1
|
Poulis N, Martin M, Hoerstrup SP, Emmert MY, Fioretta ES. Macrophage-extracellular matrix interactions: Perspectives for tissue engineered heart valve remodeling. Front Cardiovasc Med 2022; 9:952178. [PMID: 36176991 PMCID: PMC9513146 DOI: 10.3389/fcvm.2022.952178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
In situ heart valve tissue engineering approaches have been proposed as promising strategies to overcome the limitations of current heart valve replacements. Tissue engineered heart valves (TEHVs) generated from in vitro grown tissue engineered matrices (TEMs) aim at mimicking the microenvironmental cues from the extracellular matrix (ECM) to favor integration and remodeling of the implant. A key role of the ECM is to provide mechanical support to and attract host cells into the construct. Additionally, each ECM component plays a critical role in regulating cell adhesion, growth, migration, and differentiation potential. Importantly, the immune response to the implanted TEHV is also modulated biophysically via macrophage-ECM protein interactions. Therefore, the aim of this review is to summarize what is currently known about the interactions and signaling networks occurring between ECM proteins and macrophages, and how these interactions may impact the long-term in situ remodeling outcomes of TEMs. First, we provide an overview of in situ tissue engineering approaches and their clinical relevance, followed by a discussion on the fundamentals of the remodeling cascades. We then focus on the role of circulation-derived and resident tissue macrophages, with particular emphasis on the ramifications that ECM proteins and peptides may have in regulating the host immune response. Finally, the relevance of these findings for heart valve tissue engineering applications is discussed.
Collapse
Affiliation(s)
- Nikolaos Poulis
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Marcy Martin
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Wyss Zurich, University and Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Maximilian Y. Emmert
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Wyss Zurich, University and Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- *Correspondence: Maximilian Y. Emmert, ,
| | - Emanuela S. Fioretta
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Emanuela S. Fioretta,
| |
Collapse
|
2
|
Kim YH, Oreffo ROC, Dawson JI. From hurdle to springboard: The macrophage as target in biomaterial-based bone regeneration strategies. Bone 2022; 159:116389. [PMID: 35301163 DOI: 10.1016/j.bone.2022.116389] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 12/16/2022]
Abstract
The past decade has seen a growing appreciation for the role of the innate immune response in mediating repair and biomaterial directed tissue regeneration. The long-held view of the host immune/inflammatory response as an obstacle limiting stem cell regenerative activity, has given way to a fresh appreciation of the pivotal role the macrophage plays in orchestrating the resolution of inflammation and launching the process of remodelling and repair. In the context of bone, work over the past decade has established an essential coordinating role for macrophages in supporting bone repair and sustaining biomaterial driven osteogenesis. In this review evidence for the role of the macrophage in bone regeneration and repair is surveyed before discussing recent biomaterial and drug-delivery based approaches that target macrophage modulation with the goal of accelerating and enhancing bone tissue regeneration.
Collapse
Affiliation(s)
- Yang-Hee Kim
- Bone and Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - Jonathan I Dawson
- Bone and Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, UK.
| |
Collapse
|
3
|
Li Z, Bratlie KM. Effect of RGD functionalization and stiffness of gellan gum hydrogels on macrophage polarization and function. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112303. [PMID: 34474854 DOI: 10.1016/j.msec.2021.112303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022]
Abstract
Macrophages, the primary effector cells in the immune response, respond rapidly to the physical or chemical properties of biomaterial implants. Balanced macrophage polarization, phagocytosis, and migration would be beneficial for implant success and tissue regeneration. Here, we investigated macrophage phenotypic changes, phagocytosis, and migration in response to RGD functionalized surfaces and changes in stiffness of gellan gum hydrogels. We also inhibited the RhoA pathway. The compressive moduli ranged from ~5 to 30 kPa. Cell population and cell spreading area of classically activated macrophages (M(LPS)) and alternatively activated macrophages (M(IL-4)) are promoted on RGD modified hydrogel. ROCK inhibitor induced the opposite effect on the cell spreading of both M(LPS) and M(IL-4) macrophages on RGD modified hydrogels. Macrophage polarization was found to be stiffness-driven and regulated by the RGD motif and blocked by the RhoA pathway. RGD functionalized hydrogel shifted M(IL-4) cells toward a more pro-inflammatory phenotype, while ROCK inhibition shifted M(LPS) cells to a more anti-inflammatory phenotype. Both M(LPS) and M(IL-4) cells on untreated hydrogels shifted to a more pro-inflammatory phenotype in the presence of aminated-PS particles. The RGD motif had a significant impact on cellular uptake, whereas cellular uptake was stiffness driven on untreated hydrogels. Cell migration of M(LPS) and M(IL-4) cells had ROCK-dependent migration. The stiffness of gellan gum hydrogels had no influence on macrophage migration rate. Collectively, our results showed that gellan gum hydrogels can be used to direct immune response, macrophage infiltration, and phagocytosis.
Collapse
Affiliation(s)
- Zhuqing Li
- Department of Materials Science & Engineering, Iowa State University, Ames, IA 50011, USA
| | - Kaitlin M Bratlie
- Department of Materials Science & Engineering, Iowa State University, Ames, IA 50011, USA; Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
4
|
Negrescu AM, Necula MG, Gebaur A, Golgovici F, Nica C, Curti F, Iovu H, Costache M, Cimpean A. In Vitro Macrophage Immunomodulation by Poly(ε-caprolactone) Based-Coated AZ31 Mg Alloy. Int J Mol Sci 2021; 22:ijms22020909. [PMID: 33477539 PMCID: PMC7831122 DOI: 10.3390/ijms22020909] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Due to its excellent bone-like mechanical properties and non-toxicity, magnesium (Mg) and its alloys have attracted great interest as biomaterials for orthopaedic applications. However, their fast degradation rate in physiological environments leads to an acute inflammatory response, restricting their use as biodegradable metallic implants. Endowing Mg-based biomaterials with immunomodulatory properties can help trigger a desired immune response capable of supporting a favorable healing process. In this study, electrospun poly(ε-caprolactone) (PCL) fibers loaded with coumarin (CM) and/or zinc oxide nanoparticles (ZnO) were used to coat the commercial AZ31 Mg alloy as single and combined formulas, and their effects on the macrophage inflammatory response and osteoclastogenic process were investigated by indirect contact studies. Likewise, the capacity of the analyzed samples to generate reactive oxygen species (ROS) has been investigated. The data obtained by attenuated total reflection Fourier-transform infrared (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS) analyses indicate that AZ31 alloy was perfectly coated with the PCL fibers loaded with CM and ZnO, which had an important influence on tuning the release of the active ingredient. Furthermore, in terms of degradation in phosphate-buffered saline (PBS) solution, the PCL-ZnO- and secondary PCL-CM-ZnO-coated samples exhibited the best corrosion behaviour. The in vitro results showed the PCL-CM-ZnO and, to a lower extent, PCL-ZnO coated sample exhibited the best behaviour in terms of inflammatory response and receptor activator of nuclear factor kappa-B ligand (RANKL)-mediated differentiation of RAW 264.7 macrophages into osteoclasts. Altogether, the results obtained suggest that the coating of Mg alloys with fibrous PCL containing CM and/or ZnO can constitute a feasible strategy for biomedical applications.
Collapse
Affiliation(s)
- Andreea-Mariana Negrescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
| | - Madalina-Georgiana Necula
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
| | - Adi Gebaur
- Advance Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu 17, 011061 Bucharest, Romania; (A.G.); (F.C.); (H.I.)
| | - Florentina Golgovici
- Department of General Chemistry, Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania;
| | - Cristina Nica
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
| | - Filis Curti
- Advance Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu 17, 011061 Bucharest, Romania; (A.G.); (F.C.); (H.I.)
| | - Horia Iovu
- Advance Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu 17, 011061 Bucharest, Romania; (A.G.); (F.C.); (H.I.)
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
- Correspondence: ; Tel.: +40-21-318-1575 (ext. 106)
| |
Collapse
|
5
|
Fang JY, Yang Z, Han B. Switch of macrophage fusion competency by 3D matrices. Sci Rep 2020; 10:10348. [PMID: 32587271 PMCID: PMC7316750 DOI: 10.1038/s41598-020-67056-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Foreign body reaction reflects the integration between biomaterials and host cells. At the implantation microenvironment, macrophages usually fuse into multinuclear cells, also known as foreign body giant cells, to respond to the biomaterial implants. To understand the biomaterial-induced macrophage fusion, we examined whether biomaterial alone can initiate and control the fusion rate without exogenous cytokines and chemicals. We introduced a collagen-based 3D matrix to embed Raw264.7 cell line and primary rat bone marrow-derived macrophages. We found the biomaterial-stimuli interacted regional macrophages and altered the overall fusogenic protein expressions to regulate the macrophage fusion rate. The fusion rate could be altered by modulating the cell-matrix and cell-cell adhesions. The fused macrophage morphologies, the nuclei number in the fused macrophage, and the fusion rates were matrix dependent. The phenomena were also observed in the in vivo models. These results suggest that the biomaterial-derived stimuli exert similar functions as cytokines to alter the competency of macrophage fusion as well as their drug sensitivity in the biomaterial implanted tissue environment. Furthermore, this in vitro 3D-matrix model has the potential to serve as a toolbox to predict the host tissue response on implanted biomaterials.
Collapse
Affiliation(s)
- Josephine Y Fang
- Nimni-Cordoba Tissue Engineering and Drug Discovery Laboratory, Division of Plastic and Reconstructive Surgery, Departments of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
- Center of Craniofacial Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States
| | - Zhi Yang
- Nimni-Cordoba Tissue Engineering and Drug Discovery Laboratory, Division of Plastic and Reconstructive Surgery, Departments of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Bo Han
- Nimni-Cordoba Tissue Engineering and Drug Discovery Laboratory, Division of Plastic and Reconstructive Surgery, Departments of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States.
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Souther California, Los Angeles, California, United States.
| |
Collapse
|
6
|
S Zaitseva T, Yang G, Dionyssiou D, Zamani M, Sawamura S, Yakubov E, Ferguson J, Hallett RL, Fleischmann D, Paukshto MV, Huang NF. Delivery of hepatocyte growth factor mRNA from nanofibrillar scaffolds in a pig model of peripheral arterial disease. Regen Med 2020; 15:1761-1773. [PMID: 32772903 PMCID: PMC7787177 DOI: 10.2217/rme-2020-0023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/28/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Chemical modification of mRNA (mmRNA) substantially improves their stability and translational efficiency within cells. Nanofibrillar collagen scaffolds were previously shown to enable the spatially localized delivery and temporally controlled release of mmRNA encoding HGF both in vitro and in vivo. Materials & methods: Herein we developed an improved slow-releasing HGF mmRNA scaffold and tested its therapeutic efficacy in a porcine model of peripheral arterial disease. Results & conclusion: The HGF mmRNA was released from scaffolds in a temporally controlled fashion in vitro with preserved transfection activity. The mmRNA scaffolds improved vascular regeneration when sutured to the ligated porcine femoral artery. These studies validate the therapeutic potential of HGF mmRNA delivery from nanofibrillar scaffolds for treatment of peripheral arterial disease.
Collapse
Affiliation(s)
| | - Guang Yang
- Stanford Cardiovascular Institute, Stanford, CA 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304,USA
| | - Dimitris Dionyssiou
- Fibralign Corporation, Union City, CA 94587, USA
- Department of Plastic Surgery, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Maedeh Zamani
- Stanford Cardiovascular Institute, Stanford, CA 94305, USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| | | | | | | | - Richard L Hallett
- Stanford Cardiovascular Institute, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Dominik Fleischmann
- Stanford Cardiovascular Institute, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | | | - Ngan F Huang
- Stanford Cardiovascular Institute, Stanford, CA 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304,USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Richbourg NR, Peppas NA, Sikavitsas VI. Tuning the biomimetic behavior of scaffolds for regenerative medicine through surface modifications. J Tissue Eng Regen Med 2019; 13:1275-1293. [PMID: 30946537 PMCID: PMC6715496 DOI: 10.1002/term.2859] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 01/22/2019] [Accepted: 01/29/2019] [Indexed: 11/11/2022]
Abstract
Tissue engineering and regenerative medicine rely extensively on biomaterial scaffolds to support cell adhesion, proliferation, and differentiation physically and chemically in vitro and in vivo. Changes to the surface characteristics of the scaffolds have the greatest impact on cell response. Here, we discuss five dominant surface modification approaches used to biomimetically improve the most common scaffolds for tissue engineering, those based on aliphatic polyesters. Scaffolds of aliphatic polyesters such as poly(l-lactic acid), poly(l-lactic-co-glycolic acid), and poly(ε-caprolactone) are often used in tissue engineering because they provide desirable, tunable properties such as ease of manufacturing, good mechanical properties, and nontoxic degradation products. However, cell-surface interactions necessary for tissue engineering are limited on these materials by their smooth postfabrication surfaces, hydrophobicity, and lack of recognizable biochemical binding sites. The surface modification techniques that have been developed for synthetic polymer scaffolds reduce initial barriers to cell adhesion, proliferation, and differentiation. Topographical modification, protein adsorption, mineral coating, functional group incorporation, and biomacromolecule immobilization each contribute through varying mechanisms to improving cell interactions with aliphatic polyester scaffolds. Furthermore, rational combination of methods from these categories can provide nuanced, specific environments for targeted tissue development.
Collapse
Affiliation(s)
- Nathan R Richbourg
- School of Chemical, Biological, and Materials Engineering, The University of Oklahoma, Norman, OK, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Vassilios I Sikavitsas
- School of Chemical, Biological, and Materials Engineering, The University of Oklahoma, Norman, OK, USA
| |
Collapse
|
8
|
Ogueri KS, Jafari T, Escobar Ivirico JL, Laurencin CT. POLYMERIC BIOMATERIALS FOR SCAFFOLD-BASED BONE REGENERATIVE ENGINEERING. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019; 5:128-154. [PMID: 31423461 PMCID: PMC6697158 DOI: 10.1007/s40883-018-0072-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/28/2018] [Indexed: 10/28/2022]
Abstract
Reconstruction of large bone defects resulting from trauma, neoplasm, or infection is a challenging problem in reconstructive surgery. The need for bone grafting has been increasing steadily partly because of our enhanced capability to salvage limbs after major bone loss. Engineered bone graft substitutes can have advantages such as lack of antigenicity, high availability, and varying properties depending on the applications chosen for use. These favorable attributes have contributed to the rise of scaffold-based polymeric tissue regeneration. Critical components in the scaffold-based polymeric regenerative engineering approach often include 1. The existence of biodegradable polymeric porous structures with properties selected to promote tissue regeneration and while providing appropriate mechanical support during tissue regeneration. 2. Cellular populations that can influence and enhance regeneration. 3. The use of growth and morphogenetic factors which can influence cellular migration, differentiation and tissue regeneration in vivo. Biodegradable polymers constitute an attractive class of biomaterials for the development of scaffolds due to their flexibility in chemistry and their ability to produce biocompatible degradation products. This paper presents an overview of polymeric scaffold-based bone tissue regeneration and reviews approaches as well as the particular roles of biodegradable polymers currently in use.
Collapse
Affiliation(s)
- Kenneth S. Ogueri
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Tahereh Jafari
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Jorge L. Escobar Ivirico
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Cato T. Laurencin
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
9
|
Suzuki T, Hayakawa T, Gomi K. GM-CSF Stimulates Mouse Macrophages and Causes Inflammatory Effects in Vitro. J HARD TISSUE BIOL 2019. [DOI: 10.2485/jhtb.28.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Takuma Suzuki
- Department of Periodontology, Tsurumi University School of Dental Medicine
| | - Tohru Hayakawa
- Department of Dental Engineering, Tsurumi University School of Dental Medicine
| | - Kazuhiro Gomi
- Department of Periodontology, Tsurumi University School of Dental Medicine
| |
Collapse
|
10
|
Zaitseva TS, Alcazar C, Zamani M, Hou L, Sawamura S, Yakubov E, Hopkins M, Woo YJ, Paukshto MV, Huang NF. Aligned Nanofibrillar Scaffolds for Controlled Delivery of Modified mRNA. Tissue Eng Part A 2019; 25:121-130. [PMID: 29717619 PMCID: PMC6352505 DOI: 10.1089/ten.tea.2017.0494] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/26/2018] [Indexed: 01/04/2023] Open
Abstract
RNA-based vector delivery is a promising gene therapy approach. Recent advances in chemical modification of mRNA structure to form modified mRNA (mmRNA or cmRNA or modRNA) have substantially improved their stability and translational efficiency within cells. However, mmRNA conventionally delivered in solution can be taken up nonspecifically or become cleared away prematurely, which markedly limits the potential benefit of mmRNA therapy. To address this limitation, we developed mmRNA-incorporated nanofibrillar scaffolds that could target spatially localized delivery and temporally controlled release of the mmRNA both in vitro and in vivo. To establish the efficacy of mmRNA therapy, mmRNA encoding reporter proteins such as green fluorescence protein or firefly luciferase (Fluc) was loaded into aligned nanofibrillar collagen scaffolds. The mmRNA was released from mmRNA-loaded scaffolds in a transient and temporally controlled manner and induced transfection of human fibroblasts in a dose-dependent manner. In vitro transfection was further verified using mmRNA encoding the angiogenic growth factor, hepatocyte growth factor (HGF). Finally, scaffold-based delivery of HGF mmRNA to the site of surgically induced muscle injury in mice resulted in significantly higher vascular regeneration after 14 days, compared to implantation of Fluc mmRNA-releasing scaffolds. After transfection with Fluc mmRNA-releasing scaffold in vivo, Fluc activity was detectable and localized to the muscle region, based on noninvasive bioluminescence imaging. Scaffold-based local mmRNA delivery as an off-the-shelf form of gene therapy has broad translatability for treating a wide range of diseases or injuries.
Collapse
Affiliation(s)
| | - Cynthia Alcazar
- Stanford Cardiovascular Institute, Stanford, California
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Maedeh Zamani
- Stanford Cardiovascular Institute, Stanford, California
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California
| | - Luqia Hou
- Stanford Cardiovascular Institute, Stanford, California
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California
| | | | | | - Michael Hopkins
- Stanford Cardiovascular Institute, Stanford, California
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California
| | - Y. Joseph Woo
- Stanford Cardiovascular Institute, Stanford, California
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California
| | | | - Ngan F. Huang
- Stanford Cardiovascular Institute, Stanford, California
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California
| |
Collapse
|
11
|
Cui Y, Zhou F, Bai H, Wei L, Tan J, Zeng Z, Song Q, Chen J, Huang N. Real-time QCM-D monitoring of endothelial cells and macrophages adhering and spreading to SEMA4D/heparin surfaces. Colloids Surf B Biointerfaces 2018; 171:522-529. [DOI: 10.1016/j.colsurfb.2018.07.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/05/2018] [Accepted: 07/26/2018] [Indexed: 01/25/2023]
|
12
|
Zhang N, Chin JS, Chew SY. Localised non-viral delivery of nucleic acids for nerve regeneration in injured nervous systems. Exp Neurol 2018; 319:112820. [PMID: 30195695 DOI: 10.1016/j.expneurol.2018.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023]
Abstract
Axons damaged by traumatic injuries are often unable to spontaneously regenerate in the adult central nervous system (CNS). Although the peripheral nervous system (PNS) has some regenerative capacity, its ability to regrow remains limited across large lesion gaps due to scar tissue formation. Nucleic acid therapy holds the potential of improving regeneration by enhancing the intrinsic growth ability of neurons and overcoming the inhibitory environment that prevents neurite outgrowth. Nucleic acids modulate gene expression by over-expression of neuronal growth factor or silencing growth-inhibitory molecules. Although in vitro outcomes appear promising, the lack of efficient non-viral nucleic acid delivery methods to the nervous system has limited the application of nucleic acid therapeutics to patients. Here, we review the recent development of efficient non-viral nucleic acid delivery platforms, as applied to the nervous system, including the transfection vectors and carriers used, as well as matrices and scaffolds that are currently used. Additionally, we will discuss possible improvements for localised nucleic acid delivery.
Collapse
Affiliation(s)
- Na Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| | - Jiah Shin Chin
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore; NTU Institute of Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, 639798, Singapore
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore.
| |
Collapse
|
13
|
Chaemsawang W, Prasongchean W, Papadopoulos KI, Sukrong S, Kao WJ, Wattanaarsakit P. Emulsion Cross-Linking Technique for Human Fibroblast Encapsulation. Int J Biomater 2018; 2018:9317878. [PMID: 30105055 PMCID: PMC6076944 DOI: 10.1155/2018/9317878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/28/2018] [Indexed: 02/08/2023] Open
Abstract
Microencapsulation with biodegradable polymers has potential application in drug and cell delivery systems and is currently used in probiotic delivery. In the present study, microcapsules of human fibroblast cells (CRL2522) were prepared by emulsion cross-linking technique. Tween 80 surfactant at a 2% concentration through phase inversion resulted in the most efficient and stable size, morphology, and the cells survival at least 50% on day 14. Emulsion cross-linking microcapsule preparation resulted in smaller and possibly more diverse particles that can be developed clinically to deliver encapsulated mammalian cells for future disease treatments.
Collapse
Affiliation(s)
- Watcharaphong Chaemsawang
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Weerapong Prasongchean
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | - Suchada Sukrong
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - W. John Kao
- Chemistry and Biology Centre, Li Ka Shing Faculty of Medicine and Faculty of Engineering, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Phanphen Wattanaarsakit
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
14
|
Construction of a Biocompatible and Antioxidant Multilayer Coating by Layer-by-Layer Assembly of κ-Carrageenan and Quercetin Nanoparticles. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2077-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Huang Y, Wu C, Zhang X, Chang J, Dai K. Regulation of immune response by bioactive ions released from silicate bioceramics for bone regeneration. Acta Biomater 2018; 66:81-92. [PMID: 28864248 DOI: 10.1016/j.actbio.2017.08.044] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/29/2017] [Accepted: 08/28/2017] [Indexed: 12/12/2022]
Abstract
Silicate bioceramics have been considered to possess a wide prospect of clinical application for orthopedic tissue regeneration due to their excellent osteogenesis and angiogenesis. However, the mechanism for silicate bioceramics stimulating bone formation is not fully understood. The host immune defense to implants is proved to greatly influence the osteogenesis and new bone formation, but up to now, few studies are focused on the silicate bioceramics modulated host immune responses. In our present study, two representative silicate bioceramics, akermanite (AKT) and nagelschmidtite (NAGEL) were used as model materials to investigate the inflammation responses in vitro and in vivo, and β-tricalcium phosphate (β-TCP) bioceramics were used as a control. It was found that the mouse macrophage cell RAW264.7 that cultured on AKT and NAGEL bioceramics displayed not only less viability and proliferation, but also a significant less inflammatory cytokine secretion than those on β-TCP in vitro. The formation of foreign body giant cells and fibrous capsules, the invasion of macrophages, as well as the detected inflammatory cytokines around the implanted materials were much lower in both AKT and NAGEL bioceramic groups as compared with those in the β-TCP controls in vivo. Furthermore, it was found that not just the certain concentration of extracellular Si-containing ionic products released from the silicate bioceramics, but also the separate Si, Mg and Ca ions revealed the activity to inhibit the macrophage inflammatory responses by the way of suppressing the activated inflammatory MAPK and NF-κB signaling pathway and promoting the caspase-dependent apoptosis of macrophages. In general, our study suggests that the silicate bioceramics could regulate immune responses by altering the ionic microenvironment between the implants and hosts, which may offer new insight about the mechanism of the bioactivity of silicate bioceramics in bone regeneration and provide profitable guidance for designing new biomaterials for bone tissue engineering. STATEMENT OF SIGNIFICANCE Silicate bioceramics have been widely used for orthopedic tissue regeneration because of their excellent characteristics in bone formation. However, there are few studies concerning their interrelationships with the host immune defense that has been proved to greatly influence osteogenesis. In our present study, the akermanite and nagelschmidtite were used as two representative silicate bioceramics to investigate the inflammation responses in vitro and in vivo; and for the first time, the bioactive ions released from the silicate bioceramics were discovered to regulate the macrophage immune responses through both inhibiting the inflammatory signaling and activating apoptosis of macrophages. Our findings in this study may not only increase the understanding in osteogenic activity of silicate bioceramics, but also provide profitable guidance for designing and manufacturing new biomaterials for bone tissue engineering.
Collapse
|
16
|
Corradetti B, Taraballi F, Corbo C, Cabrera F, Pandolfi L, Minardi S, Wang X, Van Eps J, Bauza G, Weiner B, Tasciotti E. Immune tuning scaffold for the local induction of a pro-regenerative environment. Sci Rep 2017; 7:17030. [PMID: 29208986 PMCID: PMC5717048 DOI: 10.1038/s41598-017-16895-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/10/2017] [Indexed: 11/10/2022] Open
Abstract
In mammals, tissue regeneration is accomplished through a well-regulated, complex cascade of events. The disruption of the cellular and molecular processes involved in tissue healing might lead to scar formation. Most tissue engineering approaches have tried to improve the regenerative outcome following an injury, through the combination of biocompatible materials, stem cells and bioactive factors. However, implanted materials can cause further healing impairments due to the persistent inflammatory stimuli that trigger the onset of chronic inflammation. Here, it is described at the molecular, cellular and tissue level, the body response to a functionalized biomimetic collagen scaffold. The grafting of chondroitin sulfate on the surface of the scaffold is able to induce a pro-regenerative environment at the site of a subcutaneous implant. The early in situ recruitment, and sustained local retention of anti-inflammatory macrophages significantly reduced the pro-inflammatory environment and triggered a different healing cascade, ultimately leading to collagen fibril re-organization, blood vessel formation, and scaffold integration with the surrounding native tissue.
Collapse
Affiliation(s)
- Bruna Corradetti
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Francesca Taraballi
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA
- Houston Methodist Orthopedics and Sports Medicine, Houston, Texas, U.S.A.,, Houston, TX, 77030, USA
| | - Claudia Corbo
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA
- Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fernando Cabrera
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA
| | - Laura Pandolfi
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA
| | - Silvia Minardi
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA
| | - Xin Wang
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA
| | - Jeffrey Van Eps
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA
| | - Guillermo Bauza
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA
- Houston Methodist Orthopedics and Sports Medicine, Houston, Texas, U.S.A.,, Houston, TX, 77030, USA
- Center for NanoHealth, Swansea University Medical School, Swansea University Bay, Singleton Park, SA2 8PP, Wales, UK
| | - Bradley Weiner
- Houston Methodist Orthopedics and Sports Medicine, Houston, Texas, U.S.A.,, Houston, TX, 77030, USA
| | - Ennio Tasciotti
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA.
- Houston Methodist Orthopedics and Sports Medicine, Houston, Texas, U.S.A.,, Houston, TX, 77030, USA.
- Center for NanoHealth, Swansea University Medical School, Swansea University Bay, Singleton Park, SA2 8PP, Wales, UK.
| |
Collapse
|
17
|
Scislowska-Czarnecka A, Pamula E, Tlalka A, Kolaczkowska E. Effects of aliphatic polyesters on activation of the immune system: studies on macrophages. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 23:715-38. [PMID: 21375810 DOI: 10.1163/092050611x559421] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is a constant search for biodegradable polymers with biocompatible characteristics. However, the reported materials are rarely tested for their immunostimulatory properties, which is an important issue as immune cells activated by the polymers might cause their rejection and lead to further injury to the host tissues. Therefore, the aim of the present study was to determine if biodegradable polymers are able to activate RAW 264.7 macrophages. Aliphatic polyesters, poly(L-lactide) (PLLA), poly(L-lactide-co-trimethylene carbonate) (PLTMC), poly(glycolide-co-L-lactide) (PGLA), poly(glycolide-co-L-lactide-co-ε-caprolactone) (PGLCap) and poly(glycolide-co-ε-caprolactone) (PGCap), processed into foils by slip-casting, were characterized in terms of their structure ((1)H-NMR, GPC, DSC) and surface properties (chemical composition, water contact angle, surface free energy, topography and roughness). RAW 264.7 cells were cultured on the materials for 3 or 5 days and their adherence, numbers of apoptotic/necrotic cells, as well as production of several cytokines/chemokines and other inflammation-related molecules (matrix metalloproteinases, nitric oxide) was evaluated. The study demonstrated that PLLA and PGLA did not influence macrophage activation and survival. In contrast, PLTMC, PGLCap and PGCap significantly decreased macrophage adherence, increased ratio of apoptosis and up-regulated synthesis/release of numerous inflammatory mediators. Thus, the latter materials might initiate an undesired inflammatory reaction. The above effects of the polymers were attributed to their high hydrophobicity and low polarity due to the presence of ε-caproyl blocks (PGLCap and PGCap), and/or high flexibility and susceptibility to mechanical deformation due to low glasstransition temperature (PLTMC, PGLCap and PGCap). In conclusion, while PLLA and PGLA do not affect macrophage functioning, the other materials (PLTMC, PGLCap, PGCap) up-regulate macrophage activity.
Collapse
|
18
|
Nayyer L, Jell G, Esmaeili A, Birchall M, Seifalian AM. A Biodesigned Nanocomposite Biomaterial for Auricular Cartilage Reconstruction. Adv Healthc Mater 2016; 5:1203-12. [PMID: 26992039 DOI: 10.1002/adhm.201500968] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/22/2016] [Indexed: 12/31/2022]
Abstract
Current biomaterials for auricular replacement are associated with high rates of infection and extrusion. The development of new auricular biomaterials that mimic the mechanical properties of native tissue and promote desirable cellular interactions may prevent implant failure. A porous 3D nanocomposite scaffold (NS) based on POSS-PCU (polyhedral oligomeric silsesquioxane nanocage into polycarbonate based urea-urethane) is developed with an elastic modulus similar to native ear. In vitro biological interactions on this NS reveal greater protein adsorption, increased fibroblast adhesion, proliferation, and collagen production compared with Medpor (the current synthetic auricular implant). In vivo, the POSS-PCU with larger pores (NS2; 150-250 μm) have greater tissue ingrowth (≈5.8× and ≈1.4 × increase) than the POSS-PCU with smaller pores (NS1; 100-50 μm) and when compared to Medpor (>100 μm). The NS2 with the larger pores demonstrates a reduced fibrotic encapsulation compared with NS1 and Medpor (≈4.1× and ≈1.6×, respectively; P < 0.05). Porosity also influences the amount of neovascularization within the implants, with no blood vessel observed in NS1 (12 weeks postimplantation). The lack of chronic inflammatory response for all materials may indicate that the elastic modulus and pore size of the implant scaffold could be important design considerations for influencing fibrotic responses to auricular and other soft tissue implants.
Collapse
Affiliation(s)
- Leila Nayyer
- Division of Surgery and Interventional Science, University College London, London, WC1E 6BT, UK
| | - Gavin Jell
- Division of Surgery and Interventional Science, University College London, London, WC1E 6BT, UK
| | - Ali Esmaeili
- Division of Surgery and Interventional Science, University College London, London, WC1E 6BT, UK
- Department of Plastic and Reconstructive Surgery, Royal Free Hampstead NHS Trust Hospital, London, NW3 2QG, UK
| | - Martin Birchall
- The Ear Institute, University College London, London, WC1E 6BT, UK
| | - Alexander M Seifalian
- Division of Surgery and Interventional Science, University College London, London, WC1E 6BT, UK
- Department of Plastic and Reconstructive Surgery, Royal Free Hampstead NHS Trust Hospital, London, NW3 2QG, UK
| |
Collapse
|
19
|
Santos TC, Reis RL, Marques AP. Can host reaction animal models be used to predict and modulate skin regeneration? J Tissue Eng Regen Med 2016. [DOI: 10.1002/term.2128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- T. C. Santos
- 3Bs Research Group - Biomaterials, Biodegradables and Biomimetics; University of Minho, Taipas, and ICVS-3Bs - PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - R. L. Reis
- 3Bs Research Group - Biomaterials, Biodegradables and Biomimetics; University of Minho, Taipas, and ICVS-3Bs - PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - A. P. Marques
- 3Bs Research Group - Biomaterials, Biodegradables and Biomimetics; University of Minho, Taipas, and ICVS-3Bs - PT Government Associate Laboratory; Braga/Guimarães Portugal
| |
Collapse
|
20
|
Taraballi F, Corradetti B, Minardi S, Powel S, Cabrera F, Van Eps JL, Weiner BK, Tasciotti E. Biomimetic collagenous scaffold to tune inflammation by targeting macrophages. J Tissue Eng 2016; 7:2041731415624667. [PMID: 26977285 PMCID: PMC4765811 DOI: 10.1177/2041731415624667] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/04/2015] [Indexed: 12/20/2022] Open
Abstract
The inflammatory response following implantation of a biomaterial is one of the major regulatory aspects of the overall regenerative process. The progress of inflammation determines whether functional tissue is restored or if nonfunctional fibrotic tissue is formed. This delicate balance is directed by the activity of different cells. Among these, macrophages and their different phenotypes, the inflammatory M1 to anti-inflammatory M2, are considered key players in the process. Recent approaches exploit macrophage’s regenerative potential in tissue engineering. Here, we propose a collagen scaffold functionalized with chondroitin sulfate (CSCL), a glycosaminoglycan known to be able to tune inflammation. We studied CSCL effects on bone-marrow-derived macrophages in physiological, and lipopolysaccharides-inflamed, conditions in vitro. Our data demonstrate that CSCL is able to modulate macrophage phenotype by inhibiting the LPS/CD44/NF-kB cascade. As a consequence, an upregulation of anti-inflammatory markers (TGF-β, Arg, MRC1, and IL-10) was found concomitantly with a decrease in the expression of pro-inflammatory markers (iNOS, TNF-α, IL-1β, IL-12β). We then implanted CSCL subcutaneously in a rat model to test whether the same molecular mechanism could be maintained in an in vivo environment. In vivo data confirmed the in vitro studies. A significant reduction in the number of infiltrating cells around and within the implants was observed at 72 h, with a significant downregulation of pro-inflammatory genes expression. The present work provides indications regarding the immunomodulatory potential of molecules used for the development of biomimetic materials and suggests their use to direct macrophage immune modulation for tissue repair.
Collapse
Affiliation(s)
- Francesca Taraballi
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Bruna Corradetti
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA; Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Silvia Minardi
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Sebastian Powel
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Fernando Cabrera
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Jeff L Van Eps
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA; Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Bradley K Weiner
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA; Department of Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Ennio Tasciotti
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| |
Collapse
|
21
|
Sheikh Z, Brooks PJ, Barzilay O, Fine N, Glogauer M. Macrophages, Foreign Body Giant Cells and Their Response to Implantable Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2015; 8:5671-5701. [PMID: 28793529 PMCID: PMC5512621 DOI: 10.3390/ma8095269] [Citation(s) in RCA: 453] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 12/23/2022]
Abstract
All biomaterials, when implanted in vivo, elicit cellular and tissue responses. These responses include the inflammatory and wound healing responses, foreign body reactions, and fibrous encapsulation of the implanted materials. Macrophages are myeloid immune cells that are tactically situated throughout the tissues, where they ingest and degrade dead cells and foreign materials in addition to orchestrating inflammatory processes. Macrophages and their fused morphologic variants, the multinucleated giant cells, which include the foreign body giant cells (FBGCs) are the dominant early responders to biomaterial implantation and remain at biomaterial-tissue interfaces for the lifetime of the device. An essential aspect of macrophage function in the body is to mediate degradation of bio-resorbable materials including bone through extracellular degradation and phagocytosis. Biomaterial surface properties play a crucial role in modulating the foreign body reaction in the first couple of weeks following implantation. The foreign body reaction may impact biocompatibility of implantation devices and may considerably impact short- and long-term success in tissue engineering and regenerative medicine, necessitating a clear understanding of the foreign body reaction to different implantation materials. The focus of this review article is on the interactions of macrophages and foreign body giant cells with biomaterial surfaces, and the physical, chemical and morphological characteristics of biomaterial surfaces that play a role in regulating the foreign body response. Events in the foreign body response include protein adsorption, adhesion of monocytes/macrophages, fusion to form FBGCs, and the consequent modification of the biomaterial surface. The effect of physico-chemical cues on macrophages is not well known and there is a complex interplay between biomaterial properties and those that result from interactions with the local environment. By having a better understanding of the role of macrophages in the tissue healing processes, especially in events that follow biomaterial implantation, we can design novel biomaterials-based tissue-engineered constructs that elicit a favorable immune response upon implantation and perform for their intended applications.
Collapse
Affiliation(s)
- Zeeshan Sheikh
- Faculty of Dentistry, Matrix Dynamics Group, University of Toronto, 150 College Street, Toronto, ON M5S 3E2, Canada.
| | - Patricia J Brooks
- Faculty of Dentistry, Matrix Dynamics Group, University of Toronto, 150 College Street, Toronto, ON M5S 3E2, Canada.
| | - Oriyah Barzilay
- Faculty of Dentistry, Matrix Dynamics Group, University of Toronto, 150 College Street, Toronto, ON M5S 3E2, Canada.
| | - Noah Fine
- Faculty of Dentistry, Matrix Dynamics Group, University of Toronto, 150 College Street, Toronto, ON M5S 3E2, Canada.
| | - Michael Glogauer
- Faculty of Dentistry, Matrix Dynamics Group, University of Toronto, 150 College Street, Toronto, ON M5S 3E2, Canada.
| |
Collapse
|
22
|
Ong SM, Biswas SK, Wong SC. MicroRNA-mediated immune modulation as a therapeutic strategy in host-implant integration. Adv Drug Deliv Rev 2015; 88:92-107. [PMID: 26024977 DOI: 10.1016/j.addr.2015.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 05/05/2015] [Accepted: 05/21/2015] [Indexed: 12/29/2022]
Abstract
The concept of implanting an artificial device into the human body was once the preserve of science fiction, yet this approach is now often used to replace lost or damaged biological structures in human patients. However, assimilation of medical devices into host tissues is a complex process, and successful implant integration into patients is far from certain. The body's immediate response to a foreign object is immune-mediated reaction, hence there has been extensive research into biomaterials that can reduce or even ablate anti-implant immune responses. There have also been attempts to embed or coat anti-inflammatory drugs and pro-regulatory molecules onto medical devices with the aim of preventing implant rejection by the host. In this review, we summarize the key immune mediators of medical implant reaction, and we evaluate the potential of microRNAs to regulate these processes to promote wound healing, and prolong host-implant integration.
Collapse
Affiliation(s)
- Siew-Min Ong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos Building, Level 4, Biopolis, Singapore 138648, Singapore
| | - Subhra K Biswas
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos Building, Level 4, Biopolis, Singapore 138648, Singapore
| | - Siew-Cheng Wong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos Building, Level 4, Biopolis, Singapore 138648, Singapore.
| |
Collapse
|
23
|
Simón-Yarza T, Rossi A, Heffels KH, Prósper F, Groll J, Blanco-Prieto MJ. Polymeric Electrospun Scaffolds: Neuregulin Encapsulation and Biocompatibility Studies in a Model of Myocardial Ischemia. Tissue Eng Part A 2015; 21:1654-61. [DOI: 10.1089/ten.tea.2014.0523] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Teresa Simón-Yarza
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Pamplona, Spain
| | - Angela Rossi
- Department of Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| | - Karl-Heinz Heffels
- Department of Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| | - Felipe Prósper
- Hematology Service and Area of Cell Therapy, Clínica Universidad de Navarra, Foundation for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| | - Maria J. Blanco-Prieto
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Pamplona, Spain
| |
Collapse
|
24
|
Bygd HC, Forsmark KD, Bratlie KM. Altering in vivo macrophage responses with modified polymer properties. Biomaterials 2015; 56:187-97. [PMID: 25934291 DOI: 10.1016/j.biomaterials.2015.03.042] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/16/2015] [Accepted: 03/20/2015] [Indexed: 12/13/2022]
Abstract
Macrophage reprogramming has long been the focus of research in disease therapeutics and biomaterial implantation. With different chemical and physical properties of materials playing a role in macrophage polarization, it is important to investigate and categorize the activation effects of material parameters both in vitro and in vivo. In this study, we have investigated the effects of material surface chemistry on in vivo polarization of macrophages. The library of materials used here include poly(N-isopropylacrylamide-co-acrylic acid) (p(NIPAm-co-AAc)) nanoparticles (∼600 nm) modified with various functional groups. This study also focuses on the development of a quantitative structure-activity relationship method (QSAR) as a predictive tool for determining the macrophage polarization in response to particular biomaterial surface chemistries. Here, we successfully use in vivo imaging and histological analysis to identify the macrophage response and activation. We demonstrate the ability to induce a spectrum of macrophage phenotypes with a change in material functionality as well as identify certain material parameters that seem to correlate with each phenotype. This suggests the potential to develop materials for a variety of applications and predict the outcome of macrophage activation in response to new surface chemistries.
Collapse
Affiliation(s)
- Hannah C Bygd
- Department of Materials Science & Engineering, Iowa State University, Ames, IA 50011, USA
| | - Kiva D Forsmark
- Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Kaitlin M Bratlie
- Department of Materials Science & Engineering, Iowa State University, Ames, IA 50011, USA; Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA; Ames National Laboratory, Ames, IA 50011, USA.
| |
Collapse
|
25
|
Shahzad S, Yar M, Siddiqi SA, Mahmood N, Rauf A, Qureshi ZUA, Anwar MS, Afzaal S. Chitosan-based electrospun nanofibrous mats, hydrogels and cast films: novel anti-bacterial wound dressing matrices. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:136. [PMID: 25716023 DOI: 10.1007/s10856-015-5462-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/09/2015] [Indexed: 06/04/2023]
Abstract
The development of highly efficient anti-bacterial wound dressings was carried out. For this purpose nanofibrous mats, hydrogels and films were synthesized from chitosan, poly(vinyl alcohol) and hydroxyapatite. The physical/chemical interactions of the synthesized materials were evaluated by FTIR. The morphology, structure; average diameter and pore size of the materials were investigated by scanning electron microscopy. The hydrogels showed a greater degree of swelling as compared to nanofibrous mats and films in phosphate buffer saline solution of pH 7.4. The in vitro drug release studies showed a burst release during the initial period of 4 h and then a sustained release profile was observed in the next upcoming 20 h. The lyophilized hydrogels showed a more slow release as compared to nanofibrous mats and films. Antibacterial potential of drug released solutions collected after 24 h of time interval was determined and all composite matrices showed good to moderate activity against Gram-positive and Gram-negative bacterial strains respectively. To determine the cytotoxicity, cell culture was performed for various cefixime loaded substrates by using neutral red dye uptake assay and all the matrices were found to be non-toxic.
Collapse
Affiliation(s)
- Sohail Shahzad
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kounis NG, Soufras GD, Tsigkas G, Hahalis G. Bioabsorbable stent thrombosis Quo Vadis: Is Kounis syndrome still present? Int J Cardiol 2014; 176:305-6. [DOI: 10.1016/j.ijcard.2014.07.227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 07/27/2014] [Indexed: 12/01/2022]
|
27
|
Reddy A, Caicedo MS, Samelko L, Jacobs JJ, Hallab NJ. Implant debris particle size affects serum protein adsorption which may contribute to particle size-based bioreactivity differences. J Long Term Eff Med Implants 2014; 24:77-88. [PMID: 24941408 PMCID: PMC4062925 DOI: 10.1615/jlongtermeffmedimplants.2014010118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Biologic reactivity to orthopedic implant debris mediates long-term clinical performance of total joint arthroplasty implants. However, the reasons that some facets of implant debris (e.g., particle size, shape, base material, etc.) are more pro-inflammatory remain controversial. This precludes accurate prediction and optimal design of modern total joint replacements. We hypothesized that debris particle size can influence adsorbed protein film composition and affect subsequent bioreactivity. We measured size-dependent proteinfilm adsorption, and adsorbed protein-film-dependent cytokine release using equal surface areas of different sized cobalt-chromium alloy (CoCr-alloy) particles and in vitro challenge of human macrophages (THP-1 and human primary). Smaller (5 μm diameter) versus larger (70 μm diameter) particles preferentially adsorbed more serum protein in general (p<0.03), where higher molecular weight serum proteins consistent with IgG were identified. Additionally, 5-μm CoCr-alloy particles pre-coated with different protein biofilms (IgG vs. albumin) resulted in a difference in cytokine expression in which albumin-coated particles induced more TNF-α release and IgG-coated particles induced more IL-1β release from human monocytes/macrophages. In these preliminary in vitro studies, we have demonstrated the capability of equal surface areas of different particle sizes to influence adsorbed protein composition and that adsorbed protein differences on identical particles can translate into complex differences in bioreactivity. Together, these findings suggest that adsorbed protein differences on different-sized particles of the same material may be a contributing mechanism by which certain particles induce different reactivities.
Collapse
Affiliation(s)
- Anand Reddy
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Marco S Caicedo
- Orthopedic Analysis, LLC, Chicago, IL 60612; Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Lauryn Samelko
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Joshua J Jacobs
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Nadim James Hallab
- Orthopedic Analysis, LLC, Department of Immunology, Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| |
Collapse
|
28
|
Dongargaonkar AA, Bowlin GL, Yang H. Electrospun blends of gelatin and gelatin-dendrimer conjugates as a wound-dressing and drug-delivery platform. Biomacromolecules 2013; 14:4038-45. [PMID: 24127747 DOI: 10.1021/bm401143p] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we report a new nanofiber construct based on electrospun blends of gelatin and gelatin-dendrimer conjugates. Highly branched star-shaped polyamidoamine (PAMAM) dendrimer G3.5 was covalently conjugated to gelatin via EDC/NHS chemistry. Blends of gelatin and gelatin-dendrimer conjugates mixed with various loading levels of silver acetate (0, 0.83, 1.65, and 3.30% w/w) were successfully electrospun into nanofiber constructs (NCs). The NCs were further converted into semi-interpenetrating networks (sIPNs) with photoreactive polyethylene glycol diacrylate (Mn = 575 g mol(-1)) (PEG DA575). They were characterized in terms of fiber morphology, diameter, pore size, permeability, degradation, and mechanical properties. The resulting sIPN NCs retained nanofiber morphology, possessed similar fiber diameters to counterpart NCs, and gained improved structural stability. The sIPN NCs also showed good swelling capacity owing to porous structures and were permeable to aqueous solutions. Silver-containing sIPN NCs allowed sustained silver release and showed antimicrobial activity against two common types of pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. Incorporation of dendrimers into the gelatin nanofibers through covalent conjugation not only expands drug loading capacity of nanofiber constructs but also provides tremendous flexibility for developing multifunctional electrospun dressing materials.
Collapse
Affiliation(s)
- Alpana A Dongargaonkar
- Department of Biomedical Engineering, Virginia Commonwealth University , 401 West Main Street, Richmond, Virginia 23284, United States
| | | | | |
Collapse
|
29
|
Kourtzelis I, Rafail S, DeAngelis RA, Foukas PG, Ricklin D, Lambris JD. Inhibition of biomaterial-induced complement activation attenuates the inflammatory host response to implantation. FASEB J 2013; 27:2768-76. [PMID: 23558338 DOI: 10.1096/fj.12-225888] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although complement is a known contributor to biomaterial-induced complications, pathological implications and therapeutic options remain to be explored. Here we investigated the involvement of complement in the inflammatory response to polypropylene meshes commonly used for hernia repair. In vitro assays revealed deposition of complement activation fragments on the mesh after incubation in plasma. Moreover, significant mesh-induced complement and granulocyte activation was observed in plasma and leukocyte preparations, respectively. Pretreatment of plasma with the complement inhibitor compstatin reduced opsonization >2-fold, and compstatin and a C5a receptor antagonist (C5aRa) impaired granulocyte activation by 50 and 67%, respectively. We established a clinically relevant mouse model of implantation and could confirm deposition of C3 activation fragments on mesh implants in vivo using immunofluorescence. In meshes extracted after subcutaneous or peritoneal implantation, the amount of immune cell infiltrate in mice deficient in key complement components (C3, C5aR), or treated with C5aRa, was approximately half of that observed in wild-type littermates or mice treated with inactive C5aRa, respectively. Our data suggest that implantation of a widely used surgical mesh triggers the formation of an inflammatory cell microenvironment at the implant site through complement activation, and indicates a path for the therapeutic modulation of implant-related complications.
Collapse
Affiliation(s)
- Ioannis Kourtzelis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
30
|
Gomes S, Gallego-Llamas J, Leonor IB, Mano JF, Reis RL, Kaplan DL. In vivo biological responses to silk proteins functionalized with bone sialoprotein. Macromol Biosci 2013; 13:444-54. [PMID: 23359587 DOI: 10.1002/mabi.201200372] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/12/2012] [Indexed: 11/09/2022]
Abstract
Recombinant 6mer + BSP protein, combining six repeats of the consensus sequence for Nephila clavipes dragline (6mer) and bone sialoprotein sequence (BSP), shows good support for cell viability and induces the nucleation of hydroxyapatite and tricalcium phosphate during osteoblast in vitro culture. The present study is conducted to characterize this bioengineered protein-based biomaterial further for in vivo behavior related to biocompatibility. 6mer + BSP protein films are implanted in subcutaneous pouches in the back of mice and responses are evaluated by flow cytometry and histology. The results show no major differences between the inflammatory responses induced by 6mer + BSP films and the responses observed for the controls. Thus, this new chimeric protein could represent an alternative for bone regeneration applications.
Collapse
Affiliation(s)
- Sílvia Gomes
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Indústrial da Gandra, 4806-909 Caldas das Taipas, Guimarães, Portugal
| | | | | | | | | | | |
Collapse
|
31
|
Ceramic modifications of porous titanium: Effects on macrophage activation. Tissue Cell 2012; 44:391-400. [DOI: 10.1016/j.tice.2012.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 08/02/2012] [Accepted: 08/02/2012] [Indexed: 12/20/2022]
|
32
|
Maciel J, Oliveira MI, Gonçalves RM, Barbosa MA. The effect of adsorbed fibronectin and osteopontin on macrophage adhesion and morphology on hydrophilic and hydrophobic model surfaces. Acta Biomater 2012; 8:3669-77. [PMID: 22705043 DOI: 10.1016/j.actbio.2012.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 05/08/2012] [Accepted: 06/07/2012] [Indexed: 12/11/2022]
Abstract
Macrophages play a crucial role in the host response to biomaterials. Here we investigated the effect of adsorbed fibronectin (FN) and osteopontin (OPN), two important proteins for tissue repair, on macrophage adhesion and morphology. Since cell-biomaterial interactions are modulated via proteins adsorbed onto biomaterial surfaces, FN and OPN were adsorbed on model self-assembled monolayers (SAMs) of alkanethiols on gold with different functional terminal groups (CH(3), OH and tetra(ethylene-glycol)). The initial interaction of inflammatory cells with a biomaterial is crucial for the ensuing phases of an inflammatory reaction. For this reason short-term cultures of primary human macrophages were performed. To account for the competitive adsorption of other proteins serum was added to the culture medium and the effect compared with serum-free medium cultures. In the presence of serum hydrophilic surfaces increased macrophage adhesion. In particular, FN induced a higher cell density, while OPN tended to decrease it. In serum-free medium cell adhesion was greater on hydrophobic surfaces, except for OPN-coated SAMs. Importantly, FN no longer enhanced macrophage adhesion, while OPN maintained its inhibitory effect. Cell polarization studies indicated that macrophage morphology variations induced by surface chemistry are overcome by pre-adsorbed OPN. Taken together our results show that in the presence of serum macrophage adhesion is promoted by FN hydrophilic surfaces, but impaired on OPN-coated surfaces. The effects of inhibited macrophage adhesion on macrophage fusion, and its relevance to the initial stages of the inflammatory response to biomaterials are discussed.
Collapse
Affiliation(s)
- J Maciel
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | | | | | | |
Collapse
|
33
|
Bryers JD, Giachelli CM, Ratner BD. Engineering biomaterials to integrate and heal: the biocompatibility paradigm shifts. Biotechnol Bioeng 2012; 109:1898-911. [PMID: 22592568 PMCID: PMC3490630 DOI: 10.1002/bit.24559] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/27/2012] [Accepted: 05/10/2012] [Indexed: 12/19/2022]
Abstract
This article focuses on one of the major failure routes of implanted medical devices, the foreign body reaction (FBR)--that is, the phagocytic attack and encapsulation by the body of the so-called "biocompatible" biomaterials comprising the devices. We then review strategies currently under development that might lead to biomaterial constructs that will harmoniously heal and integrate into the body. We discuss in detail emerging strategies to inhibit the FBR by engineering biomaterials that elicit more biologically pertinent responses.
Collapse
Affiliation(s)
- James D Bryers
- Department of Bioengineering, University of Washington, Seattle, WA 98195-5061, USA.
| | | | | |
Collapse
|
34
|
Ji W, Yang F, Seyednejad H, Chen Z, Hennink WE, Anderson JM, van den Beucken JJJP, Jansen JA. Biocompatibility and degradation characteristics of PLGA-based electrospun nanofibrous scaffolds with nanoapatite incorporation. Biomaterials 2012; 33:6604-14. [PMID: 22770568 DOI: 10.1016/j.biomaterials.2012.06.018] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 06/15/2012] [Indexed: 11/17/2022]
Abstract
The aim of current study was to evaluate the effect of nano-apatitic particles (nAp) incorporation on the degradation characteristics and biocompatibility of poly(lactide-co-glycolide) (PLGA)-based nanofibrous scaffolds. Composite PLGA/poly(ɛ-caprolactone) (PCL) blended (w/w = 3/1) polymeric electrospun scaffolds with 0-30 wt% of nAp incorporation (n0-n30) were prepared. The obtained scaffolds were firstly evaluated by morphological, physical and chemical characterization, followed by an in vitro degradation study. Further, n0 and n30 in both virgin and 3-week pre-degraded status were subcutaneously implanted in rats, either directly or in stainless steel mesh cages, to evaluate in vivo tissue response. The results showed that the incorporation of nAp yields an nAp amount-dependent buffering effect on pH-levels during degradation and delayed polymer degradation based on molecular weight analysis. Regarding biocompatibility, nAp incorporation significantly improved the tissue response during a 4-week subcutaneous implantation, showing less infiltration of inflammatory cells (monocyte/macrophages) as well as less foreign body giant cells (FBGCs) formation surrounding the scaffolds. Similar cytokine expression (gene and protein level) was observed for all groups of implanted scaffolds, although marginal differences were found for TNF-α and TGF-β at gene level as well as GRO-KC at protein level after 1 week of implantation. The results of the current study indicate that hybridization of the weak alkaline salt nAp is effective to control the in vivo adverse tissue reaction of PLGA materials, which is beneficial for optimizing final clinical application of different PLGA-based biomedical devices.
Collapse
Affiliation(s)
- Wei Ji
- Department of Biomaterials, Radboud University Nijmegen Medical Center, 309 Dentistry, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Gérard E, Bessy E, Hénard G, Verpoort T, Marchand-Brynaert J. Surface modification of polypropylene nonwovens with LDV peptidomimetics and their application in the leukodepletion of blood products. J Biomed Mater Res B Appl Biomater 2012; 100:1513-23. [DOI: 10.1002/jbm.b.32720] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 02/09/2012] [Accepted: 03/15/2012] [Indexed: 01/20/2023]
|
36
|
Park KR, Bryers JD. Effect of macrophage classical (M1) activation on implant-adherent macrophage interactions with Staphylococcus epidermidis: A murine in vitro model system. J Biomed Mater Res A 2012; 100:2045-53. [PMID: 22581669 DOI: 10.1002/jbm.a.34087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/21/2011] [Accepted: 01/10/2012] [Indexed: 01/22/2023]
Abstract
A model in vitro system was developed for eliciting classical (M1) activation of surface-adherent murine macrophages, which was then used to study the interaction of the M1 macrophages with Staphylococcus epidermidis. Glass substrata were first covalently grafted with a mixture of methoxy- and biotin-terminated silanated polyethylene glycol. Interferon (IFN)-γ and/or lipopolysaccharide (LPS), ligands known to induce the highly microbicidal M1 activation state in macrophages, were biotinylated and immobilized by way of a streptavidin intermediate to the biotin-PEG base substratum. Assessment of mouse bone marrow-derived macrophage (BMDM) interleukin (IL)-12(p40) and nitric oxide response to the fabricated surfaces confirmed that the model system achieved activation of adherent macrophage: IFN-γ-presenting surfaces primed cells for M1 activation, LPS-presenting surfaces elicited innate activation, and surface presenting a combination of IFN-γ and LPS induced M1 activation. The phagocytic and microbicidal capacity of activated, surface-adherent BMDM was evaluated using S. epidermidis, a bacterial species prevalent in implant-associated infections. Results indicate that M1 activation of implant-adherent macrophages trends towards diminishing their phagocytic capacity, but enhances their microbicidal capacity for S. epidermidis.
Collapse
Affiliation(s)
- Kyung R Park
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195, USA
| | | |
Collapse
|
37
|
Cornelius RM, Shankar SP, Brash JL, Babensee JE. Immunoblot analysis of proteins associated with self-assembled monolayer surfaces of defined chemistries. J Biomed Mater Res A 2011; 98:7-18. [PMID: 21509932 PMCID: PMC3155773 DOI: 10.1002/jbm.a.33084] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 11/02/2010] [Accepted: 01/07/2011] [Indexed: 11/06/2022]
Abstract
Intact and fragmented proteins, eluted from self-assembled monolayer (SAM) surfaces of alkanethiols of different chemistries (-CH₃, -OH, -COOH, -NH₂), following exposure to human plasma (HP) or human serum (HS), were examined using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting techniques. The SAM surfaces were incubated for 1 h with 10% (v/v) sterile-filtered, heat-inactivated (h.i.) HS or 1% (v/v) sterile-filtered h.i. HP preparations [both in phosphate buffered saline (PBS)]. Adsorbed proteins were eluted using 10% SDS/2.3% dithioerythritol for characterization of protein profiles. The type of incubating medium may be an important determinant of adsorbed protein profiles, since some variations were observed in eluates from filtered versus control unfiltered h.i. 10% HS or 1% HP. Albumin and apolipoprotein A1 were consistently detected in both filtered h.i 10% HS and 1% HP eluates from all SAM surfaces and from control tissue culture-treated polystyrene (TCPS). Interestingly, Factor H and Factor I, antithrombin, prothrombin, high molecular weight kininogen (HMWK), and IgG were present in eluates from OH, COOH, and NH₂ SAM surfaces and in eluates from TCPS but not in eluates from CH₃ SAM surfaces, following exposure to filtered h.i. 10% HS. These results suggest that CH₃ SAM surfaces were the least proinflammatory of all SAM surfaces. Overall, similar trends were observed in the profiles of proteins eluted from surfaces exposed to filtered 10% HS or 1% HP. However, the unique profiles of adsorbed proteins on different SAM surface chemistries may be related to their differential interactions with cells, including immune/inflammatory cells.
Collapse
Affiliation(s)
- Rena M. Cornelius
- Department of Chemical Engineering and School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Sucharita P. Shankar
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University 313 Ferst Drive Atlanta, GA 30332 USA
| | - John L. Brash
- Department of Chemical Engineering and School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Julia E. Babensee
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University 313 Ferst Drive Atlanta, GA 30332 USA
| |
Collapse
|
38
|
Shekaran A, Garcia AJ. Nanoscale engineering of extracellular matrix-mimetic bioadhesive surfaces and implants for tissue engineering. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1810:350-60. [PMID: 20435097 PMCID: PMC2924948 DOI: 10.1016/j.bbagen.2010.04.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 03/31/2010] [Accepted: 04/16/2010] [Indexed: 01/02/2023]
Abstract
BACKGROUND The goal of tissue engineering is to restore tissue function using biomimetic scaffolds which direct desired cell fates such as attachment, proliferation and differentiation. Cell behavior in vivo is determined by a complex interaction of cells with extracellular biosignals, many of which exist on a nanoscale. Therefore, recent efforts in tissue engineering biomaterial development have focused on incorporating extracellular matrix- (ECM) derived peptides or proteins into biomaterials in order to mimic natural ECM. Concurrent advances in nanotechnology have also made it possible to manipulate protein and peptide presentation on surfaces on a nanoscale level. SCOPE OF REVIEW This review discusses protein and peptide nanopatterning techniques and examples of how nanoscale engineering of bioadhesive materials may enhance outcomes for regenerative medicine. MAJOR CONCLUSIONS Synergy between ECM-mimetic tissue engineering and nanotechnology fields can be found in three major strategies: (1) Mimicking nanoscale orientation of ECM peptide domains to maintain native bioactivity, (2) Presenting adhesive peptides at unnaturally high densities, and (3) Engineering multivalent ECM-derived peptide constructs. GENERAL SIGNIFICANCE Combining bioadhesion and nanopatterning technologies to allow nanoscale control of adhesive motifs on the cell-material interface may result in exciting advances in tissue engineering. This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine.
Collapse
Affiliation(s)
- Asha Shekaran
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | | |
Collapse
|
39
|
Chen HY, Lahann J. Designable biointerfaces using vapor-based reactive polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:34-48. [PMID: 20590103 DOI: 10.1021/la101623n] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Functionalized poly(p-xylylenes) constitute a versatile class of reactive polymers that can be prepared in a solventless process via chemical vapor deposition (CVD) polymerization. The resulting ultrathin coatings are typically pinhole-free and can be conformally deposited onto a wide range of substrates and materials. More importantly, appropriately selected functional groups can serve as anchoring sites for tailoring biointerface properties via the immobilization of biomolecules. In this article, controlled surface chemistries are outlined that use functionalized poly(p-xylylenes) as reactive coatings, including alkyne-functionalized coatings for Huisgen 1,3-dipolar cycloaddition reactions or aldehyde-functionalized coatings. The reactive coatings technology provides flexible access to a range of different surface chemistries, enabling a broad range of potential applications in microfluidics, medical device coatings, and biotechnology. In this feature article, we will highlight recent progress in vapor-based reactive coatings and will discuss potential benefits and current limitations.
Collapse
Affiliation(s)
- Hsien-Yeh Chen
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | | |
Collapse
|
40
|
Nanoporosity of alumina surfaces induces different patterns of activation in adhering monocytes/macrophages. Int J Biomater 2010; 2010:402715. [PMID: 21234322 PMCID: PMC3018647 DOI: 10.1155/2010/402715] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 11/09/2010] [Accepted: 12/01/2010] [Indexed: 02/01/2023] Open
Abstract
The present study shows that alumina nanotopography affects monocyte/macrophage behavior. Human mononuclear cells cultured on alumina membranes with pore diameters of 20 and 200 nm were evaluated in terms of cell adhesion, viability, morphology, and release of proinflammatory cytokines. After 24 hours, cell adhesion was assessed by means of light microscopy and cell viability by measuring LDH release. The inflammatory response was evaluated by quantifying interleukin-1β and tumour necrosis factor-α. Finally, scanning electron microscopy was used to study cell morphology. Results showed pronounced differences in cell number, morphology, and cytokine release depending on the nanoporosity. Few but highly activated cells were found on the 200 nm porous alumina, while relatively larger number of cells were found on the 20 nm porous surface. However, despite their larger number, the cells adhering on the 20 nm surface exhibited reduced pro-inflammatory activity. The data of this paper implies that nanotopography could be exploited for controlling the inflammatory response to implants.
Collapse
|
41
|
Riyahi-Alam N, Behrouzkia Z, Seifalian A, Haghgoo Jahromi S. Properties evaluation of a new MRI contrast agent based on Gd-loaded nanoparticles. Biol Trace Elem Res 2010; 137:324-34. [PMID: 20049554 DOI: 10.1007/s12011-009-8587-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 12/08/2009] [Indexed: 10/20/2022]
Abstract
Nanosized materials of gadolinium oxide can provide high-contrast enhancement in magnetic resonance imaging (MRI). The aim of this research was to characterize a novel emulsion composed of a silicon-based nanocomposite polymer (NCP) and gadolinium (III) oxide (Gd₂O₃) nanoparticles. The size and morphological structure of this nanoparticle are determined by particle size analysis device (zeta sizer) and transmission electronic microscope. We determined composition of Gd₂O₃ nanoparticles with energy dispersive X-ray analysis (EDXA) and magnetic resonance signal by T₁-weighted MRI. Cytotoxicity of Gd₂O₃ nanoparticles in SK-MEL-3 cancer cells was evaluated. Zeta sizer showed Gd₂O₃ nanoparticles to be 75 nm in size. EDXA indicated the two main chemical components of gadolinium-nanocomposite polymer emulsion: gadolinium and silicon and MRI also showed a significantly higher incremental relaxivity for Gd₂O₃ nanoparticles compared to Magnevist (conventional contrast agent). In such concentrations, the slope of R₁ relaxivity (1/T₁) vs. concentration curve of Magnevist and Gd₂O₃ were 4.33, 7.98 s⁻¹ mM⁻¹. The slope of R₂ relaxivity (1/T₂) vs. concentration curve of Magnevist and Gd₂O₃ were 5.06, 13.75 s⁻¹ mM⁻¹. No appreciable toxicity was observed with Gd₂O₃ nanoparticles. Gadolinium-nanocomposite polymer emulsion is well characterized and has potential as a useful contrast agent for magnetic resonance molecular imaging.
Collapse
Affiliation(s)
- Nader Riyahi-Alam
- Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Iran
| | | | | | | |
Collapse
|
42
|
Acharya AP, Dolgova NV, Moore NM, Xia CQ, Clare-Salzler MJ, Becker ML, Gallant ND, Keselowsky BG. The modulation of dendritic cell integrin binding and activation by RGD-peptide density gradient substrates. Biomaterials 2010; 31:7444-54. [PMID: 20637504 DOI: 10.1016/j.biomaterials.2010.06.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 06/15/2010] [Indexed: 01/17/2023]
Abstract
Dendritic cells (DCs) are central regulators of the immune system that operate in both innate and adaptive branches of immunity. Activation of DC by numerous factors, such as danger signals, has been well established. However, modulation of DC functions through adhesion-based cues has only begun to be characterized. In this work, DCs were cultured on surfaces presenting a uniform gradient of the integrin-targeting RGD peptide generated using the recently established "universal gradient substrate for click biofunctionalization" methodology. Surface expression of activation markers (costimulatory molecule CD86 and stimulatory molecule MHC-II) and production of cytokines IL-10 and IL-12p40 of adherent DCs was quantified in situ. Additionally, bound alpha(V) integrin was quantified in situ using a biochemical crosslinking/extraction method. Our findings demonstrate that DCs upregulated CD86, MHC-II, IL-10, IL-12p40 and alpha(V) integrin binding as a function of RGD surface density, with production of IL-12p40 being the marker most sensitive to RGD surface density. Surface expression of activation markers demonstrated moderate correlation with alpha(V) integrin binding, while cytokine production was highly correlated with alpha(V) integrin binding. This work demonstrates the utility of the surface density gradient platform as a high-throughput method to investigate RGD density-dependent DC adhesive responses. Furthermore, this quantitative analysis of DC integrin-based activation represents a first of its type, helping to establish the field of adhesion-based modulation of DCs as a general mechanism that has previously not been defined, and informs the rational design of biomimetic biomaterials for immunomodulation.
Collapse
Affiliation(s)
- Abhinav P Acharya
- Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Jay SM, Skokos EA, Zeng J, Knox K, Kyriakides TR. Macrophage fusion leading to foreign body giant cell formation persists under phagocytic stimulation by microspheres in vitro and in vivo in mouse models. J Biomed Mater Res A 2010; 93:189-99. [PMID: 19536825 DOI: 10.1002/jbm.a.32513] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The formation of surface-damaging foreign body giant cells (FBGC) from the fusion of macrophages is considered a hallmark of the foreign body response. Experimental evidence indicates that when macrophages are unable to internalize foreign bodies via phagocytosis due to their large size, they acquire a fusogenic phenotype. The mechanism behind this transformation is unclear, and questions, such as which phenotype takes precedence for co-stimulated macrophages engaged in the foreign body response and whether or not such phenotypic alteration is graded, remain unanswered. By recapitulating fusion in vitro using cell lines and primary mouse bone marrow-derived macrophages, we investigated whether concurrent exposure of macrophages to phagocytic and fusogenic stimuli would limit fusion. Induction of phagocytosis by addition of 3.0 mum-diameter polystyrene microspheres to cells under fusogenic conditions, at ratios of 1:10, 1:1, and 10:1 did not prevent fusion. To determine the effect of microsphere phagocytosis on fusion in vivo, we first determined the kinetics of monocyte recruitment, surface adhesion, and fusion following intraperitoneal implantation of a foreign body in a mouse model. Concomitant or subsequent injection of microspheres resulted in their significant accumulation at the biomaterial surface at 2 weeks, but FBGC were still detected. Our findings indicate that despite increasing the abundance of a phagocytic stimulus (microspheres), significant FBGC formation occurs.
Collapse
Affiliation(s)
- Steven M Jay
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
44
|
Bartoli CR, Godleski JJ. Blood flow in the foreign-body capsules surrounding surgically implanted subcutaneous devices. J Surg Res 2010; 158:147-54. [PMID: 19628222 DOI: 10.1016/j.jss.2008.07.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 07/28/2008] [Accepted: 07/31/2008] [Indexed: 11/20/2022]
Abstract
BACKGROUND Surgically implanted devices initiate inflammatory mechanisms and wound healing events and result in the formation of a thick fibrotic capsule that surrounds the device. To investigate the foreign-body response to devices of clinically relevant size, we used microspheres to determine regional blood flow patterns in the foreign-body capsule (FBC) and surrounding subcutaneous tissue after device implantation. MATERIALS AND METHODS In 10 canines, we implanted 40 subcutaneous devices (polysulfone n = 20, silicone-coated n = 10, titanium n = 10). Via thoracotomy, animals were instrumented with left atrial and aortic vascular access catheters for serial microsphere injections and reference blood sampling. Regional blood flow was repeatedly determined in the FBC, subcutaneous fascia surrounding the FBC, and subcutaneous fascia distal to the surgical site up to 19 wk after device implantation (n = 55 determinations). RESULTS Compared with normal blood flow in subcutaneous fascia distal to the surgical site, blood flow increased in FBCs surrounding each device material (polysulfone P = 0.0035, silicone-coated P < 0.0001, titanium P < 0.0001). Additionally, blood flow increased in the subcutaneous fascia within half a centimeter of fibrous capsules encasing polysulfone (P = 0.0081) but not silicone (P = 0.3706) or titanium (P = 0.8160) devices. The time-course of measured blood flow changes within FBCs were similar for polysulfone and silicone but not for titanium. CONCLUSIONS Surgically implanted subcutaneous devices of clinically relevant size elicit increases in blood flow in the FBC as well as surrounding fascia. Device material may influence regional blood flow patterns.
Collapse
Affiliation(s)
- Carlo R Bartoli
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA.
| | | |
Collapse
|
45
|
Pangburn TO, Petersen MA, Waybrant B, Adil MM, Kokkoli E. Peptide- and aptamer-functionalized nanovectors for targeted delivery of therapeutics. J Biomech Eng 2009; 131:074005. [PMID: 19655996 DOI: 10.1115/1.3160763] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Targeted delivery of therapeutics is an area of vigorous research, and peptide- and aptamer-functionalized nanovectors are a promising class of targeted delivery vehicles. Both peptide- and aptamer-targeting ligands can be readily designed to bind a target selectively with high affinity, and more importantly are molecules accessible by chemical synthesis and relatively compact compared with antibodies and full proteins. The multitude of peptide ligands that have been used for targeted delivery are covered in this review, with discussion of binding selectivity and targeting performance for these peptide sequences where possible. Aptamers are RNA or DNA strands evolutionarily engineered to specifically bind a chosen target. Although use of aptamers in targeted delivery is a relatively new avenue of research, the current state of the field is covered and promises of future advances in this area are highlighted. Liposomes, the classic drug delivery vector, and polymeric nanovectors functionalized with peptide or aptamer binding ligands will be discussed in this review, with the exclusion of other drug delivery vehicles. Targeted delivery of therapeutics, from DNA to classic small molecule drugs to protein therapeutics, by these targeted nanovectors is reviewed with coverage of both in vitro and in vivo deliveries. This is an exciting and dynamic area of research and this review seeks to discuss its broad scope.
Collapse
Affiliation(s)
- Todd O Pangburn
- Department of Chemical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
46
|
Jiao Y, Zhou C, Li L, Ding S, Lu L, Luo B, Li H. Protein adsorption on the poly(L-lactic acid) surface modified by chitosan and its derivatives. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11434-009-0266-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Garg A, Tisdale AW, Haidari E, Kokkoli E. Targeting colon cancer cells using PEGylated liposomes modified with a fibronectin-mimetic peptide. Int J Pharm 2009; 366:201-10. [PMID: 18835580 PMCID: PMC2660894 DOI: 10.1016/j.ijpharm.2008.09.016] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 09/05/2008] [Accepted: 09/06/2008] [Indexed: 11/24/2022]
Abstract
Integrin alpha(5)beta(1) is expressed on several types of cancer cells, including colon cancer, and plays an important role in tumor growth and metastasis. The ability to target the integrin alpha(5)beta(1) using an appropriate drug delivery nano-vector can significantly help in inhibiting tumor growth, reducing tumor metastasis, and decreasing deleterious side effects associated with different cancer therapies. Liposomes are nano-sized phospholipid bilayer vesicles that have been extensively studied as drug delivery carriers. The goal of this study is to design stealth liposomes (liposomes covered with polyethylene glycol (PEG)) that will target colon cancer cells that express the integrin alpha(5)beta(1). The PEG provides a steric barrier allowing the liposomes to circulate in the blood and the functionalizing moiety, PR_b peptide, will specifically recognize and bind to alpha(5)beta(1) expressing cells. PR_b is a novel peptide sequence that mimics the cell adhesion domain of fibronectin, and includes four building blocks, RGDSP (the primary recognition site for alpha(5)beta(1)), PHSRN (the synergy site for alpha(5)beta(1)), a (SG)(5) linker, and a KSS spacer. In this study we have demonstrated that by varying the amount of PEG (PEG750 or PEG2000) and PR_b on the liposomal interface we can engineer nano-vectors that bind to CT26.WT, HCT116, and RKO colon cancer cells in a specific manner and are internalized through most likely alpha(5)beta(1)-mediated endocytosis. GRGDSP-targeted stealth liposomes bind to colon cancer cells and internalize, but they have much lesser efficiency than PR_b-targeted stealth liposomes, and more importantly they are not as specific since many integrins bind to RGD peptides. PR_b-targeted stealth liposomes are as cytotoxic as free 5-Fluorouracil (5-FU) and exert the highest cytotoxicity on CT26.WT cells compared to GRGDSP-targeted stealth liposomes and non-targeted stealth liposomes. Thus, the proposed targeted delivery system has the great potential to deliver a therapeutic load directly to colon cancer cells, in an efficient and specific manner.
Collapse
Affiliation(s)
- Ashish Garg
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455
| | - Alison W. Tisdale
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455
| | - Eman Haidari
- Department of Chemistry, and Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455
| | - Efrosini Kokkoli
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455
| |
Collapse
|
48
|
Demirgöz D, Garg A, Kokkoli E. PR_b-targeted PEGylated liposomes for prostate cancer therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:13518-13524. [PMID: 18954096 DOI: 10.1021/la801961r] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In recent years, there has been considerable effort in designing improved delivery systems by including site-directed surface ligands to further enhance their selective targeting. The goal of this study is to engineer alpha5beta1-targeted stealth liposomes (nanoparticles covered with poly(ethylene glycol) (PEG)) that will bind to alpha5beta1-expressing LNCaP human prostate cancer cells and efficiently release the encapsulated load intracellularly. For this purpose, liposomes (with and without PEG2000) were functionalized with a fibronectin-mimetic peptide (PR_b) and delivered to LNCaPs. The amount of PEG2000 and other liposomal components were characterized by 1H NMR, and the amount of peptide by the bicinchoninic acid protein assay. Fibronectin is the natural ligand for alpha5beta1, and a promising design for a fibronectinmimetic peptide includes both the primary binding site (RGD) and the synergy site (PHSRN) connected by a linker and extended off a surface by a spacer. We have previously designed a peptide-amphiphile, PRb, that employed a hydrophobic tail, connected to the N-terminus of a peptide headgroup composed of a spacer, the synergy site sequence, a linker mimicking both the distance and hydrophobicity/hydrophilicity present in the native protein fibronectin (thus presenting an overall "neutral" linker), and finally the primary binding sequence. We have examined different liposomal formulations, functionalized only with PR_b or with PR_b and PEG2000. For PR_b-targeted PEGylated liposomes, efficient cell binding was observed for peptide concentrations of 2 mol % and higher. When compared to GRGDSP-targeted stealth liposomes, PR_b functionalization was superior to that of GRGDSP as shown by increased LNCaP binding, internalization efficiency, as well as cytotoxicity after incubation of LNCaPs with tumor necrosis factor-alpha (TNFalpha)-encapsulated liposomes. More importantly, PR_b is alpha5beta1-specific, whereas many integrins bind to small RGD peptides. Thus, the proposed PR_b-targeted delivery system has the potential to deliver a therapeutic payload to prostate cancer cells in an efficient and specific manner.
Collapse
Affiliation(s)
- Döne Demirgöz
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
49
|
Pamula E, Dobrzynski P, Szot B, Kretek M, Krawciow J, Plytycz B, Chadzinska M. Cytocompatibility of aliphatic polyesters-In vitrostudy on fibroblasts and macrophages. J Biomed Mater Res A 2008; 87:524-35. [DOI: 10.1002/jbm.a.31802] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Craig JA, Rexeisen EL, Mardilovich A, Shroff K, Kokkoli E. Effect of linker and spacer on the design of a fibronectin-mimetic peptide evaluated via cell studies and AFM adhesion forces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:10282-10292. [PMID: 18693703 DOI: 10.1021/la702434p] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The design of a fibronectin-mimetic peptide that specifically binds to the alpha 5beta 1 integrin has been widely studied because of this integrin's participation in many physiological and pathological processes. A promising design for such a peptide includes both the primary binding site RGD and the synergy site PHSRN connected by a linker and extended off of a surface by a spacer. Our original hypothesis was that the degree of hydrophobicity/hydrophilicity between the two sequences (RGD and PHSRN) in fibronectin is an important parameter in designing a fibronectin-mimetic peptide (Mardilovich, A.; Kokkoli, E. Biomacromolecules 2004, 5, 950-957). A peptide-amphiphile, PR_b, that was previously designed in our laboratory employed a hydrophobic tail connected to the N terminus of a peptide headgroup that was composed of a spacer, the synergy site sequence, a linker mimicking both the distance and hydrophobicity/hydrophilicity present in the native protein fibronectin (thus presenting an overall "neutral" linker), and finally the primary binding sequence. Even though our previous work (Mardilovich, A.; Craig, J. A.; McCammon, M. Q.; Garg, A.; Kokkoli, E. Langmuir 2006, 22, 3259-3264) demonstrated that PR_b is a promising sequence compared to fibronectin, this is the first study that tests our hypothesis by comparing PR_b to other peptides with hydrophobic or hydrophilic linkers. Furthermore, different peptide-amphiphiles were designed that could be used to study the effect of building blocks systematically, such as the peptide headgroup linker length and hydrophobicity/hydrophilicity as well as the headgroup spacer length on integrin adhesion. Circular dichroism spectroscopy was first employed, and the collected spectra demonstrated that only one peptide-amphiphile exhibited a secondary structure. Their surface topography was evaluated by taking atomic force microscopy (AFM) images of Langmuir-Blodgett peptide-amphiphile membranes supported on mica. Their adhesion was first evaluated with AFM force measurements between the different sequences and an AFM tip functionalized with purified integrins. The amphiphiles were further characterized via 1-12 h cell studies that examined human umbilical vein endothelial cell adhesion and extracellular matrix fibronectin production. The AFM studies were in good agreement with the cell studies. Overall, the adhesion studies validated our hypothesis and demonstrated for the first time that a "neutral" linker, which more closely mimics the cell adhesion domain of fibronectin, supports higher levels of adhesion compared to other peptide designs with a hydrophobic or hydrophilic linker or even fibronectin. Neutral linker lengths that were within the distance found between PHSRN and RGD in fibronectin performed equally well. However, the 10 amino acid neutral linker gave slightly better cell adhesion than did the control fibronectin at all times. Also, a short spacer was shown to give higher adhesion than other sequences with no spacer or a longer spacer, suggesting that a short spacer is necessary to extend the sequence further away from the interface. In conclusion, this work outlines a logical approach that can be applied for the rational design of any protein-mimetic peptide with two binding sites.
Collapse
Affiliation(s)
- Jennifer A Craig
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|