1
|
Zungu B, Kamdem Paumo H, Gaorongwe JL, Tsuene GN, Ruzvidzo O, Katata-Seru L. Zn nutrients-loaded chitosan nanocomposites and their efficacy as nanopriming agents for maize ( Zea mays) seeds. Front Chem 2023; 11:1243884. [PMID: 37638104 PMCID: PMC10457009 DOI: 10.3389/fchem.2023.1243884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Recent breakthroughs in agro-inputs research have led to the development of nanomaterials that can promote precision agriculture and better environmental security. The agricultural sector is increasingly facing the negative impacts of changing climates due to various stress conditions. To curb this scenario, economical and low-risk practices such as decreasing fertilizer inputs and seed priming have been promoted. In the current study, the H. odoratissimum aqueous extract was used to nucleate the Zn ionic species and grow the zinc oxide nanoparticles (ZnO NPs). The developed nanocomposites and their ionic zinc precursor were then integrated into tripolyphosphate (TPP)-crosslinked chitosan (CS/TPP) nanostructures by ionic gelation. Advanced physicochemical characterization techniques (SEM, EDS, TEM, DLS, FTIR, TGA, and XPS) were exploited to report the morphology, hydrodynamic size, surface charge, and structural organization of the developed nanomaterials. These revealed positively charged particles with hydrodynamic size in the 149-257 nm range. The NPs were used as priming agents for Zea mays seeds. At 0.04%, the ZnO-loaded CS/TPP NPs achieved higher root and shoot elongation in 10-day old seedlings compared to other treatments. The pristine CS/TPP NPs, Zn(II)-laden CS/TPP NPs, and ZnO-loaded CS/TPP NPs at 0.01% significantly promoted the early seedling development of seeds under salt stress. This represents the first report showing ZnO integrated chitosan nanocomposites as an auspicious nanopriming agent for stimulating the seed germination of maize. The study envisages offering perspectives on utilizing green nanotechnology to improve the early seedling development of maize. Furthermore, it has the potential to contribute towards UN SDG 2, thus addressing the threats to global food insecurity and doubling agricultural productivity by 2030.
Collapse
Affiliation(s)
- Bongiwe Zungu
- Department of Chemistry, Material Science Innovation and Modelling (MaSIM) Research Focus Area, North-West University, Mmabatho, South Africa
| | - Hugues Kamdem Paumo
- Department of Chemistry, Material Science Innovation and Modelling (MaSIM) Research Focus Area, North-West University, Mmabatho, South Africa
| | - Joseph Lesibe Gaorongwe
- Department of Botany, School of Biological Sciences, North-West University, Potchefstroom, South Africa
| | - Gaborone Neo Tsuene
- Department of Botany, School of Biological Sciences, North-West University, Potchefstroom, South Africa
| | - Oziniel Ruzvidzo
- Department of Botany, School of Biological Sciences, North-West University, Potchefstroom, South Africa
| | - Lebogang Katata-Seru
- Department of Chemistry, Material Science Innovation and Modelling (MaSIM) Research Focus Area, North-West University, Mmabatho, South Africa
| |
Collapse
|
2
|
Kadoya K, Hara ES, Okada M, Jiao YY, Nakano T, Sasaki A, Matsumoto T. Fabrication of initial trabecular bone-inspired three-dimensional structure with cell membrane nano fragments. Regen Biomater 2022; 10:rbac088. [PMID: 36683756 PMCID: PMC9845518 DOI: 10.1093/rb/rbac088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/07/2022] [Accepted: 10/22/2022] [Indexed: 01/19/2023] Open
Abstract
The extracellular matrix of trabecular bone has a large surface exposed to the bone marrow and plays important roles such as hematopoietic stem cell niche formation and maintenance. In vitro reproduction of trabecular bone microenvironment would be valuable not only for developing a functional scaffold for bone marrow tissue engineering but also for understanding its biological functions. Herein, we analyzed and reproduced the initial stages of trabecular bone formation in mouse femur epiphysis. We identified that the trabecular bone formation progressed through the following steps: (i) partial rupture of hypertrophic chondrocytes; (ii) calcospherite formation on cell membrane nano fragments (CNFs) derived from the ruptured cells; and (iii) calcospherite growth and fusion to form the initial three-dimensional (3D) structure of trabecular bones. For reproducing the initial trabecular bone formation in vitro, we collected CNFs from cultured cells and used as nucleation sites for biomimetic calcospherite formation. Strikingly, almost the same 3D structure of the initial trabecular bone could be obtained in vitro by using additional CNFs as a binder to fuse biomimetic calcospherites.
Collapse
Affiliation(s)
- Koichi Kadoya
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan,Department of Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Emilio Satoshi Hara
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Masahiro Okada
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yu Yang Jiao
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Takayoshi Nakano
- Division of Materials & Manufacturing Science, Osaka University, Osaka 565-0871, Japan
| | - Akira Sasaki
- Department of Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | | |
Collapse
|
3
|
Hara ES, Nagaoka N, Okada M, Nakano T, Matsumoto T. Distinct Morphologies of Bone Apatite Clusters in Endochondral and Intramembranous Ossification. Adv Biol (Weinh) 2022; 6:e2200076. [PMID: 35859256 DOI: 10.1002/adbi.202200076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/27/2022] [Indexed: 01/28/2023]
Abstract
Bone apatite crystals grow in clusters, but the microstructure of these clusters is unknown. This study compares the structural and compositional differences between bone apatite clusters formed in intramembranous (IO) and endochondral ossification (EO). Calvaria (IO) and femurs (EO) are isolated from mice at embryonic days (E) 14.5 to 15.5 and post-natal days (P) 6 to 7, respectively. Results show that the initially formed bone apatite clusters in EO (≅1.2 µm2 ) are >10 times larger than those in IO (≅0.1 µm2 ), without significant changes in ion composition. In IO (E14.5 calvarium), early minerals are formed inside matrix vesicles (MVs). In contrast, in EO (P6 femur epiphysis), no MVs are observed, and chondrocyte-derived plasma membrane nanofragments (PMNFs) are the nucleation site for mineralization. Apatite cluster size difference is linked with the different nucleation sites. Moreover, an alkaline pH and slow P supply into a Ca-rich microenvironment are suggested to facilitate apatite cluster growth, as demonstrated in a biomimetic mineralization system. Together, the results reveal for the first time the distinct and exquisite microstructures of bone apatite clusters in IO and EO, and provide insightful inspirations for the design of more efficient materials for bone tissue engineering and repair.
Collapse
Affiliation(s)
- Emilio Satoshi Hara
- Department of Biomaterials Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Noriyuki Nagaoka
- Dental School, Okayama University, Advanced Research Center for Oral and Craniofacial Sciences, Okayama, 700-8525, Japan
| | - Masahiro Okada
- Department of Biomaterials Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita-Shi, Osaka, 565-0871, Japan
| | - Takuya Matsumoto
- Department of Biomaterials Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| |
Collapse
|
4
|
Krukowski S, Sztelmach K. The influence of single and binary mixtures of collagen amino acids on the structure of synthetic calcium hydroxyapatite as a nanobiomaterial. RSC Adv 2022; 12:23769-23777. [PMID: 36093235 PMCID: PMC9394482 DOI: 10.1039/d2ra03372k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
The modifications carried out as part of this study were aimed at examining the effect of the addition of collagen amino acids: glycine, proline and hydroxyproline (used separately and in binary mixtures) on the physicochemical properties of hydroxyapatite obtained in their presence in vitro. The influence of mixtures of amino acids on these properties is an important element of scientific novelty. The obtained samples were tested with the use of instrumental methods: FT-IR, TEM, EDXMA, PXRD and UV spectrophotometry. The results showed the influence of the amino acids used on changes in the relative content of the labile phosphate groups constituting the structure of the hydrated surface layer of crystals. As a consequence, there were differences in some physicochemical properties of the obtained hydroxyapatites (degree of crystallinity, molar Ca/P ratio). It was also determined how the ability of the used amino acids to bind to hydroxyapatite changes.
Collapse
Affiliation(s)
- Sylwester Krukowski
- Medical University of Warsaw, Faculty of Pharmacy, Department of Analytical Chemistry Warsaw Poland
| | - Konrad Sztelmach
- Medical University of Warsaw, Faculty of Pharmacy, Department of Analytical Chemistry Warsaw Poland
| |
Collapse
|
5
|
Continuous Production of Highly Tuned Silk/Calcium-Based Composites: Exploring New Pathways for Skin Regeneration. Molecules 2022; 27:molecules27072249. [PMID: 35408647 PMCID: PMC9000890 DOI: 10.3390/molecules27072249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 11/23/2022] Open
Abstract
Calcium plays an important role in barrier function repair and skin homeostasis. In particular, calcium phosphates (CaPs) are well established materials for biomedical engineering due to their biocompatibility. To generate biomaterials with a more complete set of biological properties, previously discarded silk sericin (SS) has been recovered and used as a template to grow CaPs. Crucial characteristics for skin applications, such as antibacterial activity, can be further enhanced by doping CaPs with cerium (Ce) ions. The effectiveness of cell attachment and growth on the materials highly depends on their morphology, particle size distribution, and chemical composition. These characteristics can be tailored through the application of oscillatory flow technology, which provides precise mixing control of the reaction medium. Thus, in the present work, CaP/SS and CaP/SS/Ce particles were fabricated for the first time using a modular oscillatory flow plate reactor (MOFPR) in a continuous mode. Furthermore, the biological behavior of both these composites and of previously produced pure CaPs was assessed using human dermal fibroblasts (HDFs). It was demonstrated that both CaP based with plate-shaped nanoparticles and CaP-SS-based composites significantly improved cell viability and proliferation over time. The results obtained represent a first step towards the reinvention of CaPs for skin engineering.
Collapse
|
6
|
Zhong Z, Wu X, Wang Y, Li M, Li Y, Liu X, Zhang X, Lan Z, Wang J, Du Y, Zhang S. Zn/Sr dual ions-collagen co-assembly hydroxyapatite enhances bone regeneration through procedural osteo-immunomodulation and osteogenesis. Bioact Mater 2021; 10:195-206. [PMID: 34901539 PMCID: PMC8636740 DOI: 10.1016/j.bioactmat.2021.09.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/21/2021] [Accepted: 09/07/2021] [Indexed: 01/07/2023] Open
Abstract
The immune microenvironment induced by biomaterials played vital roles in bone regeneration. Hydroxyapatite (HA) and its ion-substituted derivates represent a large class of core inorganic materials for bone tissue engineering. Although ion substitution was proved to be a potent way to grant HA more biological functions, few studies focused on the immunomodulatory properties of ion-doped HA. Herein, to explore the potential osteoimmunomodulatory effects of ion-doped HA, zinc and strontium co-assembled into HA through a collagen template biomimetic way (ZnSr-Col-HA) was successfully achieved. It was found that ZnSr-Col-HA could induce a favorable osteo-immune microenvironment by stimulating macrophages. Furthermore, ZnSr-Col-HA demonstrated a procedural promoting effect on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro. Specifically, the osteo-immune microenvironment acted as a dominant factor in promoting osteogenic gene expressions at the early stage through OSM signal pathway. Whereas the direct stimulating effects on BMSCs by Zn2+/Sr2+ were more effectively at the later stage with Nfatc1/Maf and Wnt signals activated. In vivo study confirmed strong promoting effects of ZnSr-Col-HA on critical-sized cranial defect repair. The current study indicated that such a combined biomaterial design philosophy of dual ion-doping and biomimetic molecular co-assembly to endow HA applicable osteoimmunomodulatory characteristics might bring up a new cutting-edge concept for bone regeneration study. Zn/Sr dual ions-collagen co-assembly hydroxyapatite (ZnSr-Col-HA) was achieved via a molecular template biomimetic way. A procedural promoting effect of ZnSr-Col-HA on osteogenic differentiation of BMSCs was firstly found. A novel material design philosophy was proposed for dual ions-doped biomimetic HA with osteoimmunomodulatory properties.
Collapse
Affiliation(s)
- Zhenyu Zhong
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, China.,Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaodan Wu
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, China.,Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yifan Wang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, China.,Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mengdie Li
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, China.,Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yan Li
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, China.,Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - XuLong Liu
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, China.,Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xin Zhang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, China.,Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ziyang Lan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jianglin Wang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, China.,Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.,Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yingying Du
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, China.,Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.,Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shengmin Zhang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, China.,Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.,Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
7
|
Hoff SE, Liu J, Heinz H. Binding mechanism and binding free energy of amino acids and citrate to hydroxyapatite surfaces as a function of crystallographic facet, pH, and electrolytes. J Colloid Interface Sci 2021; 605:685-700. [PMID: 34365305 DOI: 10.1016/j.jcis.2021.07.109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
Hydroxyapatite (HAP) is the major mineral phase in bone and teeth. The interaction of individual amino acids and citrate ions with different crystallographic HAP surfaces has remained uncertain for decades, creating a knowledge gap to rationally design interactions with peptides, proteins, and drugs. In this contribution, we quantify the binding mechanisms and binding free energies of the 20 end-capped natural amino acids and citrate ions on the basal (001) and prismatic (010)/(020) planes of hydroxyapatite at pH values of 7 and 5 for the first time at the molecular scale. We utilized over 1500 steered molecular dynamics simulations with highly accurate potentials that reproduce surface and hydration energies of (hkl) hydroxyapatite surfaces at different pH values. Charged residues demonstrate a much higher affinity to HAP than charge-neutral species due to the formation of superficial ion pairs and ease of penetration into layers of water molecules on the mineral surface. Binding free energies range from 0 to -60 kJ/mol and were determined with ∼ 10% uncertainty. The highest affinity was found for citrate, followed by Asp(-) and Glu(-), and followed after a gap by Arg(+), Lys(+), as well as by His(+) at pH 5. The (hkl)-specific area density of calcium ions, the protonation state of phosphate ions, and subsurface directional order of the ions in HAP lead to surface-specific binding patterns. Amino acids without ionic side groups exhibit weak binding, between -3 and 0 kJ/mol, due to difficulties to penetrate the first layer of water molecules on the apatite surfaces. We explain recognition processes that remained elusive in experiments, in prior simulations, discuss agreement with available data, and reconcile conflicting interpretations. The findings can serve as useful input for the design of peptides, proteins, and drug molecules for the modification of bone and teeth-related materials, as well as control of apatite mineralization.
Collapse
Affiliation(s)
- Samuel E Hoff
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Juan Liu
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Materials Science and Engineering, Dalian Maritime University, Dalian, Liaoning 116026, China
| | - Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
8
|
Florkiewicz W, Słota D, Placek A, Pluta K, Tyliszczak B, Douglas TEL, Sobczak-Kupiec A. Synthesis and Characterization of Polymer-Based Coatings Modified with Bioactive Ceramic and Bovine Serum Albumin. J Funct Biomater 2021; 12:21. [PMID: 33808394 PMCID: PMC8103286 DOI: 10.3390/jfb12020021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
This study involves the synthesis of hydroxyapatite and describes the preparation and characterization of polymer coatings based on poly(ethylene glycol) diacrylate and poly(ethylene glycol) and modified with bovine serum albumin and hydroxyapatite. Hydroxyapatite was obtained by wet chemical synthesis and characterized by X-ray diffraction and FTIR spectroscopy, and its Ca/P molar ratio was determined (1.69 ± 0.08). The ceramic and bovine serum albumin were used in the preparation of composite materials with the polymeric matrix. The chemical composition of coatings was characterized with FTIR spectroscopy, and their morphology was recorded with SEM imaging. Moreover, the measurements of surface roughness parameters and stereometric research were performed. The prepared coatings were subjected to in vitro studies in simulated body fluid and artificial saliva. Changes in chemical composition and morphology after immersion were examined with FTIR spectroscopy and SEM imaging. Based on the conducted research, it can be stated that applied modifiers promote the biomineralization process. The roughness analysis confirmed prepared materials were characterized by the micrometer-scale topography. The materials morphology and roughness, and the morphology of the newly formed apatite deposit, were dependent on the type of the used modifier, and the artificial fluid used in in vitro studies.
Collapse
Affiliation(s)
- Wioletta Florkiewicz
- Institute of Materials Science, Faculty of Materials Science and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (W.F.); (B.T.); (A.S.-K.)
| | - Dagmara Słota
- Institute of Materials Science, Faculty of Materials Science and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (W.F.); (B.T.); (A.S.-K.)
| | - Angelika Placek
- Institute of Inorganic Chemistry and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Krakow, Poland; (A.P.); (K.P.)
| | - Klaudia Pluta
- Institute of Inorganic Chemistry and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Krakow, Poland; (A.P.); (K.P.)
| | - Bożena Tyliszczak
- Institute of Materials Science, Faculty of Materials Science and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (W.F.); (B.T.); (A.S.-K.)
| | - Timothy E. L. Douglas
- Engineering Department, Lancaster University, Gillow Av., Lancaster LA1 4YW, UK;
- Materials Science Institute, Lancaster University, Gillow Av., Lancaster LA1 4YW, UK
| | - Agnieszka Sobczak-Kupiec
- Institute of Materials Science, Faculty of Materials Science and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (W.F.); (B.T.); (A.S.-K.)
| |
Collapse
|
9
|
Hara ES, Okada M, Nagaoka N, Nakano T, Matsumoto T. Re-Evaluation of Initial Bone Mineralization from an Engineering Perspective. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:246-255. [PMID: 33573463 PMCID: PMC8892978 DOI: 10.1089/ten.teb.2020.0352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bone regeneration was one of the earliest fields to develop in the context of tissue regeneration, and currently, repair of small-sized bone defects has reached a high success rate. Future researches are expected to incorporate more advanced techniques toward achieving rapid bone repair and modulation of the regenerated bone quality. For these purposes, it is important to have a more integrative understanding of the mechanisms of bone formation and maturation from multiple perspectives and to incorporate these new concepts into the development and designing of novel materials and techniques for bone regeneration. This review focuses on the analysis of the earliest stages of bone tissue development from the biology, material science, and engineering perspectives for a more integrative understanding of bone formation and maturation, and for the development of novel biology-based engineering approaches for tissue synthesis in vitro. More specifically, the authors describe the systematic methodology that allowed the understanding of the different nucleation sites in intramembranous and endochondral ossification, the space-making process for mineral formation and growth, as well as the process of apatite crystal cluster growth in vivo in the presence of suppressing biomolecules.
Collapse
Affiliation(s)
- Emilio Satoshi Hara
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masahiro Okada
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Noriyuki Nagaoka
- Advanced Research Center for Oral & Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Takuya Matsumoto
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
10
|
Chauhan N, Singh Y. L-histidine controls the hydroxyapatite mineralization with plate-like morphology: Effect of concentration and media. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111669. [PMID: 33545834 DOI: 10.1016/j.msec.2020.111669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/29/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022]
Abstract
Hydroxyapatite (HA) is the main inorganic component of bone and dentin, and their non-stoichiometric compositions and plate-shaped morphology is responsible for their bioactivity and osteoconductive nature. Collagenous (CPs) and non-collagenous proteins (NCPs) facilitate mineralization and regulate structural properties of HA through their side-chains. The bioactivity of synthetic HA does not usually match with the HA found in bone and, therefore, there is a need to understand the role of biomolecules in bone mineralization in order to develop non-stoichiometric plate-shaped HA for bone grafts. Role of several amino acids has been investigated but the role of L-his has been rarely investigated under physiological conditions even though it is a part of HA inhibitor proteins, like albumin, amelogenin, and histidine-rich proteins. In this study, L-his and L-glu were used to modify the structural properties of HA in different experimental conditions and buffer systems (tris and hepes). The results showed that L-his was able to regulate the plate-shaped morphology of HA in every experimental condition, unlike the L-glu, where the crystal morphology was regulated by experimental conditions. Both amino acids behaved differently in DI water, tris, and hepes buffer, and the media used influenced the precipitation time and structural properties of HA. Hepes and tris buffers also influenced the HA precipitation process. Overall, the studies revealed that L-his may be used as an effective regulator of plate-shaped morphology of HA, instead of large NCPs/proteins, for designing biomaterials for bone regeneration applications and the choice of buffer system is important in designing and evaluating the systems for mineralization. In cell culture studies, mouse osteoblast precursor cells (MC3T3-E1) showed highest proliferation on the bone-like plate-shaped HA, among all the HA samples investigated.
Collapse
Affiliation(s)
- Neelam Chauhan
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| | - Yashveer Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India.
| |
Collapse
|
11
|
Yanyan S, Guangxin W, Guoqing S, Yaming W, Wuhui L, Osaka A. Effects of amino acids on conversion of calcium carbonate to hydroxyapatite. RSC Adv 2020; 10:37005-37013. [PMID: 35521267 PMCID: PMC9057079 DOI: 10.1039/d0ra07636h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 09/30/2020] [Indexed: 11/21/2022] Open
Abstract
Conversion of calcium carbonate (calcite; CC) to hydroxyapatite (HAp) was examined when the CC particles of sub μm size were soaked at 37 °C for up to 10 d in 0.15 M K2HPO4 (20 ml), whose pH was set to 3-12. Here, the solution contained amino acids, such as glutamine (Glu), arginine (Arg), and glycine (Gly), and their content varied from 0-1.0 g per ml of solution. From the X-ray diffraction (XRD) intensity of the 104 and 211 diffractions of calcite and apatite, respectively, it was seen that the presence of the amino acids promoted the conversion. This was supported by the thermogravimetry (TG) results. The highest promotion was observed at 0.5 g addition of amino acids to the phosphate solution, while Glu showed the highest promotion among the amino acids and Gly the lowest. A scanning electron microscopy study indicated that petal-like HAp nano-crystallites covered the entire surface of the CC particles when they were soaked in the phosphate solution with 0.1 g or more of amino acid for 10 d. The XRD intensity ratio 104(CC)/211(HAp) indicated greater CC to HAp conversion in the solutions at pH 3 and 6 than in the more alkaline solutions. This was attributed to the dissolution of CC in the acidic solutions, which was confirmed by bubbling in these solutions.
Collapse
Affiliation(s)
- Sun Yanyan
- Department of Materials Science and Engineering, Henan University of Science and Technology Luoyang Henan Province 471023 China
| | - Wang Guangxin
- Department of Materials Science and Engineering, Henan University of Science and Technology Luoyang Henan Province 471023 China
| | - Sun Guoqing
- School of Vehicle Engineering, Luoyang Institute of Technology Luoyang Henan Province 471023 China
| | - Wang Yaming
- Department of Materials Science and Engineering, Henan University of Science and Technology Luoyang Henan Province 471023 China
| | - Li Wuhui
- Department of Materials Science and Engineering, Henan University of Science and Technology Luoyang Henan Province 471023 China
| | - Akiyoshi Osaka
- Department of Materials Science and Engineering, Henan University of Science and Technology Luoyang Henan Province 471023 China
- Faculty of Engineering, Okayama University Tsushima Okayama 700-8530 Japan
| |
Collapse
|
12
|
Biomineralization eliminating marine organic colloids (MOCs) during seawater desalination: Mechanism and efficiency. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Sun S, Chen Q, Song Q. Formation and phase evolution of calcium phosphates modulated by ion exchange ionomer Nafion. CrystEngComm 2020. [DOI: 10.1039/d0ce01108h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The phase transition of calcium phosphates regulated by Nafion with the inherent acidity and ion exchange features.
Collapse
Affiliation(s)
- Shuquan Sun
- International Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
- P.R.China
| | - Qixuan Chen
- International Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
- P.R.China
| | - Qijun Song
- International Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
- P.R.China
| |
Collapse
|
14
|
Kundu B, Brancato V, Oliveira JM, Correlo VM, Reis RL, Kundu SC. Silk fibroin promotes mineralization of gellan gum hydrogels. Int J Biol Macromol 2019; 153:1328-1334. [PMID: 31730995 DOI: 10.1016/j.ijbiomac.2019.10.269] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Mineralization is a natural process leading to the formation of mineralized tissue such as bone. The chief mineral component of bone is hydroxyapatite (HAp), which is deposited using an organic template like fibrillar Collagen I under physiological condition. Fibrous silk fibroin is structurally homologous to collagen and acts as nucleation site for HAp mineralization when immersed in simulated body fluid (SBF) or fetal bovine serum (FBS), therefore, considered as popular bone regeneration biomaterial. Hence, the mineralization behavior of silk fibroin self-assembled gellan gum enriched 3D hydrogels is investigated under conditions closer to physiological ones using SBF as well as FBS, and also in presence of cells (e.g. human adipose tissue-derived stem cells, ASCs). Incorporation of silk fibroin induces the mineralization in acellular spongy-like hydrogels in composition dependent manner, confirmed by SEM-EDS analysis. In contrast, ASCs mediated mineralization is found in all hydrogel compositions of 3 weeks post-culture under osteogenic conditions as demonstrated by gene expression profile and Alizarin Red S staining. This is perhaps due to the co-existence of fibroin and FBS together induce cell-mediated mineralization. The blending of fibroin offers cheap alternative strategy to improve or guide the repair of mineralized tissue using gellan gum-based biomaterials.
Collapse
Affiliation(s)
- Banani Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Virginia Brancato
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - J M Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Vitor M Correlo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - S C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
15
|
Veiga A, Castro F, Reis CC, Sousa A, Oliveira AL, Rocha F. Hydroxyapatite/sericin composites: A simple synthesis route under near-physiological conditions of temperature and pH and preliminary study of the effect of sericin on the biomineralization process. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110400. [PMID: 31923995 DOI: 10.1016/j.msec.2019.110400] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 10/23/2019] [Accepted: 11/05/2019] [Indexed: 10/25/2022]
Abstract
Synthesis of hydroxyapatite (HAp) and sericin (SS) nanocomposites was carried out by a simple precipitation method performed in batch in a stirred tank reactor (ST). The reaction was achieved by mixing a solution of calcium chloride dihydrate, in which SS was dissolved, with a solution of disodium hydrogen phosphate at 37 °C. Three experimental conditions were studied by varying the concentration of SS: HAp, HAp/SS1 (0.01 g/L of SS) and HAp/SS2 (1 g/L of SS). The chemical and physical properties of the resulting HAp/SS nanocomposites were studied using several techniques (Atomic Absorption Spectrometry, Ultraviolet-Visible Spectrophotometry, Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Selected area diffraction (SAED) and Thermogravimetric analysis (TGA)). pH profile was also monitored over time for each experimental condition. The results revealed that nano single-phased HAp was formed with both rod and plate-like shape. Additionally, the particles have low crystallinity, characteristic similar to biological HAp. Regarding the influence of SS, one observed that with increasing SS concentration there is an increase in the mean particle size and the number of plate-like particles, as well as an increase in the aggregation degree and a decrease of the crystallinity. Further, the composites obtained have an inorganic/organic composition comparable to bone. Finally, in vitro cytotoxicity showed that the synthetized nanoparticles are non-toxic and cell viability is higher for HAp and HAp/SS samples when compared to a commercially available HAp. The produced materials can thus be considered suitable candidates for bone related applications.
Collapse
Affiliation(s)
- Anabela Veiga
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology & Energy, Dep. of Chemical Engineering, Faculty of Engineering of Porto, Univ. of Porto, Porto, Portugal
| | - Filipa Castro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology & Energy, Dep. of Chemical Engineering, Faculty of Engineering of Porto, Univ. of Porto, Porto, Portugal
| | - Cassilda Cunha Reis
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Aureliana Sousa
- i3S - Institute for Research and Innovation in Health, Univ. of Porto, Porto, Portugal; INEB - National Institute of Biomedical Engineering, Univ. of Porto, Porto, Portugal
| | - Ana L Oliveira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal.
| | - Fernando Rocha
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology & Energy, Dep. of Chemical Engineering, Faculty of Engineering of Porto, Univ. of Porto, Porto, Portugal
| |
Collapse
|
16
|
Deshmukh K, Ramanan SR, Kowshik M. A novel method for genetic transformation of C. albicans using modified-hydroxyapatite nanoparticles as a plasmid DNA vehicle. NANOSCALE ADVANCES 2019; 1:3015-3022. [PMID: 36133607 PMCID: PMC9418897 DOI: 10.1039/c8na00365c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 06/10/2019] [Indexed: 05/12/2023]
Abstract
In modern biological research, genetic transformation is an important molecular biology technique with extensive applications. In this work, we describe a new method for the delivery of plasmid DNA (pDNA) into a yeast species, Candida albicans. This method is based on the use of novel arginine-glucose-PEG functionalized hydroxyapatite nanoparticles (M-HAp NPs) as a vehicle which delivers pDNA into Candida albicans with a high transformation efficiency of 106 cfu μg-1 of pDNA, without the need for preparation of competent cells. A four-fold higher transformation efficiency as compared to that of the electroporation method was obtained. This new method could provide exciting opportunities for the advancement of the applications of yeasts in the field of biotechnology.
Collapse
Affiliation(s)
- Ketaki Deshmukh
- Biological Sciences Department, Birla Institute of Technology and Science Pilani K K Birla Goa Campus Goa India
| | - Sutapa Roy Ramanan
- Chemical Engineering Department, Birla Institute of Technology and Science Pilani K K Birla Goa Campus Goa India
| | - Meenal Kowshik
- Biological Sciences Department, Birla Institute of Technology and Science Pilani K K Birla Goa Campus Goa India
| |
Collapse
|
17
|
Deshmukh K, Ramanan SR, Kowshik M. Novel one step transformation method for Escherichia coli and Staphylococcus aureus using arginine-glucose functionalized hydroxyapatite nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:58-65. [DOI: 10.1016/j.msec.2018.10.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 08/15/2018] [Accepted: 10/29/2018] [Indexed: 01/23/2023]
|
18
|
Wang S, Kitamura Y, Hiraishi N, Taira S, Tsuge A, Kaneko T, Kaneko D. Preparation of mussel-inspired biopolyester adhesive and comparative study of effects of meta- or para-hydroxyphenylpropionic acid segments on their properties. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Kojima S, Nagata F, Inagaki M, Kugimiya S, Kato K. Avidin-adsorbed peptide–calcium phosphate composites exhibiting high biotin-binding activity. NEW J CHEM 2019. [DOI: 10.1039/c8nj05024d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesized peptide–HAp exhibits a high adsorption capacity for avidin and a good binding ability for biotin molecules.
Collapse
Affiliation(s)
- Suzuka Kojima
- Materials Chemistry Course
- Graduate School of Engineering
- Aichi Institute of Technology
- Toyota
- Japan
| | - Fukue Nagata
- National Institute of Advanced Industrial Science and Technology
- Nagoya
- Japan
| | - Masahiko Inagaki
- National Institute of Advanced Industrial Science and Technology
- Nagoya
- Japan
| | - Shinichi Kugimiya
- Materials Chemistry Course
- Graduate School of Engineering
- Aichi Institute of Technology
- Toyota
- Japan
| | - Katsuya Kato
- National Institute of Advanced Industrial Science and Technology
- Nagoya
- Japan
| |
Collapse
|
20
|
Comeau P, Willett T. Impact of Side Chain Polarity on Non-Stoichiometric Nano-Hydroxyapatite Surface Functionalization with Amino Acids. Sci Rep 2018; 8:12700. [PMID: 30140033 PMCID: PMC6107576 DOI: 10.1038/s41598-018-31058-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/06/2018] [Indexed: 11/08/2022] Open
Abstract
In this study the affinity of three amino acids for the surface of non-stoichiometric hydroxyapatite nanoparticles (ns-nHA) was investigated under different reaction conditions. The amino acids investigated were chosen based on their differences in side chain polarity and potential impact on this surface affinity. While calcium pre-saturation of the calcium-deficient ns-nHA was not found to improve attachment of any of the amino acids studied, the polarity and fraction of ionized functional side groups was found to have a significant impact on this attachment. Overall, amino acid attachment to ns-nHA was not solely reliant on carboxyl groups. In fact, it seems that amine groups also notably interacted with the negative ns-nHA surface and increased the degree of surface binding achieved. As a result, glycine and lysine had greater attachment to ns-nHA than aspartic acid under the reaction conditions studied. Lastly, our results suggest that a layer of each amino acid forms at the surface of ns-nHA, with aspartic acid attachment the most stable and its surface coverage the least of the three amino acids studied.
Collapse
Affiliation(s)
- Patricia Comeau
- Composite Biomaterial Systems Laboratory, Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Thomas Willett
- Composite Biomaterial Systems Laboratory, Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
21
|
Synthesis and characterization of nanocrystalline composites containing calcium hydroxyapatite and glycine. J SOLID STATE CHEM 2018. [DOI: 10.1016/j.jssc.2018.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Mondal S, Dorozhkin SV, Pal U. Recent progress on fabrication and drug delivery applications of nanostructured hydroxyapatite. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1504. [PMID: 29171173 DOI: 10.1002/wnan.1504] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/01/2017] [Accepted: 10/11/2017] [Indexed: 01/19/2023]
Abstract
Through this brief review, we provide a comprehensive historical background of the development of nanostructured hydroxyapatite (nHAp), and its application potentials for controlled drug delivery, drug conjugation, and other biomedical treatments. Aspects associated with efficient utilization of hydroxyapatite (HAp) nanostructures such as their synthesis, interaction with drug molecules, and other concerns, which need to be resolved before they could be used as a potential drug carrier in body system, are discussed. This review focuses on the evolution of perceptions, practices, and accomplishments in providing improved delivery systems for drugs until date. The pioneering developments that have presaged today's fascinating state of the art drug delivery systems based on HAp and HAp-based composite nanostructures are also discussed. Special emphasis has been given to describe the application and effectiveness of modified HAp as drug carrier agent for different diseases such as bone-related disorders, carriers for antibiotics, anti-inflammatory, carcinogenic drugs, medical imaging, and protein delivery agents. As only a very few published works made comprehensive evaluation of HAp nanostructures for drug delivery applications, we try to cover the three major areas: concepts, practices and achievements, and applications, which have been consolidated and patented for their practical usage. The review covers a broad spectrum of nHAp and HAp modified inorganic drug carriers, emphasizing some of their specific aspects those needed to be considered for future drug delivery applications. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease Nanotechnology Approaches to Biology > Cells at the Nanoscale.
Collapse
Affiliation(s)
- Sudip Mondal
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | - Umapada Pal
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
23
|
Mohanapriya S, Raj V. Tuning biological properties of poly (vinyl alcohol) with amino acids and studying its influence on osteoblastic cell adhesion. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2018.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Hara ES, Okada M, Nagaoka N, Hattori T, Kuboki T, Nakano T, Matsumoto T. Bioinspired Mineralization Using Chondrocyte Membrane Nanofragments. ACS Biomater Sci Eng 2018; 4:617-625. [DOI: 10.1021/acsbiomaterials.7b00962] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | | | | | | | | | - Takayoshi Nakano
- Division
of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
25
|
Hara ES, Okada M, Kuboki T, Nakano T, Matsumoto T. Rapid bioinspired mineralization using cell membrane nanofragments and alkaline milieu. J Mater Chem B 2018; 6:6153-6161. [DOI: 10.1039/c8tb01544a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone formationin vivooccurs in alkaline environment, which determines the optimal pKaof phosphatases, the optimal amount of calcium for mineral precipitation, and the spherical shape of initial minerals. Manipulation of environmental pH forin vitrosynthesis of bone-like tissue, showed a markedly rapid mineralization with nanofragments and alkaline milieu.
Collapse
Affiliation(s)
- Emilio Satoshi Hara
- Department of Biomaterials
- Okayama University Graduate School of Medicine
- Dentistry and Pharmaceutical Sciences
- Okayama
- Japan
| | - Masahiro Okada
- Department of Biomaterials
- Okayama University Graduate School of Medicine
- Dentistry and Pharmaceutical Sciences
- Okayama
- Japan
| | - Takuo Kuboki
- Department of Oral Rehabilitation and Regenerative Medicine
- Okayama University Graduate School of Medicine
- Dentistry and Pharmaceutical Sciences
- Okayama
- Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science
- Graduate School of Engineering
- Osaka University
- Osaka
- Japan
| | - Takuya Matsumoto
- Department of Biomaterials
- Okayama University Graduate School of Medicine
- Dentistry and Pharmaceutical Sciences
- Okayama
- Japan
| |
Collapse
|
26
|
Okada M, Nakai A, Hara ES, Taguchi T, Nakano T, Matsumoto T. Biocompatible nanostructured solid adhesives for biological soft tissues. Acta Biomater 2017; 57:404-413. [PMID: 28483692 DOI: 10.1016/j.actbio.2017.05.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/16/2017] [Accepted: 05/03/2017] [Indexed: 12/16/2022]
Abstract
Over the past few years, the development of novel adhesives for biological soft tissue adhesion has gained significant interest. Such adhesives should be non-toxic and biocompatible. In this study, we synthesized a novel solid adhesive using nanostructured hydroxyapatite (HAp) and evaluated its physical adhesion properties through in vitro testing with synthetic hydrogels and mouse soft tissues. The results revealed that HAp-nanoparticle dispersions and HAp-nanoparticle-assembled nanoporous plates showed efficient adhesion to hydrogels. Interestingly, the HAp plates showed different adhesive properties depending upon the shape of their nanoparticles. The HAp plate made up of 17nm-sized nanoparticles showed an adhesive strength 2.2times higher than that of the conventional fibrin glue for mouse skin tissues. STATEMENT OF SIGNIFICANCE The present study indicates a new application of inorganic biomaterials (bioceramics) as a soft tissue adhesive. Organic adhesives such as fibrin glues or cyanoacrylate derivatives have been commonly used clinically. However, their limited biocompatibility and/or low adhesion strength are some drawbacks that impair their clinical application. In this study, we synthesized a novel solid adhesive with biocompatible and biodegradable HAp nanoparticles without the aid of organic molecules, and showed a rapid and strong adhesion of mouse soft tissues compared to conventional fibrin glues. Given the importance of wet adhesion in biomedicine and biotechnology applications, our results will help not only in developing an efficient approach to close incised soft tissues, but also in finding novel ways to integrate soft tissues with synthetic hydrogels (such as drug reservoirs).
Collapse
|
27
|
Ling S, Qin Z, Huang W, Cao S, Kaplan DL, Buehler MJ. Design and function of biomimetic multilayer water purification membranes. SCIENCE ADVANCES 2017; 3:e1601939. [PMID: 28435877 PMCID: PMC5381955 DOI: 10.1126/sciadv.1601939] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 02/10/2017] [Indexed: 05/17/2023]
Abstract
Multilayer architectures in water purification membranes enable increased water throughput, high filter efficiency, and high molecular loading capacity. However, the preparation of membranes with well-organized multilayer structures, starting from the nanoscale to maximize filtration efficiency, remains a challenge. We report a complete strategy to fully realize a novel biomaterial-based multilayer nanoporous membrane via the integration of computational simulation and experimental fabrication. Our comparative computational simulations, based on coarse-grained models of protein nanofibrils and mineral plates, reveal that the multilayer structure can only form with weak interactions between nanofibrils and mineral plates. We demonstrate experimentally that silk nanofibril (SNF) and hydroxyapatite (HAP) can be used to fabricate highly ordered multilayer membranes with nanoporous features by combining protein self-assembly and in situ biomineralization. The production is optimized to be a simple and highly repeatable process that does not require sophisticated equipment and is suitable for scaled production of low-cost water purification membranes. These membranes not only show ultrafast water penetration but also exhibit broad utility and high efficiency of removal and even reuse (in some cases) of contaminants, including heavy metal ions, dyes, proteins, and other nanoparticles in water. Our biomimetic design and synthesis of these functional SNF/HAP materials have established a paradigm that could lead to the large-scale, low-cost production of multilayer materials with broad spectrum and efficiency for water purification, with applications in wastewater treatment, biomedicine, food industry, and the life sciences.
Collapse
Affiliation(s)
- Shengjie Ling
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Zhao Qin
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Wenwen Huang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Sufeng Cao
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA 02155, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Markus J. Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Computational Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
28
|
Yang G, Liu Z, Guo Y, Zhang J, Li H, Shi W, Feng J, Wang K, Yang L. Osteoblast response to the surface topography of hydroxyapatite two-dimensional films. J Biomed Mater Res A 2017; 105:991-999. [DOI: 10.1002/jbm.a.35967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/02/2016] [Accepted: 11/23/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Gai Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| | - Zili Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| | - Yuming Guo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University; Xinxiang Henan 453007 People's Republic of China
- Henan Key Laboratory of Green Chemical Media and Reactions; School of Chemistry and Chemical Engineering, Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| | - Jie Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| | - Han Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| | - Weike Shi
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| | - Jing Feng
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| | - Kui Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| | - Lin Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University; Xinxiang Henan 453007 People's Republic of China
- Henan Key Laboratory of Green Chemical Media and Reactions; School of Chemistry and Chemical Engineering, Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| |
Collapse
|
29
|
Biodegradable and Biocompatible Systems Based on Hydroxyapatite Nanoparticles. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7010060] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Salmasi S, Nayyer L, Seifalian AM, Blunn GW. Nanohydroxyapatite Effect on the Degradation, Osteoconduction and Mechanical Properties of Polymeric Bone Tissue Engineered Scaffolds. Open Orthop J 2016; 10:900-919. [PMID: 28217213 PMCID: PMC5299581 DOI: 10.2174/1874325001610010900] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/12/2016] [Accepted: 05/31/2016] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Statistical reports show that every year around the world approximately 15 million bone fractures occur; of which up to 10% fail to heal completely and hence lead to complications of non-union healing. In the past, autografts or allografts were used as the “gold standard” of treating such defects. However, due to various limitations and risks associated with these sources of bone grafts, other avenues have been extensively investigated through which bone tissue engineering; in particular engineering of synthetic bone graft substitutes, has been recognised as a promising alternative to the traditional methods. METHODS A selective literature search was performed. RESULTS Bone tissue engineering offers unlimited supply, eliminated risk of disease transmission and relatively low cost. It could also lead to patient specific design and manufacture of implants, prosthesis and bone related devices. A potentially promising building block for a suitable scaffold is synthetic nanohydroxyapatite incorporated into synthetic polymers. Incorporation of nanohydroxyapatite into synthetic polymers has shown promising bioactivity, osteoconductivity, mechanical properties and degradation profile compared to other techniques previously considered. CONCLUSION Scientific research, through extensive physiochemical characterisation, in vitro and in vivo assessment has brought together the optimum characteristics of nanohydroxyapatite and various types of synthetic polymers in order to develop nanocomposites of suitable nature for bone tissue engineering. The aim of the present article is to review and update various aspects involved in incorporation of synthetic nanohydroxyapatite into synthetic polymers, in terms of their potentials to promote bone growth and regeneration in vitro, in vivo and consequently in clinical applications.
Collapse
Affiliation(s)
- Shima Salmasi
- UCL Division of Surgery and Interventional Science, Centre for Nanotechnology and Regenerative Medicine, University College London, London NW3 2PF, United Kingdom
| | - Leila Nayyer
- UCL Division of Surgery and Interventional Science, Centre for Nanotechnology and Regenerative Medicine, University College London, London NW3 2PF, United Kingdom
| | - Alexander M Seifalian
- UCL Division of Surgery and Interventional Science, Centre for Nanotechnology and Regenerative Medicine, University College London, London NW3 2PF, United Kingdom
| | - Gordon W Blunn
- John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, United Kingdom
| |
Collapse
|
31
|
Abstract
The composition of the adsorption centres of hydrated calcium hydroxyapatite was studied. It was found that the adsorption of organic bases was due to the formation of surface hydrogen bonds between their nitrogen atoms and the ≡POH groups of hydroxyapatite. Aromatic acids and alcohols were adsorbed in an ionic form due to the formation of intraspheric complexes with surface Ca2+ cations. It was concluded that the adsorbability of organic compounds depends on the relationship between the greatest effective charges on their atoms and the atoms of water molecules.
Collapse
Affiliation(s)
- N.V. Nikolenko
- Analytical Chemistry Department, Ukrainian State Chemical Technology University, Gagarin Av., 8, Dniepropetrovsk 49005, Ukraine
| | - E.E. Esajenko
- Analytical Chemistry Department, Ukrainian State Chemical Technology University, Gagarin Av., 8, Dniepropetrovsk 49005, Ukraine
| |
Collapse
|
32
|
Tavafoghi M, Cerruti M. The role of amino acids in hydroxyapatite mineralization. J R Soc Interface 2016; 13:20160462. [PMID: 27707904 PMCID: PMC5095212 DOI: 10.1098/rsif.2016.0462] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/31/2016] [Indexed: 11/12/2022] Open
Abstract
Polar and charged amino acids (AAs) are heavily expressed in non-collagenous proteins (NCPs), and are involved in hydroxyapatite (HA) mineralization in bone. Here, we review what is known on the effect of single AAs on HA precipitation. Negatively charged AAs, such as aspartic acid, glutamic acid (Glu) and phosphoserine are largely expressed in NCPs and play a critical role in controlling HA nucleation and growth. Positively charged ones such as arginine (Arg) or lysine (Lys) are heavily involved in HA nucleation within extracellular matrix proteins such as collagen. Glu, Arg and Lys intake can also increase bone mineral density by stimulating growth hormone production. In vitro studies suggest that the role of AAs in controlling HA precipitation is affected by their mobility. While dissolved AAs are able to inhibit HA precipitation and growth by chelating Ca2+ and PO43- ions or binding to nuclei of calcium phosphate and preventing their further growth, AAs bound to surfaces can promote HA precipitation by attracting Ca2+ and PO43- ions and increasing the local supersaturation. Overall, the effect of AAs on HA precipitation is worth being investigated more, especially under conditions closer to the physiological ones, where the presence of other factors such as collagen, mineralization inhibitors, and cells heavily influences HA precipitation. A deeper understanding of the role of AAs in HA mineralization will increase our fundamental knowledge related to bone formation, and could lead to new therapies to improve bone regeneration in damaged tissues or cure pathological diseases caused by excessive mineralization in tissues such as cartilage, blood vessels and cardiac valves.
Collapse
Affiliation(s)
- M Tavafoghi
- Materials Engineering, McGill University, Montreal, Quebec, Canada H3A 0C5
| | - M Cerruti
- Materials Engineering, McGill University, Montreal, Quebec, Canada H3A 0C5
| |
Collapse
|
33
|
Xu MK, Ouyang ZH, Shen ZR. Topological evolution of cerium(III) molybdate microflake assemblies induced by amino acids. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2015.12.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Tavafoghi M, Brodusch N, Gauvin R, Cerruti M. Hydroxyapatite formation on graphene oxide modified with amino acids: arginine versus glutamic acid. J R Soc Interface 2016; 13:20150986. [PMID: 26791001 PMCID: PMC4759803 DOI: 10.1098/rsif.2015.0986] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/21/2015] [Indexed: 12/12/2022] Open
Abstract
Hydroxyapatite (HA, Ca5(PO4)3OH) is the main inorganic component of hard tissues, such as bone and dentine. HA nucleation involves a set of negatively charged phosphorylated proteins known as non-collagenous proteins (NCPs). These proteins attract Ca(2+) and PO4(3-) ions and increase the local supersaturation to a level required for HA precipitation. Polar and charged amino acids (AAs) are highly expressed in NCPs, and seem to be responsible for the mineralizing effect of NCPs; however, the individual effect of these AAs on HA mineralization is still unclear. In this work, we investigate the effect of a negatively charged (Glu) and positively charged (Arg) AA bound to carboxylated graphene oxide (CGO) on HA mineralization in simulated body fluids (SBF). Our results show that Arg induces HA precipitation faster and in larger amounts than Glu. We attribute this to the higher stability of the complexes formed between Arg and Ca(2+) and PO4(3-) ions, and also to the fact that Arg exposes both carboxyl and amino groups on the surface. These can electrostatically attract both Ca(2+) and PO4(3-) ions, thus increasing local supersaturation more than Glu, which exposes carboxyl groups only.
Collapse
Affiliation(s)
- M Tavafoghi
- Materials Engineering, McGill University, Montreal, Quebec, Canada H3A 0C5
| | - N Brodusch
- Materials Engineering, McGill University, Montreal, Quebec, Canada H3A 0C5
| | - R Gauvin
- Materials Engineering, McGill University, Montreal, Quebec, Canada H3A 0C5
| | - M Cerruti
- Materials Engineering, McGill University, Montreal, Quebec, Canada H3A 0C5
| |
Collapse
|
35
|
OKADA M, HIRAMATSU D, OKIHARA T, MATSUMOTO T. Adsorption and desorption behaviors of cetylpyridinium chloride on hydroxyapatite nanoparticles with different morphologies. Dent Mater J 2016; 35:651-8. [DOI: 10.4012/dmj.2015-420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Masahiro OKADA
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Daisuke HIRAMATSU
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Takumi OKIHARA
- Department of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
| | - Takuya MATSUMOTO
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| |
Collapse
|
36
|
Synthesis and modification of apatite nanoparticles for use in dental and medical applications. JAPANESE DENTAL SCIENCE REVIEW 2015. [DOI: 10.1016/j.jdsr.2015.03.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
37
|
Wu X, Zhao X, Li Y, Yang T, Yan X, Wang K. In situ synthesis carbonated hydroxyapatite layers on enamel slices with acidic amino acids by a novel two-step method. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 54:150-7. [DOI: 10.1016/j.msec.2015.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 03/13/2015] [Accepted: 05/02/2015] [Indexed: 10/23/2022]
|
38
|
Iline-Vul T, Matlahov I, Grinblat J, Keinan-Adamsky K, Goobes G. Changes to the Disordered Phase and Apatite Crystallite Morphology during Mineralization by an Acidic Mineral Binding Peptide from Osteonectin. Biomacromolecules 2015. [PMID: 26207448 DOI: 10.1021/acs.biomac.5b00465] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Noncollagenous proteins regulate the formation of the mineral constituent in hard tissue. The mineral formed contains apatite crystals coated by a functional disordered calcium phosphate phase. Although the crystalline phase of bone mineral was extensively investigated, little is known about the disordered layer's composition and structure, and less is known regarding the function of noncollagenous proteins in the context of this layer. In the current study, apatite was prepared with an acidic peptide (ON29) derived from the bone/dentin protein osteonectin. The mineral formed comprises needle-shaped hydroxyapatite crystals like in dentin and a stable disordered phase coating the apatitic crystals as shown using X-ray diffraction, transmission electron microscopy, and solid-state NMR techniques. The peptide, embedded between the mineral particles, reduces the overall phosphate content in the mineral formed as inferred from inductively coupled plasma and elemental analysis results. Magnetization transfers between disordered phase species and apatitic phase species are observed for the first time using 2D (1)H-(31)P heteronuclear correlation NMR measurements. The dynamics of phosphate magnetization transfers reveal that ON29 decreases significantly the amount of water molecules in the disordered phase and increases slightly their content at the ordered-disordered interface. The peptide decreases hydroxyl to disordered phosphate transfers within the surface layer but does not influence transfer within the bulk crystalline mineral. Overall, these results indicate that control of crystallite morphology and properties of the inorganic component in hard tissue by biomolecules is more involved than just direct interaction between protein functional groups and mineral crystal faces. Subtler mechanisms such as modulation of the disordered phase composition and structural changes at the ordered-disordered interface may be involved.
Collapse
Affiliation(s)
- Taly Iline-Vul
- Department of Chemistry, Bar Ilan University , Ramat Gan 52900, Israel
| | - Irina Matlahov
- Department of Chemistry, Bar Ilan University , Ramat Gan 52900, Israel
| | - Judith Grinblat
- Department of Chemistry, Bar Ilan University , Ramat Gan 52900, Israel
| | | | - Gil Goobes
- Department of Chemistry, Bar Ilan University , Ramat Gan 52900, Israel
| |
Collapse
|
39
|
Li C, Born AK, Schweizer T, Zenobi-Wong M, Cerruti M, Mezzenga R. Amyloid-hydroxyapatite bone biomimetic composites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:3207-3212. [PMID: 24634054 DOI: 10.1002/adma.201306198] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/17/2014] [Indexed: 05/28/2023]
Abstract
A "bottom up" strategy is proposed to synthesize high aspect ratio hydroxyapatite (and brushite) platelets, and combine them with amyloid fibrils into layered hybrid nanocomposites. Their hierarchical structure, despite the differences from natural bone, confers to the nanocomposites a density and elastic modulus matching those of cancellous bone. Evidence of good adhesion and spreading of human trabecular bone-derived pre-osteoblasts cells on these nanocomposites is provided.
Collapse
Affiliation(s)
- Chaoxu Li
- ETH Zurich, Food & Soft Materials, Department of Health Science & Technology, Schmelzbergstrasse 9, LFO, E23, 8092, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
40
|
Shan Y, Qin Y, Chuan Y, Li H, Yuan M. The synthesis and characterization of hydroxyapatite-β-alanine modified by grafting polymerization of γ-benzyl-L-glutamate-N-carboxyanhydride. Molecules 2013; 18:13979-91. [PMID: 24232735 PMCID: PMC6270268 DOI: 10.3390/molecules181113979] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/08/2013] [Accepted: 11/08/2013] [Indexed: 12/01/2022] Open
Abstract
In this study, hydroxyapatite (HAP) was surface-modified by the addition of β-alanine (β-Ala), and the ring-opening polymerization of γ-benzyl-l-glutamate-N-carboxy-anhydride (BLG-NCA) was subsequently initiated. HAP containing surface poly-γ-benzyl-l-glutamates (PBLG) was successfully prepared in this way. With the increase of PBLG content in HAP-PBLG, the solubility of HAP-PBLG increased gradually and it was ultimately soluble in chloroform. HAP-PLGA with surface carboxyl groups was obtained by the catalytic hydrogenation of HAP-PBLG. In the process of HAP modification, the morphology changes from rod to sheet and from flake to needle. The effect of BLG-NCA concentration on the character of hydroxyapatite-β-alanine-poly(γ-benzyl-l-glutamate) (HAP-PBLG) was investigated. The existence of amino acids on the HAP surfaces was confirmed in the resulting Fourier transform infrared (FTIR) spectra. The resulting powder X-ray diffraction patterns indicated that the crystallinity of HAP decreased when the ratio of BLG-NCA/HAP-NH2 increased to 20/1. Transmission electron microscopy (TEM) indicated that the particle size of HAP-PBLG decreased significantly and that the resulting particles appeared less agglomerated relative to that of the HAP-NH2 crystals. Furthermore, 1H-NMR spectra and FTIR spectra revealed that hydroxyapatite-β-alanine-poly (l-glutamic acid) (HAP-PLGA) was able to successfully bear carboxylic acid groups on its side chains.
Collapse
Affiliation(s)
- Yukai Shan
- Engineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan University of Nationalities, Kunming 650500, China.
| | | | | | | | | |
Collapse
|
41
|
Xu Z, Yang Y, Wang Z, Mkhonto D, Shang C, Liu ZP, Cui Q, Sahai N. Small molecule-mediated control of hydroxyapatite growth: Free energy calculations benchmarked to density functional theory. J Comput Chem 2013; 35:70-81. [DOI: 10.1002/jcc.23474] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/01/2013] [Accepted: 10/06/2013] [Indexed: 02/04/2023]
Affiliation(s)
- Zhijun Xu
- Department of Polymer Science; 170 University Avenue; University of Akron; Akron Ohio 44325-3909
| | - Yang Yang
- Department of Chemistry and Biochemistry; 201 Mullica Hill Road; Rowan University; Glassboro New Jersey 08028
| | - Ziqiu Wang
- Department of Polymer Science; 170 University Avenue; University of Akron; Akron Ohio 44325-3909
| | - Donald Mkhonto
- Council for Scientific and Industrial Research; Meiring Naude Road Brumeria 0184 South Africa
| | - Cheng Shang
- Department of Chemistry; Key Laboratory of Computational Physical Science (Ministry of Education); Fudan University; Shanghai 200433 People's Republic China
| | - Zhi-Pan Liu
- Department of Chemistry; Key Laboratory of Computational Physical Science (Ministry of Education); Fudan University; Shanghai 200433 People's Republic China
| | - Qiang Cui
- Department of Chemistry and Theoretical Chemistry Institute; 1101 University Avenue; University of Wisconsin; Madison Wisconsin 53706
| | - Nita Sahai
- Department of Polymer Science; 170 University Avenue; University of Akron; Akron Ohio 44325-3909
| |
Collapse
|
42
|
Regeneration of biomimetic hydroxyapatite on etched human enamel by anionic PAMAM template in vitro. Arch Oral Biol 2013; 58:975-80. [DOI: 10.1016/j.archoralbio.2013.03.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 03/13/2013] [Accepted: 03/17/2013] [Indexed: 11/21/2022]
|
43
|
Li Z, Chen X, Yang Y, Yang X, Zhang L, Yang G, Tang R, Gou Z. Two‐Step pH‐Modulated Rapid Assembly of Trace‐Element‐Doped Calcium‐Phosphate Nanocrystals into Giant Porous Beads in Gelatin Hydrosol for Biomedical Applications. Chem Asian J 2013; 8:2729-38. [PMID: 23873742 DOI: 10.1002/asia.201300405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/22/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Zhicheng Li
- Zhejiang‐California International Nanosystems, Research Institute, Zhejiang University, Hangzhou, 310029 (P. R. China), Fax: (+86) 571‐86971539
| | - Xiaoyi Chen
- Zhejiang‐California International Nanosystems, Research Institute, Zhejiang University, Hangzhou, 310029 (P. R. China), Fax: (+86) 571‐86971539
| | - Yongzhu Yang
- Zhejiang‐California International Nanosystems, Research Institute, Zhejiang University, Hangzhou, 310029 (P. R. China), Fax: (+86) 571‐86971539
| | - Xianyan Yang
- Zhejiang‐California International Nanosystems, Research Institute, Zhejiang University, Hangzhou, 310029 (P. R. China), Fax: (+86) 571‐86971539
| | - Lei Zhang
- Rui'an Peoples' Hospital & 3rd Affiliated Hospital, Wenzhou Medical University, Rui'an, 235200 (P. R. China)
| | - Guojing Yang
- Rui'an Peoples' Hospital & 3rd Affiliated Hospital, Wenzhou Medical University, Rui'an, 235200 (P. R. China)
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027 (P. R. China)
| | - Zhongru Gou
- Zhejiang‐California International Nanosystems, Research Institute, Zhejiang University, Hangzhou, 310029 (P. R. China), Fax: (+86) 571‐86971539
| |
Collapse
|
44
|
Rameshbabu N, Kumar TSS, Rao KP. Influence of microwave power, irradiation time and polymeric additions on synthesis of nanocrystalline hydroxyapatite. ACTA ACUST UNITED AC 2013. [DOI: 10.1179/143307510x12599329343088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- N. Rameshbabu
- Department of Metallurgical and Materials Engineering Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India, Department of Metallurgical and Materials Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu, India;,
| | - T. S. Sampath Kumar
- Department of Metallurgical and Materials Engineering Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - K. Prasad Rao
- Department of Metallurgical and Materials Engineering Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
45
|
Chen X, Sun X, Yang X, Zhang L, Lin M, Yang G, Gao C, Feng Y, Yu J, Gou Z. Biomimetic preparation of trace element-codoped calcium phosphate for promoting osteoporotic bone defect repair. J Mater Chem B 2013; 1:1316-1325. [PMID: 32260805 DOI: 10.1039/c2tb00138a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Specific implants to speedily regenerate critical-sized osteoporotic bone defects (COBDs) are a major clinical need. However, little progress in methods focusing on biological repair has been reported. We developed a biomimetic mineralization method to prepare trace element-codoped calcium phosphate (CaP) particles via hydrothermal treatment of modified simulated body fluid (SBF) with the addition of binary to quaternary trace elements. The morphology, structure, and composition of the particles were characterized by a combination of SEM, TEM, XRD, and FTIR measurements. The quantitative analysis shows that the dopant contents in the solid phase can be regulated by the trace ion concentrations in the aqueous medium. The conditioned cell culture medium from the quaternary Mg/Zn/Sr/Si-co-doped CaP (qCaP) could significantly enhance cell activity and osteogenic differentiation of ovariectomized rat-derived bone marrow mesenchymal stem cells. After injecting the qCaP-loaded chitosan/hyaluronic acid hydrogel into the COBDs, histology and computed tomography scanning revealed that the new bone regeneration was significantly enhanced, and the quantity of mature bone was substantially increased in the rats implanted with qCaP 12 weeks post-operatively in comparison with the defects filled with the CaP obtained from SBF. These results suggest that the biomimetic mineralization of the trace ion-added SBF allows the preparation of highly bioactive trace element-codoped CaP biomaterials and these materials are potential candidates for the biological repair of COBDs.
Collapse
Affiliation(s)
- Xiaoyi Chen
- Bio-Nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310029, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Chen X, Zhang L, Yang X, Li Z, Sun X, Lin M, Yang G, Gou Z. Micronutrients-incorporated calcium phosphate particles with protective effect on osteoporotic bone tissue. J Nutr Health Aging 2013; 17:426-33. [PMID: 23636543 DOI: 10.1007/s12603-013-0006-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Supplementation of individual micronutrient is inadequate for maintaining bone function because single micronutrient can not contribute significantly a positive remodeling balance. OBJECTIVE We developed the highly integrated, stably dietary multi-micronutrients with good bioavailability and low adverse effect on the improvement of bone consolidation in osteoporosis. METHODS The trace element-codoped calcium phosphate (teCaP) particles were prepared in the modified body fluid and carefully evaluated. Rats, aged 3 months, were ovariectomized and when 6 month intervened with the conditioned, low, moderate, and high teCaP diets. RESULTS The teCaP particles showed highly dissolvable in stomach juice-mimicing acidic solutions. Three months after intervention, the body weight increase showed remarkable differences among the low teCaP diet (~52 g), moderate teCaP diet (~34 g) and high teCaP diet (~23 g) group. In particular, the intake of moderate teCaP greatly improved the retention of trace elements in femural bone for better protection against the skeletal weakening, and resulted in a significant increase of bone mineral density (104.06%) in comparison with the conventional high calcium plus vitamin D3 diet (Control group). CONCLUSIONS These investigations improve our understanding of micronutrient retention on bone consolidation in osteoporotic bone tissue, and also provide new mild wet-chemical approach to prepare potent nutritionally effective edible complements to synergistically relieve bone degeneration and prevent osteoporosis.
Collapse
Affiliation(s)
- X Chen
- Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Öner M, Uysal U. Synthesis of hydroxyapatite crystals using carboxymethyl inulin for use as a delivery of ibuprofen. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:482-9. [DOI: 10.1016/j.msec.2012.09.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 09/02/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
|
48
|
Jahromi MT, Yao G, Cerruti M. The importance of amino acid interactions in the crystallization of hydroxyapatite. J R Soc Interface 2012; 10:20120906. [PMID: 23269851 DOI: 10.1098/rsif.2012.0906] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Non-collagenous proteins (NCPs) inhibit hydroxyapatite (HA; Ca(5)(PO(4))(3)OH) formation in living organisms by binding to nascent nuclei of HA and preventing their further growth. Polar and charged amino acids (AAs) are highly expressed in NCPs, and the negatively charged ones, such as glutamic acid (Glu) and phosphoserine (P-Ser) seem to be mainly responsible for the inhibitory effect of NCPs. Despite the recognized importance of these AAs on the behaviour of NCPs, their specific effect on HA crystallization is still unclear, and controversial results have been reported concerning the efficacy of HA inhibition of positively versus negatively charged AAs. We focused on a positively charged (arginine, Arg) and a negatively charged (Glu) AA, and their combination in the same solution. We studied their inhibitory effect on HA nucleation and growth at physiological temperature and pH and we determined the mechanism by which they can affect HA crystallization. Our results showed a strong inhibitory effect of Arg on HA nucleation; however, Glu was more effective in inhibiting HA crystal growth during the growth stage. The combination of Glu and Arg was less effective in controlling HA nucleation, but it inhibited HA crystal growth. We attributed these differences to the stability of complexes formed between AAs and calcium and phosphate ions at the nucleation stage, and in bonding strength of AAs to HA crystal faces during the growth stage. The AAs also influenced the morphology of synthesized HA. Presence of either Arg or Glu resulted in the formation of spherulites consisting of preferentially oriented nanoplatelets orientation. This was attributed to kinetic factors favoring growth front nucleation (GFN) mechanism.
Collapse
Affiliation(s)
- M Tavafoghi Jahromi
- Department of Materials Engineering, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
49
|
Lee WH, Loo CY, Zavgorodniy AV, Rohanizadeh R. High protein adsorptive capacity of amino acid-functionalized hydroxyapatite. J Biomed Mater Res A 2012; 101:873-83. [PMID: 23008163 DOI: 10.1002/jbm.a.34383] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/30/2012] [Accepted: 07/13/2012] [Indexed: 11/05/2022]
Abstract
Charged functional groups present on the surface of biomaterials play an important role to regulate the affinity and attachment of macromolecules, including proteins, on the surface of biomaterials. In this study, the protein adsorptive capacity of hydroxyapatite (HA) was regulated by introducing different amino acids during the precipitation of HA. After incubation of HA samples in 5000 μg/mL lysozyme solution at pH 7.4 for 24 h, unmodified HA adsorbed 0.886 mg/m(2) of lysozyme while amino acid-functionalized HA (AA-HA) particles demonstrated higher adsorption capacity ranging from 1.090 to 1.680 mg/m(2). Incorporation of amino acids with longer side chain lengths decreased the crystallinity and increased the negative value of the surface charge of HA particles. The specific surface areas were significantly increased in the presence of amino acids. Protein loading capacity onto AA-HA was further enhanced by regulating the pH of working solution whereby the protein adsorption rate increased with decreasing the pH, while reverse trend obtained in unmodified HA. The study demonstrated that the amount of adsorbed lysozyme onto AA-HA particles was correlated with the particles' surface charges.
Collapse
Affiliation(s)
- Wing-Hin Lee
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | |
Collapse
|
50
|
Sasaki JI, Matsumoto T, Egusa H, Matsusaki M, Nishiguchi A, Nakano T, Akashi M, Imazato S, Yatani H. In vitro reproduction of endochondral ossification using a 3D mesenchymal stem cell construct. Integr Biol (Camb) 2012; 4:1207-14. [DOI: 10.1039/c2ib20027a] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|