellular matrix (ECM) structure, mechanics, and biology". J Pediatr Urol 2024; 20:851-852. [PMID: 39117516 DOI: 10.1016/j.jpurol.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Affiliation(s)
- Edward C Diaz
- Division of Pediatric Urology, Children's Hospital Los Angeles, 4650 Sunset Blvd., #114, Los Angeles, CA, 90027, USA.
| |
Collapse
|
3
|
Fujita N, Sugiyama F, Tsuboi M, Nakamura HK, Nishimura R, Nakayama Y, Fujita A. Bladder Reconstruction in Cats Using In-Body Tissue Architecture (iBTA)-Induced Biosheet. Bioengineering (Basel) 2024; 11:615. [PMID: 38927851 PMCID: PMC11200650 DOI: 10.3390/bioengineering11060615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/29/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Urinary tract diseases are common in cats, and often require surgical reconstruction. Here, to explore the possibility of urinary tract reconstruction in cats using in-body tissue architecture (iBTA), biosheets fabricated using iBTA technology were implanted into the feline bladder and the regeneration process was histologically evaluated. The biosheets were prepared by embedding molds into the dorsal subcutaneous pouches of six cats for 2 months. A section of the bladder wall was removed, and the biosheets were sutured to the excision site. After 1 and 3 months of implantation, the biosheets were harvested and evaluated histologically. Implantable biosheets were formed with a success rate of 67%. There were no major complications following implantation, including tissue rejection, severe inflammation, or infection. Urinary incontinence was also not observed. Histological evaluation revealed the bladder lumen was almost entirely covered by urothelium after 1 month, with myofibroblast infiltration into the biosheets. After 3 months, the urothelium became multilayered, and mature myocytes and nerve fibers were observed at the implantation site. In conclusion, this study showed that tissue reconstruction using iBTA can be applied to cats, and that biosheets have the potential to be useful in both the structural and functional regeneration of the feline urinary tract.
Collapse
Affiliation(s)
- Naoki Fujita
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Fumi Sugiyama
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Masaya Tsuboi
- Laboratory of Veterinary Pathology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Hazel Kay Nakamura
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Ryohei Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-0032, Japan
| | | | - Atsushi Fujita
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-0032, Japan
| |
Collapse
|
4
|
Tajvidi Safa B, Huang C, Kabla A, Yang R. Active viscoelastic models for cell and tissue mechanics. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231074. [PMID: 38660600 PMCID: PMC11040246 DOI: 10.1098/rsos.231074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/01/2024] [Accepted: 02/25/2024] [Indexed: 04/26/2024]
Abstract
Living cells are out of equilibrium active materials. Cell-generated forces are transmitted across the cytoskeleton network and to the extracellular environment. These active force interactions shape cellular mechanical behaviour, trigger mechano-sensing, regulate cell adaptation to the microenvironment and can affect disease outcomes. In recent years, the mechanobiology community has witnessed the emergence of many experimental and theoretical approaches to study cells as mechanically active materials. In this review, we highlight recent advancements in incorporating active characteristics of cellular behaviour at different length scales into classic viscoelastic models by either adding an active tension-generating element or adjusting the resting length of an elastic element in the model. Summarizing the two groups of approaches, we will review the formulation and application of these models to understand cellular adaptation mechanisms in response to various types of mechanical stimuli, such as the effect of extracellular matrix properties and external loadings or deformations.
Collapse
Affiliation(s)
- Bahareh Tajvidi Safa
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE68588, USA
| | - Changjin Huang
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Alexandre Kabla
- Department of Engineering, University of Cambridge, CambridgeCB2 1PZ, UK
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE68588, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI48824, USA
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI48824, USA
| |
Collapse
|
5
|
Bury MI, Fuller NJ, Wang X, Chan YY, Sturm RM, Oh SS, Sofer LA, Arora HC, Sharma TT, Nolan BG, Feng W, Rabizadeh RR, Barac M, Edassery SS, Goedegebuure MM, Wang LW, Ganesh B, Halliday LC, Seniw ME, Edassery SL, Mahmud NB, Hofer MD, McKenna KE, Cheng EY, Ameer GA, Sharma AK. Multipotent bone marrow cell-seeded polymeric composites drive long-term, definitive urinary bladder tissue regeneration. PNAS NEXUS 2024; 3:pgae038. [PMID: 38344009 PMCID: PMC10855019 DOI: 10.1093/pnasnexus/pgae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024]
Abstract
To date, there are no efficacious translational solutions for end-stage urinary bladder dysfunction. Current surgical strategies, including urinary diversion and bladder augmentation enterocystoplasty (BAE), utilize autologous intestinal segments (e.g. ileum) to increase bladder capacity to protect renal function. Considered the standard of care, BAE is fraught with numerous short- and long-term clinical complications. Previous clinical trials employing tissue engineering approaches for bladder tissue regeneration have also been unable to translate bench-top findings into clinical practice. Major obstacles still persist that need to be overcome in order to advance tissue-engineered products into the clinical arena. These include scaffold/bladder incongruencies, the acquisition and utility of appropriate cells for anatomic and physiologic tissue recapitulation, and the choice of an appropriate animal model for testing. In this study, we demonstrate that the elastomeric, bladder biomechanocompatible poly(1,8-octamethylene-citrate-co-octanol) (PRS; synthetic) scaffold coseeded with autologous bone marrow-derived mesenchymal stem cells and CD34+ hematopoietic stem/progenitor cells support robust long-term, functional bladder tissue regeneration within the context of a clinically relevant baboon bladder augmentation model simulating bladder trauma. Partially cystectomized baboons were independently augmented with either autologous ileum or stem-cell-seeded small-intestinal submucosa (SIS; a commercially available biological scaffold) or PRS grafts. Stem-cell synergism promoted functional trilayer bladder tissue regeneration, including whole-graft neurovascularization, in both cell-seeded grafts. However, PRS-augmented animals demonstrated fewer clinical complications and more advantageous tissue characterization metrics compared to ileum and SIS-augmented animals. Two-year study data demonstrate that PRS/stem-cell-seeded grafts drive bladder tissue regeneration and are a suitable alternative to BAE.
Collapse
Affiliation(s)
- Matthew I Bury
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Natalie J Fuller
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Xinlong Wang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yvonne Y Chan
- Department of Urologic Surgery, University of California at Davis, Davis, CA 95817, USA
| | - Renea M Sturm
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Sang Su Oh
- Biologic Resources Laboratory, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Laurel A Sofer
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hans C Arora
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Tiffany T Sharma
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Bonnie G Nolan
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Wei Feng
- Flow Cytometry Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Rebecca R Rabizadeh
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Milica Barac
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Sonia S Edassery
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Madeleine M Goedegebuure
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Larry W Wang
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Balaji Ganesh
- Flow Cytometry Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Lisa C Halliday
- Biologic Resources Laboratory, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mark E Seniw
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
| | - Seby L Edassery
- Center for Translational Research and Education, Loyola University Chicago, Chicago, IL 60153, USA
| | - Nadim B Mahmud
- Division of Hematology/Oncology, Department of Medicine, University of Illinois Cancer Center, Chicago, IL 60612, USA
| | | | - Kevin E McKenna
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60612, USA
| | - Earl Y Cheng
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
- Stanley Manne Children's Research Institute, Louis A. Simpson and Kimberly K. Querrey Biomedical Research Center, Chicago, IL 60611, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Guillermo A Ameer
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL 60208, USA
- Vascular Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60612, USA
| | - Arun K Sharma
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
- Stanley Manne Children's Research Institute, Louis A. Simpson and Kimberly K. Querrey Biomedical Research Center, Chicago, IL 60611, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
6
|
Tan J, Qiu G, Wang M, Yu Z, Ling X, Aremu JO, Wang C, Liu H, Zhang A, Yang M, Gao F. Perfusion preparation of the rat bladder decellularized scaffold. Regen Ther 2023; 24:499-506. [PMID: 37779903 PMCID: PMC10539872 DOI: 10.1016/j.reth.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/23/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Bladder reconstruction is a huge challenge in the field of urology. In recent years, perfusion methods have brought promising results in the field of tissue engineering. We prepared bladder decellularized scaffolds by improved perfusion, which may be suitable for bladder reconstruction. Methods We prepared decellularized scaffolds of rat bladder by perfusion of SDS (0.5% sodium dodecyl sulfate), SDS-SDC (0.5% sodium dodecyl sulfate +0.5% sodium deoxycholate). Histological characteristics of bladder decellularized scaffolds were assessed by Hematoxylin and eosin, Masson, and DAPI staining. Moreover, we also prepared a murine bladder transplantation model to evaluate the regenerative potential of scaffolds. Results Hematoxylin and eosin, Masson, and DAPI staining indicated almost no cellular component residues in the SDS-SDC group. Histological analysis (hematoxylin and eosin staining, Masson staining), CD31 and F4/80 staining analysis, one month after implantation, revealed that the decellularized scaffolds had regenerative characteristics, and the SDS-SDC scaffold had better regenerative properties than the SDS scaffold. Conclusions We successfully prepared the decellularized scaffold for the rat bladder by perfusion. Our results showed that the SDS-SDC scaffold had better decellularization efficiency and reconstruction ability than the SDS scaffold, which provides a new perspective on bladder reconstruction materials.
Collapse
Affiliation(s)
- Jiang Tan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Anatomy, Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Guoping Qiu
- Department of Anatomy, Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Maoqi Wang
- Department of Anatomy, Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zhuoyuan Yu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xinyi Ling
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - John Ogooluwa Aremu
- Department of Anatomy, Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Chunyu Wang
- Department of Anatomy, Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hao Liu
- Department of Anatomy, Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Aozhou Zhang
- Department of Anatomy, Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Mei Yang
- Department of Anatomy, Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Fei Gao
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
7
|
Trostorf R, Morales Orcajo E, Pötzke A, Siebert T, Böl M. A pilot study on active and passive ex vivo characterisation of the urinary bladder and its impact on three-dimensional modelling. J Mech Behav Biomed Mater 2022; 133:105347. [DOI: 10.1016/j.jmbbm.2022.105347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/05/2022] [Accepted: 06/26/2022] [Indexed: 11/30/2022]
|
8
|
Differential root response of maize inbred seedlings to root growth restriction and phosphorus availability. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01174-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Augmentation cystoplasty in dogs: A comparative study of different tunica vaginalis grafts. Vet Anim Sci 2022; 16:100247. [PMID: 35345763 PMCID: PMC8957053 DOI: 10.1016/j.vas.2022.100247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/22/2022] Open
Abstract
Tunica vaginalis allograft and sheep tunica vaginalis decellularized extracellular matrix successfully rebuilt the bladder wall with minor complications in dogs. Sheep tunica vaginalis xenograft has disappointing results in the canine model since the bladders became contracted with decreased capacity. Tunica vaginalis grafts represent a simple and low-cost choice for augmentation cystoplasty in dogs.
In veterinary practice, numerous urological disorders that cause bladder dysfunction necessitate augmentation cystoplasty (AC). The purpose of this study is to evaluate the dog tunica vaginalis allograft (DTVA), sheep tunica vaginalis xenograft (STVX) and sheep tunica vaginalis decellularized extracellular matrix (STVDEM) as graft materials for urinary bladder (UB) reconstruction following a 45±5% cystectomy model in dogs. In this study, 18 adult apparently healthy mongrel dogs of both sexes were divided into three groups (6 dogs each): the DTVA group, the STVX group, and the STVDEM group. The evaluation of the AC in different groups was carried out using clinical, hematological, serum biochemical, urine, ultrasonographic, retrograde positive cystogram, and histopathological analysis all over the study period of 12 weeks. The dogs in all groups survived the procedures, except three dogs died from both STVX and DTVA groups. The mean bladder capacity indicated that the DTVA and STVX groups had regained 82.22% and 68.62%, respectively, of their preoperative baseline capacity. Interestingly, the STVDEM group's bladder capacity increased to 113.70%. Although histological analysis revealed that the three grafts successfully rebuilt the bladder wall, the STVDEM demonstrated well-organized and well-differentiated epithelial and muscular tissues that resembled, but were not identical to, native UB tissues. As a result, STVDEM is proposed as an ideal and potential acellular graft for UB reconstruction in dogs, whereas DTVA and STVX could be employed in emergencies requiring UB reconstruction.
Collapse
|
10
|
Hou F, Liu K, Zhang N, Zou C, Yuan G, Gao S, Zhang M, Pan G, Ma L, Shen Y. Association mapping uncovers maize ZmbZIP107 regulating root system architecture and lead absorption under lead stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1015151. [PMID: 36226300 PMCID: PMC9549328 DOI: 10.3389/fpls.2022.1015151] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/06/2022] [Indexed: 05/22/2023]
Abstract
Lead (Pb) is a highly toxic contaminant to living organisms and the environment. Excessive Pb in soils affects crop yield and quality, thus threatening human health via the food chain. Herein, we investigated Pb tolerance among a maize association panel using root bushiness (BSH) under Pb treatment as an indicator. Through a genome-wide association study of relative BSH, we identified four single nucleotide polymorphisms (SNPs) and 30 candidate genes associated with Pb tolerance in maize seedlings. Transcriptome analysis showed that four of the 30 genes were differentially responsive to Pb treatment between two maize lines with contrasting Pb tolerance. Among these, the ZmbZIP107 transcription factor was confirmed as the key gene controlling maize tolerance to Pb by using gene-based association studies. Two 5' UTR_variants in ZmbZIP107 affected its expression level and Pb tolerance among different maize lines. ZmbZIP107 protein was specifically targeted to the nucleus and ZmbZIP107 mRNA showed the highest expression in maize seedling roots among different tissues. Heterologous expression of ZmbZIP107 enhanced rice tolerance to Pb stress and decreased Pb absorption in the roots. Our study provided the basis for revelation of the molecular mechanism underlying Pb tolerance and contributed to cultivation of Pb-tolerant varieties in maize.
Collapse
|
11
|
Ward A, Morgante D, Fisher J, Ingham E, Southgate J. Translation of mechanical strain to a scalable biomanufacturing process for acellular matrix production from full thickness porcine bladders. Biomed Mater 2021; 16. [PMID: 34652283 DOI: 10.1088/1748-605x/ac2ab8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/28/2021] [Indexed: 11/12/2022]
Abstract
Bladder acellular matrix has promising applications in urological and other reconstructive surgery as it represents a naturally compliant, non-immunogenic and highly tissue-integrative material. As the bladder fills and distends, the loosely-coiled bundles of collagen fibres in the wall become extended and orientate parallel to the lumen, resulting in a physical thinning of the muscular wall. This accommodating property can be exploited to achieve complete decellularisation of the full-thickness bladder wall by immersing the distended bladder through a series of hypotonic buffers, detergents and nucleases, but the process is empirical, idiosyncratic and does not lend itself to manufacturing scale up. In this study we have taken a mechanical engineering approach to determine the relationship between porcine bladder size and capacity, to define the biaxial deformation state of the tissue during decellularisation and to apply these principles to the design and testing of a scalable novel laser-printed flat-bed apparatus in order to achieve reproducible and full-thickness bladder tissue decellularisation. We demonstrate how the procedure can be applied reproducibly to fresh, frozen or twice-frozen bladders to render8×8 cm2patches of DNA-free acellular matrix suitable for surgical applications.
Collapse
Affiliation(s)
- Ashley Ward
- School of Mechanical Engineering, Institute of Medical and Biological Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Debora Morgante
- Jack Birch Unit, Department of Biology, York Biomedical Research Institute, The University of York, York YO10 5DD, United Kingdom
| | - John Fisher
- School of Mechanical Engineering, Institute of Medical and Biological Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Eileen Ingham
- School of Biomedical Sciences, Institute of Medical and Biological Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Jennifer Southgate
- Jack Birch Unit, Department of Biology, York Biomedical Research Institute, The University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
12
|
Yang D, Zhang M, Liu K. Tissue engineering to treat pelvic organ prolapse. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2118-2143. [PMID: 34313549 DOI: 10.1080/09205063.2021.1958184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Pelvic organ prolapse (POP) is a frequent chronic illness, which seriously affects women's living quality. In recent years, tissue engineering has made superior progress in POP treatment, and biological scaffolds have received considerable attention. Nevertheless, pelvic floor reconstruction still faces severe challenges, including the construction of ideal scaffolds, the selection of optimal seed cells, and growth factors. This paper summarizes the recent progress of pelvic floor reconstruction in tissue engineering, and discusses the problems that need to be further considered and solved to provide references for the further development of this field.
Collapse
Affiliation(s)
- Deyu Yang
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Min Zhang
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Kehai Liu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| |
Collapse
|
13
|
Pokrywczynska M, Jundzill A, Tworkiewicz J, Buhl M, Balcerczyk D, Adamowicz J, Kloskowski T, Rasmus M, Mecinska-Jundzill K, Kasinski D, Frontczak-Baniewicz M, Holysz M, Skopinska-Wisniewska J, Bodnar M, Marszalek A, Antosik P, Grzanka D, Drewa T. Urinary bladder augmentation with acellular biologic scaffold-A preclinical study in a large animal model. J Biomed Mater Res B Appl Biomater 2021; 110:438-449. [PMID: 34323358 DOI: 10.1002/jbm.b.34920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/05/2021] [Accepted: 07/18/2021] [Indexed: 12/12/2022]
Abstract
Current strategies in urinary bladder augmentation include use of gastrointestinal segments, however, the technique is associated with inevitable complications. An acellular biologic scaffold seems to be a promising option for urinary bladder augmentation. The aim of this study was to evaluate the utility of bladder acellular matrix (BAM) for reconstruction of clinically significant large urinary bladder wall defects in a long-term porcine model. Urinary bladders were harvested from 10 pig donors. Biological scaffolds were prepared by chemically removing all cellular components from urinary bladder tissue. A total of 10 female pigs underwent hemicystectomy and subsequent bladder reconstruction with BAM. The follow-up study was 6 months. Reconstructed bladders were subjected to radiological, macroscopic, histological, immunohistochemical, and molecular evaluations. Six out of ten animals survived the 6-month follow-up period. Four pigs died during observation due to mechanical failure of the scaffold, anastomotic dehiscence between the scaffold and native bladder tissue, or occluded catheter. Tissue engineered bladder function was normal without any signs of postvoid residual urine in the bladder or upper urinary tracts. Macroscopically, graft shrinkage was observed. Urothelium completely covered the luminal surface of the graft. Smooth muscle regeneration was observed mainly in the peripheral graft region and gradually decreased toward the center of the graft. Expression of urothelial, smooth muscle, blood vessel, and nerve markers were lower in the reconstructed bladder wall compared to the native bladder. BAM seems to be a promising biomaterial for reconstruction of large urinary bladder wall defects. Further research on cell-seeded BAM to enhance urinary bladder regeneration is required.
Collapse
Affiliation(s)
- Marta Pokrywczynska
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Arkadiusz Jundzill
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Jakub Tworkiewicz
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Monika Buhl
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Daria Balcerczyk
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Jan Adamowicz
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Tomasz Kloskowski
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Marta Rasmus
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Kaja Mecinska-Jundzill
- Department of Dermatology, Sexually Transmitted Diseases and Immunodermatology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Damian Kasinski
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | | | - Marcin Holysz
- Department of Biochemistry and Molecular Biology, K. Marcinkowski University of Medical Sciences, Poznan, Poland
| | | | - Magdalena Bodnar
- Department of Clinical Pathomorphology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Andrzej Marszalek
- Department of Tumor Pathology, Center of Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Tomasz Drewa
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| |
Collapse
|
14
|
Sabetkish S, Sabetkish N, Kajbafzadeh AM. Regeneration of muscular wall of the bladder using a ureter matrix graft as a scaffold. Biotech Histochem 2021; 97:207-214. [PMID: 34107818 DOI: 10.1080/10520295.2021.1931448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We investigated a method for bladder augmentation in rats using a decellularized ureter graft. We used 16 rats divided into two groups of eight. After partial cystectomy, the bladders in group 1 were grafted with a 1 cm2 patch of human decellularized ureter. Rats in group 2 were untreated controls. Biopsies of the graft were taken at 1, 3 and 9 months postoperatively for histological investigation. Total removal of cells and preservation of extracellular matrix (ECM) was confirmed in the decellularized ureter. Histological examination after 1 month revealed few cells at the border of the graft. Three months after the operation, the graft was infiltrated by vessels and smooth muscle and the mucosal lining was complete. All bladder wall components resembled native bladder wall by 9 months after implantation. CD34, CD31, α-smooth muscle actin, S100, cytokeratin AE1/AE3 and vimentin were detected 9 months after the operation. We demonstrated the potential of decellularized biocompatible ureteric grafts for use as a natural collagen scaffold for bladder repair in rats.
Collapse
Affiliation(s)
- Shabnam Sabetkish
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Sabetkish
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Tao M, Ao T, Mao X, Yan X, Javed R, Hou W, Wang Y, Sun C, Lin S, Yu T, Ao Q. Sterilization and disinfection methods for decellularized matrix materials: Review, consideration and proposal. Bioact Mater 2021; 6:2927-2945. [PMID: 33732964 PMCID: PMC7930362 DOI: 10.1016/j.bioactmat.2021.02.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
Sterilization is the process of killing all microorganisms, while disinfection is the process of killing or removing all kinds of pathogenic microorganisms except bacterial spores. Biomaterials involved in cell experiments, animal experiments, and clinical applications need to be in the aseptic state, but their physical and chemical properties as well as biological activities can be affected by sterilization or disinfection. Decellularized matrix (dECM) is the low immunogenicity material obtained by removing cells from tissues, which retains many inherent components in tissues such as proteins and proteoglycans. But there are few studies concerning the effects of sterilization or disinfection on dECM, and the systematic introduction of sterilization or disinfection for dECM is even less. Therefore, this review systematically introduces and analyzes the mechanism, advantages, disadvantages, and applications of various sterilization and disinfection methods, discusses the factors influencing the selection of sterilization and disinfection methods, summarizes the sterilization and disinfection methods for various common dECM, and finally proposes a graphical route for selecting an appropriate sterilization or disinfection method for dECM and a technical route for validating the selected method, so as to provide the reference and basis for choosing more appropriate sterilization or disinfection methods of various dECM. Asepsis is the prerequisite for the experiment and application of biomaterials. Sterilization or disinfection affects physic-chemical properties of biomaterials. Mechanism, advantages and disadvantages of sterilization or disinfection methods. Factors influencing the selection of sterilization or disinfection methods. Selection of sterilization or disinfection methods for decellularized matrix.
Collapse
Affiliation(s)
- Meihan Tao
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Tianrang Ao
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyan Mao
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Xinzhu Yan
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Rabia Javed
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Weijian Hou
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Yang Wang
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Cong Sun
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Shuang Lin
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Tianhao Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, Shenyang, China.,Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Trostorf R, Morales-Orcajo E, Siebert T, Böl M. Location- and layer-dependent biomechanical and microstructural characterisation of the porcine urinary bladder wall. J Mech Behav Biomed Mater 2020; 115:104275. [PMID: 33360487 DOI: 10.1016/j.jmbbm.2020.104275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/04/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
The knowledge of the mechanical properties of the urinary bladder wall helps to explain its storage and micturition functions in health and disease studies; however, these properties largely remain unknown, especially with regard to its layer-specific characteristics and microstructure. Consequently, this study entails the assessment of the layer-specific differences in the mechanical properties and microstructure of the bladder wall, especially during loading. Accordingly, ninety-two (n=92) samples of porcine urinary bladder walls were mechanically and histologically analysed. Generally, the bladder wall and different tissue layers exhibit a non-linear stress-stretch relationship. In this study, the load transfer mechanisms were not only associated with the wavy structure of muscular and mucosal layers, but also with the entire bladder wall microstructure. Contextually, an interplay between the mucosal and muscular layers could be identified. Therefore, depending on the region and direction, the mucosal layer exhibited a stiffer mechanical response to equi-biaxial loading than that offered by the muscular layer when deformed to stretch levels higher than λ=1.6 to λ=2.2. For smaller stretches, the mucosal layer evinces no significant mechanical reaction, while the muscular layer bears the load. Owing to the orientation of its muscle fibres, the muscular layer shows an increased degree of anisotropy compared to the mucosal layer. Furthermore, the general incompressibility assumption is analysed for different layers by measuring the change in thickness during loading, which indicated a small volume loss.
Collapse
Affiliation(s)
- Robin Trostorf
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig D-38106, Germany
| | - Enrique Morales-Orcajo
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig D-38106, Germany
| | - Tobias Siebert
- Institute of Sport and Motion Science, University of Stuttgart, Stuttgart D-70569, Germany
| | - Markus Böl
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig D-38106, Germany.
| |
Collapse
|
17
|
Iimori Y, Iwai R, Nagatani K, Inoue Y, Funayama-Iwai M, Okamoto M, Nakata M, Mie K, Nishida H, Nakayama Y, Akiyoshi H. Urinary bladder reconstruction using autologous collagenous connective tissue membrane "Biosheet®" induced by in-body tissue architecture: A pilot study. Regen Ther 2020; 15:274-280. [PMID: 33426229 PMCID: PMC7770416 DOI: 10.1016/j.reth.2020.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/15/2020] [Accepted: 10/29/2020] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION In-body tissue architecture (iBTA) technology, based on cell-free tissue engineering, can produces collagenous tissues for implantation by subcutaneous embedding a designed mold. The aim of this study was to evaluate the biocompatibility of iBTA-induced "Biosheet®" collagenous sheets, as scaffold materials for bladder reconstruction. METHODS Canine Biosheet® implants were prepared by embedding molds into subcutaneous pouches in beagles for 8 weeks. A part of canine bladder wall was excised (2 × 2 cm) and repaired by patching the same sized autologous Biosheet®. The Biosheet® implants were harvested 4 weeks (n = 1) and 12 weeks (n = 3) after the implantation and evaluated histologically. RESULTS No disruption of the patched Biosheet® implants or urinary leakage into the peritoneal cavity was observed during the entire observation periods. There were no signs of chronic inflammation or Biosheet® rejection. The urine-contacting surface of luminal surface of the Biosheet® was covered with a multicellular layer of urothelium cells 4 weeks after implantation. α-SMA-positive muscle cells were observed at the margin of the Biosheet® implants at 12 weeks after the implantation. In addition, in the center of the Biosheet® implants, the formation of microvessels stained as α-SMA-positive was observed. CONCLUSION Biosheet® implants have biocompatibility as a scaffold for bladder reconstruction, indicating that they may be applicable for full-thickness bladder wall substitution. Further studies are required for definitive evaluation as a scaffold for bladder reconstruction.
Collapse
Affiliation(s)
- Yasumasa Iimori
- Laboratory of Veterinary Surgery, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano-shi, Osaka 598-8531, Japan
| | - Ryosuke Iwai
- Research Institute of Technology, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama, 700-0005, Japan
| | - Kengo Nagatani
- Laboratory of Veterinary Surgery, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano-shi, Osaka 598-8531, Japan
| | - Yuka Inoue
- Laboratory of Veterinary Surgery, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano-shi, Osaka 598-8531, Japan
| | - Marina Funayama-Iwai
- Laboratory of Veterinary Surgery, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano-shi, Osaka 598-8531, Japan
| | - Mari Okamoto
- Laboratory of Veterinary Surgery, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano-shi, Osaka 598-8531, Japan
| | - Mio Nakata
- Laboratory of Veterinary Surgery, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano-shi, Osaka 598-8531, Japan
| | - Keiichiro Mie
- Laboratory of Veterinary Surgery, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano-shi, Osaka 598-8531, Japan
| | - Hidetaka Nishida
- Laboratory of Veterinary Surgery, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano-shi, Osaka 598-8531, Japan
| | | | - Hideo Akiyoshi
- Laboratory of Veterinary Surgery, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano-shi, Osaka 598-8531, Japan
| |
Collapse
|
18
|
Yu C, Sharma S, Fang CH, Jeong H, Li J, Joice G, Bivalacqua TJ, Singh A. Aliphatic Chain Modification of Collagen Type I: Development of Elastomeric, Compliant, and Suturable Scaffolds. ACS APPLIED BIO MATERIALS 2020; 3:1331-1343. [DOI: 10.1021/acsabm.9b00781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Christine Yu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Shivang Sharma
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Chen Hao Fang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Harrison Jeong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jiuru Li
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gregory Joice
- Department of Urology, The James Buchanan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland 21287, United States
| | - Trinity J. Bivalacqua
- Department of Urology, The James Buchanan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland 21287, United States
- Departments of Surgery and Oncology, Johns Hopkins Medical Institutions and Sidney Kimmel Comprehensive Cancer Center (SKCC), Baltimore, Maryland 21287, United States
| | - Anirudha Singh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Urology, The James Buchanan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland 21287, United States
| |
Collapse
|
19
|
Szulc DA, Ahmadipour M, Aoki FG, Waddell TK, Karoubi G, Cheng HLM. MRI method for labeling and imaging decellularized extracellular matrix scaffolds for tissue engineering. Magn Reson Med 2019; 83:2138-2149. [PMID: 31729091 DOI: 10.1002/mrm.28072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/15/2019] [Accepted: 10/20/2019] [Indexed: 11/08/2022]
Abstract
PURPOSE To develop a facile method for labeling and imaging decellularized extracellular matrix (dECM) scaffolds intended for regenerating 3D tissues. METHODS A small molecule manganese porphyrin, MnPNH2 , was synthesized and used to label dECM scaffolds made from porcine bladder and trachea and murine whole lungs. The labeling protocol was optimized on bladder dECM, and imaging on a 3T clinical scanner was performed to assess reductions in T1 and T2 relaxation times. In vivo MRI was performed on dECM injected in the rat dorsum to verify sensitivity of detection. Toxicity assays for cell viability, metabolism, and proliferation were performed on human umbilical vein endothelial cells. The incorporation of MnPNH2 and its long-term retention in dECM were assessed on transmission electron microscopy and ultraviolet absorbance of eluted MnPNH2 over time. RESULTS All tissues, including thick whole 3D organs, were uniformly labeled and demonstrated high signal-to-noise on MRI. A nearly 10-fold reduction in T1 was consistently obtained at a labeling dose of 0.4 mM, and even 0.2 mM provided sufficient contrast in vivo and ex vivo. No toxicity was observed up to 0.4 mM, the maximum tested. Binding studies suggested nonspecific association, and retention studies in the labeled whole decellularized lungs revealed less than 20% MnPNH2 loss over 30 days, the majority occurring in the first 3 days after labeling. CONCLUSION The proposed labeling method is the first report for visualizing dECM on MRI and has the potential for long-term monitoring and optimization of dECM-based organ tissue engineering.
Collapse
Affiliation(s)
- Daniel Andrzej Szulc
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Canada.,Ted Rogers Centre for Heart Research, Translational Biology & Engineering Program, Toronto, Canada
| | - Mohammadali Ahmadipour
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Canada.,Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Fabio Gava Aoki
- Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Thomas K Waddell
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Canada.,Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Canada
| | - Golnaz Karoubi
- Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Canada.,Ontario Institute for Regenerative Medicine, Toronto, Canada
| | - Hai-Ling Margaret Cheng
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Canada.,Ted Rogers Centre for Heart Research, Translational Biology & Engineering Program, Toronto, Canada.,Ontario Institute for Regenerative Medicine, Toronto, Canada.,Heart & Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research, Toronto, Canada.,The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Canada
| |
Collapse
|
20
|
Shrestha KR, Jeon SH, Jung AR, Kim IG, Kim GE, Park YH, Kim SH, Lee JY. Stem Cells Seeded on Multilayered Scaffolds Implanted into an Injured Bladder Rat Model Improves Bladder Function. Tissue Eng Regen Med 2019; 16:201-212. [PMID: 30989046 PMCID: PMC6439074 DOI: 10.1007/s13770-019-00187-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 11/30/2022] Open
Abstract
Background To investigate whether human adipose-derived stem cells (hADSCs) seeded on multilayered poly (l-lactide-co-ɛ-caprolactone) (PLCL) sheets improve bladder function in a rat model of detrusor smooth muscle-removed bladder. Methods Male rats were randomly divided into 4 groups: Normal, injury (detrusor smooth muscle-removed bladder), PLCL (detrusor smooth muscle-removed bladder implanted with PLCL sheets), and PLCL + ADSC (detrusor smooth muscle-removed bladder implanted with PLCL sheets seeded with hADSCs). Four weeks after the treatment, physiological, histological, immunohistochemical, and immunoblot analyses were performed. Results hADSCs were compatible with PLCL sheets. Further, the physiological study of PLCL + ADSC group showed significant improvement in compliance and contractility suggesting the functional improvement of the bladder. Histological, immunohistochemical and immunoblot analyses revealed the uniform distribution of hADSCs in between PLCL sheets as well as differentiation of hADSCs into smooth muscle cells (SMC) which is illustrated by the expression of SMC markers. Conclusion hADSCs seeded on the multilayered PLCL sheets has the potential to differentiate into SMC, thus facilitating the recovery of compliance and contractility of the injured bladder.
Collapse
Affiliation(s)
- Kshitiz Raj Shrestha
- Department of Urology, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
- Cancer Research Institute, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| | - Seung Hwan Jeon
- Department of Urology, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| | - Ae Ryang Jung
- Department of Urology, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
- Cancer Research Institute, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| | - In Gul Kim
- Department of Urology, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
- Cancer Research Institute, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| | - Ga Eun Kim
- Department of Urology, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
- Cancer Research Institute, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| | - Yong Hyun Park
- Department of Urology, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
- Cancer Research Institute, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| | - Soo Hyun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792 Republic of Korea
| | - Ji Youl Lee
- Department of Urology, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
- Cancer Research Institute, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
- Department of Bioinformatics, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| |
Collapse
|
21
|
Horst M, Eberli D, Gobet R, Salemi S. Tissue Engineering in Pediatric Bladder Reconstruction-The Road to Success. Front Pediatr 2019; 7:91. [PMID: 30984717 PMCID: PMC6449422 DOI: 10.3389/fped.2019.00091] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/01/2019] [Indexed: 12/20/2022] Open
Abstract
Several congenital disorders can cause end stage bladder disease and possibly renal damage in children. The current gold standard therapy is enterocystoplasty, a bladder augmentation using an intestinal segment. However, the use of bowel tissue is associated with numerous complications such as metabolic disturbance, stone formation, urine leakage, chronic infections, and malignancy. Urinary diversions using engineered bladder tissue would obviate the need for bowel for bladder reconstruction. Despite impressive progress in the field of bladder tissue engineering over the past decades, the successful transfer of the approach into clinical routine still represents a major challenge. In this review, we discuss major achievements and challenges in bladder tissue regeneration with a focus on different strategies to overcome the obstacles and to meet the need for living functional tissue replacements with a good growth potential and a long life span matching the pediatric population.
Collapse
Affiliation(s)
- Maya Horst
- Laboratory for Urologic Tissue Engineering and Stem Cell Therapy, Department of Urology, University Hospital, Zurich, Switzerland
- Division of Pediatric Urology, Department of Pediatric Surgery, University Children‘s Hospital, Zurich, Switzerland
| | - Daniel Eberli
- Division of Pediatric Urology, Department of Pediatric Surgery, University Children‘s Hospital, Zurich, Switzerland
| | - Rita Gobet
- Laboratory for Urologic Tissue Engineering and Stem Cell Therapy, Department of Urology, University Hospital, Zurich, Switzerland
| | - Souzan Salemi
- Division of Pediatric Urology, Department of Pediatric Surgery, University Children‘s Hospital, Zurich, Switzerland
| |
Collapse
|
22
|
Coenen AMJ, Bernaerts KV, Harings JAW, Jockenhoevel S, Ghazanfari S. Elastic materials for tissue engineering applications: Natural, synthetic, and hybrid polymers. Acta Biomater 2018; 79:60-82. [PMID: 30165203 DOI: 10.1016/j.actbio.2018.08.027] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/03/2018] [Accepted: 08/21/2018] [Indexed: 02/08/2023]
Abstract
Elastin and collagen are the two main components of elastic tissues and provide the tissue with elasticity and mechanical strength, respectively. Whereas collagen is adequately produced in vitro, production of elastin in tissue-engineered constructs is often inadequate when engineering elastic tissues. Therefore, elasticity has to be artificially introduced into tissue-engineered scaffolds. The elasticity of scaffold materials can be attributed to either natural sources, when native elastin or recombinant techniques are used to provide natural polymers, or synthetic sources, when polymers are synthesized. While synthetic elastomers often lack the biocompatibility needed for tissue engineering applications, the production of natural materials in adequate amounts or with proper mechanical strength remains a challenge. However, combining natural and synthetic materials to create hybrid components could overcome these issues. This review explains the synthesis, mechanical properties, and structure of native elastin as well as the theories on how this extracellular matrix component provides elasticity in vivo. Furthermore, current methods, ranging from proteins and synthetic polymers to hybrid structures that are being investigated for providing elasticity to tissue engineering constructs, are comprehensively discussed. STATEMENT OF SIGNIFICANCE Tissue engineered scaffolds are being developed as treatment options for malfunctioning tissues throughout the body. It is essential that the scaffold is a close mimic of the native tissue with regards to both mechanical and biological functionalities. Therefore, the production of elastic scaffolds is of key importance to fabricate tissue engineered scaffolds of the elastic tissues such as heart valves and blood vessels. Combining naturally derived and synthetic materials to reach this goal proves to be an interesting area where a highly tunable material that unites mechanical and biological functionalities can be obtained.
Collapse
Affiliation(s)
- Anna M J Coenen
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Katrien V Bernaerts
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Jules A W Harings
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Stefan Jockenhoevel
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands; Department of Biohybrid & Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Forckenbeckstraβe 55, 52072 Aachen, Germany
| | - Samaneh Ghazanfari
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands.
| |
Collapse
|
23
|
Location-dependent correlation between tissue structure and the mechanical behaviour of the urinary bladder. Acta Biomater 2018; 75:263-278. [PMID: 29772347 DOI: 10.1016/j.actbio.2018.05.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/04/2018] [Accepted: 05/09/2018] [Indexed: 01/29/2023]
Abstract
The mechanical properties of the urinary bladder wall are important to understand its filling-voiding cycle in health and disease. However, much remains unknown about its mechanical properties, especially regarding regional heterogeneities and wall microstructure. The present study aimed to assess the regional differences in the mechanical properties and microstructure of the urinary bladder wall. Ninety (n=90) samples of porcine urinary bladder wall (ten samples from nine different locations) were mechanically and histologically analysed. Half of the samples (n=45) were equibiaxially tested within physiological conditions, and the other half, matching the sample location of the mechanical tests, was frozen, cryosectioned, and stained with Picro-Sirius red to differentiate smooth muscle cells, extracellular matrix, and fat. The bladder wall shows a non-linear stress-stretch relationship with hysteresis and softening effects. Regional differences were found in the mechanical response and in the microstructure. The trigone region presents higher peak stresses and thinner muscularis layer compared to the rest of the bladder. Furthermore, the ventral side of the bladder presents anisotropic characteristics, whereas the dorsal side features perfect isotropic behaviour. This response matches the smooth muscle fibre bundle orientation within the tunica muscularis. This layer, comprising approximately 78% of the wall thickness, is composed of two fibre bundle arrangements that are cross-oriented, one with respect to the other, varying the angle between them across the organ. That is, the ventral side presents a 60°/120° cross-orientation structure, while the muscle bundles were oriented perpendicular in the dorsal side. STATEMENT OF SIGNIFICANCE In the present study, we demonstrate that the mechanical properties and the microstructure of the urinary bladder wall are heterogeneous across the organ. The mechanical properties and the microstructure of the urinary bladder wall within nine specific locations matching explicitly the mechanical and structural variations have been examined. On the one hand, the results of this study contribute to the understanding of bladder mechanics and thus to their functional understanding of bladder filling and voiding. On the other hand, they are relevant to the fields of constitutive formulation of bladder tissue, whole bladder mechanics, and bladder-derived scaffolds i.e., tissue-engineering grafts.
Collapse
|
24
|
Shi C, Chen W, Chen B, Shan T, Jia W, Hou X, Li L, Ye G, Dai J. Bladder regeneration in a canine model using a bladder acellular matrix loaded with a collagen-binding bFGF. Biomater Sci 2018; 5:2427-2436. [PMID: 29046907 DOI: 10.1039/c7bm00806f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bladder reconstruction remains challenging for urological surgery due to lack of suitable regenerative scaffolds. In a previous study, we had used a collagen-binding basic fibroblast growth factor (CBD-bFGF) to bind bFGF to the collagen scaffold, which could promote bladder regeneration in rats. However, the limited graft size in rodent models cannot provide enough evidence to demonstrate the repair capabilities of this method for severely damaged bladders in humans or large animals. In this study, the CBD-bFGF was used to activate a bladder acellular matrix (BAM) scaffold, and the CBD-bFGF/BAM functional scaffold was assessed in a canine model with a large segment defect (half of the entire bladder was resected). The results demonstrated that the functional biomaterials could promote bladder smooth muscle, vascular, and nerve regeneration and improve the function of neobladders. Thus, the CBD-bFGF/BAM functional scaffold may be a promising biomaterial for bladder reconstruction.
Collapse
Affiliation(s)
- Chunying Shi
- Department of Human anatomy, Histology and Embryology, College of Medicine, Qingdao University, Qingdao, 266021, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhou L, Xia J, Wang P, Jia R, Zheng J, Yao X, Chen Y, Dai Y, Yang B. Autologous Smooth Muscle Progenitor Cells Enhance Regeneration of Tissue-Engineered Bladder. Tissue Eng Part A 2018; 24:1066-1081. [PMID: 29327677 DOI: 10.1089/ten.tea.2017.0376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Liuhua Zhou
- Department of Urology and Andrology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jiadong Xia
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengji Wang
- Department of Urology and Andrology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
- Department of Urology, Longkou People Hospital, Yantai, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junhua Zheng
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yun Chen
- Department of Urology and Andrology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yutian Dai
- Department of Urology and Andrology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Bin Yang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Bioengineering Approaches for Bladder Regeneration. Int J Mol Sci 2018; 19:ijms19061796. [PMID: 29914213 PMCID: PMC6032229 DOI: 10.3390/ijms19061796] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/06/2018] [Accepted: 06/10/2018] [Indexed: 12/25/2022] Open
Abstract
Current clinical strategies for bladder reconstruction or substitution are associated to serious problems. Therefore, new alternative approaches are becoming more and more necessary. The purpose of this work is to review the state of the art of the current bioengineering advances and obstacles reported in bladder regeneration. Tissue bladder engineering requires an ideal engineered bladder scaffold composed of a biocompatible material suitable to sustain the mechanical forces necessary for bladder filling and emptying. In addition, an engineered bladder needs to reconstruct a compliant muscular wall and a highly specialized urothelium, well-orchestrated under control of autonomic and sensory innervations. Bioreactors play a very important role allowing cell growth and specialization into a tissue-engineered vascular construct within a physiological environment. Bioprinting technology is rapidly progressing, achieving the generation of custom-made structural supports using an increasing number of different polymers as ink with a high capacity of reproducibility. Although many promising results have been achieved, few of them have been tested with clinical success. This lack of satisfactory applications is a good reason to discourage researchers in this field and explains, somehow, the limited high-impact scientific production in this area during the last decade, emphasizing that still much more progress is required before bioengineered bladders become a commonplace in the clinical setting.
Collapse
|
27
|
Saleh TM, Ahmed EA, Yu L, Kwak HH, Hussein KH, Park KM, Kang BJ, Choi KY, Kang KS, Woo HM. Incorporation of nanoparticles into transplantable decellularized matrices: Applications and challenges. Int J Artif Organs 2018; 41:421-430. [DOI: 10.1177/0391398818775522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Decellularization of tissues can significantly improve regenerative medicine and tissue engineering by producing natural, less immunogenic, three-dimensional, acellular matrices with high biological activity for transplantation. Decellularized matrices retain specific critical components of native tissues such as stem cell niche, various growth factors, and the ability to regenerate in vivo. However, recellularization and functionalization of these matrices remain limited, highlighting the need to improve the characteristics of decellularized matrices. Incorporating nanoparticles into decellularized tissues can overcome these limitations because nanoparticles possess unique properties such as multifunctionality and can modify the surface of decellularized matrices with additional growth factors, which can be loaded onto the nanoparticles. Therefore, in this minireview, we highlight the various approaches used to improve decellularized matrices with incorporation of nanoparticles and the challenges present in these applications.
Collapse
Affiliation(s)
- Tarek M Saleh
- Department of Veterinary Science, College of Veterinary Medicine and Stem Cell Institute, Kangwon National University, Chuncheon, Republic of Korea
- Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Ebtehal A Ahmed
- Department of Veterinary Science, College of Veterinary Medicine and Stem Cell Institute, Kangwon National University, Chuncheon, Republic of Korea
- Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Lina Yu
- Department of Veterinary Science, College of Veterinary Medicine and Stem Cell Institute, Kangwon National University, Chuncheon, Republic of Korea
| | - Ho-Hyun Kwak
- Department of Veterinary Science, College of Veterinary Medicine and Stem Cell Institute, Kangwon National University, Chuncheon, Republic of Korea
| | - Kamal H Hussein
- Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Kyung-Mee Park
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Byung-Jae Kang
- Department of Veterinary Science, College of Veterinary Medicine and Stem Cell Institute, Kangwon National University, Chuncheon, Republic of Korea
| | - Ki-Young Choi
- Department of Controlled Agriculture, Kangwon National University, Chuncheon, Republic of Korea
| | - Kyung-Sun Kang
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Heung-Myong Woo
- Department of Veterinary Science, College of Veterinary Medicine and Stem Cell Institute, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
28
|
Schäfer FM, Stehr M. Tissue engineering in pediatric urology - a critical appraisal. Innov Surg Sci 2018; 3:107-118. [PMID: 31579774 PMCID: PMC6604568 DOI: 10.1515/iss-2018-0011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/17/2018] [Indexed: 01/01/2023] Open
Abstract
Tissue engineering is defined as the combination of biomaterials and bioengineering principles together with cell transplantation or directed growth of host cells to develop a biological replacement tissue or organ that can be a substitute for normal tissue both in structure and function. Despite early promising preclinical studies, clinical translation of tissue engineering in pediatric urology into humans has been unsuccessful both for cell-seeded and acellular scaffolds. This can be ascribed to various factors, including the use of only non-diseased models that inaccurately describe the structural and functional modifications of diseased tissue. The paper addresses potential future strategies to overcome the limitations experienced in clinical applications so far. This includes the use of stem cells of various origins (mesenchymal stem cells, hematopoietic stem/progenitor cells, urine-derived stem cells, and progenitor cells of the urothelium) as well as the need for a deeper understanding of signaling pathways and directing tissue ingrowth and differentiation through the concept of dynamic reciprocity. The development of smart scaffolds that release trophic factors in a set and timely manner will probably improve regeneration. Modulation of innate immune response as a major contributor to tissue regeneration outcome is also addressed. It is unlikely that only one of these strategies alone will lead to clinically applicable tissue engineering strategies in pediatric urology. In the meanwhile, the fundamental new insights into regenerative processes already obtained in the attempts of tissue engineering of the lower urogenital tract remain our greatest gain.
Collapse
Affiliation(s)
- Frank-Mattias Schäfer
- Department of Pediatric Surgery and Pediatric Urology, Cnopfsche Kinderklinik, Nürnberg, Germany
| | - Maximilian Stehr
- Department of Pediatric Surgery and Pediatric Urology, Cnopfsche Kinderklinik, Nürnberg, Germany
| |
Collapse
|
29
|
Acellular Mouse Kidney ECM can be Used as a Three-Dimensional Substrate to Test the Differentiation Potential of Embryonic Stem Cell Derived Renal Progenitors. Stem Cell Rev Rep 2018; 13:513-531. [PMID: 28239758 PMCID: PMC5493730 DOI: 10.1007/s12015-016-9712-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The development of strategies for tissue regeneration and bio-artificial organ development is based on our understanding of embryogenesis. Differentiation protocols attempt to recapitulate the signaling modalities of gastrulation and organogenesis, coupled with cell selection regimens to isolate the cells of choice. This strategy is impeded by the lack of optimal in vitro culture systems since traditional culture systems do not allow for the three-dimensional interaction between cells and the extracellular matrix. While artificial three-dimensional scaffolds are available, using the natural extracellular matrix scaffold is advantageous because it has a distinct architecture that is difficult to replicate. The adult extracellular matrix is predicted to mediate signaling related to tissue repair not embryogenesis but existing similarities between the two argues that the extracellular matrix will influence the differentiation of stem and progenitor cells. Previous studies using undifferentiated embryonic stem cells grown directly on acellular kidney ECM demonstrated that the acellular kidney supported cell growth but limited differentiation occurred. Using mouse kidney extracellular matrix and mouse embryonic stem cells we report that the extracellular matrix can support the development of kidney structures if the stem cells are first differentiated to kidney progenitor cells before being applied to the acellular organ.
Collapse
|
30
|
Bladder wall biomechanics: A comprehensive study on fresh porcine urinary bladder. J Mech Behav Biomed Mater 2018; 79:92-103. [DOI: 10.1016/j.jmbbm.2017.11.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/15/2017] [Accepted: 11/21/2017] [Indexed: 01/25/2023]
|
31
|
Wells HC, Sizeland KH, Kirby N, Hawley A, Mudie S, Haverkamp RG. Acellular dermal matrix collagen responds to strain by intermolecular spacing contraction with fibril extension and rearrangement. J Mech Behav Biomed Mater 2018; 79:1-8. [DOI: 10.1016/j.jmbbm.2017.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/28/2017] [Accepted: 12/06/2017] [Indexed: 11/30/2022]
|
32
|
Ajalloueian F, Lemon G, Hilborn J, Chronakis IS, Fossum M. Bladder biomechanics and the use of scaffolds for regenerative medicine in the urinary bladder. Nat Rev Urol 2018; 15:155-174. [DOI: 10.1038/nrurol.2018.5] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
33
|
Lee JS, Choi YS, Cho SW. Decellularized Tissue Matrix for Stem Cell and Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1064:161-180. [DOI: 10.1007/978-981-13-0445-3_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
34
|
Seydewitz R, Menzel R, Siebert T, Böl M. Three-dimensional mechano-electrochemical model for smooth muscle contraction of the urinary bladder. J Mech Behav Biomed Mater 2017; 75:128-146. [DOI: 10.1016/j.jmbbm.2017.03.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/22/2017] [Accepted: 03/31/2017] [Indexed: 11/25/2022]
|
35
|
Urinary Tissue Engineering: Challenges and Opportunities. Sex Med Rev 2017; 6:35-44. [PMID: 29066225 DOI: 10.1016/j.sxmr.2017.08.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/09/2017] [Accepted: 08/17/2017] [Indexed: 01/14/2023]
Abstract
INTRODUCTION In this review, we discuss major advancements and common challenges in constructing and regenerating a neo-urinary conduit (NUC). First, we focus on the need for regenerating the urothelium, the hallmark the urine barrier, unique to urinary tissues. Second, we focus on clinically feasible scaffolds based on decellularized matrices and molded collagen that are currently of great research interest. AIM To discuss the major advancements in constructing a tissue-engineered NUC (TE-NUC) and the challenges involved in their successful clinical translation. METHODS A comprehensive search of peer-reviewed literature from PubMed and Google Scholar on subjects related to urothelium regeneration, decellularized tissue matrices, and collagen scaffolds was conducted. MAIN OUTCOME MEASURE We evaluated the main biological and mechanical functions of urinary tissues, the need for TE implants to create a urinary diversion, the reasons for their failures in clinical settings, and the applications of decellularized tissue matrices and collagen-based molded scaffolds in their regeneration. RESULTS It is necessary to create a urine barrier that prevents urine leakage into the stroma that can cause failure of the graft. Despite the regeneration potential of the urothelium, the limited supply of healthy urothelial cells in patients with bladder cancer remains a major challenge. In this context, alternative strategies, such as transdifferentiation of cells into urothelium or engineered scaffolds based on decellularized tissues and molded collagen with robust urine barrier properties, are active areas of research. CONCLUSION There is an immediate need for developing a functional TE-NUC that can improve the quality of life of patients with bladder cancer. It is possible to achieve a TE-NUC by bioengineering an implant that has appropriate biological and mechanical properties to store and transport urine. We anticipate that future advancements in urothelium regeneration and material design will lead us closer to successful neo-urinary tissue constructs. Singh A, Bivalacqua TJ, Sopko N. Urinary Tissue Engineering: Challenges and Opportunities. Sex Med Rev 2018;6:35-44.
Collapse
|
36
|
Sizeland KH, Wells HC, Kelly SJ, Nesdale KE, May BCH, Dempsey SG, Miller CH, Kirby N, Hawley A, Mudie S, Ryan T, Cookson D, Haverkamp RG. Collagen Fibril Response to Strain in Scaffolds from Ovine Forestomach for Tissue Engineering. ACS Biomater Sci Eng 2017; 3:2550-2558. [DOI: 10.1021/acsbiomaterials.7b00588] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Katie H. Sizeland
- School
of Engineering and Advanced Technology, Massey University, Palmerston
North 4472, New Zealand
- Australian Synchrotron, 800 Blackburn
Road, Clayton, Melbourne, Victoria 3168, Australia
| | - Hannah C. Wells
- School
of Engineering and Advanced Technology, Massey University, Palmerston
North 4472, New Zealand
| | - Susyn J.R. Kelly
- School
of Engineering and Advanced Technology, Massey University, Palmerston
North 4472, New Zealand
| | - Keira E. Nesdale
- School
of Engineering and Advanced Technology, Massey University, Palmerston
North 4472, New Zealand
| | - Barnaby C. H. May
- Aroa Biosurgery, 2 Kingsford
Smith Place, Airport Oaks, Auckland 2022, New Zealand
| | - Sandi G. Dempsey
- Aroa Biosurgery, 2 Kingsford
Smith Place, Airport Oaks, Auckland 2022, New Zealand
| | | | - Nigel Kirby
- Australian Synchrotron, 800 Blackburn
Road, Clayton, Melbourne, Victoria 3168, Australia
| | - Adrian Hawley
- Australian Synchrotron, 800 Blackburn
Road, Clayton, Melbourne, Victoria 3168, Australia
| | - Stephen Mudie
- Australian Synchrotron, 800 Blackburn
Road, Clayton, Melbourne, Victoria 3168, Australia
| | - Tim Ryan
- Australian Synchrotron, 800 Blackburn
Road, Clayton, Melbourne, Victoria 3168, Australia
| | - David Cookson
- Australian Synchrotron, 800 Blackburn
Road, Clayton, Melbourne, Victoria 3168, Australia
| | - Richard G. Haverkamp
- School
of Engineering and Advanced Technology, Massey University, Palmerston
North 4472, New Zealand
| |
Collapse
|
37
|
Jiang D, Huang J, Shao H, Hu X, Song L, Zhang Y. Characterization of bladder acellular matrix hydrogel with inherent bioactive factors. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:184-189. [DOI: 10.1016/j.msec.2017.03.222] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/30/2016] [Accepted: 03/24/2017] [Indexed: 01/27/2023]
|
38
|
Zou Q, Fu Q. Tissue engineering for urinary tract reconstruction and repair: Progress and prospect in China. Asian J Urol 2017; 5:57-68. [PMID: 29736367 PMCID: PMC5934513 DOI: 10.1016/j.ajur.2017.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 03/10/2017] [Accepted: 04/25/2017] [Indexed: 12/11/2022] Open
Abstract
Several urinary tract pathologic conditions, such as strictures, cancer, and obliterations, require reconstructive plastic surgery. Reconstruction of the urinary tract is an intractable task for urologists due to insufficient autologous tissue. Limitations of autologous tissue application prompted urologists to investigate ideal substitutes. Tissue engineering is a new direction in these cases. Advances in tissue engineering over the last 2 decades may offer alternative approaches for the urinary tract reconstruction. The main components of tissue engineering include biomaterials and cells. Biomaterials can be used with or without cultured cells. This paper focuses on cell sources, biomaterials, and existing methods of tissue engineering for urinary tract reconstruction in China. The paper also details challenges and perspectives involved in urinary tract reconstruction.
Collapse
Affiliation(s)
- Qingsong Zou
- Department of Urology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Fu
- Department of Urology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
39
|
Shakhssalim N, Soleimani M, Dehghan MM, Rasouli J, Taghizadeh-Jahed M, Torbati PM, Naji M. Bladder smooth muscle cells on electrospun poly(ε-caprolactone)/poly( l -lactic acid) scaffold promote bladder regeneration in a canine model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:877-884. [DOI: 10.1016/j.msec.2017.02.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 12/03/2016] [Accepted: 02/14/2017] [Indexed: 12/30/2022]
|
40
|
The effect of a cyclic uniaxial strain on urinary bladder cells. World J Urol 2017; 35:1531-1539. [PMID: 28229212 PMCID: PMC5613063 DOI: 10.1007/s00345-017-2013-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 01/27/2017] [Indexed: 12/27/2022] Open
Abstract
Purpose Pre-conditioning of a cell seeded construct may improve the functional outcome of a tissue engineered construct for augmentation cystoplasty. The precise effects of mechanical stimulation on urinary bladder cells in vitro are not clear. In this study we investigate the effect of a cyclic uniaxial strain culture on urinary bladder cells which were seeded on a type I collagen scaffold. Methods Isolated porcine smooth muscle cells or urothelial cells were seeded on a type I collagen scaffolds and cultured under static and dynamic conditions. A uniform cyclic uniaxial strain was applied to the seeded scaffold using a Bose Electroforce Bio-Dynamic bioreactor. Cell proliferation rate and phenotype were investigated, including SEM analysis, RT-PCR and immunohistochemistry for α-Smooth muscle actin, calponin-1, desmin and RCK103 expression to determine the effects of mechanical stimulation on both cell types. Results Dynamic stimulation of smooth muscle cell seeded constructs resulted in cell alignment and enhanced proliferation rate. Additionally, expression of α-Smooth muscle actin and calponin-1 was increased suggesting differentiation of smooth muscle cells to a more mature phenotype. Conclusions Mechanical stimuli did not enhance the proliferation and differentiation of urothelial cells. Mechanical stimulation, i.e., preconditioning may improve the functional in vivo outcome of smooth muscle cell seeded constructs for flexible organs such as the bladder. Electronic supplementary material The online version of this article (doi:10.1007/s00345-017-2013-9) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
Fu X, Tan J, Sun CG, Leng HJ, Xu YS, Song CL. Intraosseous Injection of Simvastatin in Poloxamer 407 Hydrogel Improves Pedicle-Screw Fixation in Ovariectomized Minipigs. J Bone Joint Surg Am 2016; 98:1924-1932. [PMID: 27852910 DOI: 10.2106/jbjs.15.00937] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Osteoporosis leads to poor osseointegration and reduces implant stability. Statins have been found to stimulate bone formation, but the bioavailability from oral administration is low. Local application may be more effective at augmenting bone formation and enhancing implant stability. This study was performed to evaluate the efficacy of an intraosseous injection of simvastatin in thermosensitive poloxamer 407 hydrogel to enhance pedicle-screw fixation in calcium-restricted ovariectomized minipigs. METHODS Nine mature female Guangxi Bama minipigs underwent bilateral ovariectomy and were fed a calcium-restricted diet for 18 months. Simvastatin (0, 0.5, or 1 mg) in thermosensitive poloxamer 407 hydrogel was injected into the lumbar vertebrae (L4-L6), and titanium alloy pedicle screws were implanted. Bone mineral density (BMD) measurements of the lumbar vertebrae were determined by dual x-ray absorptiometry (DXA) before and 3 months after treatment. The lumbar vertebrae were harvested and analyzed with use of microcomputed tomography, biomechanical pull-out testing, histological analysis, and Western blot analysis for bone morphogenetic protein (BMP)-2 and vascular endothelial growth factor (VEGF) expression. RESULTS Evaluation over a 3-month study period demonstrated that the BMD of the vertebrae injected with 0.5 and 1.0 mg of simvastatin had increased by 31.25% and 31.09%, respectively, compared with vehicle-only injection (p ≤ 0.00014 for both) and increased by 32.12% and 28.16%, respectively, compared with the pre-treatment levels (p < 0.0001 for both). A single injection of simvastatin in poloxamer 407 increased trabecular volume fraction, thickness, and number and decreased trabecular separation (p ≤ 0.002). The bone formation and mineral apposition rates significantly increased (p ≤ 0.023). The percentage of osseointegration in the simvastatin 0.5 and 1-mg groups was 46.54% and 42.63% greater, respectively, than that in the vehicle-only group (p ≤ 0.006), and the maximum pull-out strength was 45.75% and 51.53% greater, respectively, than in the vehicle-only group (p ≤ 0.0005). BMP-2 and VEGF expressions were higher than for the vehicle-only injection. CONCLUSIONS A single intraosseous injection of simvastatin in thermosensitive poloxamer 407 hydrogel stimulated bone formation, increased BMD, improved bone microstructure, promoted osseointegration, and significantly enhanced the stability of pedicle screws in calcium-restricted ovariectomized minipigs. CLINICAL RELEVANCE These results provide rationale for evaluating intraosseous injection of simvastatin in poloxamer 407 to enhance implant fixation in patients with osteoporosis.
Collapse
Affiliation(s)
- X Fu
- Departments of Orthopedics (X.F., J.T., C.G.S., H.J.L., and C.L.S.) and Neurology (Y.S.X.), Peking University Third Hospital, Beijing, People's Republic of China
| | - J Tan
- Departments of Orthopedics (X.F., J.T., C.G.S., H.J.L., and C.L.S.) and Neurology (Y.S.X.), Peking University Third Hospital, Beijing, People's Republic of China
| | - C G Sun
- Departments of Orthopedics (X.F., J.T., C.G.S., H.J.L., and C.L.S.) and Neurology (Y.S.X.), Peking University Third Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Spinal Diseases, Beijing, People's Republic of China
| | - H J Leng
- Departments of Orthopedics (X.F., J.T., C.G.S., H.J.L., and C.L.S.) and Neurology (Y.S.X.), Peking University Third Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Spinal Diseases, Beijing, People's Republic of China
| | - Y S Xu
- Departments of Orthopedics (X.F., J.T., C.G.S., H.J.L., and C.L.S.) and Neurology (Y.S.X.), Peking University Third Hospital, Beijing, People's Republic of China
| | - C L Song
- Departments of Orthopedics (X.F., J.T., C.G.S., H.J.L., and C.L.S.) and Neurology (Y.S.X.), Peking University Third Hospital, Beijing, People's Republic of China .,Beijing Key Laboratory of Spinal Diseases, Beijing, People's Republic of China
| |
Collapse
|
42
|
Pokrywczynska M, Balcerczyk D, Jundzill A, Gagat M, Czapiewska M, Kloskowski T, Nowacki M, Gastecka AM, Bodnar M, Grzanka A, Marszalek A, Drewa T. Isolation, expansion and characterization of porcine urinary bladder smooth muscle cells for tissue engineering. Biol Proced Online 2016; 18:17. [PMID: 27524942 PMCID: PMC4982216 DOI: 10.1186/s12575-016-0047-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 08/03/2016] [Indexed: 01/20/2023] Open
Abstract
Background A key requirements for therapy utilizing the tissue engineering methodologies is use of techniques which have the capability to yield a high number of cells, from small tissue biopsy in a relatively short time. Up to date there was no optimal methods of isolation and expansion of urinary bladder smooth muscle cells (UB-SMCs). The aim of this study was to compare isolation and expansion techniques of UB-SMCs to select the most repeatable and efficient one. Method Five protocols of porcine UB- SMCs isolation including enzymatic and explant techniques and three expansion techniques were compared. Isolation effectiveness was evaluated using trypan blue assay. Cell phenotype was confirmed by immunofluorescence staining. Proliferation rate was analyzed using MTT and X- Celligence system. Cellular senescence was assessed measuring β-galactosidase activity. Results Enzymatic methods using collagenase with dispase (method I) or collagenase only (method III) allowed to isolate much larger number of cells than the methods using trypsin with collagenase (method II) and collagenase after digestion with trypsin (method IV). The success rate of establishment of primary culture was the highest when the isolated cells were cultured in the Smooth muscle Growth Medium-2 (SmGM-2). Expression of the smooth muscle markers- alpha smooth muscle actin and smoothelin was the highest for cells isolated by enzymatic method I and cultured in SmGM-2. There was no significant signs of cell senescence until the 8th passage. Conclusion The most efficient method of establishment of porcine UB-SMCs culture is enzymatic digestion of urinary bladder tissue with collagenase and dispase and culture of isolated cells in SmGM-2. This method was up to 10 times more efficient than other methods used for isolation and culture of UB-SMCs. This is an easy and consistent method for obtaining high numbers of urinary bladder smooth muscle cells.
Collapse
Affiliation(s)
- Marta Pokrywczynska
- Department of Regenerative Medicine, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Chair of Urology, Karlowicza 24 Street, 85-092 Bydgoszcz, Poland
| | - Daria Balcerczyk
- Department of Regenerative Medicine, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Chair of Urology, Karlowicza 24 Street, 85-092 Bydgoszcz, Poland
| | - Arkadiusz Jundzill
- Department of Regenerative Medicine, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Chair of Urology, Karlowicza 24 Street, 85-092 Bydgoszcz, Poland
| | - Maciej Gagat
- Chair of Histology and Embryology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College, Bydgoszcz, Poland
| | - Monika Czapiewska
- Department of Regenerative Medicine, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Chair of Urology, Karlowicza 24 Street, 85-092 Bydgoszcz, Poland
| | - Tomasz Kloskowski
- Department of Regenerative Medicine, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Chair of Urology, Karlowicza 24 Street, 85-092 Bydgoszcz, Poland
| | - Maciej Nowacki
- Department of Regenerative Medicine, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Chair of Urology, Karlowicza 24 Street, 85-092 Bydgoszcz, Poland ; Chair of Surgical Oncology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College, Bydgoszcz, Poland
| | - Agata M Gastecka
- Department of Regenerative Medicine, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Chair of Urology, Karlowicza 24 Street, 85-092 Bydgoszcz, Poland
| | - Magdalena Bodnar
- Department of Clinical Pathomorphology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College, Bydgoszcz, Poland
| | - Alina Grzanka
- Chair of Histology and Embryology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College, Bydgoszcz, Poland
| | - Andrzej Marszalek
- Department of Clinical Pathomorphology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College, Bydgoszcz, Poland ; Department of Pathology, Poznan University of Medical Sciences, Poznan, Poland
| | - Tomasz Drewa
- Department of Regenerative Medicine, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Chair of Urology, Karlowicza 24 Street, 85-092 Bydgoszcz, Poland ; Department of Urology, Nicolaus Copernicus Hospital, Torun, Poland
| |
Collapse
|
43
|
Abstract
Urologic tissue engineering efforts have been largely focused on bladder and urethral defect repair. The current surgical gold standard for treatment of poorly compliant pathological bladders and severe urethral stricture disease is enterocystoplasty and onlay urethroplasty with autologous tissue, respectively. The complications associated with autologous tissue use and harvesting have led to efforts to develop tissue-engineered alternatives. Natural and synthetic materials have been used with varying degrees of success, but none has proved consistently reliable for urologic tissue defect repair in humans. Silk fibroin (SF) scaffolds have been tested in bladder and urethral repair because of their favorable biomechanical properties including structural strength, elasticity, biodegradability, and biocompatibility. SF scaffolds have been used in multiple animal models and have demonstrated robust regeneration of smooth muscle and urothelium. The pre-clinical data involving SF scaffolds in urologic defect repair are encouraging and suggest that they hold potential for future clinical use.
Collapse
Affiliation(s)
- Bryan S Sack
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, 02115, USA. .,Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA.
| | - Joshua R Mauney
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, 02115, USA. .,Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA. .,Department of Urology, John F. Enders Research Laboratories, Boston Children's Hospital, 300 Longwood Ave., Rm. 1009, Boston, MA, 02115, USA.
| | - Carlos R Estrada
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, 02115, USA. .,Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA. .,Department of Urology, Boston Children's Hospital, 300 Longwood Ave., Hunnewell 3, Boston, MA, 02115, USA.
| |
Collapse
|
44
|
Acellularization-Induced Changes in Tensile Properties Are Organ Specific - An In-Vitro Mechanical and Structural Analysis of Porcine Soft Tissues. PLoS One 2016; 11:e0151223. [PMID: 26960134 PMCID: PMC4784745 DOI: 10.1371/journal.pone.0151223] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/23/2016] [Indexed: 12/18/2022] Open
Abstract
Introduction Though xenogeneic acellular scaffolds are frequently used for surgical reconstruction, knowledge of their mechanical properties is lacking. This study compared the mechanical, histological and ultrastructural properties of various native and acellular specimens. Materials and Methods Porcine esophagi, ureters and skin were tested mechanically in a native or acellular condition, focusing on the elastic modulus, ultimate tensile stress and maximum strain. The testing protocol for soft tissues was standardized, including the adaption of the tissue’s water content and partial plastination to minimize material slippage as well as templates for normed sample dimensions and precise cross-section measurements. The native and acellular tissues were compared at the microscopic and ultrastructural level with a focus on type I collagens. Results Increased elastic modulus and ultimate tensile stress values were quantified in acellular esophagi and ureters compared to the native condition. In contrast, these values were strongly decreased in the skin after acellularization. Acellularization-related decreases in maximum strain were found in all tissues. Type I collagens were well-preserved in these samples; however, clotting and a loss of cross-linking type I collagens was observed ultrastructurally. Elastins and fibronectins were preserved in the esophagi and ureters. A loss of the epidermal layer and decreased fibronectin content was present in the skin. Discussion Acellularization induces changes in the tensile properties of soft tissues. Some of these changes appear to be organ specific. Loss of cross-linking type I collagen may indicate increased mechanical strength due to decreasing transverse forces acting upon the scaffolds, whereas fibronectin loss may be related to decreased load-bearing capacity. Potentially, the alterations in tissue mechanics are linked to organ function and to the interplay of cells and the extracellular matrix, which is different in hollow organs when compared to skin.
Collapse
|
45
|
Zhe Z, Jun D, Yang Z, Mingxi X, Ke Z, Ming Z, Zhong W, Mujun L. Bladder Acellular Matrix Grafts Seeded with Adipose-Derived Stem Cells and Incubated Intraperitoneally Promote the Regeneration of Bladder Smooth Muscle and Nerve in a Rat Model of Bladder Augmentation. Stem Cells Dev 2016; 25:405-14. [PMID: 26863067 DOI: 10.1089/scd.2015.0246] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The objective of this study was to investigate the feasibility of bladder acellular matrix grafts (BAMGs) seeded with adipose-derived stem cells (ASCs) followed by intraperitoneal incubation for bladder reconstruction in a rat model of bladder augmentation, and to explore the underlying mechanism. Autologous CM-DiI-labeled ASC-seeded (experimental group) and unseeded (control group) BAMGs were incubated in the peritoneum of male rats for 2 weeks and then harvested for bladder augmentation. Histological analysis of the incubated BAMGs revealed numerous cells growing in homogeneous collagen bundles in both groups. In the control BAMGs, these cells were mesenchyme derived, while in the ASC-seeded BAMGs, myofibroblasts and mesothelial cells were found inside and on the surface of the scaffold, respectively. Immunofluorescence analysis demonstrated that some of the myofibroblasts were transdifferentiated from the ASCs after 2 weeks of intraperitoneal incubation. The greater bladder capacity was found in the experimental group than the control group both 4 and 14 weeks postoperatively. Histological analysis revealed that the entire urothelium regenerated well both in the experimental group and the control group without significant difference 4 weeks and 14 weeks postoperatively. From the quantitative data of immunohistochemical and immunofluorescence staining, the smooth muscle cells (SMCs) regenerated significantly better in the experimental group than the control group both 4 weeks and 14 weeks postoperatively. Also significantly more nerve cells were found in the experimental group 14 weeks postoperatively. At 4 weeks postoperatively, the immunofluorescence double staining revealed that some SMCs in the BAMG were transdifferentiated from the implanted ASCs, but no CM-DiI labeling of ASCs was detected 14 weeks postoperatively. Taken together, our results demonstrate that ASC-seeded and peritoneally incubated BAMGs promote not only the morphological regeneration of the bladder smooth muscle and nerve, but also the bladder capacity, which indicates their potential for bladder regeneration.
Collapse
Affiliation(s)
- Zhou Zhe
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Da Jun
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Zhao Yang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Xu Mingxi
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Zhang Ke
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Zhang Ming
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Wang Zhong
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Lu Mujun
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| |
Collapse
|
46
|
Co-delivery of VEGF and bFGF via a PLGA nanoparticle-modified BAM for effective contracture inhibition of regenerated bladder tissue in rabbits. Sci Rep 2016; 6:20784. [PMID: 26854200 PMCID: PMC4745101 DOI: 10.1038/srep20784] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/12/2016] [Indexed: 01/30/2023] Open
Abstract
Graft contracture is a common problem associated with the regeneration processes of tissue-engineered bladders. Currently, most strategies used for incorporating bioactive molecules into biomaterial designs do not work during all phases of tissue regeneration. In this study, we used a growth factor-PLGA nanoparticle thermo-sensitive gel system (i.e., BAM with incorporated VEGF and bFGF-loaded PLGA nanoparticles and mixed with a hydrophilic gel) to promote bladder tissue regeneration in a rabbit model. At 4 and 12 weeks after surgery, contracture rate assessment and histological examination were conducted to evaluate bladder tissue regeneration. The results indicated that the functional composite scaffold continuously and effectively released VEGF and bFGF and promoted bladder reconstruction with a significant decrease in graft contracture. In addition, the number and arrangement of regenerated urothelial cells and smooth muscle cells as well as microvascular density and maturity were improved in the VEGF/bFGF nanoparticle group compared with the single factor VEGF or bFGF nanoparticle group and BAM alone. The nanoparticle thermo-sensitive gel system, which exhibited favourable performance, may effectively inhibit graft contracture and promote bladder tissue regeneration in rabbits.
Collapse
|
47
|
Zhou Z, Zhang M, Xu M, Zhang K, Zhao Y, Zhou J, Zhu Y, Wang Z, Lu M. Intraperitoneal incubation of bladder acellular matrix grafts improves bladder smooth muscle regeneration via neovascularization. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0705-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Huang JW, Xu YM, Li ZB, Murphy SV, Zhao W, Liu QQ, Zhu WD, Fu Q, Zhang YP, Song LJ. Tissue performance of bladder following stretched electrospun silk fibroin matrix and bladder acellular matrix implantation in a rabbit model. J Biomed Mater Res A 2015; 104:9-16. [PMID: 26148477 DOI: 10.1002/jbm.a.35535] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/07/2015] [Accepted: 06/25/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Jian-Wen Huang
- Department of Urology; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai 200233 China
| | - Yue-Min Xu
- Department of Urology; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai 200233 China
| | - Zhao-Bo Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering, Donghua University; Shanghai 201620 China
| | - Sean V. Murphy
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd; Winston Salem North Carolina 27157
| | - Weixin Zhao
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd; Winston Salem North Carolina 27157
| | - Qiang-Qiang Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering, Donghua University; Shanghai 201620 China
| | - Wei-Dong Zhu
- Department of Urology; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai 200233 China
| | - Qiang Fu
- Department of Urology; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai 200233 China
| | - Yao-Peng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering, Donghua University; Shanghai 201620 China
| | - Lu-Jie Song
- Department of Urology; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai 200233 China
| |
Collapse
|
49
|
Bouhout S, Chabaud S, Bolduc S. Organ-specific matrix self-assembled by mesenchymal cells improves the normal urothelial differentiation in vitro. World J Urol 2015; 34:121-30. [PMID: 26008115 DOI: 10.1007/s00345-015-1596-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/16/2015] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Enterocystoplasty is the gold standard to perform bladder reconstruction. Since this technique has a high morbidity rate, several matrix scaffolds have been proposed to support the urothelial maturation. Unfortunately, epithelial cells failed to fully integrate the cell-matrix interactions and therefore appropriate signalling pathways of normal differentiation. Based on these observations, we proposed to culture bladder urothelial cells (BUC) onto a matrix self-assembled by bladder mesenchymal cells (BMC), to form a vesical model (VM). METHODS Different serum proportions were assessed to obtain a manipulable matrix deposited by BMC. The BUC were then seeded onto the BMC's matrix to evolve in a three-dimensional culture. Haematoxylin-eosin staining, immunolabeling, scanning electron microscopy, western blot and matrix metalloproteinases analysis were performed for the VM characterization. RESULTS We were able to obtain an original matrix made of collagen-I and presenting specific organization. Matrix remodelling was observed and led to a cellular compartmentalization. The reconstructed urothelium developed in a pseudostratified arrangement, displaying an adequate cellular polarity and apical membrane remodelling of superficial cells. Like native bladder, cytokeratin 14 immunolabeling was not observed in our VM, which indicate the conformity of the development sequence taken by BUC under the influence of the BMC's matrix. CONCLUSION Thus, it was possible to elaborate a VM without the use of exogenous matrices. The particular characteristics of the BMC's matrix permitted the development of an urothelium that shared the phenotype of native tissue. The autologous character of our VM, and its appropriate urothelial maturation, could potentially promote a better integration after grafting.
Collapse
Affiliation(s)
- S Bouhout
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX Faculté de médecine, Centre de Recherche du CHU de Québec, Université Laval, Québec, Canada.
| | - S Chabaud
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX Faculté de médecine, Centre de Recherche du CHU de Québec, Université Laval, Québec, Canada
| | - S Bolduc
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX Faculté de médecine, Centre de Recherche du CHU de Québec, Université Laval, Québec, Canada
| |
Collapse
|
50
|
El-Taji OMS, Khattak AQ, Hussain SA. Bladder reconstruction: The past, present and future. Oncol Lett 2015; 10:3-10. [PMID: 26170968 DOI: 10.3892/ol.2015.3161] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 03/26/2015] [Indexed: 12/28/2022] Open
Abstract
Ileal conduit urinary diversion is the gold standard treatment for urinary tract reconstruction following cystectomy. This procedure uses gastrointestinal segments for bladder augmentation, a technique that is often associated with significant complications. The substantial progression in the fields of tissue engineering and regenerative medicine over the previous two decades has resulted in the development of techniques that may lead to the construction of functional de novo urinary bladder substitutes. The present review identifies and discusses the complications associated with current treatment options post-cystectomy. The current techniques, achievements and perspectives of the use of biomaterials and stem cells in the field of urinary bladder reconstruction are also reviewed.
Collapse
Affiliation(s)
- Omar M S El-Taji
- Department of Surgical Oncology, Royal Liverpool University Hospital, Liverpool L7 8XP, UK
| | - Altaf Q Khattak
- Department of Urology, St. Helen's & Knowsley NHS Teaching Hospitals, University of Liverpool, Prescot L35 5DR, United Kingdom
| | - Syed A Hussain
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3GA, United Kingdom
| |
Collapse
|