1
|
Zarobkiewicz M, Lehman N, Morawska-Michalska I, Michalski A, Kowalska W, Szymańska A, Tomczak W, Bojarska-Junak A. Characterisation of Cytotoxicity-Related Receptors on γδ T Cells in Chronic Lymphocytic Leukaemia. Cells 2025; 14:451. [PMID: 40136700 PMCID: PMC11941621 DOI: 10.3390/cells14060451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/14/2025] [Accepted: 03/16/2025] [Indexed: 03/27/2025] Open
Abstract
Chronic lymphocytic leukaemia (CLL) is a haematological malignancy primarily affecting older adults, characterised by the proliferation of functionally impaired B lymphocytes with abnormal expression of CD5, a typical T cell marker. The current study investigates the expression of cytotoxicity-related receptors (CD16, CD56, CD57, CD69) and a checkpoint (LAG-3) on γδ T cells in CLL patients. Sixty-nine treatment-naive CLL patients and fourteen healthy controls were recruited. Flow cytometry analysis revealed that the CLL patients had higher expressions of CD56 and LAG-3 and lower CD16 on their γδ T cells compared to the healthy controls. Subgroup analysis showed that ZAP-70-negative patients exhibited increased CD69, while CD38-negative patients showed higher CD16 expression. Additionally, CD16 expression was inversely correlated with serum LDH levels, a marker of disease progression. Bioinformatic analysis of the LAG-3 ligand mRNA in a CLL dataset indicated higher expression of HLA-DQA2 and HLA-DRB5 in patients with unmutated IGVH. Our findings highlight the altered expression of key cytotoxicity markers on γδ T cells in CLL, suggesting their potential role in disease progression and as a therapeutic target. In particular, the use of anti-LAG-3 antibodies seems promising.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Female
- Aged
- Middle Aged
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Lymphocyte Activation Gene 3 Protein
- Antigens, CD/metabolism
- Aged, 80 and over
- Intraepithelial Lymphocytes/immunology
- Intraepithelial Lymphocytes/metabolism
- Case-Control Studies
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Michał Zarobkiewicz
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (N.L.); (I.M.-M.); (A.M.); (W.K.); (A.S.); (A.B.-J.)
| | - Natalia Lehman
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (N.L.); (I.M.-M.); (A.M.); (W.K.); (A.S.); (A.B.-J.)
| | - Izabela Morawska-Michalska
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (N.L.); (I.M.-M.); (A.M.); (W.K.); (A.S.); (A.B.-J.)
| | - Adam Michalski
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (N.L.); (I.M.-M.); (A.M.); (W.K.); (A.S.); (A.B.-J.)
| | - Wioleta Kowalska
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (N.L.); (I.M.-M.); (A.M.); (W.K.); (A.S.); (A.B.-J.)
| | - Agata Szymańska
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (N.L.); (I.M.-M.); (A.M.); (W.K.); (A.S.); (A.B.-J.)
| | - Waldemar Tomczak
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-080 Lublin, Poland;
| | - Agnieszka Bojarska-Junak
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (N.L.); (I.M.-M.); (A.M.); (W.K.); (A.S.); (A.B.-J.)
| |
Collapse
|
2
|
Kulesh V, Peskov K, Helmlinger G, Bocharov G. Systematic review and quantitative meta-analysis of age-dependent human T-lymphocyte homeostasis. Front Immunol 2025; 16:1475871. [PMID: 39931065 PMCID: PMC11808020 DOI: 10.3389/fimmu.2025.1475871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
Objective To evaluate and quantitatively describe age-dependent homeostasis for a broad range of total T-cells and specific T-lymphocyte subpopulations in healthy human subjects. Methods A systematic literature review was performed to identify and collect relevant quantitative information on T-lymphocyte counts in human blood and various organs. Both individual subject and grouped (aggregated) data on T-lymphocyte observations in absolute and relative values were digitized and curated; cell phenotypes, gating strategies for flow cytometry analyses, organs from which observations were obtained, subjects' number and age were also systematically inventoried. Age-dependent homeostasis of each T-lymphocyte subpopulation was evaluated via a weighted average calculation within pre-specified age intervals, using a piece-wise equal-effect meta-analysis methodology. Results In total, 124 studies comprising 11722 unique observations from healthy subjects encompassing 20 different T-lymphocyte subpopulations - total CD45+ and CD3+ lymphocytes, as well as specific CD4+ and CD8+ naïve, recent thymic emigrants, activated, effector and various subpopulations of memory T-lymphocytes (total-memory, central-memory, effector-memory, resident-memory) - were systematically collected and included in the final database for a comprehensive analysis. Blood counts of most T-lymphocyte subpopulations demonstrate a decline with age, with a pronounced decrease within the first 10 years of life. Conversely, memory T-lymphocytes display a tendency to increase in older age groups, particularly after ~50 years of age. Notably, an increase in T-lymphocyte numbers is observed in neonates and infants (0 - 1 year of age) towards less differentiated T-lymphocyte subpopulations, while an increase into more differentiated subpopulations emerges later (1 - 5 years of age). Conclusion A comprehensive systematic review and meta-analysis of T-lymphocyte age-dependent homeostasis in healthy humans was performed, to evaluate immune T-cell profiles as a function of age and to characterize generalized estimates of T-lymphocyte counts across age groups. Our study introduces a quantitative description of the fundamental parameters characterizing the maintenance and evolution of T-cell subsets with age, based on a comprehensive integration of available organ-specific and systems-level flow cytometry datasets. Overall, it provides the most up-to-date view of physiological T-cell dynamics and its variance and may be used as a consistent reference for gaining further mechanistic understanding of the human immune status in health and disease.
Collapse
Affiliation(s)
- Victoria Kulesh
- Research Center of Model-Informed Drug Development, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS), Moscow, Russia
| | - Kirill Peskov
- Research Center of Model-Informed Drug Development, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS), Moscow, Russia
- Modeling & Simulation Decisions FZ-LLC, Dubai, United Arab Emirates
| | | | - Gennady Bocharov
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS), Moscow, Russia
- Institute for Computer Science and Mathematical Modelling, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Moscow Center of Fundamental and Applied Mathematics at INM RAS, Moscow, Russia
| |
Collapse
|
3
|
Liu X, Shen J, Yan H, Hu J, Liao G, Liu D, Zhou S, Zhang J, Liao J, Guo Z, Li Y, Yang S, Li S, Chen H, Guo Y, Li M, Fan L, Li L, Luo P, Zhao M, Liu Y. Posttransplant complications: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2024; 5:e669. [PMID: 39224537 PMCID: PMC11366828 DOI: 10.1002/mco2.669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Posttransplantation complications pose a major challenge to the long-term survival and quality of life of organ transplant recipients. These complications encompass immune-mediated complications, infectious complications, metabolic complications, and malignancies, with each type influenced by various risk factors and pathological mechanisms. The molecular mechanisms underlying posttransplantation complications involve a complex interplay of immunological, metabolic, and oncogenic processes, including innate and adaptive immune activation, immunosuppressant side effects, and viral reactivation. Here, we provide a comprehensive overview of the clinical features, risk factors, and molecular mechanisms of major posttransplantation complications. We systematically summarize the current understanding of the immunological basis of allograft rejection and graft-versus-host disease, the metabolic dysregulation associated with immunosuppressive agents, and the role of oncogenic viruses in posttransplantation malignancies. Furthermore, we discuss potential prevention and intervention strategies based on these mechanistic insights, highlighting the importance of optimizing immunosuppressive regimens, enhancing infection prophylaxis, and implementing targeted therapies. We also emphasize the need for future research to develop individualized complication control strategies under the guidance of precision medicine, ultimately improving the prognosis and quality of life of transplant recipients.
Collapse
Affiliation(s)
- Xiaoyou Liu
- Department of Organ transplantationThe First Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Junyi Shen
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Hongyan Yan
- Department of Organ transplantationThe First Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Jianmin Hu
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Guorong Liao
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ding Liu
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Song Zhou
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jie Zhang
- Department of Organ transplantationThe First Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Jun Liao
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zefeng Guo
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yuzhu Li
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Siqiang Yang
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Shichao Li
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Hua Chen
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ying Guo
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Min Li
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Lipei Fan
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Liuyang Li
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Peng Luo
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ming Zhao
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yongguang Liu
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
4
|
Camerini E, Amsen D, Kater AP, Peters FS. The complexities of T-cell dysfunction in chronic lymphocytic leukemia. Semin Hematol 2024; 61:163-171. [PMID: 38782635 DOI: 10.1053/j.seminhematol.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/13/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024]
Abstract
Chronic lymphocytic leukemia (CLL) is a B-cell malignancy characterized by profound alterations and defects in the T-cell compartment. This observation has gained renewed interest as T-cell treatment strategies, which are successfully applied in more aggressive B-cell malignancies, have yielded disappointing results in CLL. Despite ongoing efforts to understand and address the observed T-cell defects, the exact mechanisms and nature underlying this dysfunction remain largely unknown. In this review, we examine the supporting signals from T cells to CLL cells in the lymph node niche, summarize key findings on T-cell functional defects, delve into potential underlying causes, and explore novel strategies for reversing these deficiencies. Our goal is to identify strategies aimed at resolving CLL-induced T-cell dysfunction which, in the future, will enhance the efficacy of autologous T-cell-based therapies for CLL patients.
Collapse
Affiliation(s)
- Elena Camerini
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam, The Netherlands; Department of Hematology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Derk Amsen
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam, The Netherlands; Landsteiner Laboratory for Blood Cell Research at Sanquin, Amsterdam, The Netherlands
| | - Arnon P Kater
- Department of Hematology, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Fleur S Peters
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam, The Netherlands; Department of Hematology, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Borogovac A, Siddiqi T. Advancing CAR T-cell therapy for chronic lymphocytic leukemia: exploring resistance mechanisms and the innovative strategies to overcome them. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:18. [PMID: 38835348 PMCID: PMC11149098 DOI: 10.20517/cdr.2023.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 06/06/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has ushered in substantial advancements in the management of various B-cell malignancies. However, its integration into chronic lymphocytic leukemia (CLL) treatment has been challenging, attributed largely to the development of very effective chemo-free alternatives. Additionally, CAR T-cell responses in CLL have not been as high as in other B-cell lymphomas or leukemias. However, a critical void exists in therapeutic options for patients with high-risk diseases who are resistant to the current CLL therapies, underscoring the urgency for adoptive immunotherapies in these patients. The diminished CAR T-cell efficacy within CLL can be traced to factors such as compromised T-cell fitness due to persistent antigenic stimulation inherent to CLL. Resistance mechanisms encompass tumor-related factors like antigen escape, CAR T-cell-intrinsic factors like T-cell exhaustion, and a suppressive tumor microenvironment (TME). New strategies to combat CAR T-cell resistance include the concurrent administration of therapies that augment CAR T-cell endurance and function, as well as the engineering of novel CAR T-cells targeting different antigens. Moreover, the concept of "armored" CAR T-cells, armed with transgenic modulators to modify both CAR T-cell function and the tumor milieu, is gaining traction. Beyond this, the development of readily available, allogeneic CAR T-cells and natural killer (NK) cells presents a promising countermeasure to innate T-cell defects in CLL patients. In this review, we explore the role of CAR T-cell therapy in CLL, the intricate tapestry of resistance mechanisms, and the pioneering methods studied to overcome resistance.
Collapse
Affiliation(s)
- Azra Borogovac
- City of Hope, Department of Hematology and Hematopoietic Cell Transplantation, Lennar Foundation Cancer Center, Irvine, CA 92618, USA
| | - Tanya Siddiqi
- City of Hope, Department of Hematology and Hematopoietic Cell Transplantation, Lennar Foundation Cancer Center, Irvine, CA 92618, USA
| |
Collapse
|
6
|
Borogovac A, Siddiqi T. Transforming CLL management with immunotherapy: Investigating the potential of CAR T-cells and bispecific antibodies. Semin Hematol 2024; 61:119-130. [PMID: 38290860 DOI: 10.1053/j.seminhematol.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/02/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024]
Abstract
Immunotherapies, such as chimeric antigen receptor (CAR) T-cell therapy and bispecific antibodies or T-cell engagers, have revolutionized the treatment landscape for various B-cell malignancies, including B-acute lymphoblastic leukemia and many non-Hodgkin lymphomas. Despite their significant impact on these malignancies, their application in chronic lymphocytic leukemia (CLL) management is still largely under investigation. Although the initial success of CD19-directed CAR T-cell therapy was observed in 3 multiply relapsed CLL patients, with 2 of them surviving over 10 years without relapse, recent CAR T-cell therapy trials in CLL have shown reduced response rates compared to their efficacy in other B-cell malignancies. One of the challenges with using immunotherapy in CLL is the compromised T-cell fitness from persistent CLL-related antigenic stimulation, and an immunosuppressive tumor microenvironment (TME). These challenges underscore a critical gap in therapeutic options for CLL patients intolerant or resistant to current therapies, emphasizing the imperative role of effective immunotherapy. Encouragingly, innovative strategies are emerging to overcome these challenges. These include integrating synergistic agents like ibrutinib to enhance CAR T-cell function and persistence and engineering newer CAR T-cell constructs targeting diverse antigens or employing dual-targeting approaches. Bispecific antibodies are an exciting "off-the-shelf" prospect for these patients, with their investigation in CLL currently entering the realm of clinical trials. Additionally, the development of allogeneic CAR T-cells and natural killer (NK) cells from healthy donors presents a promising solution to address the diminished T-cell fitness observed in CLL patients. This comprehensive review delves into the latest insights regarding the role of immunotherapy in CLL, the complex landscape of resistance mechanisms, and a spectrum of innovative approaches to surmount therapeutic challenges.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Antibodies, Bispecific/therapeutic use
- Antibodies, Bispecific/immunology
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Immunotherapy/methods
- T-Lymphocytes/immunology
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Azra Borogovac
- City of Hope, Lennar Foundation Cancer Center, Irvine, CA.
| | - Tanya Siddiqi
- City of Hope, Lennar Foundation Cancer Center, Irvine, CA
| |
Collapse
|
7
|
Vojdani A, Koksoy S, Vojdani E, Engelman M, Benzvi C, Lerner A. Natural Killer Cells and Cytotoxic T Cells: Complementary Partners against Microorganisms and Cancer. Microorganisms 2024; 12:230. [PMID: 38276215 PMCID: PMC10818828 DOI: 10.3390/microorganisms12010230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Natural killer (NK) cells and cytotoxic T (CD8+) cells are two of the most important types of immune cells in our body, protecting it from deadly invaders. While the NK cell is part of the innate immune system, the CD8+ cell is one of the major components of adaptive immunity. Still, these two very different types of cells share the most important function of destroying pathogen-infected and tumorous cells by releasing cytotoxic granules that promote proteolytic cleavage of harmful cells, leading to apoptosis. In this review, we look not only at NK and CD8+ T cells but also pay particular attention to their different subpopulations, the immune defenders that include the CD56+CD16dim, CD56dimCD16+, CD57+, and CD57+CD16+ NK cells, the NKT, CD57+CD8+, and KIR+CD8+ T cells, and ILCs. We examine all these cells in relation to their role in the protection of the body against different microorganisms and cancer, with an emphasis on their mechanisms and their clinical importance. Overall, close collaboration between NK cells and CD8+ T cells may play an important role in immune function and disease pathogenesis. The knowledge of how these immune cells interact in defending the body against pathogens and cancers may help us find ways to optimize their defensive and healing capabilities with methods that can be clinically applied.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Laboratory, Inc., Los Angeles, CA 90035, USA
| | - Sadi Koksoy
- Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA; (S.K.); (M.E.)
| | | | - Mark Engelman
- Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA; (S.K.); (M.E.)
| | - Carina Benzvi
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Ramat Gan 52621, Israel; (C.B.); (A.L.)
| | - Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Ramat Gan 52621, Israel; (C.B.); (A.L.)
| |
Collapse
|
8
|
Qiao H, Li H. PLP2 Could Be a Prognostic Biomarker and Potential Treatment Target in Glioblastoma Multiforme. Pharmgenomics Pers Med 2023; 16:991-1009. [PMID: 37964785 PMCID: PMC10642424 DOI: 10.2147/pgpm.s425251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Objective This study aimed to discern the association between PLP2 expression, its biological significance, and the extent of immune infiltration in human GBM. Methods Utilizing the GEPIA2 and TCGA databases, we contrasted the expression levels of PLP2 in GBM against normal tissue. We utilized GEPIA2 and LinkedOmics for survival analysis, recognized genes co-expressed with PLP2 via cBioPortal and GEPIA2, and implemented GO and KEGG analyses. The STRING database facilitated the construction of protein-protein interaction networks. We evaluated the relationship of PLP2 with tumor immune infiltrates using ssGSEA and the TIMER 2.0 database. An IHC assay assessed PLP2 and PDL-1 expression in GBM tissue, and the Drugbank database aided in identifying potential PLP2-targeting compounds. Molecular docking was accomplished using Autodock Vina 1.2.2. Results PLP2 expression was markedly higher in GBM tissues in comparison to normal tissues. High PLP2 expression correlated with a decrease in overall survival across two databases. Functional analyses highlighted a focus of PLP2 functions within leukocyte. Discrepancies in PLP2 expression were evident in immune infiltration, impacting CD4+ T cells, neutrophils, myeloid dendritic cells, and macrophages. There was a concomitant increase in PLP2 and PD-L1 expression in GBM tissues, revealing a link between the two. Molecular docking with ethosuximide and praziquantel yielded scores of -7.441 and -4.295 kcal/mol, correspondingly. Conclusion PLP2's upregulation in GBM may adversely influence the lifespan of GBM patients. The involvement of PLP2 in pathways linked to leukocyte function is suggested. The positive correlation between PLP2 and PD-L1 could provide insights into PLP2's role in glioma modulation. Our research hints at PLP2's potential as a therapeutic target for GBM, with ethosuximide and praziquantel emerging as potential treatment candidates, especially emphasizing the potential of these compounds in GBM treatment targeting PLP2.
Collapse
Affiliation(s)
- Hao Qiao
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Huanting Li
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| |
Collapse
|
9
|
Moreno C, Solman IG, Tam CS, Grigg A, Scarfò L, Kipps TJ, Srinivasan S, Mali RS, Zhou C, Dean JP, Szafer-Glusman E, Choi M. Immune restoration with ibrutinib plus venetoclax in first-line chronic lymphocytic leukemia: the phase 2 CAPTIVATE study. Blood Adv 2023; 7:5294-5303. [PMID: 37315225 PMCID: PMC10506056 DOI: 10.1182/bloodadvances.2023010236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023] Open
Abstract
We evaluated immune cell subsets in patients with chronic lymphocytic leukemia (CLL) who received first-line therapy with 3 cycles of ibrutinib then 13 cycles of ibrutinib plus venetoclax in the minimal residual disease (MRD) cohort of the CAPTIVATE study (NCT02910583). Patients with Confirmed undetectable MRD (uMRD) were randomly assigned to placebo or ibrutinib groups; patients without Confirmed uMRD were randomly assigned to ibrutinib or ibrutinib plus venetoclax groups. We compared immune cell subsets in samples collected at 7 time points with age-matched healthy donors. CLL cells decreased within 3 cycles after venetoclax initiation; from cycle 16 onward, levels were similar to healthy donor levels (HDL; ≤0.8 cells per μL) in patients with Confirmed uMRD and slightly above HDL in patients without Confirmed uMRD. By 4 months after cycle 16, normal B cells had recovered to HDL in patients randomly assigned to placebo. Regardless of randomized treatment, abnormal counts of T cells, classical monocytes, and conventional dendritic cells recovered to HDL within 6 months (median change from baseline -49%, +101%, and +91%, respectively); plasmacytoid dendritic cells recovered by cycle 20 (+598%). Infections generally decreased over time regardless of randomized treatment and were numerically lowest in patients randomly assigned to placebo within 12 months after cycle 16. Sustained elimination of CLL cells and recovery of normal B cells were confirmed in samples from patients treated with fixed-duration ibrutinib plus venetoclax in the GLOW study (NCT03462719). These results demonstrate promising evidence of restoration of normal blood immune composition with ibrutinib plus venetoclax.
Collapse
Affiliation(s)
- Carol Moreno
- Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | | | - Constantine S. Tam
- Department of Hematology, Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | | | - Lydia Scarfò
- Division of Experimental Oncology, Università Vita Salute San Raffaele and Istituto di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele, Milan, Italy
| | - Thomas J. Kipps
- Moores Cancer Center, University of California San Diego, La Jolla, CA
| | | | | | - Cathy Zhou
- Pharmacyclics LLC, an AbbVie Company, South San Francisco, CA
| | - James P. Dean
- Pharmacyclics LLC, an AbbVie Company, South San Francisco, CA
| | | | - Michael Choi
- University of California San Diego, La Jolla, CA
| |
Collapse
|
10
|
Wong S, Hamidi H, Costa LJ, Bekri S, Neparidze N, Vij R, Nielsen TG, Raval A, Sareen R, Wassner-Fritsch E, Cho HJ. Multi-omic analysis of the tumor microenvironment shows clinical correlations in Ph1 study of atezolizumab +/- SoC in MM. Front Immunol 2023; 14:1085893. [PMID: 37559718 PMCID: PMC10408441 DOI: 10.3389/fimmu.2023.1085893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/23/2023] [Indexed: 08/11/2023] Open
Abstract
Multiple myeloma (MM) remains incurable, and treatment of relapsed/refractory (R/R) disease is challenging. There is an unmet need for more targeted therapies in this setting; deep cellular and molecular phenotyping of the tumor and microenvironment in MM could help guide such therapies. This phase 1b study (NCT02431208) evaluated the safety and efficacy of the anti-programmed death-ligand 1 monoclonal antibody atezolizumab (Atezo) alone or in combination with the standard of care (SoC) treatments lenalidomide (Len) or pomalidomide (Pom) and/or daratumumab (Dara) in patients with R/R MM. Study endpoints included incidence of adverse events (AEs) and overall response rate (ORR). A novel unsupervised integrative multi-omic analysis was performed using RNA sequencing, mass cytometry immunophenotyping, and proteomic profiling of baseline and on-treatment bone marrow samples from patients receiving Atezo monotherapy or Atezo+Dara. A similarity network fusion (SNF) algorithm was applied to preprocessed data. Eighty-five patients were enrolled. Treatment-emergent deaths occurred in 2 patients; both deaths were considered unrelated to study treatment. ORRs ranged from 11.1% (Atezo+Len cohorts, n=18) to 83.3% (Atezo+Dara+Pom cohort, n=6). High-dimensional multi-omic profiling of the tumor microenvironment and integrative SNF analysis revealed novel correlations between cellular and molecular features of the tumor and immune microenvironment, patient selection criteria, and clinical outcome. Atezo monotherapy and SoC combinations were safe in this patient population and demonstrated some evidence of clinical efficacy. Integrative analysis of high dimensional genomics and immune data identified novel clinical correlations that may inform patient selection criteria and outcome assessment in future immunotherapy studies for myeloma.
Collapse
Affiliation(s)
- Sandy Wong
- University of California San Francisco (UCSF) Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, United States
| | - Habib Hamidi
- Genentech Inc., South San Francisco, CA, United States
| | - Luciano J. Costa
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Selma Bekri
- Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, United States
| | | | - Ravi Vij
- Division of Oncology, Washington University, St. Louis, MO, United States
| | | | - Aparna Raval
- Genentech Inc., South San Francisco, CA, United States
| | - Rajan Sareen
- Genentech Inc., South San Francisco, CA, United States
| | | | - Hearn J. Cho
- Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, United States
- The Multiple Myeloma Research Foundation (MMRF), Norwalk, CT, United States
| |
Collapse
|
11
|
Fatima GN, Fatma H, Saraf SK. Vaccines in Breast Cancer: Challenges and Breakthroughs. Diagnostics (Basel) 2023; 13:2175. [PMID: 37443570 DOI: 10.3390/diagnostics13132175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer is a problem for women's health globally. Early detection techniques come in a variety of forms ranging from local to systemic and from non-invasive to invasive. The treatment of cancer has always been challenging despite the availability of a wide range of therapeutics. This is either due to the variable behaviour and heterogeneity of the proliferating cells and/or the individual's response towards the treatment applied. However, advancements in cancer biology and scientific technology have changed the course of the cancer treatment approach. This current review briefly encompasses the diagnostics, the latest and most recent breakthrough strategies and challenges, and the limitations in fighting breast cancer, emphasising the development of breast cancer vaccines. It also includes the filed/granted patents referring to the same aspects.
Collapse
Affiliation(s)
- Gul Naz Fatima
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, Uttar Pradesh, India
| | - Hera Fatma
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, Uttar Pradesh, India
| | - Shailendra K Saraf
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, Uttar Pradesh, India
| |
Collapse
|
12
|
Valvano L, Nozza F, D'Arena G, D'Auria F, De Luca L, Pietrantuono G, Mansueto G, Villani O, D'Agostino S, Lamorte D, Calice G, Statuto T. Preliminary analysis of double-negative T, double-positive T, and natural killer T-like cells in B-cell chronic lymphocytic leukemia. Cancer Med 2023. [PMID: 37140360 DOI: 10.1002/cam4.6015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND B-cell chronic lymphocytic leukemia (B-CLL) is characterized by the expansion of CD5+ malignant B lymphocytes. Recent discoveries have shown that double-negative T (DNT) cells, double-positive T (DPT) cells, and natural killer T (NKT)-cells may be involved in tumor surveillance. METHODS A detailed immunophenotypic analysis of the peripheral blood T-cell compartment of 50 patients with B-CLL (classified in three prognostic groups) and 38 healthy donors (as controls) matched for age was performed. The samples were analyzed by flow cytometry using a stain-lyse-no wash technique and a comprehensive six-color antibody panels. RESULTS Our data confirmed a reduction in percentage values and an increase in absolute values of T lymphocytes in patients with B-CLL, as already reported. In particular, DNT, DPT, and NKT-like percentages were significantly lower than in the controls, except for NKT-like in the low-risk prognostic group. Moreover, a significant rise in the absolute counts of DNT cells in each prognostic group and in the low-risk prognostic group of NKT-like cells was found. A significant correlation of the absolute values of NKT-like cells in the intermediate-risk prognostic group versus B cells was observed. Furthermore, we analyzed whether the increase in T cells was related to the subpopulations of interest. Only DNT cells were positively correlated with the increase in CD3+ T lymphocytes, regardless of the stage of the disease, supporting the hypothesis that this T-cell subset plays a key role in the immune T response in B-CLL. CONCLUSION These early results supported that DNT, DPT, and NKT-like subsets may be related to disease progression and should encourage further studies aimed at identifying the potential immune surveillance role of these minority T subpopulations.
Collapse
Affiliation(s)
- Luciana Valvano
- Laboratory of Clinical Research and Advanced Diagnostics, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Filomena Nozza
- Laboratory of Clinical Research and Advanced Diagnostics, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Giovanni D'Arena
- Immunohematology and transfusional medicine, "S. Luca" Hospital, ASL Salerno, Vallo della Lucania, Italy
| | - Fiorella D'Auria
- Laboratory of Clinical Pathology, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Luciana De Luca
- Laboratory of Clinical Pathology, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Giuseppe Pietrantuono
- Hematology and Stem Cell Transplantation Unit, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Giovanna Mansueto
- Hematology and Stem Cell Transplantation Unit, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Oreste Villani
- Hematology and Stem Cell Transplantation Unit, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Simona D'Agostino
- Hematology and Stem Cell Transplantation Unit, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Daniela Lamorte
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Giovanni Calice
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Teodora Statuto
- Laboratory of Clinical Research and Advanced Diagnostics, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| |
Collapse
|
13
|
Smith BAH, Deutzmann A, Correa KM, Delaveris CS, Dhanasekaran R, Dove CG, Sullivan DK, Wisnovsky S, Stark JC, Pluvinage JV, Swaminathan S, Riley NM, Rajan A, Majeti R, Felsher DW, Bertozzi CR. MYC-driven synthesis of Siglec ligands is a glycoimmune checkpoint. Proc Natl Acad Sci U S A 2023; 120:e2215376120. [PMID: 36897988 PMCID: PMC10089186 DOI: 10.1073/pnas.2215376120] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/06/2022] [Indexed: 03/12/2023] Open
Abstract
The Siglecs (sialic acid-binding immunoglobulin-like lectins) are glycoimmune checkpoint receptors that suppress immune cell activation upon engagement of cognate sialoglycan ligands. The cellular drivers underlying Siglec ligand production on cancer cells are poorly understood. We find the MYC oncogene causally regulates Siglec ligand production to enable tumor immune evasion. A combination of glycomics and RNA-sequencing of mouse tumors revealed the MYC oncogene controls expression of the sialyltransferase St6galnac4 and induces a glycan known as disialyl-T. Using in vivo models and primary human leukemias, we find that disialyl-T functions as a "don't eat me" signal by engaging macrophage Siglec-E in mice or the human ortholog Siglec-7, thereby preventing cancer cell clearance. Combined high expression of MYC and ST6GALNAC4 identifies patients with high-risk cancers and reduced tumor myeloid infiltration. MYC therefore regulates glycosylation to enable tumor immune evasion. We conclude that disialyl-T is a glycoimmune checkpoint ligand. Thus, disialyl-T is a candidate for antibody-based checkpoint blockade, and the disialyl-T synthase ST6GALNAC4 is a potential enzyme target for small molecule-mediated immune therapy.
Collapse
Affiliation(s)
- Benjamin A. H. Smith
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA94305
| | - Anja Deutzmann
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | | | - Corleone S. Delaveris
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
- Department of Chemistry, Stanford University, Stanford, CA94305
| | - Renumathy Dhanasekaran
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Christopher G. Dove
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA94305
| | - Delaney K. Sullivan
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Simon Wisnovsky
- Faculty of Pharmaceutical Sciences, University of British Columbia, British Columbia, BC V6T 1Z3, Canada
| | - Jessica C. Stark
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
- Department of Chemistry, Stanford University, Stanford, CA94305
| | - John V. Pluvinage
- Department of Neurology, University of California, San Francisco, CA94143
| | - Srividya Swaminathan
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA91016
- Department of Pediatrics, Beckman Research Institute of City of Hope, Duarte, CA91010
| | | | - Anand Rajan
- Department of Pathology, University of Iowa, Iowa City, IA52242
| | - Ravindra Majeti
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA94305
| | - Dean W. Felsher
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
- Department of Pathology, Stanford University School of Medicine, Stanford, CA94305
| | - Carolyn R. Bertozzi
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
- Department of Chemistry, Stanford University, Stanford, CA94305
- Howard Hughes Medical Institute, Stanford University, Stanford, CA94305
| |
Collapse
|
14
|
Serroukh Y, Hébert J, Busque L, Mercier F, Rudd CE, Assouline S, Lachance S, Delisle JS. Blasts in context: the impact of the immune environment on acute myeloid leukemia prognosis and treatment. Blood Rev 2023; 57:100991. [PMID: 35941029 DOI: 10.1016/j.blre.2022.100991] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/22/2022] [Accepted: 07/13/2022] [Indexed: 01/28/2023]
Abstract
Acute myeloid leukemia (AML) is a cancer that originates from the bone marrow (BM). Under physiological conditions, the bone marrow supports the homeostasis of immune cells and hosts memory lymphoid cells. In this review, we summarize our present understanding of the role of the immune microenvironment on healthy bone marrow and on the development of AML, with a focus on T cells and other lymphoid cells. The types and function of different immune cells involved in the AML microenvironment as well as their putative role in the onset of disease and response to treatment are presented. We also describe how the immune context predicts the response to immunotherapy in AML and how these therapies modulate the immune status of the bone marrow. Finally, we focus on allogeneic stem cell transplantation and summarize the current understanding of the immune environment in the post-transplant bone marrow, the factors associated with immune escape and relevant strategies to prevent and treat relapse.
Collapse
Affiliation(s)
- Yasmina Serroukh
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Erasmus Medical center Cancer Institute, University Medical Center Rotterdam, Department of Hematology, Rotterdam, the Netherlands; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada.
| | - Josée Hébert
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada; The Quebec Leukemia Cell Bank, Canada
| | - Lambert Busque
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| | - François Mercier
- Division of Hematology and Experimental Medicine, Department of Medicine, McGill University, 3755 Côte-Sainte-Catherine Road, Montreal, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte-Sainte-Catherine Road, Montreal, Canada
| | - Christopher E Rudd
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| | - Sarit Assouline
- Division of Hematology and Experimental Medicine, Department of Medicine, McGill University, 3755 Côte-Sainte-Catherine Road, Montreal, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte-Sainte-Catherine Road, Montreal, Canada
| | - Silvy Lachance
- Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| | - Jean-Sébastien Delisle
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| |
Collapse
|
15
|
Fernandez N, Perumal D, Rahman A, Kim-Schulze S, Yesil J, Auclair D, Adams H, Parekh S, Gnjatic S, Cho HJ. High Dimensional Immune Profiling of Smoldering Multiple Myeloma Distinguishes Distinct Tumor Microenvironments. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:853-862. [PMID: 35945129 DOI: 10.1016/j.clml.2022.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Multiple myeloma (MM) is a malignancy of plasma cells that arises from premalignant Monoclonal Gammopathy of Undetermined Significance (MGUS) and often progresses through an asymptomatic Smoldering (SMM) phase. Understanding the interactions between abnormal clonal plasma cells and the tumor microenvironment (TME) in the early disease states (MGUS, SMM) may inform risk assessment and therapy. PATIENTS AND METHODS We performed high dimensional immunologic analysis of bone marrow specimens from 73 subjects with SMM by mass cytometry and T cell receptor sequencing of CD138-depleted bone marrow (BM) mononuclear cells, and proteomics and seromic profiling of BM plasma. Analysis of individual assay data identified self-organizing subgroups of SMM patients. We then applied novel bioinformatic methods to integrate data from pairs, trios, and quartets of assays. RESULTS Mass cytometry, TCRSeq and proteomics identified three taxa (sing. taxon) of subjects that shared common characteristics across all three assays. Differential levels of BM plasma pleiotropin (PTN) and BM T cells and their productive clonality emerged as strong distinguishing factors among these taxa. CONCLUSION These results suggest that the continuum from MGUS to MM does not consist of a single pathway in the TME, and that complex interactions between myeloma cells and the TME may ultimately determine progression and inform clinical management.
Collapse
Affiliation(s)
| | | | | | | | - Jen Yesil
- Multiple Myeloma Research Foundation, Norwalk, CT
| | | | - Homer Adams
- Janssen Research & Development, LLC, Spring House, PA
| | - Samir Parekh
- Precision Immunology Institute; Tisch Cancer Institute; Department of Oncological Sciences, Icahn School of Medicine at Mt. Sinai, New York, NY
| | - Sacha Gnjatic
- Precision Immunology Institute; Tisch Cancer Institute; Human Immune Monitoring Center
| | - Hearn Jay Cho
- Precision Immunology Institute; Tisch Cancer Institute; Multiple Myeloma Research Foundation, Norwalk, CT.
| |
Collapse
|
16
|
Impact of Immune Parameters and Immune Dysfunctions on the Prognosis of Patients with Chronic Lymphocytic Leukemia. Cancers (Basel) 2021; 13:cancers13153856. [PMID: 34359757 PMCID: PMC8345723 DOI: 10.3390/cancers13153856] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary In chronic lymphocytic leukemia (CLL), immune alterations—affecting both the innate and adaptive immunity—are very common. As a clinical consequence, patients with CLL frequently present with autoimmune phenomena, increased risk of infections and second malignancies. The aim of this review article is to present available data on CLL-associated alterations of immune parameters that correlate with known prognostic markers and with clinical outcome. Also, data on the impact of immune-related clinical manifestations on the prognosis of patients with CLL will be discussed. Abstract Chronic lymphocytic leukemia (CLL) is characterized by a wide spectrum of immune alterations, affecting both the innate and adaptive immunity. These immune dysfunctions strongly impact the immune surveillance, facilitate tumor progression and eventually affect the disease course. Quantitative and functional alterations involving conventional T cells, γδ T cells, regulatory T cells, NK and NKT cells, and myeloid cells, together with hypogammaglobulinemia, aberrations in the complement pathways and altered cytokine signature have been reported in patients with CLL. Some of these immune parameters have been shown to associate with other CLL-related characteristics with a known prognostic relevance or to correlate with disease prognosis. Also, in CLL, the complex immune response dysfunctions eventually translate in clinical manifestations, including autoimmune phenomena, increased risk of infections and second malignancies. These clinical issues are overall the most common complications that affect the course and management of CLL, and they also may impact overall disease prognosis.
Collapse
|
17
|
López C, Gibert-Ramos A, Bosch R, Korzynska A, García-Rojo M, Bueno G, García-Fontgivell JF, Martínez González S, Fontoura L, Gras Navarro A, Sauras Colón E, Casanova Ribes J, Roszkowiak L, Roso A, Berenguer M, Llobera M, Baucells J, Lejeune M. Differences in the Immune Response of the Nonmetastatic Axillary Lymph Nodes between Triple-Negative and Luminal A Breast Cancer Surrogate Subtypes. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:545-554. [PMID: 33309504 DOI: 10.1016/j.ajpath.2020.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/27/2020] [Accepted: 11/19/2020] [Indexed: 01/21/2023]
Abstract
Breast cancer (BC) comprises four immunohistochemical surrogate subtypes of which triple-negative breast cancer (TNBC) has the highest risk of mortality. Axillary lymph nodes (ALNs) are the regions where BC cells first establish before distant metastasis, and the presence of tumor cells in the ALN causes an immune tolerance profile that contrasts with that of the nonmetastatic ALN (ALN-). However, few studies have compared the immune components of the ALNs- in BC subtypes. The present study aimed to determine whether differences between immune populations in the primary tumor and ALNs- were associated with the luminal A or TNBC subtype. We evaluated a retrospective cohort of 144 patients using paraffin-embedded biopsies. The TNBC samples tended to have a higher histologic grade and proliferation index and had higher levels of immune markers compared with luminal A in primary tumors and ALNs-. Two methods for validating the multivariate analysis found that histologic grade, intratumoral S100 dendritic cells, and CD8 T lymphocytes and CD57 natural killer cells in the ALNs- were factors associated with TNBC, whereas CD83 dendritic cells in the ALNs- were associated with the luminal A subtype. In conclusion, we found that intratumoral regions and ALNs- of TNBC contained higher concentrations of markers related to immune tolerance than luminal A. This finding partially explains the worse prognosis of patients with TNBC.
Collapse
Affiliation(s)
- Carlos López
- Oncological Pathology and Bioinformatics Research Group, Department of Pathology, Hospital de Tortosa Verge de la Cinta, ICS, IISPV, Tortosa, Spain; Universitat Rovira i Virgili (URV) - Campus Terres de l'Ebre, Tortosa, Spain.
| | - Albert Gibert-Ramos
- Oncological Pathology and Bioinformatics Research Group, Department of Pathology, Hospital de Tortosa Verge de la Cinta, ICS, IISPV, Tortosa, Spain.
| | - Ramón Bosch
- Oncological Pathology and Bioinformatics Research Group, Department of Pathology, Hospital de Tortosa Verge de la Cinta, ICS, IISPV, Tortosa, Spain
| | - Anna Korzynska
- Laboratory of Processing and Analysis of Microscopic Images, Nalęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences (IBIB PAN), Warsaw, Poland
| | - Marcial García-Rojo
- Department of Pathology, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Gloria Bueno
- VISILAB, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | | | | | - Laia Fontoura
- Oncological Pathology and Bioinformatics Research Group, Department of Pathology, Hospital de Tortosa Verge de la Cinta, ICS, IISPV, Tortosa, Spain
| | - Andrea Gras Navarro
- Oncological Pathology and Bioinformatics Research Group, Department of Pathology, Hospital de Tortosa Verge de la Cinta, ICS, IISPV, Tortosa, Spain; Universitat Rovira i Virgili (URV) - Campus Terres de l'Ebre, Tortosa, Spain
| | - Esther Sauras Colón
- Oncological Pathology and Bioinformatics Research Group, Department of Pathology, Hospital de Tortosa Verge de la Cinta, ICS, IISPV, Tortosa, Spain
| | - Júlia Casanova Ribes
- Oncological Pathology and Bioinformatics Research Group, Department of Pathology, Hospital de Tortosa Verge de la Cinta, ICS, IISPV, Tortosa, Spain
| | - Lukasz Roszkowiak
- Laboratory of Processing and Analysis of Microscopic Images, Nalęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences (IBIB PAN), Warsaw, Poland
| | - Albert Roso
- Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Barcelona, Spain
| | - Marta Berenguer
- Knowledge Management Department, Hospital de Tortosa Verge de la Cinta, ICS, IISPV, Tortosa, Spain
| | - Montserrat Llobera
- Department of Oncology, Hospital de Tortosa Verge de la Cinta, ICS, IISPV, Tortosa, Spain
| | - Jordi Baucells
- Informatics Department, Hospital de Tortosa Verge de la Cinta, ICS, IISPV, Tortosa, Spain
| | - Marylène Lejeune
- Oncological Pathology and Bioinformatics Research Group, Department of Pathology, Hospital de Tortosa Verge de la Cinta, ICS, IISPV, Tortosa, Spain; Universitat Rovira i Virgili (URV) - Campus Terres de l'Ebre, Tortosa, Spain
| |
Collapse
|
18
|
Griggio V, Perutelli F, Salvetti C, Boccellato E, Boccadoro M, Vitale C, Coscia M. Immune Dysfunctions and Immune-Based Therapeutic Interventions in Chronic Lymphocytic Leukemia. Front Immunol 2020; 11:594556. [PMID: 33312177 PMCID: PMC7708380 DOI: 10.3389/fimmu.2020.594556] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/14/2020] [Indexed: 01/01/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a B-cell malignancy characterized by a wide range of tumor-induced alterations, which affect both the innate and adaptive arms of the immune response, and accumulate during disease progression. In recent years, the development of targeted therapies, such as the B-cell receptor signaling inhibitors and the Bcl-2 protein inhibitor venetoclax, has dramatically changed the treatment landscape of CLL. Despite their remarkable anti-tumor activity, targeted agents have some limitations, which include the development of drug resistance mechanisms and the inferior efficacy observed in high-risk patients. Therefore, additional treatments are necessary to obtain deeper responses and overcome drug resistance. Allogeneic hematopoietic stem cell transplantation (HSCT), which exploits immune-mediated graft-versus-leukemia effect to eradicate tumor cells, currently represents the only potentially curative therapeutic option for CLL patients. However, due to its potential toxicities, HSCT can be offered only to a restricted number of younger and fit patients. The growing understanding of the complex interplay between tumor cells and the immune system, which is responsible for immune escape mechanisms and tumor progression, has paved the way for the development of novel immune-based strategies. Despite promising preclinical observations, results from pilot clinical studies exploring the safety and efficacy of novel immune-based therapies have been sometimes suboptimal in terms of long-term tumor control. Therefore, further advances to improve their efficacy are needed. In this context, possible approaches include an earlier timing of immunotherapy within the treatment sequencing, as well as the possibility to improve the efficacy of immunotherapeutic agents by administering them in combination with other anti-tumor drugs. In this review, we will provide a comprehensive overview of main immune defects affecting patients with CLL, also describing the complex networks leading to immune evasion and tumor progression. From the therapeutic standpoint, we will go through the evolution of immune-based therapeutic approaches over time, including i) agents with broad immunomodulatory effects, such as immunomodulatory drugs, ii) currently approved and next-generation monoclonal antibodies, and iii) immunotherapeutic strategies aiming at activating or administering immune effector cells specifically targeting leukemic cells (e.g. bi-or tri-specific antibodies, tumor vaccines, chimeric antigen receptor T cells, and checkpoint inhibitors).
Collapse
Affiliation(s)
- Valentina Griggio
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Francesca Perutelli
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Chiara Salvetti
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elia Boccellato
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Mario Boccadoro
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Candida Vitale
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Marta Coscia
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
19
|
Bassiouny N, El‐Hoda N, Khalifa IM, Ibrahim S, Salem L, Annaka L. PD1 expression on bone marrow T-cells in newly diagnosed Egyptian AML patients: Correlation with hematological parameters, aberrant antigens expression, and response to induction therapy. EJHAEM 2020; 1:51-57. [PMID: 35847700 PMCID: PMC9175862 DOI: 10.1002/jha2.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 11/10/2022]
Abstract
Background Programed cell death protein 1 (PD-1) is a key mediator for the development of T cell exhaustion that develops in response to persistent antigen stimulation. Aim In this study, we measured PD1 expression on CD3 positive bone marrow T-lymphocytes in newly diagnosis AML patients and its relation to clinical/ prognostic outcomes in addition to response to induction therapy (day 28). Methods This study was conducted on 59 newly diagnosed AML patients and 20 healthy controls. Complete blood counts, flow cytometry using acute leukemia panel in addition to PD1 monoclonal antibodies were performed on bone marrow lymphocytes (CD3+), whereas cytogenetic/molecular studies were used to determine risk group. The patients' remission status following induction therapy was determined. Results PD1 was brightly expressed in 91.5% of the cases than control sample with highly significant difference (P = .001). A cutoff of 3.5 for mean fluorescence intensity was used to divide patients into two groups (higher vs normal PD1 expression). A significant difference between the two groups regarding platelet count and aberrant CD7 expression (P = .007 and .023, respectively) was found. Those normally expressed PD1 respond better to induction therapy. Conclusion PD1 expression on BM T-cells had a predictive value and providing an immunotherapeutic target for AML.
Collapse
Affiliation(s)
- Noha Bassiouny
- Department of Clinical PathologyFaculty of Medicine Ain Shams UniversityCairoEgypt
| | - Nour El‐Hoda
- Department of Internal Medicine and Clinical HematologyFaculty of Medicine Ain Shams UniversityCairoEgypt
| | - Ibtesam M Khalifa
- Department of Internal Medicine and Clinical HematologyFaculty of Medicine Ain Shams UniversityCairoEgypt
| | - Sara Ibrahim
- Department of Clinical PathologyFaculty of Medicine Ain Shams UniversityCairoEgypt
| | - Lamyaa Salem
- Department of Clinical PathologyFaculty of Medicine Ain Shams UniversityCairoEgypt
| | - Layla Annaka
- Department of Clinical PathologyFaculty of Medicine Ain Shams UniversityCairoEgypt
| |
Collapse
|
20
|
Elahi M, Rakhshan V. MED15, transforming growth factor beta 1 (TGF-β1), FcγRIII (CD16), and HNK-1 (CD57) are prognostic biomarkers of oral squamous cell carcinoma. Sci Rep 2020; 10:8475. [PMID: 32439976 PMCID: PMC7242386 DOI: 10.1038/s41598-020-65145-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Owing to the high incidence and mortality of oral squamous cell carcinoma (OSCC), knowledge of its diagnostic and prognostic factors is of significant value. The biomarkers 'CD16, CD57, transforming growth factor beta 1 (TGF-β1), and MED15' can play crucial roles in tumorigenesis, and hence might contribute to diagnosis, prognosis, and treatment. Since there was no previous study on MED15 in almost all cancers, and since the studies on diagnostic/prognostic values of the other three biomarkers were a few in OSCC (if any) and highly controversial, this study was conducted. Biomarker expressions in all OSCC tissues and their adjacent normal tissues available at the National Tumor Bank (n = 4 biomarkers × [48 cancers + 48 controls]) were estimated thrice using qRT-PCR. Diagnostic values of tumors were assessed using receiver-operator characteristic (ROC) curves. Factors contributing to patients' survival over 10 years were assessed using multiple Cox regressions. ROC curves were used to estimate cut-off points for significant prognostic variables (α = 0.05). Areas under the curve pertaining to diagnostic values of all markers were non-significant (P > 0.15). Survival was associated positively with tumoral upregulation of TGF-β1 and downregulation of CD16, CD57, and MED15. It was also associated positively with younger ages, lower histological grades, milder Jacobson clinical TNM stages (and lower pathological Ns), smaller and thinner tumors, and surgery cases not treated with incisional biopsy (Cox regression, P < 0.05). The cut-off point for clinical stage -as the only variable with a significant area under the curve- was between the stages 2 and 3. Increased TGF-β1 and reduced CD16, CD57, and MED15 expressions in the tumor might independently favor the prognosis. Clinical TNM staging might be one of the most reliable prognostic factors, and stages above 2 can predict a considerably poorer prognosis.
Collapse
Affiliation(s)
- Maryam Elahi
- Department of Oral Pathology, Alborz University of Medical Sciences, Karaj, Iran
| | - Vahid Rakhshan
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran.
| |
Collapse
|
21
|
|
22
|
Schulze-Edinghausen L, Dürr C, Öztürk S, Zucknick M, Benner A, Kalter V, Ohl S, Close V, Wuchter P, Stilgenbauer S, Lichter P, Seiffert M. Dissecting the Prognostic Significance and Functional Role of Progranulin in Chronic Lymphocytic Leukemia. Cancers (Basel) 2019; 11:E822. [PMID: 31200555 PMCID: PMC6627891 DOI: 10.3390/cancers11060822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/30/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is known for its strong dependency on the tumor microenvironment. We found progranulin (GRN), a protein that has been linked to inflammation and cancer, to be upregulated in the serum of CLL patients compared to healthy controls, and increased GRN levels to be associated with an increased hazard for disease progression and death. This raised the question of whether GRN is a functional driver of CLL. We observed that recombinant GRN did not directly affect viability, activation, or proliferation of primary CLL cells in vitro. However, GRN secretion was induced in co-cultures of CLL cells with stromal cells that enhanced CLL cell survival. Gene expression profiling and protein analyses revealed that primary mesenchymal stromal cells (MSCs) in co-culture with CLL cells acquire a cancer-associated fibroblast-like phenotype. Despite its upregulation in the co-cultures, GRN treatment of MSCs did not mimic this effect. To test the relevance of GRN for CLL in vivo, we made use of the Eμ-TCL1 CLL mouse model. As we detected strong GRN expression in myeloid cells, we performed adoptive transfer of Eμ-TCL1 leukemia cells to bone marrow chimeric Grn-/- mice that lack GRN in hematopoietic cells. Thereby, we observed that CLL-like disease developed comparable in Grn-/- chimeras and respective control mice. In conclusion, serum GRN is found to be strongly upregulated in CLL, which indicates potential use as a prognostic marker, but there is no evidence that elevated GRN functionally drives the disease.
Collapse
Affiliation(s)
- Lena Schulze-Edinghausen
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Claudia Dürr
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Selcen Öztürk
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Manuela Zucknick
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway.
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Verena Kalter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Sibylle Ohl
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Viola Close
- Internal Medicine III, University of Ulm, 89081 Ulm, Germany, and Cooperation Unit Mechanisms of Leukemogenesis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Patrick Wuchter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany.
| | - Stephan Stilgenbauer
- Internal Medicine III, University of Ulm, 89081 Ulm, Germany, and Department of Internal Medicine I, Saarland University, 66421 Homburg, Germany.
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Martina Seiffert
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
23
|
Gonnord P, Costa M, Abreu A, Peres M, Ysebaert L, Gadat S, Valitutti S. Multiparametric analysis of CD8 + T cell compartment phenotype in chronic lymphocytic leukemia reveals a signature associated with progression toward therapy. Oncoimmunology 2019; 8:e1570774. [PMID: 30906665 PMCID: PMC6422371 DOI: 10.1080/2162402x.2019.1570774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/10/2018] [Accepted: 01/08/2019] [Indexed: 02/08/2023] Open
Abstract
CD8+ T cells are frontline defenders against cancer and primary targets of current immunotherapies. In CLL, specific functional alterations have been described in circulating CD8+ T cells, yet a global view of the CD8+ T cell compartment phenotype and of its real impact on disease progression is presently elusive. We developed a multidimensional statistical analysis of CD8+ T cell phenotypic marker expression based on whole blood multi-color flow-cytometry. The analysis comprises both unsupervised statistics (hClust and PCA) and supervised classification methods (Random forest, Adaboost algorithm, Decision tree learning and logistic regression) and allows to cluster patients by comparing multiple phenotypic markers expressed by CD8+ T cells. Our results reveal a global CD8+ T cell phenotypic signature in CLL patients that is significantly modified when compared to healthy donors. We also uncover a CD8+ T cell signature characteristic of patients evolving toward therapy within 6 months after phenotyping. The unbiased, not predetermined and multimodal approach highlights a prominent role of the memory compartment in the prognostic signature. The analysis also reveals that imbalance of the central/effector memory compartment in CD8+ T cells can occur irrespectively of the elapsed time after diagnosis. Taken together our results indicate that, in CLL patients, CD8+ T cell phenotype is imprinted by disease clinical progression and reveal that CD8+ T cell memory compartment alteration is not only a hallmark of CLL disease but also a signature of disease evolution toward the need for therapy.
Collapse
Affiliation(s)
- Pauline Gonnord
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM U1037, «Equipe labellisée Ligue Nationale contre le cancer 2018», Université de Toulouse III-Paul Sabatier, Toulouse, France
| | - Manon Costa
- Institut de Mathématiques de Toulouse, UMR 5219, Université de Toulouse, CNRS, UPS IMT, Toulouse, France
| | - Arnaud Abreu
- Institut Roche, Boulogne-Billancourt, France.,Université de Strasbourg, CNRS, ICube, Strasbourg, France.,Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
| | - Michael Peres
- Laboratoire d'Immunologie, CHU de Toulouse, France and Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR1037, Toulouse, France
| | - Loïc Ysebaert
- Département d'Hématologie, Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France.,Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM U1037, "Equipe Innovations thérapeuthiques des lymphomes B", Toulouse, France
| | - Sébastien Gadat
- Toulouse School of Economics, Université Toulouse 1 Capitole, UMR5604, Institut de Mathématiques, Université Paul sabatier, Toulouse, France
| | - Salvatore Valitutti
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM U1037, «Equipe labellisée Ligue Nationale contre le cancer 2018», Université de Toulouse III-Paul Sabatier, Toulouse, France.,Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
| |
Collapse
|
24
|
Dong S, Harrington BK, Hu EY, Greene JT, Lehman AM, Tran M, Wasmuth RL, Long M, Muthusamy N, Brown JR, Johnson AJ, Byrd JC. PI3K p110δ inactivation antagonizes chronic lymphocytic leukemia and reverses T cell immune suppression. J Clin Invest 2018; 129:122-136. [PMID: 30457982 DOI: 10.1172/jci99386] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 10/02/2018] [Indexed: 12/20/2022] Open
Abstract
Targeted therapy with small molecules directed at essential survival pathways in leukemia represents a major advance, including the phosphatidylinositol-3'-kinase (PI3K) p110δ inhibitor idelalisib. Here, we found that genetic inactivation of p110δ (p110δD910A/D910A) in the Eμ-TCL1 murine chronic lymphocytic leukemia (CLL) model impaired B cell receptor signaling and B cell migration, and significantly delayed leukemia pathogenesis. Regardless of TCL1 expression, p110δ inactivation led to rectal prolapse in mice resembling autoimmune colitis in patients receiving idelalisib. Moreover, we showed that p110δ inactivation in the microenvironment protected against CLL and acute myeloid leukemia. After receiving higher numbers of TCL1 leukemia cells, half of p110δD910A/D910A mice spontaneously recovered from high disease burden and resisted leukemia rechallenge. Despite disease resistance, p110δD910A/D910A mice exhibited compromised CD4+ and CD8+ T cell response, and depletion of CD4+ or CD8+ T cells restored leukemia. Interestingly, p110δD910A/D910A mice showed significantly impaired Treg expansion that associated with disease clearance. Reconstitution of p110δD910A/D910A mice with p110δWT/WT Tregs reversed leukemia resistance. Our findings suggest that p110δ inhibitors may have direct antileukemic and indirect immune-activating effects, further supporting that p110δ blockade may have a broader immune-modulatory role in types of leukemia that are not sensitive to p110δ inhibition.
Collapse
Affiliation(s)
- Shuai Dong
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy.,Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center
| | - Bonnie K Harrington
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center.,College of Veterinary Medicine
| | - Eileen Y Hu
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center.,Medical Scientist Training Program
| | - Joseph T Greene
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center.,Molecular, Cellular, and Developmental Biology Program, and
| | - Amy M Lehman
- Center for Biostatistics, The Ohio State University, Columbus, Ohio, USA
| | - Minh Tran
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center
| | - Ronni L Wasmuth
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center
| | - Meixiao Long
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center
| | - Natarajan Muthusamy
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center
| | - Jennifer R Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Amy J Johnson
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center.,Janssen Research and Development LLC, Spring House, Pennsylvania, USA
| | - John C Byrd
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy.,Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center
| |
Collapse
|
25
|
Lamble AJ, Lind EF. Targeting the Immune Microenvironment in Acute Myeloid Leukemia: A Focus on T Cell Immunity. Front Oncol 2018; 8:213. [PMID: 29951373 PMCID: PMC6008423 DOI: 10.3389/fonc.2018.00213] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/24/2018] [Indexed: 12/27/2022] Open
Abstract
Immunotherapies, such as chimeric antigen receptor T cells, bispecific antibodies, and immune checkpoint inhibitors, have emerged as promising modalities in multiple hematologic malignancies. Despite the excitement surrounding immunotherapy, it is currently not possible to predict which patients will respond. Within solid tumors, the status of the immune microenvironment provides valuable insight regarding potential responses to immune therapies. Much less is known about the immune microenvironment within hematologic malignancies but the characteristics of this environment are likely to serve a similar predictive role. Acute myeloid leukemia (AML) is the most common hematologic malignancy in adults, and only 25% of patients are alive 5 years following their diagnosis. There is evidence that manipulation of the immune microenvironment by leukemia cells may play a role in promoting therapy resistance and disease relapse. In addition, it has long been documented that through modulation of the immune system following allogeneic bone marrow transplant, AML can be cured, even in patients with the highest risk disease. These concepts, along with the poor prognosis associated with this disease, have encouraged many groups to start exploring the utility of novel immune therapies in AML. While the implementation of these therapies into clinical trials for AML has been supported by preclinical rationale, many questions still exist surrounding their efficacy, tolerability, and the overall optimal approach. In this review, we discuss what is known about the immune microenvironment within AML with a specific focus on T cells and checkpoints, along with their implications for immune therapies.
Collapse
Affiliation(s)
- Adam J Lamble
- Pediatric Hematology/Oncology, Seattle Children's Hospital, Seattle, WA, United States
| | - Evan F Lind
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
26
|
Immune therapies in acute myeloid leukemia: a focus on monoclonal antibodies and immune checkpoint inhibitors. Curr Opin Hematol 2018; 25:136-145. [PMID: 29206680 DOI: 10.1097/moh.0000000000000401] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW This review discusses the rationale, efficacy, and toxicity of a variety of immune approaches being evaluated in the therapy of acute myeloid leukemia (AML) including naked and conjugated monoclonal antibodies, bispecific T-cell engager antibodies, and immune checkpoint blockade via antibodies targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed-death 1 (PD-1). RECENT FINDINGS The stellar success of immune therapies that harness the power of T cells in solid tumors and an improved understanding of the immune system in patients with hematologic malignancies have resulted in major efforts to develop immune therapies for the treatment of patients with AML. Monoclonal antibodies in AML therapy include naked antibodies against AML surface antigens such as CD33 (e.g. lintuzumab) or CD38 (e.g. daratumumab), antibodies conjugated to toxins in various anti-CD33 (gemtuzumab ozogamicin, SGN33A, IMGN779) and anti-CD123 (SL-401, SGN-CD123A) formulations, and antibodies conjugated to radioactive particles such as I or Ac-labeled anti-CD33 or anti-CD45 antibodies. Additional antigenic targets of interest in AML include CLL1, CD38, CD25, TIM3, FLT3, and others. Approaches to harness the body's own T cells against AML include antibodies that recruit and induce cytotoxicity of tumor cells by T cells (bispecific T-cell engager [BiTE] such as CD33 x CD3 (e.g. AMG 330) or CD123 x CD3 (e.g. flotetuzumab, JNJ-63709178) or antibodies that block immune checkpoint receptors CTLA4 (e.g. ipilimumab) or PD1/PD-L1 (e.g. nivolumab, pembrolizumab, avelumab) on T cells, unleashing the patients' T cells against leukemic cells. SUMMARY The ongoing trials and well designed correlative interrogation of the immune system in patients treated on such trials will further enhance our understanding and clinical application of immune therapies as single-agent and combination approaches for the treatment of AML.
Collapse
|
27
|
Hypomethylating agents in combination with immune checkpoint inhibitors in acute myeloid leukemia and myelodysplastic syndromes. Leukemia 2018; 32:1094-1105. [PMID: 29487386 DOI: 10.1038/s41375-018-0070-8] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/15/2018] [Accepted: 01/26/2018] [Indexed: 12/31/2022]
Abstract
Immune checkpoint inhibitors, as single-agent therapy, have shown modest clinical efficacy in the treatment of acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). As has been successfully shown in other less immunogenic hematologic malignancies, rationally designed combination approaches may be more effective than single-agent checkpoint inhibitors, and may be the approach to pursue in AML/MDS. Hypomethylating agents (HMAs) such as azacitidine, while enhancing anti-tumor immune response, concurrently dampen immune response by upregulating inhibitory immune checkpoint molecule expression. Immune checkpoint molecule upregulation may be an important mechanism of azacitidine resistance. These findings have resulted in multiple clinical trials combining HMAs with immune checkpoint blockade. Clinical trial data have shown encouraging response rates and durable responses without resorting to stem cell transplant. In this review, we discuss preclinical data supporting the use of these agents in combination, and focus on clinical and correlative data emerging from numerous clinical trials investigating HMA-immune checkpoint inhibitor combinations in AML/MDS.
Collapse
|
28
|
|
29
|
Dosani T, Mailankody S, Korde N, Manasanch E, Bhutani M, Tageja N, Roschewski M, Kwok M, Kazandjian D, Costello R, Burton D, Zhang Y, Liewehr D, Steinberg SM, Maric I, Landgren O. Host-related immunodeficiency in the development of multiple myeloma. Leuk Lymphoma 2017; 59:1127-1132. [PMID: 28792255 DOI: 10.1080/10428194.2017.1361026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Host-related immunodeficiency is known to play a role in the development of multiple myeloma (MM) from its precursor conditions (monoclonal gammopathy of undetermined significance, MGUS, smoldering multiple myeloma, SMM). In order to understand the underlying immune changes in this process, we characterized immune patterns from MGUS to SMM to MM. We further sought to identify potential novel immune biomarkers that may predict progression of SMM to MM. We characterized patterns of circulating lymphocytes in 181 patients using multiparametric flow cytometry. We found decreased B- (p = .0003), increased T- (p = .037) and unaltered NK cell proportions from MGUS to SMM to MM. To gain insights into functional variability, we further characterized immunophenotypic lymphocyte subsets, which uncovered differences in CD57 subsets. Specifically, we found that SMM patients who eventually progressed to MM showed decreased proportions of CD57-CD56 + (p = .0061) and CD57-CD16 + (p = .035) lymphocyte subsets. We thus report novel data characterizing the nature of host-related immunodeficiency in the development of MM. We show sequential changes in lymphocyte subsets from MGUS to SMM to MM. We further suggest that CD57 subsets may serve as potential markers of progression from SMM to MM. Our findings support the study of lymphocyte subsets in the search for immune biomarkers. Such markers could provide clinical guidance in managing myeloma precursor disease.
Collapse
Affiliation(s)
- Talib Dosani
- a Department of Medicine , University Hospitals Case Medical Center , Cleveland , OH, USA
| | - Sham Mailankody
- b Myeloma Service, Department of Medicine , Memorial Sloan-Kettering Cancer Center , New York , NY, USA
| | - Neha Korde
- b Myeloma Service, Department of Medicine , Memorial Sloan-Kettering Cancer Center , New York , NY, USA
| | - Elisabet Manasanch
- c Department of Lymphoma and Myeloma , University of Texas MD Anderson Cancer Center , Houston , TX, USA
| | - Manisha Bhutani
- d Lymphoid Malignancies Branch , Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda , MD, USA
| | - Nishant Tageja
- d Lymphoid Malignancies Branch , Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda , MD, USA
| | - Mark Roschewski
- d Lymphoid Malignancies Branch , Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda , MD, USA
| | - Mary Kwok
- d Lymphoid Malignancies Branch , Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda , MD, USA
| | - Dickran Kazandjian
- d Lymphoid Malignancies Branch , Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda , MD, USA
| | - Rene Costello
- d Lymphoid Malignancies Branch , Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda , MD, USA
| | - Debra Burton
- d Lymphoid Malignancies Branch , Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda , MD, USA
| | - Yong Zhang
- d Lymphoid Malignancies Branch , Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda , MD, USA
| | - David Liewehr
- e Biostatistics and Data Management Section , Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda , MD, USA
| | - Seth M Steinberg
- e Biostatistics and Data Management Section , Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda , MD, USA
| | - Irina Maric
- f Hematology Section, Department of Laboratory Medicine , Clinical Center, National Institutes of Health , Bethesda , MD, USA
| | - Ola Landgren
- b Myeloma Service, Department of Medicine , Memorial Sloan-Kettering Cancer Center , New York , NY, USA
| |
Collapse
|
30
|
Boddu P, Kantarjian H, Garcia-Manero G, Allison J, Sharma P, Daver N. The emerging role of immune checkpoint based approaches in AML and MDS. Leuk Lymphoma 2017; 59:790-802. [PMID: 28679300 DOI: 10.1080/10428194.2017.1344905] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The development of immune checkpoint inhibitors represents a major breakthrough in the field of cancer therapeutics. Pursuant to their success in melanoma and numerous solid tumor malignancies, these agents are being investigated in hematological malignancies including acute myelogenous leukemia (AML) and myelodysplastic syndromes (MDS). Although AML/MDS have traditionally been considered to be less immunogenic than solid tumor malignancies, recent pre-clinical models suggest a therapeutic role for immune checkpoint inhibition in these diseases. CTLA-4 inhibition may be especially effective in treating late post-allogeneic stem cell transplant relapse of AML in patients with limited or no graft versus host disease. Immune checkpoint inhibition, specifically PD-1 inhibition, demonstrated limited single agent efficacy in patients with relapsed AML and with MDS post-hypomethylating therapy. Rationally designed combinations of PD-1 inhibitors with standard anti-leukemic therapy are needed. Hypomethylating agents such as azacitidine, up-regulate PD-1, PD-L1, and PD-L2 in patients with AML/MDS and up-regulation of these genes was associated with the emergence of resistance. The combination of azacitidine and PD-1/PD-L1 inhibition may be a potential mechanism to prevent or overcome resistance to 5-azacitidine. A number of such combinations are being evaluated in clinical trials with early encouraging results. Immune checkpoint inhibition is also an attractive option to improve relapse-free survival or eliminate minimal residual disease post induction and consolidation by enhancing T-cell surveillance in patients with high-risk AML. The ongoing clinical trials with checkpoint inhibitors in AML/MDS will improve our understanding of the immunobiology of these diseases and guide us to the most appropriate application of these agents in the therapy of AML/MDS.
Collapse
Affiliation(s)
- Prajwal Boddu
- a Department of Leukemia , The University of Texas M. D. Anderson Cancer Center , Houston , TX , USA
| | - Hagop Kantarjian
- a Department of Leukemia , The University of Texas M. D. Anderson Cancer Center , Houston , TX , USA
| | - Guillermo Garcia-Manero
- a Department of Leukemia , The University of Texas M. D. Anderson Cancer Center , Houston , TX , USA
| | - James Allison
- a Department of Leukemia , The University of Texas M. D. Anderson Cancer Center , Houston , TX , USA
| | - Padmanee Sharma
- b Immunotherapy Platform , The University of Texas M. D. Anderson Cancer Center , Houston , TX , USA
| | - Naval Daver
- a Department of Leukemia , The University of Texas M. D. Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
31
|
Tan J, Chen S, Lu Y, Yao D, Xu L, Zhang Y, Yang L, Chen J, Lai J, Yu Z, Zhu K, Li Y. Higher PD-1 expression concurrent with exhausted CD8+ T cells in patients with de novo acute myeloid leukemia. Chin J Cancer Res 2017; 29:463-470. [PMID: 29142466 DOI: 10.21147/j.issn.1000-9604.2017.05.11] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objective To investigate the association between the T cell inhibitory receptor programmed death 1 (PD-1) and T cell exhaustion status in T cells from patients with de novo acute myeloid leukemia (AML) and AML in complete remission (CR). Methods Surface expression of PD-1 and the exhaustion and immunosenescence markers CD244 and CD57 on CD3+, CD4+ and CD8+ T cells from peripheral blood samples from 20 newly diagnosed, untreated AML patients and 10 cases with AML in CR was analyzed by flow cytometry. Twenty-three healthy individuals served as control. Results A significantly higher percentage of PD-1+ cells were found for CD3+ T cells in the de novo AML group compared with healthy controls. In addition, an increased level of PD-1+CD8+ T cells, but not PD-1+CD4+, was found for CD3+ T cells in the de novo AML and AML-CR samples. A higher percentage of CD244+CD4+, CD244+CD8+, CD57+CD4+ and CD57+CD8+ T cells was found in CD3+ T cells in samples from those with de novo AML compared with those from healthy controls. Strong increased PD-1+CD244+ and PD-1+CD57+ co-expression was found for CD4+ and CD8+ T cells in the de novo AML group compared with healthy controls. Conclusions We characterized the major T cell defects, including co-expression of PD-1 and CD244, CD57-exhausted T cells in patients with de novo AML, and found a particular influence on CD8+ T cells, suggesting a poor anti-leukemia immune response in these patients.
Collapse
Affiliation(s)
- Jiaxiong Tan
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Shaohua Chen
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yuhong Lu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Danlin Yao
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ling Xu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yikai Zhang
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Lijian Yang
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jie Chen
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jing Lai
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zhi Yu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Kanger Zhu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yangqiu Li
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China.,Department of Hematology, the First Affiliated Hospital, Jinan University, Guangzhou 510632, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou 510632, China
| |
Collapse
|
32
|
Hu J, Batth IS, Xia X, Li S. Regulation of NKG2D +CD8 + T-cell-mediated antitumor immune surveillance: Identification of a novel CD28 activation-mediated, STAT3 phosphorylation-dependent mechanism. Oncoimmunology 2016; 5:e1252012. [PMID: 28123894 DOI: 10.1080/2162402x.2016.1252012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/10/2016] [Accepted: 10/19/2016] [Indexed: 01/06/2023] Open
Abstract
The natural killer (NK) group 2D (NKG2D) receptor, which displays on mouse and human NK cells, activates CD8+ T cells and small subsets of other T cells. NKG2D+CD8+ T cells play critical roles in both innate and adaptive immunity upon engagement with NKG2D ligands to eliminate tumor and infected cells. Despite the important role of NKG2D+CD8+ T cells in immune surveillance, the mechanisms of how NKG2D expression on CD8+ T cells is regulated remain poorly defined. We treated mouse and human CD8+ T cells with CD80 recombinant protein, plus a pharmacologic model with small molecular inhibitors to determine which signaling pathway leads to NKG2D regulation on CD8+T cells. This study revealed that CD28 activation gives rise to sustained NKG2D expression on both mouse and human CD8+ T cells in a signal transducer and activator of transcription 3 (STAT3) phosphorylation-dependent manner. Further, we found that CD28 activation stimulated sustained activation of the tyrosine kinase Lck, which recruits and triggers Janus kinase/STAT3 signaling to phosphorylate STAT3, and in turn increases NKG2D expression. Moreover, NKG2D induction on CD8+ T cells exerts cytolytic activity against target tumor cells in vitro, as well as significantly improves the antitumor therapeutic effects in vivo in an NKG2D-dependent manner. Taken together, these results elucidated a novel mechanism of NKG2D regulation by phosphorylated STAT3 (pSTAT3) on CD8+ T cells upon CD28 activation. This mechanism may shed light on the effectiveness of CD80-based, NKG2D-dependent antitumor immunotherapy.
Collapse
Affiliation(s)
- Jiemiao Hu
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Izhar S Batth
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Xueqing Xia
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Shulin Li
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| |
Collapse
|
33
|
Siska PJ, van der Windt GJW, Kishton RJ, Cohen S, Eisner W, MacIver NJ, Kater AP, Weinberg JB, Rathmell JC. Suppression of Glut1 and Glucose Metabolism by Decreased Akt/mTORC1 Signaling Drives T Cell Impairment in B Cell Leukemia. THE JOURNAL OF IMMUNOLOGY 2016; 197:2532-40. [PMID: 27511728 DOI: 10.4049/jimmunol.1502464] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 07/15/2016] [Indexed: 12/14/2022]
Abstract
Leukemia can promote T cell dysfunction and exhaustion that contributes to increased susceptibility to infection and mortality. The treatment-independent mechanisms that mediate leukemia-associated T cell impairments are poorly understood, but metabolism tightly regulates T cell function and may contribute. In this study, we show that B cell leukemia causes T cells to become activated and hyporesponsive with increased PD-1 and TIM3 expression similar to exhausted T cells and that T cells from leukemic hosts become metabolically impaired. Metabolic defects included reduced Akt/mammalian target of rapamycin complex 1 (mTORC1) signaling, decreased expression of the glucose transporter Glut1 and hexokinase 2, and reduced glucose uptake. These metabolic changes correlated with increased regulatory T cell frequency and expression of PD-L1 and Gal-9 on both leukemic and stromal cells in the leukemic microenvironment. PD-1, however, was not sufficient to drive T cell impairment, as in vivo and in vitro anti-PD-1 blockade on its own only modestly improved T cell function. Importantly, impaired T cell metabolism directly contributed to dysfunction, as a rescue of T cell metabolism by genetically increasing Akt/mTORC1 signaling or expression of Glut1 partially restored T cell function. Enforced Akt/mTORC1 signaling also decreased expression of inhibitory receptors TIM3 and PD-1, as well as partially improved antileukemia immunity. Similar findings were obtained in T cells from patients with acute or chronic B cell leukemia, which were also metabolically exhausted and had defective Akt/mTORC1 signaling, reduced expression of Glut1 and hexokinase 2, and decreased glucose metabolism. Thus, B cell leukemia-induced inhibition of T cell Akt/mTORC1 signaling and glucose metabolism drives T cell dysfunction.
Collapse
Affiliation(s)
- Peter J Siska
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710; Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232; Department of Cancer Biology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | | | - Rigel J Kishton
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710
| | - Sivan Cohen
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710
| | - William Eisner
- Department of Pediatrics, Duke University, Durham, NC 27710
| | | | - Arnon P Kater
- Department of Hematology, Academic Medical Center, 1100 DD Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - J Brice Weinberg
- Department of Medicine, Duke University, Durham, NC 27708; and Department of Medicine, Durham Veterans Affairs Medical Center, Durham, NC 27705
| | - Jeffrey C Rathmell
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710; Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232; Department of Cancer Biology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232;
| |
Collapse
|
34
|
Kared H, Martelli S, Ng TP, Pender SLF, Larbi A. CD57 in human natural killer cells and T-lymphocytes. Cancer Immunol Immunother 2016; 65:441-52. [PMID: 26850637 PMCID: PMC11029668 DOI: 10.1007/s00262-016-1803-z] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 01/29/2016] [Indexed: 12/20/2022]
Abstract
The CD57 antigen (alternatively HNK-1, LEU-7, or L2) is routinely used to identify terminally differentiated 'senescent' cells with reduced proliferative capacity and altered functional properties. In this article, we review current understanding of the attributes of CD57-expressing T-cells and NK cells in both health and disease and discuss how this marker can inform researchers about their likely functions in human blood and tissues in vivo. While CD57 expression on human lymphocytes indicates an inability to proliferate, these cells also display high cytotoxic potential, and CD57(pos) NK cells exhibit both memory-like features and potent effector functions. Accordingly, frequencies of CD57-expressing cells in blood and tissues have been correlated with clinical prognosis in chronic infections or various cancers and with human aging. Functional modulation of senescent CD57(pos) T-cells and mature CD57(pos) NK cells may therefore represent innovative strategies for protection against human immunological aging and/or various chronic diseases.
Collapse
Affiliation(s)
- Hassen Kared
- Singapore Immunology Network (SIgN), Aging and Immunity Program, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove #3 Immunos, Singapore, 138648, Republic of Singapore.
| | - Serena Martelli
- Singapore Immunology Network (SIgN), Aging and Immunity Program, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove #3 Immunos, Singapore, 138648, Republic of Singapore
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Tze Pin Ng
- Gerontological Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Sylvia L F Pender
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Aging and Immunity Program, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove #3 Immunos, Singapore, 138648, Republic of Singapore
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| |
Collapse
|
35
|
Kong Y, Zhu L, Schell TD, Zhang J, Claxton DF, Ehmann WC, Rybka WB, George MR, Zeng H, Zheng H. T-Cell Immunoglobulin and ITIM Domain (TIGIT) Associates with CD8+ T-Cell Exhaustion and Poor Clinical Outcome in AML Patients. Clin Cancer Res 2016; 22:3057-66. [PMID: 26763253 DOI: 10.1158/1078-0432.ccr-15-2626] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/04/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT) is a recently identified T-cell coinhibitory receptor. In this study, we aimed to determine the clinical impact of TIGIT in patients with acute myelogenous leukemia (AML) and dissect the role of TIGIT in the pathogenesis of leukemia progression. EXPERIMENTAL DESIGN TIGIT expression on T cells from peripheral blood collected from patients with AML was examined by flow cytometry. The correlation of TIGIT expression to clinical outcomes, including rate of complete remission and relapse post-allogeneic stem cell transplantation (alloSCT) in AML patients, was analyzed. Phenotypic and functional study (cytokine release, proliferation, killing, and apoptosis) of TIGIT-expressing T cells were performed. Using siRNA to silence TIGIT, we further elucidated the regulatory role of TIGIT in the T-cell immune response by dissecting the effect of TIGIT knockdown on cytokine release and apoptosis of T cells from AML patients. RESULTS TIGIT expression on CD8(+) T cells is elevated in AML patients and high-TIGIT correlates with primary refractory disease and leukemia relapse post-alloSCT. TIGIT(+) CD8(+) T cells display phenotypic features of exhaustion and exhibit functional impairment manifested by low production of cytokines and high susceptibility to apoptosis. Importantly, their functional defects are reversed by TIGIT knockdown. CONCLUSIONS TIGIT contributes to functional T-cell impairment and associates with poor clinical outcome in AML. Our study suggests that blockade of TIGIT to restore T-cell function and antitumor immunity may represent a novel effective leukemia therapeutic. Clin Cancer Res; 22(12); 3057-66. ©2016 AACR.
Collapse
Affiliation(s)
- Yaxian Kong
- Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, Pennsylvania. Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Liuluan Zhu
- Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, Pennsylvania. Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Todd D Schell
- Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, Pennsylvania. Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Jianhong Zhang
- Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, Pennsylvania
| | - David F Claxton
- Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, Pennsylvania
| | - W Christopher Ehmann
- Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Witold B Rybka
- Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Melissa R George
- Department of Pathology, Penn State Hershey Medical Center, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Hui Zeng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China.
| | - Hong Zheng
- Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, Pennsylvania.
| |
Collapse
|
36
|
Schnorfeil FM, Lichtenegger FS, Emmerig K, Schlueter M, Neitz JS, Draenert R, Hiddemann W, Subklewe M. T cells are functionally not impaired in AML: increased PD-1 expression is only seen at time of relapse and correlates with a shift towards the memory T cell compartment. J Hematol Oncol 2015. [PMID: 26219463 PMCID: PMC4518596 DOI: 10.1186/s13045-015-0189-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background T cell function is crucial for the success of several novel immunotherapeutic strategies for the treatment of acute myeloid leukemia (AML). However, changes in phenotype and function of T cells have been described in various hematologic malignancies, mimicking T cell exhaustion known from chronic viral infections. Detailed knowledge about phenotype and function of T cells in AML patients at different stages of the disease is indispensable for optimal development and application of immunotherapeutic strategies for this disease. Methods We used flow cytometry-based assays to characterize T cell phenotype and function in peripheral blood and bone marrow of AML patients at diagnosis, at relapse after intensive chemotherapy, and at relapse after allogeneic stem cell transplantation (SCT). Surface expression of CD244, PD-1, CD160, and TIM-3 was determined, and proliferation and production of IFN-γ, TNF-α, and IL-2 were measured. Results We detected similar expression of inhibitory molecules on T cells from patients at diagnosis and from age-matched healthy controls. At relapse after SCT, however, PD-1 expression was significantly increased compared to diagnosis, both on CD4+ and CD8+ T cells. This pattern was not associated with age and cytomegalovirus (CMV) status but with a shift towards effector memory cells in relapsed AML patients. Proliferation and cytokine production assays did not reveal functional defects in T cells of AML patients, neither at diagnosis nor at relapse. Conclusion We thus conclude that T cell exhaustion does not play a major role in AML. Immunotherapeutic strategies targeting autologous T cells thus have particularly good prospects in the setting of AML. Electronic supplementary material The online version of this article (doi:10.1186/s13045-015-0189-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Frauke M Schnorfeil
- Department of Internal Medicine III, Klinikum der Universität München, Munich, Germany. .,Clinical Cooperation Group Immunotherapy, Helmholtz Institute Munich, Munich, Germany.
| | - Felix S Lichtenegger
- Department of Internal Medicine III, Klinikum der Universität München, Munich, Germany. .,Clinical Cooperation Group Immunotherapy, Helmholtz Institute Munich, Munich, Germany. .,Division of Clinical Pharmacology, Department of Internal Medicine IV, Klinikum der Universität München, Munich, Germany.
| | - Katharina Emmerig
- Department of Internal Medicine III, Klinikum der Universität München, Munich, Germany. .,Clinical Cooperation Group Immunotherapy, Helmholtz Institute Munich, Munich, Germany.
| | - Miriam Schlueter
- Department of Internal Medicine III, Klinikum der Universität München, Munich, Germany. .,Clinical Cooperation Group Immunotherapy, Helmholtz Institute Munich, Munich, Germany.
| | - Julia S Neitz
- Department of Internal Medicine III, Klinikum der Universität München, Munich, Germany. .,Clinical Cooperation Group Immunotherapy, Helmholtz Institute Munich, Munich, Germany.
| | - Rika Draenert
- Division of Clinical Infectiology, Department of Internal Medicine IV, Klinikum der Universität München, Munich, Germany.
| | - Wolfgang Hiddemann
- Department of Internal Medicine III, Klinikum der Universität München, Munich, Germany. .,Clinical Cooperation Group Pathogenesis of Acute Myeloid Leukemia, Helmholtz Institute Munich, Munich, Germany.
| | - Marion Subklewe
- Department of Internal Medicine III, Klinikum der Universität München, Munich, Germany. .,Clinical Cooperation Group Immunotherapy, Helmholtz Institute Munich, Munich, Germany.
| |
Collapse
|
37
|
The passive-aggressive relationship between CLL-B cells and T cell immunity. Leuk Res 2014; 38:1160-1. [PMID: 25182688 DOI: 10.1016/j.leukres.2014.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/05/2014] [Accepted: 08/08/2014] [Indexed: 11/22/2022]
|
38
|
Riches JC, Gribben JG. Immunomodulation and Immune Reconstitution in Chronic Lymphocytic Leukemia. Semin Hematol 2014; 51:228-34. [DOI: 10.1053/j.seminhematol.2014.05.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Nielsen CM, White MJ, Goodier MR, Riley EM. Functional Significance of CD57 Expression on Human NK Cells and Relevance to Disease. Front Immunol 2013; 4:422. [PMID: 24367364 PMCID: PMC3856678 DOI: 10.3389/fimmu.2013.00422] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/20/2013] [Indexed: 12/21/2022] Open
Abstract
Historically, human NK cells have been identified as CD3(-)CD56(+)CD16(±) lymphocytes. More recently it has been established that CD57 expression defines functionally discrete sub-populations of NK cells. On T cells, CD57 expression has been regarded as a marker of terminal differentiation and (perhaps wrongly) of anergy and senescence. Similarly, CD57 expression seems to identify the final stages of peripheral NK cell maturation; its expression increases with age and is associated with chronic infections, particularly human cytomegalovirus infection. However, CD57(+) NK cells are highly cytotoxic and their presence seems to be beneficial in a number of non-communicable diseases. The purpose of this article is to review our current understanding of CD57 expression as a marker of NK cell function and disease prognosis, as well as to outline areas for further research.
Collapse
Affiliation(s)
- Carolyn M Nielsen
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine , London , UK
| | - Matthew J White
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine , London , UK
| | - Martin R Goodier
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine , London , UK
| | - Eleanor M Riley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine , London , UK
| |
Collapse
|
40
|
Understanding the immunodeficiency in chronic lymphocytic leukemia: potential clinical implications. Hematol Oncol Clin North Am 2013; 27:207-35. [PMID: 23561470 DOI: 10.1016/j.hoc.2013.01.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is the most common leukemia in adults. Although significant advances have been made in the treatment of CLL in the last decade, it remains incurable. Treatments may be too toxic for some elderly patients, who constitute most of the individuals with this disease, and there remain subgroups of patients for which this therapy has minimal activity. This article summarizes the current understanding of the immune defects in CLL. It also examines the potential clinical implications of these findings.
Collapse
|
41
|
T cells from CLL patients exhibit features of T-cell exhaustion but retain capacity for cytokine production. Blood 2012; 121:1612-21. [PMID: 23247726 DOI: 10.1182/blood-2012-09-457531] [Citation(s) in RCA: 421] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
T-cell exhaustion, originally described in chronic viral infections, was recently reported in solid and hematologic cancers. It is not defined whether exhaustion contributes to T-cell dysfunction observed in chronic lymphocytic leukemia (CLL). We investigated the phenotype and function of T cells from CLL patients and age-matched controls. CD8+ and CD4+ T cells from CLL patients had increased expression of exhaustion markers CD244, CD160, and PD1, with expansion of a PD1+BLIMP1HI subset. These molecules were most highly expressed in the expanded population of effector T cells in CLL. CLL CD8+ T cells showed functional defects in proliferation and cytotoxicity, with the cytolytic defect caused by impaired granzyme packaging into vesicles and nonpolarized degranulation. In contrast to virally induced exhaustion, CLL T cells showed increased production of interferon-γ and TNFα and increased expression of TBET, and normal IL2 production. These defects were not restricted to expanded populations of cytomegalovirus (CMV)–specific cells, although CMV seropositivity modulated the distribution of lymphocyte subsets, the functional defects were present irrespective of CMV serostatus. Therefore, although CLL CD8+ T cells exhibit features of T-cell exhaustion, they retain the ability to produce cytokines. These findings also exclude CMV as the sole cause of T-cell defects in CLL.
Collapse
|
42
|
te Raa GD, Tonino SH, Remmerswaal EBM, van Houte AJ, Koene HR, van Oers MH, Kater AP. Chronic lymphocytic leukemia specific T-cell subset alterations are clone-size dependent and not present in monoclonal B lymphocytosis. Leuk Lymphoma 2012; 53:2321-5. [DOI: 10.3109/10428194.2012.698277] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
43
|
Rohon P. Biological therapy and the immune system in patients with chronic myeloid leukemia. Int J Hematol 2012; 96:1-9. [PMID: 22661045 DOI: 10.1007/s12185-012-1116-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 02/01/2023]
Abstract
Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder of hematopoietic stem cells that has been recognized as a disease responsive to immunotherapy. Despite the huge success of the tyrosine kinase inhibitors (TKIs), CML remains for the most part incurable, probably due to treatment resistance of leukemic stem cells, which are responsible for rapid disease relapse after discontinuation of therapy. Only allogeneic stem cell transplantation enables disease eradication. In addition to the Bcr-Abl1 oncoprotein, TKIs also inhibit off-target kinases (e.g. c-kit, Src, Tec), some of them having physiological functions in immune responses. In vitro studies have implied immunomodulatory effects of TKIs and interferon-alpha (IFN-α), but comprehensive information from in vivo analyses is missing. This review summarizes the recent advances in the field of immunology of CML, including basic information about leukemia-associated antigens and peptide vaccines, that could lead to the incorporation of TKIs and IFN-α in future therapeutic, potentially curative, interventions for CML.
Collapse
Affiliation(s)
- Peter Rohon
- University Hospital, Olomouc, Czech Republic.
| |
Collapse
|
44
|
Tonino SH, van de Berg PJ, Yong SL, ten Berge IJ, Kersten MJ, van Lier RAW, van Oers MH, Kater AP. Expansion of effector T cells associated with decreased PD-1 expression in patients with indolent B cell lymphomas and chronic lymphocytic leukemia. Leuk Lymphoma 2012; 53:1785-94. [PMID: 22397719 DOI: 10.3109/10428194.2012.673224] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In patients with chronic lymphocytic leukemia (CLL), numbers of CD8 + CD45RA +/- CD27- effector T cells are expanded. We investigated whether this expansion is also present in other B cell malignancies and the possible mechanism underlying these changes. Whereas an increase in total CD4+and CD8+ T cell numbers was found only in CLL, numbers of CD4+ and CD8+ effector T cells were significantly increased in both CLL and indolent lymphoma, but not aggressive lymphoma and myeloma. Interestingly, PD-1 expression was decreased on effector T cells and inversely correlated with effector T cell numbers, suggesting a functional role for PD-1 in regulating T cell homeostasis. In vitro experiments revealed impaired up-regulation of PD-1 upon T cell activation in the presence of malignant but also healthy B cells. Our data suggest that in CLL and indolent lymphoma, the malignant B cells affect PD-1 expression on effector T cells, resulting in an expansion of these subsets.
Collapse
Affiliation(s)
- Sanne H Tonino
- Department of Hematology, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Riches JC, Ramsay AG, Gribben JG. Immune reconstitution in chronic lymphocytic leukemia. Curr Hematol Malig Rep 2012; 7:13-20. [PMID: 22231031 DOI: 10.1007/s11899-011-0106-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is associated with a profound immune defect, which results in increased susceptibility to recurrent infections as well as a failure to mount effective antitumor immune responses. Current chemotherapy-based regimens are not curative and often worsen this immune suppression, so their usefulness is limited, particularly in the frail and elderly. This article reviews the immune defect in CLL and discusses strategies aimed at repairing or circumventing this defect. In particular, it focuses on recent developments in the areas of CD40 ligand (CD40L/CD154) gene therapy, immunomodulatory agents such as lenalidomide, and adoptive transfer of T cells bearing chimeric antigen receptors.
Collapse
Affiliation(s)
- John C Riches
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK.
| | | | | |
Collapse
|
46
|
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs that act as post-transcriptional regulators. The low complementarity required between the sequences of a miRNA and its target mRNA enables a single miRNA to act on a large range of targets. Thus miRNAs have an intersecting complex effect that spans a multiplicity of pathways and processes. In this review, the different roles of a vital miRNA, miR-181a, in physiological and pathological developments are collated in an attempt to highlight the intersections of such processes and to show how the deregulation of miR-181a could in one context drive malignancy, whereas in another it can lead to autoimmunity. Such deregulation could be related to the faulty levels of one of its own targets, p53, which was recently reported to control an array of miRNAs, one of which is miR-181a. This sheds light on a hidden loop of chaos behind chronic diseases such as autoimmunity and cancer.
Collapse
|
47
|
Nunes C, Wong R, Mason M, Fegan C, Man S, Pepper C. Expansion of a CD8(+)PD-1(+) replicative senescence phenotype in early stage CLL patients is associated with inverted CD4:CD8 ratios and disease progression. Clin Cancer Res 2012; 18:678-87. [PMID: 22190592 DOI: 10.1158/1078-0432.ccr-11-2630] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE Patients with chronic lymphocytic leukemia (CLL) display immune deficiency that is most obvious in advanced stage disease. Here we investigated whether this immune dysfunction plays a pathologic role in the progression of early stage disease patients. EXPERIMENTAL DESIGN We carried out eight-color immunophenotyping analysis in a cohort of 110 untreated early stage CLL patients and 22 age-matched healthy donors and correlated our findings with clinical outcome data. RESULTS We found a significant reduction in naive CD4(+) and CD8(+) T cells in CLL patients. Only the CD4(+) subset showed significantly increased effector memory cells (T(EM) and T(EMRA)) in the whole cohort (P = 0.004 and P = 0.04, respectively). However, patients with inverted CD4:CD8 ratios (52 of 110) showed preferential expansion of the CD8 compartment, with a skewing of CD8(+) T(EMRA) (P = 0.03) coupled with increased percentage of CD57(+)CD28(-)CD27(-) T cells (P = 0.008) and PD-1 positivity (P = 0.027), consistent with a replicative senescence phenotype. Furthermore, inverted CD4:CD8 ratios were associated with shorter lymphocyte doubling time (P = 0.03), shorter time to first treatment (P = 0.03), and reduced progression-free survival (P = 0.005). CONCLUSIONS Our data show that the emergence of CD8(+)PD-1(+) replicative senescence phenotype in early stage CLL patients is associated with more aggressive clinical disease. Importantly, these findings were independent of tumor cell prognostic markers and could not be accounted for by patient age, changes in regulatory T-cell frequency, or cytomegalovirus serostatus (n = 217).
Collapse
Affiliation(s)
- Claudia Nunes
- Department of Infection, Cardiff University, Wales, UK
| | | | | | | | | | | |
Collapse
|
48
|
Rohon P, Porkka K, Mustjoki S. Immunoprofiling of patients with chronic myeloid leukemia at diagnosis and during tyrosine kinase inhibitor therapy. Eur J Haematol 2010; 85:387-98. [PMID: 20662899 DOI: 10.1111/j.1600-0609.2010.01501.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) are the current standard treatment in chronic myeloid leukemia (CML). In addition to the BCR-ABL target oncoprotein, they also inhibit off-target kinases (e.g. c-KIT, TEC, SRC), some of which have physiological functions in immune responses. In vitro studies have implied immunosuppressive effects of TKI treatment. As comprehensive in vivo data are missing, we aimed at analyzing the detailed immunoprofile of patients with CML at diagnosis and during therapy. We collected 88 peripheral blood (PB) and 73 bone marrow (BM) samples from 54 patients with CML at diagnosis, during imatinib and dasatinib therapies. Leukocytes and lymphocyte subclasses were analyzed with an extensive flow cytometry panel including markers for activation, differentiation and memory status. At diagnosis, a lower proportion of B cells and dendritic cells and an increased amount of NKT-like cells were detected in the BM. During imatinib therapy, all these changes normalized and the immunoprofile resembled healthy controls. However, dasatinib patients were clearly divided into two distinct groups: one similar to healthy controls and the other showing immunoactivation characterized by significant elevations of CD8+, NK- and NKT-like cells in PB. T cells of the latter group strongly expressed CD57+, HLA-DR and CD45RO and had low CD62L antigen levels characteristic of late memory cytotoxic lymphocytes. Our results indicate that while both TKIs show immunosuppressive effects in vitro, they have a significant and differential effect on the numbers and proportions of immune effector cells in vivo. In particular, in a distinct subgroup of dasatinib-treated patients, immune reactivity is markedly enhanced warranting careful follow-up.
Collapse
Affiliation(s)
- Peter Rohon
- Biomedicum Helsinki, Helsinki University Central Hospital, Finland
| | | | | |
Collapse
|
49
|
Focosi D, Bestagno M, Burrone O, Petrini M. CD57+ T lymphocytes and functional immune deficiency. J Leukoc Biol 2009; 87:107-16. [PMID: 19880576 DOI: 10.1189/jlb.0809566] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
CD57(+) expression in T lymphocytes has been recognized for decades as a marker of in vitro replicative senescence. In recent years, accumulating evidences have pointed on the utility of this marker to measure functional immune deficiency in patients with autoimmune disease, infectious diseases, and cancers. We review here the relevant literature and implications in clinical settings.
Collapse
Affiliation(s)
- Daniele Focosi
- Division of Hematology, Azienda Ospedaliera Santa Chiara, University of Pisa, via Roma, Pisa, Italy.
| | | | | | | |
Collapse
|
50
|
Sze DMY, Brown RD, Yuen E, Gibson J, Ho J, Raitakari M, Basten A, Joshua DE, Fazekas de St Groth B. Clonal Cytotoxic T Cells in Myeloma. Leuk Lymphoma 2009; 44:1667-74. [PMID: 14692517 DOI: 10.1080/1042819031000097438] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Multiple myeloma (MM) is a malignant disease characterized by accumulation of morphologically recognizable plasma cells producing immunoglobulin (Ig) in the bone marrow. The occurrence of clonal T cells in MM, as defined by the presence of rearrangements in the T-cell receptor (TCR)-beta chains detected on Southern blotting, is associated with an improved prognosis. This review aims to describe the various ways in which we have demonstrated the presence of such T cell clones, and to describe the phenotype of these cells. Finally, the specificities of these clinically important CD8+ T cell populations will be discussed in the context of immunotherapy.
Collapse
Affiliation(s)
- Daniel M Y Sze
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|