1
|
Kubaski Benevides AP, Marin AM, Wosniaki DK, Oliveira RN, Koerich GM, Kusma BN, Munhoz EC, Zanette DL, Aoki MN. Expression of HOTAIR and PTGS2 as potential biomarkers in chronic myeloid leukemia patients in Brazil. Front Oncol 2024; 14:1443346. [PMID: 39450252 PMCID: PMC11499243 DOI: 10.3389/fonc.2024.1443346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasm in which all the patients has the translocation (9;22) that generates de BCR::ABL1 tyrosine kinase. Despite this disease possessing a good biomarker (BCR::ABL1 transcripts level) for diagnosis and prognosis, many studies has been performed to investigate other molecules, such as the long noncoding RNAs (lncRNAs) and mRNAs, as potential biomarkers with the aim of predicting a change in BCR::ABL1 levels and as an associated biomarker. A RNAseq was performed comparing 6 CML patients with high BCR::ABL1 expression with 6 healthy control individuals, comprising the investigation cohort to investigate these molecules. To validate the results obtained by RNAseq, samples of 87 CML patients and 42 healthy controls were used in the validation cohort by RT-qPCR assays. The results showed lower expression of HOTAIR and PTGS2 in CML patients. The HOTAIR expression is inversely associated with BCR::ABL1 expression in imatinib-treated CML patients, and to PTGS2 showing that CML patients with high BCR::ABL1 expression showed reduced PTGS2 expression.
Collapse
Affiliation(s)
- Ana Paula Kubaski Benevides
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Anelis Maria Marin
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Denise K. Wosniaki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Rafaela Noga Oliveira
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Gabriela Marino Koerich
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Bianca Nichele Kusma
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | | | - Dalila Luciola Zanette
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| |
Collapse
|
2
|
Maytalman E, Nemutlu Samur D. Neuroendocrine modulation by metamizole and indomethacin: investigating the impact on neuronal markers and GnRH release. Endocrine 2024; 85:1327-1336. [PMID: 38625503 DOI: 10.1007/s12020-024-03822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE Some evidence that non-steroidal anti-inflammatory drugs have neuroprotective effects indicates their potential for use in a new field. However, their effects on hormone secretion have yet to be adequately discovered. Therefore, we aimed to evaluate the effects of metamizole and indomethacin on neuronal markers as well as the GnRH expression in the GT1-7 cell line. METHODS The effects of these drugs on proliferation were evaluated by MTT analysis. The effect of 10-50-250 µM concentrations of the drugs also on the expression of neuronal factors and markers, including NGF, nestin and βIII Tubulin, and additionally GnRH, was determined by the RT-qPCR method. RESULTS NGF and nestin mRNA expressions were increased in all concentrations of both metamizole and indomethacin. No changes were detected in βIII Tubulin. While metamizole showed an increase in GnRH mRNA expression, there was no change at 10 and 50 µM concentrations of indomethacin, but a remarkable decrease was observed at 250 µM concentrations. CONCLUSIONS The results of our study showing an increase in the expression of neuronal factors reveal that metamizole and indomethacin may have possible neuroprotective effects. Moreover, the effects on the GnRH expression appear to be different. Animal models are required to confirm these effects of NSAIDs on neurons.
Collapse
Affiliation(s)
- Erkan Maytalman
- Department of Pharmacology, School of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey.
| | - Dilara Nemutlu Samur
- Department of Pharmacology, School of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| |
Collapse
|
3
|
Sugawara K, Ishikawa J. [Exploration of Indole Compounds as Candidate for Radiation Mitigators]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2022; 78:1295-1305. [PMID: 36288953 DOI: 10.6009/jjrt.2022-1283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
PURPOSE In this study, to develop radiomitigators capable of the emergency medical care of patients involved in radiation accidents, we investigated the radiomitigative effects and their underlying mechanisms of indole compounds such as DIM, GRM, and INM. METHODS The human normal fibroblast cell line, MRC-5 cells were administered 0.1% DMSO or each indole compound at 10 µM within 50-60 minutes after X-irradiated with 0-4 Gy. Next, we evaluated the alteration in the number of alive cells, clonogenic potential, DNA double-strand breaks, DNA damage repair activities, and protein expression related to regulate the oxidative stress response. RESULTS Our results showed that DIM treatment suppressed radiation-induced decrease in the number of alive cells and clonogenic potential. Then, DIM treatment significantly decreased DNA double-strand breaks and highly increased Nrf2 via increased phospho-GSK-3β (Ser9) expression. These findings suggest that, in part, increased expression of p-GSK-3β (Ser9) by DIM treatment reduced DNA double-strand breaks via activation of Nrf2, resulting mitigated radiation-induced a decrease in the number of alive cells and clonogenic potential. CONCLUSION Therefore, DIM, not GRM and INM, is a potential candidate for radiomitigators that can be applied to the radiation emergency medicine.
Collapse
Affiliation(s)
- Kaya Sugawara
- Department of Radiological Science, Kyorin University Graduate School of Health Sciences
| | - Junya Ishikawa
- Department of Radiological Science, Kyorin University Graduate School of Health Sciences
- Department of Medical Radiologic Technology, Faculty of Health Sciences, Kyorin University
| |
Collapse
|
4
|
Abdulmalek S, Mostafa N, Gomaa M, El‑Kersh M, Elkady AI, Balbaa M. Bee venom-loaded EGFR-targeting peptide-coupled chitosan nanoparticles for effective therapy of hepatocellular carcinoma by inhibiting EGFR-mediated MEK/ERK pathway. PLoS One 2022; 17:e0272776. [PMID: 35947632 PMCID: PMC9365195 DOI: 10.1371/journal.pone.0272776] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/27/2022] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the world's most risky diseases due to the lack of clear and cost-effective therapeutic targets. Currently, the toxicity of conventional chemotherapeutic medications and the development of multidrug resistance is driving research into targeted therapies. The nano-biomedical field's potential for developing an effective therapeutic nano-sized drug delivery system is viewed as a significant pharmaceutical trend for the encapsulation and release of numerous anticancer therapies. In this regard, current research is centered on the creation of biodegradable chitosan nanoparticles (CSNPs) for the selective and sustained release of bee venom into liver cancer cells. Furthermore, surface modification with polyethylene glycol (PEG) and GE11 peptide-conjugated bee venom-CSNPs allows for the targeting of EGFR-overexpressed liver cancer cells. A series of in vitro and in vivo cellular analyses were used to investigate the antitumor effects and mechanisms of targeted bee venom-CSNPs. Targeted bee venom-CSNPs, in particular, were found to have higher cytotoxicity against HepG2 cells than SMMC-7721 cells, as well as stronger cellular uptake and a substantial reduction in cell migration, leading to improved cancer suppression. It also promotes cancer cell death in EGFR overexpressed HepG2 cells by boosting reactive oxygen species, activating mitochondria-dependent pathways, inhibiting EGFR-stimulated MEK/ERK pathway, and elevating p38-MAPK in comparison to native bee venom. In hepatocellular carcinoma (HCC)-induced mice, it has anti-cancer properties against tumor tissue. It also improved liver function and architecture without causing any noticeable toxic side effects, as well as inhibiting tumor growth by activating the apoptotic pathway. The design of this cancer-targeted nanoparticle establishes GE11-bee venom-CSNPs as a potential chemotherapeutic treatment for EGFR over-expressed malignancies. Finally, our work elucidates the molecular mechanism underlying the anticancer selectivity of targeted bee venom-CSNPs and outlines therapeutic strategies to target liver cancer.
Collapse
Affiliation(s)
- Shaymaa Abdulmalek
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nouf Mostafa
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
- Plant Protection Research Institute, Agriculture Research Center, Giza, Egypt
| | - Marwa Gomaa
- Plant Protection Research Institute, Agriculture Research Center, Giza, Egypt
| | - Mohamed El‑Kersh
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ayman I. Elkady
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mahmoud Balbaa
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Kirtonia A, Gala K, Fernandes SG, Pandya G, Pandey AK, Sethi G, Khattar E, Garg M. Repurposing of drugs: An attractive pharmacological strategy for cancer therapeutics. Semin Cancer Biol 2020; 68:258-278. [PMID: 32380233 DOI: 10.1016/j.semcancer.2020.04.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/20/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
Human malignancies are one of the major health-related issues though out the world and anticipated to rise in the future. The development of novel drugs/agents requires a huge amount of cost and time that represents a major challenge for drug discovery. In the last three decades, the number of FDA approved drugs has dropped down and this led to increasing interest in drug reposition or repurposing. The present review focuses on recent concepts and therapeutic opportunities for the utilization of antidiabetics, antibiotics, antifungal, anti-inflammatory, antipsychotic, PDE inhibitors and estrogen receptor antagonist, Antabuse, antiparasitic and cardiovascular agents/drugs as an alternative approach against human malignancies. The repurposing of approved non-cancerous drugs is an effective strategy to develop new therapeutic options for the treatment of cancer patients at an affordable cost in clinics. In the current scenario, most of the countries throughout the globe are unable to meet the medical needs of cancer patients because of the high cost of the available cancerous drugs. Some of these drugs displayed potential anti-cancer activity in preclinic and clinical studies by regulating several key molecular mechanisms and oncogenic pathways in human malignancies. The emerging pieces of evidence indicate that repurposing of drugs is crucial to the faster and cheaper discovery of anti-cancerous drugs.
Collapse
Affiliation(s)
- Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, 201313, India; Equal contribution
| | - Kavita Gala
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India; Equal contribution
| | - Stina George Fernandes
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India; Equal contribution
| | - Gouri Pandya
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, 201313, India; Equal contribution
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Haryana, 122413, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
6
|
Seetha A, Devaraj H, Sudhandiran G. Indomethacin and juglone inhibit inflammatory molecules to induce apoptosis in colon cancer cells. J Biochem Mol Toxicol 2020; 34:e22433. [PMID: 31916655 DOI: 10.1002/jbt.22433] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/13/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is the third most common fatal cancer. Indomethacin, a nonsteroidal anti-inflammatory drug, is known to reduce the occurrence of CRC. This study evaluated the potential anticolon cancer effects of juglone (5-hydroxy-1,4-naphthoquinone) in combination with indomethacin. Human colon adenocarcinoma cells (HT29) were subjected to treatment with indomethacin, juglone, and a combination of both. Morphological analysis, cell cycle regulation, and dual staining using acridine orange and ethidium bromide in control and treated cells revealed the apoptotic potential of these compounds. Bcl2 and inflammatory molecules (tumor necrosis factor-α, nuclear factor kappa B, and Cox-2) were found to be decreased with a concomitant increase in the expression of proapoptotic molecules (Bad, Bax, cytochrome c, and PUMA) as a result of the molecular regulation of Wnt, Notch, and peroxisome proliferator-activated receptor-γ signaling. Treatment with juglone was not as effective as with indomethacin; however, a combination of both was shown to be more effective, suggesting that juglone may be considered for therapeutic intervention of colon cancer.
Collapse
Affiliation(s)
- Alagesan Seetha
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, India
| | - Halagowder Devaraj
- Department of Zoology, University of Madras, Guindy Campus, Chennai, India
| | | |
Collapse
|
7
|
Amanullah A, Mishra R, Upadhyay A, Reddy PP, Das R, Mishra A. Indomethacin elicits proteasomal dysfunctions develops apoptosis through mitochondrial abnormalities. J Cell Physiol 2017; 233:1685-1699. [PMID: 28681929 DOI: 10.1002/jcp.26081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 07/05/2017] [Indexed: 01/04/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are a class of drugs that are mainly used to treat pain, inflammation, and fever via cyclooxygenase-2 (COX-2) inhibition. There are abundant findings that uncover the hidden critical chemotherapeutics potential of NSAIDs in cancer treatment. However, still the precise mechanism by which NSAIDs could be used as an effective anti-tumor agent in the prevention of carcinogenesis is not well understood. Here, we show that indomethacin, a well-known NSAID, induces proteasomal dysfunction that results in accumulation of unwanted proteins, mitochondrial abnormalities, and successively stimulate apoptosis in cells. We observed the interaction of indomethacin with proteasome and noticed the massive accumulation of intracellular ubiquitin-positive proteins, which might be due to the suppression of proteasome activities. Furthermore, we also found that exposure of indomethacin causes the accumulation of critical proteasomal substrates that consequently generate severe mitochondrial abnormalities and prompt up key apoptotic events in cells. Our results demonstrate how indomethacin affects normal proteasomal functions and induces mitochondrial apoptosis in cells. These findings also improve our current understanding of how NSAIDs can exhibit crucial anti-proliferative effects in cells. In near future, our findings may suggest a new possible strategy for the development of specific proteasome inhibitors in conjunction with other chemo-preventive anticancer agents.
Collapse
Affiliation(s)
- Ayeman Amanullah
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Ribhav Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Pothula P Reddy
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Ranabir Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| |
Collapse
|
8
|
Sever B, Altıntop MD, Kuş G, Özkurt M, Özdemir A, Kaplancıklı ZA. Indomethacin based new triazolothiadiazine derivatives: Synthesis, evaluation of their anticancer effects on T98 human glioma cell line related to COX-2 inhibition and docking studies. Eur J Med Chem 2016; 113:179-86. [DOI: 10.1016/j.ejmech.2016.02.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/29/2016] [Accepted: 02/14/2016] [Indexed: 11/16/2022]
|
9
|
Repercussions of NSAIDS drugs on bone tissue: the osteoblast. Life Sci 2015; 123:72-7. [PMID: 25625244 DOI: 10.1016/j.lfs.2015.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/30/2014] [Accepted: 01/02/2015] [Indexed: 12/11/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) can act by modulating the behavior of osteoblasts, including their proliferation, differentiation, adhesion, and migration, but not all NSAIDs have these effects. Our objective was to update the information on this issue in a review of the literature in order to offer guidance on the prescription of the appropriate NSAID(s) to patients requiring bone tissue repair. To review current knowledge of this issue by searching for all relevant publications since 2001 in the MEDLINE, EMBASE and Cochrane Library databases, we used the following descriptors: bone tissue, osteoblast, NSAIDs, Anti-inflammatory drugs. Published studies show that most NSAIDs have an adverse effect on osteoblast growth by cell cycle arrest and apoptosis induction. The effect on differentiation varies according to the drug, dose, and treatment time. Osteoblast adhesion is increased and migration decreased by some NSAIDs, such as indomethacin and diclofenac. The antigenic profile or phagocytic function can also be modulated by NSAIDs. In general, NSAIDs have an adverse effect on bone tissue and given the routine administration of NSAIDs to individuals requiring bone repair, in which the osteoblast has an essential role, this effect on bone should be borne in mind.
Collapse
|
10
|
Ramon S, Woeller CF, Phipps RP. The influence of Cox-2 and bioactive lipids on hematological cancers. ACTA ACUST UNITED AC 2014; 2:135-142. [PMID: 24883266 DOI: 10.2174/2211552802999140131105947] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inflammation is implicated in the progression of multiple types of cancers including lung, colorectal, breast and hematological malignancies. Cyclooxygenases (Cox) -1 and -2 are important enzymes involved in the regulation of inflammation. Elevated Cox-2 expression is associated with a poor cancer prognosis. Hematological malignancies, which are among the top 10 most predominant cancers in the USA, express high levels of Cox-2. Current therapeutic approaches against hematological malignances are insufficient as many patients develop resistance or relapse. Therefore, targeting Cox-2 holds promise as a therapeutic approach to treat hematological malignancies. NSAIDs and Cox-2 selective inhibitors are anti-inflammatory drugs that decrease prostaglandin and thromboxane production while promoting the synthesis of specialized proresolving mediators. Here, we review the evidence regarding the applicability of NSAIDs, such as aspirin, as well as Cox-2 specific inhibitors, to treat hematological malignancies. Furthermore, we discuss how FDA-approved Cox inhibitors can be used as anti-cancer drugs alone or in combination with existing chemotherapeutic treatments.
Collapse
Affiliation(s)
- Sesquile Ramon
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Collynn F Woeller
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Richard P Phipps
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642 ; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| |
Collapse
|
11
|
Indomethacin-enhanced anticancer effect of arsenic trioxide in A549 cell line: involvement of apoptosis and phospho-ERK and p38 MAPK pathways. BIOMED RESEARCH INTERNATIONAL 2013; 2013:237543. [PMID: 24312908 PMCID: PMC3842073 DOI: 10.1155/2013/237543] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 09/21/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND Focusing on novel drug combinations that target different pathways especially apoptosis and MAPK could be a rationale for combination therapy in successful treatment of lung cancer. Concurrent use of cyclooxygenase (COX) inhibitors with arsenic trioxide (ATO) might be a possible treatment option. METHODS Cytotoxicity of ATO, dexamethasone (Dex), celecoxib (Cel), and Indomethacin (Indo) individually or in combination was determined at 24, 48, and 72 hrs in A549 lung cancer cells. The COX-2 gene and protein expression, MAPK pathway proteins, and caspase-3 activity were studied for the most cytotoxic combinations. RESULTS The IC50s of ATO and Indo were 68.7 μmol/L and 396.5 μmol/L, respectively. Treatment of cells with combinations of clinically relevant concentrations of ATO and Indo resulted in greater growth inhibition and apoptosis induction than did either agent alone. Caspase-3 activity was considerably high in the presence of ATO and Indo but showed no difference in single or combination use. Phosphorylation of p38 and ERK1/2 was remarkable in the concurrent presence of both drugs. CONCLUSIONS Combination therapy with ATO and Indo exerted a very potent in vitro cytotoxic effect against A549 lung cancer cells. Activation of ERK and p38 pathways might be the mechanism of higher cytotoxic effect of ATO-Indo combination.
Collapse
|
12
|
Lu G, Zhang G, Zhang C, Chen C, Liu R. A study of 131iodine-labeling of histamine-indomethacin: its in vivo therapeutic effect and anti-tumor mechanisms in Lewis-bearing lung cancer. Radiat Oncol 2013; 8:74. [PMID: 23531319 PMCID: PMC3627608 DOI: 10.1186/1748-717x-8-74] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 03/18/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In our research,we study the effect of 131iodine-labeled histamine-indomethacin (131I-His-IN). We focus on its in vivo therapeutic effect and anti-tumor mechanisms in Lewis-bearing lung cancer. METHODS 131I-His-IN was administered by garage to the mice. At different timepoints, we made autoradiography (ARG) slices to observe the distribution of 131I-His-IN in the cellular, and the sliced samples underwent hematoxylin and eosin (HE) staining for observation of tumor necrosis. Before treatment, the groups of mice underwent 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography-computed tomography (PET-CT) scans ,and they were then given physiologic saline, iodine 131 (131I), indomethacin (IN), Histamine-indomethacin (His-IN), and 131I-His-IN, respectively, three times daily for seven days. Seven days later, all the mice underwent 18F-FDG PET-CT scans again. We calculated the maximum standard uptake value (SUVmax) of the region of interest (ROI) and tumor inhibition rate at the same time. RESULTS In ARG groups, black silver particle was concentrated in the nucleus and cytoplasm. 131I-His-IN mainly concentrated in tumor tissues. At 8 hours after 131I-His-IN, the radioactivity uptake in tumor tissue was higher than in other organs (F=3.46, P<0.05). For the 18F-FDG PET-CT imaging, the tumor tissuses SUVmax of the ROI was lower compared to other groups after the treatment with 131I-His-IN. The tumor inhibitory rate (54.8%) in 131I-His-IN group was higher than in other groups, too. In the 131I-His-IN group the vascular endothelial growth factor (VEGF) decreased gradually compared to other groups. The tumor tissue necrotized obviously in 131I-His-IN group. CONCLUSIONS Through these animal experiments, we found 131I-His-IN could inhibit the Lewis lung cancer cells. 131I-His-IN focused at the cell nucleus and cytoplasm. It could reduce VEGF and increase tumor inhibitory rate. At the same time, 18F-FDG PET-CT scan could be used for a curative effect and monitoring of disease prognosis.
Collapse
Affiliation(s)
- Guoxiu Lu
- Department of Nuclear Medicine, The General Hospital of Shenyang Military Area Command, No 83, Wenhua Road, Shenhe District, Shenyang, 110840, China
| | | | | | | | | |
Collapse
|
13
|
Gecko crude peptides induce apoptosis in human liver carcinoma cells in vitro and exert antitumor activity in a mouse ascites H22 xenograft model. J Biomed Biotechnol 2012; 2012:743573. [PMID: 23093861 PMCID: PMC3471029 DOI: 10.1155/2012/743573] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 08/17/2012] [Accepted: 08/22/2012] [Indexed: 11/17/2022] Open
Abstract
AIM To investigate the anti-tumor effects and mechanisms of gecko crude peptides (GCPs) in vitro and in vivo. METHODS 3-(4,5)-Dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay was applied to measure the effects of GCPs on the HepG2 cell viability. Fluorescence morphology was used to identify apoptotic cells. A xenograft H22 liver cancer model was established in Kunming mice. The tumor-bearing mice were treated with daily intraperitoneal injections of normal saline (NS group) or GCPs (80, 40 or 20 mg/kg) for 10 days, or once per two days with 2 mg/kg doxorubicin (ADR group; n = 10 each). Serum tumor necrosis factor (TNF-α) and interleukin (IL)-6 were quantified using ELISA assay. RESULTS GCPs significantly inhibited the growth of HepG2 cells and induced typical apoptotic morphological features through increasing bcl-2/bax ratio in a dose- and time-dependent manner in vitro. The tumor weights of the ADR group, GCPs (H) group, GCPs (M) group, GCPs (L) group were smaller compared to the NS group. While the white blood cell count, thymus index, spleen index were higher in the high dose GCPs group than the NS group (P < 0.05), the VEGF expression in tumor tissue and serum TNF-α and IL-6 levels in the GCPs groups were lower than the NS group (P < 0.05).
Collapse
|
14
|
Facchetti G, Zampieri M, Altafini C. Predicting and characterizing selective multiple drug treatments for metabolic diseases and cancer. BMC SYSTEMS BIOLOGY 2012; 6:115. [PMID: 22932283 PMCID: PMC3744170 DOI: 10.1186/1752-0509-6-115] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/13/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND In the field of drug discovery, assessing the potential of multidrug therapies is a difficult task because of the combinatorial complexity (both theoretical and experimental) and because of the requirements on the selectivity of the therapy. To cope with this problem, we have developed a novel method for the systematic in silico investigation of synergistic effects of currently available drugs on genome-scale metabolic networks. RESULTS The algorithm finds the optimal combination of drugs which guarantees the inhibition of an objective function, while minimizing the side effect on the other cellular processes. Two different applications are considered: finding drug synergisms for human metabolic diseases (like diabetes, obesity and hypertension) and finding antitumoral drug combinations with minimal side effect on the normal human cell. The results we obtain are consistent with some of the available therapeutic indications and predict new multiple drug treatments. A cluster analysis on all possible interactions among the currently available drugs indicates a limited variety on the metabolic targets for the approved drugs. CONCLUSION The in silico prediction of drug synergisms can represent an important tool for the repurposing of drugs in a realistic perspective which considers also the selectivity of the therapy. Moreover, for a more profitable exploitation of drug-drug interactions, we have shown that also experimental drugs which have a different mechanism of action can be reconsider as potential ingredients of new multicompound therapeutic indications. Needless to say the clues provided by a computational study like ours need in any case to be thoroughly evaluated experimentally.
Collapse
Affiliation(s)
- Giuseppe Facchetti
- Statistical and Biological Physics Department, SISSA (International School for Advanced Studies), Via Bonomea 265 - 34136, Trieste, Italy
| | - Mattia Zampieri
- Institute of Molecular Systems Biology, ETH (Eidgenoessische Technische Hochschule), Wolfgang Pauli Str. 16 - 8093, Zurich, Switzerland
| | - Claudio Altafini
- Functional Analysis DepartmentSISSA (International School for Advanced Studies), , Via Bonomea 265 - 34136, Trieste, Italy
| |
Collapse
|
15
|
Kim HA, You HK, Shin HS, Kim YC, Kang TH, Yu HH, You YO. Effects of Aqueous Extract of Sophora flavescens on the Expression of Cell Cycle Regulatory Proteins in Human Oral Mucosal Fibroblasts. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 31:563-72. [PMID: 14587879 DOI: 10.1142/s0192415x03001260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sophorae Radix, the dried roots of Sophora flavescens AITON (Leguminosae), has been used in Oriental traditional medicine for treatment of skin and mucosal ulcers, sores, gastrointestinal hemorrhage, diarrhea, inflammation and arrhythmia. In the present study, we examine the effect of the aqueous extract of Sophorae Radix (AESR) on cell proliferation and cell cycle regulation in human oral mucosal fibroblasts (HOMFs). To study the molecular mechanisms of cell cycle regulation by AESR, we also measured the intracellular levels of cell cycle regulatory proteins such as cyclin D, cyclin-dependent kinases (CDK)-4, CDK-6, cyclin E, CDK-2, p53, p21WAF1/CIP1 and p16INK4 . Cell proliferation was increased in the presence of 10~500 μg/ml of AESR. Maximal growth stimulation was observed in those cells exposed to 100 μg/ml of AESR. Exposure of HOMFs to 100 μg/ml of AESR resulted in an increase of cell cycle progression. The levels of cyclin E and CDK-2 were increased in HOMFs after 100 μg/ml of AESR treatment, but the levels of cyclin D, CDK-4, and CDK-6 were unchanged. After exposure to 100 μg/ml of AESR, the protein levels of p16INK4A and p53 were decreased as compared to that of the control group, but the level of p21WAF1/CIP1 was similar in the cells treated with 100 μg/ml of AESR and untreated cells. The results suggest that AESR may increase cell proliferation and cell cycle progression in HOMFs, which is linked to increased cellular levels of cyclin E and CDK-2 and decreased cellular levels of p53 and p16INK4A . Further studies are necessary to clarify the active constituents of AESR responsible for such biomolecular activities.
Collapse
Affiliation(s)
- Hyun-A Kim
- Department of Periodontology, School of Dentistry, Wonkwang University, Iksan, Chonbuk 570-749, Korea
| | | | | | | | | | | | | |
Collapse
|
16
|
HO MEILING, CHANG JEKEN, TSAI HSIUTING, CHO MINGHSUANG, WANG GWOJAW. NONSTEROIDAL ANTI-INFLAMMATORY DRUGS ARREST CELL CYCLE IN G0/G1PHASE AND INDUCE CELL DEATH IN OSTEOBLAST-ENRICHED CULTURES. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s0218957701000623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nonsteroidal anti-inflammatory drugs have been widely prescribed for orthopaedic patients to relieve pain and chronic inflammation. However, it has been demonstrated that NSAIDs suppress bone repair and remodeling in vivo. We have reported that ketorolac inhibits bone repair in vivo and its critical effective timing is at the early stage of endochondral ossification. Our previous results showed that ketorolac and indomethacin inhibit osteoblast proliferation in vitro, suggesting that this effect may be one of the mechanisms contributing to the suppressive effect of NSAIDs on bone remodeling. Cell proliferation and death of osteoblasts should be well regulated through some relative apoptotic and mitotic factors during normal bone remodeling process. Accordingly, we proposed that the induction of osteoblastic cell death of NSAIDs might be one of the mechanisms involving their suppressive effect on bone remodeling in vivo. In this study, we investigated whether NSAIDs arrest osteoblastic cell cycle and/or induce cell death. Whether the mechanism was mediated through prostaglandin (PG) pathway. We tested the effects of ketorolac, indomethacin, diclofenac, piroxicam on cell cycle kinetics, cytotoxicity, and cell death pattern in osteoblast-enriched cultures derived from fetal rat calvaria. Our results showed that ketorolac and indomethacin arrested cell cycle at G0/G1phase. All the 4 NSAIDs had cytotoxic effects and these effects were concentration dependent. The sequence of the cytotoxic effects of these four NSAIDs at 10-4M were indomethacin > diclofenac > ketorolac > piroxicam. Both PGE1and PGE2(10-10-10-8M) also significantly elevated the LDH leakage of osteoblasts, while PGF2αhad no significant effect. These results revealed that the cytotoxic effects of NSAIDs on osteoblasts might not be through inhibiting prostaglandin synthesis. They may be through PG-independent pathways. The results from flow cytometry followed by AnnexinV-FITC and propidium iodide double staining showed that 24 hours treatment of all the 4 NSAIDs (10-6and 10-4M) significantly induced both apoptosis (p<0.01) and necrosis (p<0.01, or p<0.05) in osteoblast cultures. These effects of NSAIDs on cell cycle arrest and cell death induction in osteoblasts may be one of the important mechanisms contributing to their suppressive effect on bone repair and bone remodeling in vivo.
Collapse
Affiliation(s)
- MEI-LING HO
- Departments of Physiology, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C
| | - JE-KEN CHANG
- Departments of Orthopaedics, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C
| | - HSIU-TING TSAI
- Departments of Physiology, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C
| | - MING-HSUANG CHO
- Departments of Physiology, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C
| | - GWO-JAW WANG
- Departments of Orthopaedics, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C
| |
Collapse
|
17
|
Zhen X, Cen J, Li YM, Yan F, Guan T, Tang XZ. Cytotoxic effect and apoptotic mechanism of tanshinone A, a novel tanshinone derivative, on human erythroleukemic K562 cells. Eur J Pharmacol 2011; 667:129-35. [DOI: 10.1016/j.ejphar.2011.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 05/22/2011] [Accepted: 06/06/2011] [Indexed: 12/21/2022]
|
18
|
Zhu JF, Li ZJ, Zhang GS, Meng K, Kuang WY, Li J, Zhou XF, Li RJ, Peng HL, Dai CW, Shen JK, Gong FJ, Xu YX, Liu SF. Icaritin shows potent anti-leukemia activity on chronic myeloid leukemia in vitro and in vivo by regulating MAPK/ERK/JNK and JAK2/STAT3 /AKT signalings. PLoS One 2011; 6:e23720. [PMID: 21887305 PMCID: PMC3161749 DOI: 10.1371/journal.pone.0023720] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 07/23/2011] [Indexed: 12/05/2022] Open
Abstract
Purpose To explore the effects of Icaritin on chronic myeloid leukemia (CML) cells and underlying mechanisms. Method CML cells were incubated with various concentration of Icaritin for 48 hours, the cell proliferation was analyzed by MTT and the apoptosis was assessed with Annexin V and Hoechst 33258 staining. Cell hemoglobinization was determined. Western blotting was used to evaluate the expressions of MAPK/ERK/JNK signal pathway and Jak-2/Phorpho-Stat3/Phorsph-Akt network-related protein. NOD-SCID nude mice were applied to demonstrate the anti-leukemia effect of Icaritin in vivo. Results Icaritin potently inhibited proliferation of K562 cells (IC50 was 8 µM) and primary CML cells (IC50 was 13.4 µM for CML-CP and 18 µM for CML-BC), induced CML cells apoptosis and promoted the erythroid differentiation of K562 cells with time-dependent manner. Furthermore, Icaritin was able to suppress the growth of primary CD34+ leukemia cells (CML) and Imatinib-resistant cells, and to induce apoptosis. In mouse leukemia model, Icaritin could prolong lifespan of NOD-SCID nude mice inoculated with K562 cells as effective as Imatinib without suppression of bone marrow. Icaritin could up-regulate phospho-JNK or phospho-C-Jun and down-regulate phospho-ERK, phospho-P-38, Jak-2, phospho-Stat3 and phospho-Akt expression with dose- or time-dependent manner. Icaritin had no influence both on c-Abl and phospho-c-Abl protein expression and mRNA levels of Bcr/Abl. Conclusion Icaritin from Chinese herb medicine may be a potential anti-CML agent with low adverse effect. The mechanism of anti-leukemia for Icaritin is involved in the regulation of Bcr/Abl downstream signaling. Icaritin may be useful for an alternative therapeutic choice of Imatinib-resistant forms of CML.
Collapse
Affiliation(s)
- Jian feng Zhu
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zi jian Li
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Guang sen Zhang
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- * E-mail: (GsZ); (KM)
| | - Kun Meng
- Shenogen Biomedical Co, Ltd, Beijing, Haidian, Beijing, People's Republic of China
- * E-mail: (GsZ); (KM)
| | - Wen yong Kuang
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jin Li
- Shenogen Biomedical Co, Ltd, Beijing, Haidian, Beijing, People's Republic of China
| | - Xin fu Zhou
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Rui juan Li
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Hong ling Peng
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Chong wen Dai
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jian Kai Shen
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Fan jie Gong
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yun xiao Xu
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Su fang Liu
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
19
|
Abstract
ASA (acetylsalicylic acid) is an NSAID (non-steroidal anti-inflammatory drug). ASA has gained attention as a potential chemopreventive and chemotherapeutic agent for several neoplasms. The aim of this study was to analyse the possible antitumoural effects of ASA in two erythroleukaemic cell lines, with or without the MDR (multidrug resistance) phenotype. The mechanism of action of different concentrations of ASA were compared in K562 (non-MDR) and Lucena (MDR) cells by analysing cell viability, apoptosis and necrosis, intracellular ROS (reactive oxygen species) formation and bcl-2, p53 and cox-2 gene expression. ASA inhibited the cellular proliferation or induced toxicity in K562 and Lucena cell lines, irrespective of the MDR phenotype. The ASA treatment provoked death by apoptosis and necrosis in K562 cells and only by necrosis in Lucena cells. ASA also showed antioxidant activity in both cell lines. The bcl-2, p53 and cox-2 genes in both cell lines treated with ASA seem to exhibit different patterns of expression. However, normal lymphocytes treated with the same ASA concentrations were more resistant than tumoral cells. The results of this work show that both cell lines responded to treatment with ASA, demonstrating a possible antitumoral and anti-MDR role for this drug.
Collapse
|
20
|
Li CJ, Chang JK, Chou CH, Wang GJ, Ho ML. The PI3K/Akt/FOXO3a/p27Kip1 signaling contributes to anti-inflammatory drug-suppressed proliferation of human osteoblasts. Biochem Pharmacol 2009; 79:926-37. [PMID: 19883628 DOI: 10.1016/j.bcp.2009.10.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/21/2009] [Accepted: 10/21/2009] [Indexed: 12/17/2022]
Abstract
Akt has been reported to suppress p27(Kip1) promoter activity through Forkhead box O (FOXO) in different kinds of cells. Previous studies indicated that anti-inflammatory drugs up-regulated p27(Kip1), and this effect might play an important role in anti-inflammatory drug-induced cell cycle arrest of human osteoblasts (hOBs). In this study, we hypothesized that these drugs might increase p27(Kip1) expression in hOBs by altering the Akt/FOXO signaling. We tested this hypothesis by examining the influences of three anti-inflammatory drugs on the levels and/or activities of Akt, FOXO and p27(Kip1) as well as the relationship between these factors and proliferation of hOBs. We tested the effects of indomethacin (10(-5) and 10(-4)M), celecoxib (10(-6) and 10(-5)M), and dexamethasone (10(-7) and 10(-6)M) using PI3K inhibitor, LY294002 (10(-5)M) as the basis of comparison. The three drugs suppressed the canonical level of phosphorylated Akt in hOBs. This was accompanied by elevated FOXO3a level and increased promoter activity, mRNA expression and protein level of p27(Kip1). Furthermore, the anti-inflammatory drugs suppressed the EGF-induced increases in proliferation, phosphorylation, and nucleus translocation of Akt. Simultaneously, they suppressed EGF-induced decreases of FOXO3a nucleus accumulation and p27(Kip1) mRNA expression. On the other hand, FOXO silencing significantly attenuated the drug-induced up-regulation of p27(Kip1) and suppression of proliferation in hOBs. To the best of our knowledge, this study represents the first to demonstrate that Akt/FOXO3a/p27(Kip1) pathway contributes to suppression of hOB proliferation by anti-inflammatory drugs. We suggest that anti-inflammatory drugs suppress hOB proliferation, at least partly, through inactivating Akt, activating FOXO3a, and eventually up-regulating p27(Kip1) expression.
Collapse
Affiliation(s)
- Ching-Ju Li
- Department of Physiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | |
Collapse
|
21
|
Vural F, Ozcan MA, Ozsan GH, Ateş H, Demirkan F, Pişkin O, Undar B. Cyclo-oxygenase 2 inhibitor, nabumetone, inhibits proliferation in chronic myeloid leukemia cell lines. Leuk Lymphoma 2009; 46:753-6. [PMID: 16019514 DOI: 10.1080/10428190400027860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The anti-tumor effect of cyclo-oxygenase (COX) inhibitors has been documented in several studies. COX2 inhibitors have attracted more attention because of the fewer side-effects and the more prominent anti-tumor effects. However, experience with these drugs in hematological malignancies is limited. In our study, a potent COX2 inhibitor, nabumetone (NBT), was investigated for its anti-proliferative and apoptotic effects in K-562 and Meg-01 chronic myeloid leukemia blastic cell lines as a single agent or in combination with adriamycin (ADR) and interferon alpha (IFN-a). In these cell lines, a dose-dependent inhibition of proliferation was observed with NBT. We observed no significant apoptotic effect of NBT. However, NBT potentiated the apoptotic effect of ADR in the K-562 cell line. Bcl-2 expression was reduced by NBT (11% vs. 2%). The combination of NBT with IFN did not have any significant effect on the K-562 cell line. We suggest that NBT inhibits proliferation and potentiates the apoptotic effect of ADR in chronic myeloid leukemia cell lines.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Butanones/pharmacology
- Cell Line, Tumor
- Cyclooxygenase Inhibitors/pharmacology
- Doxorubicin/administration & dosage
- Drug Screening Assays, Antitumor
- Flow Cytometry
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Nabumetone
- Proto-Oncogene Proteins c-bcl-2/biosynthesis
Collapse
Affiliation(s)
- Filiz Vural
- Department of Internal Medicine, Division of Hematology-Oncology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | | | | | | | | | | | | |
Collapse
|
22
|
Maity P, Bindu S, Choubey V, Alam A, Mitra K, Goyal M, Dey S, Guha M, Pal C, Bandyopadhyay U. Lansoprazole protects and heals gastric mucosa from non-steroidal anti-inflammatory drug (NSAID)-induced gastropathy by inhibiting mitochondrial as well as Fas-mediated death pathways with concurrent induction of mucosal cell renewal. J Biol Chem 2008; 283:14391-401. [PMID: 18375387 DOI: 10.1074/jbc.m800414200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have investigated the mechanism of antiapoptotic and cell renewal effects of lansoprazole, a proton pump inhibitor, to protect and heal gastric mucosal injury in vivo induced by indomethacin, a non-steroidal anti-inflammatory drug (NSAID). Lansoprazole prevents indomethacin-induced gastric damage by blocking activation of mitochondrial and Fas pathways of apoptosis. Lansoprazole prevents indomethacin-induced up-regulation of proapoptotic Bax and Bak and down-regulation of antiapoptotic Bcl-2 and Bcl(xL) to maintain the normal proapoptotic/antiapoptotic ratio and thereby arrests indomethacin-induced mitochondrial translocation of Bax and collapse of mitochondrial membrane potential followed by cytochrome c release and caspase-9 activation. Lansoprazole also inhibits indomethacin-induced Fas-mediated mucosal cell death by down-regulating Fas or FasL expression and inhibiting caspase-8 activation. Lansoprazole favors mucosal cell renewal simultaneously by stimulating gene expression of prosurvival proliferating cell nuclear antigen, survivin, epidermal growth factor, and basic fibroblast growth factor. The up-regulation of Flt-1 further indicates that lansoprazole activates vascular epidermal growth factor-mediated controlled angiogenesis to repair gastric mucosa. Lansoprazole also stimulates the healing of already formed ulcers induced by indomethacin. Time course study of healing indicates that it switches off the mitochondrial death pathway completely but not the Fas pathway. However, lansoprazole heals mucosal lesions almost completely after overcoming the persisting Fas pathway, probably by favoring the prosurvival genes expression. This study thus provides the detailed mechanism of antiapoptotic and prosurvival effects of lansoprazole for offering gastroprotection against indomethacin-induced gastropathy.
Collapse
Affiliation(s)
- Pallab Maity
- Department of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Dup-697, a specific COX-2 inhibitor, suppresses growth and induces apoptosis on K562 leukemia cells by cell-cycle arrest and caspase-8 activation. Ann Hematol 2007; 87:121-9. [PMID: 17999062 DOI: 10.1007/s00277-007-0385-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2007] [Accepted: 09/04/2007] [Indexed: 10/22/2022]
Abstract
This investigation was designed to assess the effect of DuP-697 on growth and apoptosis in a human chronic myeloid leukemia (CML) cell line (K562 cells) and primary CML cells from CML patient bone marrow. DuP-697 significantly suppressed K562 cells and primary CML cells growth and induced apoptosis in a concentration-dependent manner and the growth-inhibiting effect was independent on Philadelphia chromosome. The IC50 of DuP-697 at 36 h was 31.7 muM. It arrested G1-S phase transmit on cell cycle and its apoptosis activity was partially abrogated by pretreating K562 cells with Z-IETD-fmk, a specific inhibitor of caspase-8. This study suggested that Dup-697 suppresses growth and induces apoptosis on K562 leukemia cells by cell-cycle arrest and caspase-8 activation.
Collapse
|
24
|
Rossi B, Verrocchio P, Viliani G, Scarduelli G, Guella G, Mancini I. Vibrational properties of inclusion complexes: The case of indomethacin-cyclodextrin. J Chem Phys 2006; 125:44511. [PMID: 16942160 DOI: 10.1063/1.2217952] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Vibrational properties of inclusion complexes with cyclodextrins are studied by means of Raman spectroscopy and numerical simulation. In particular, Raman spectra of the nonsteroidal, anti-inflammatory drug indomethacin undergo notable changes in the energy range between 1600 and 1700 cm(-1) when inclusion complexes with cyclodextrins are formed. By using both ab initio quantum chemical calculations and molecular dynamics, we studied how to relate such changes to the geometry of the inclusion process, disentangling single-molecule effects, from changes in the solid state structure or dimerization processes.
Collapse
Affiliation(s)
- Barbara Rossi
- Dipartimento di Fisica, Università di Trento, 38050 Povo, Trento, Italy and INFM CRS-SOFT, Università di Roma "La Sapienza," 00185 Roma, Italy.
| | | | | | | | | | | |
Collapse
|
25
|
Zhang GS, Liu DS, Dai CW, Li RJ. Antitumor effects of celecoxib on K562 leukemia cells are mediated by cell-cycle arrest, caspase-3 activation, and downregulation of Cox-2 expression and are synergistic with hydroxyurea or imatinib. Am J Hematol 2006; 81:242-55. [PMID: 16550520 DOI: 10.1002/ajh.20542] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Celecoxib, a specific cyclooxygenase-2 (Cox-2) inhibitor, has been shown to possess antitumor activity in a variety of cancer cells. However, the antitumor activity of celecoxib in hematopoietic tumors, especially in chronic myeloid leukemia (CML), has not been well established. This study was designed to investigate the effect of celecoxib on growth and apoptosis in a human CML cell line (K562 cells) or in primary CML cells, and to examine the synergistic actions of celecoxib and hydroxyurea or imatinib on K562 cell proliferation and apoptosis. Celecoxib significantly inhibited the growth of both K562 and primary CML cells and induced apoptosis in a dose-dependent fashion. The IC50 of celecoxib was 46 microM for inhibition of K562 cell proliferation. The effect of celecoxib on growth inhibition was accompanied by the downregulation of cyclin D1 and cyclin E and p-Rb expression, the upregulation of P16(INK4a) and P27KIP expression, and a G1-S phase arrest of the cell cycle. The pro-apoptotic effect of celecoxib was determined to be mediated by caspase-3 activation. When K562 cells were pretreated with DEVD-fmk, a specific inhibitor of caspases, the apoptotic activity of celecoxib was, in part, abrogated. Importantly, we demonstrated for the first time that K562 cells were Cox-2-positive both at the mRNA and protein levels. We noted the following observations: (i) we detected Cox-2 mRNA in K562 cells by reverse transcription-PCR (RT-PCR) and protein expression by western blot analysis; (ii) Cox-2 expression in K562 cells was stimulated by IL-1beta, a specific inducing agent of Cox-2 expression; (iii) primary CML cells from CML patient bone marrow also exhibited Cox-2 protein expression. Furthermore, Cox-2 expression was downregulated at higher doses of celecoxib (80-160 microM), suggesting a Cox-2-dependent mechanism was involved in the drug's effects of growth inhibition and induction of apoptosis. In addition, a synergistic effect was observed when cells were exposed to low-dose celecoxib (40 microM) and hydroxyurea (10 mM) or a combination of celecoxib (40 microM) and imatinib (0.2 microM). These findings provide the basis for uncovering the mechanism of celecoxib's antitumor effects and developing a new therapeutic strategy for treating CML.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Apoptosis/drug effects
- Benzamides
- Bone Marrow Cells/enzymology
- Bone Marrow Cells/pathology
- Caspase 3
- Caspase Inhibitors
- Caspases/metabolism
- Celecoxib
- Cyclin D1/metabolism
- Cyclin E/metabolism
- Cyclin-Dependent Kinase Inhibitor p16/metabolism
- Cyclin-Dependent Kinase Inhibitor p27
- Cyclooxygenase 2/biosynthesis
- Cyclooxygenase Inhibitors/pharmacology
- Cyclooxygenase Inhibitors/therapeutic use
- Dose-Response Relationship, Drug
- Down-Regulation/drug effects
- Drug Synergism
- Enzyme Activation/drug effects
- Enzyme Inhibitors/pharmacology
- Enzyme Inhibitors/therapeutic use
- G1 Phase/drug effects
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- Hydroxyurea/pharmacology
- Hydroxyurea/therapeutic use
- Imatinib Mesylate
- Interleukin-1/pharmacology
- Intracellular Signaling Peptides and Proteins/metabolism
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/biosynthesis
- Piperazines/pharmacology
- Piperazines/therapeutic use
- Pyrazoles/pharmacology
- Pyrazoles/therapeutic use
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- S Phase/drug effects
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
Collapse
Affiliation(s)
- Guang-Sen Zhang
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang Ya Hospital, Central South University, Changsha City, Hunan, PR China.
| | | | | | | |
Collapse
|
26
|
Zhang G, Fu Y. Antiproliferative effect of indomethacin on CML cells is related to the suppression of STATs/Bcl-XL signal pathway. Ann Hematol 2006; 85:443-9. [PMID: 16572323 DOI: 10.1007/s00277-006-0098-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 02/03/2006] [Indexed: 12/21/2022]
Abstract
Indomethacin (IN) can inhibit cyclooxygenase activity and is considered to exert antitumor action in a variety of cancer cells. In the present study, we investigated the underlying mechanism of its antiproliferative effect on chronic myeloid leukemia (CML) cells. We studied the role of signal transducer and activator of transcription 1 or 5 (STAT(1) or STAT(5)) and Bcl-X(L) proteins in IN-induced proliferative inhibition on CML cells. Both K562 cells and fresh bone marrow mononuclear cells from five CML patients were exposed to IN. Cell proliferation was determined by MTT assay. The expression of JAK(2), STAT(1), STAT(5), and Bcl-X(L) proteins was probed with Western blotting. The level of phosphorylated STAT(1) (p-STAT(1)) or STAT(5) (p-STAT(5)) proteins was determined by coimmunoprecipitation combined with Western blotting. Intracellular localizations of both STAT(1)/STAT(5) and p-STAT(1)/p-STAT(5) were observed by indirect immunofluorescence assay. Our results showed that IN could inhibit the proliferation of CML cells in a dose-dependent manner (36-288 microg/ml). The expression of STAT(1) and STAT(5) was suppressed by IN both in a concentration-dependent manner and a time-dependent (0-36 h) manner. The levels of p-STAT(1) and p-STAT(5) were down-regulated by IN. A similar result was obtained for Bcl-X(L) protein expression. The intracellular fluorescence signals representing STAT(1)/STAT(5) and p-STAT(1)/p-STAT(5) were obviously weakened by IN. In contrast with IN, granulocyte-macrophage colony-stimulating factor could significantly promote the growth of CML cells and up-regulate the expression of both STAT(1)/STAT(5) and p-STAT(1)/p-STAT(5). This data indicated that IN is able to suppress the proliferation of CML cells, and the mechanism is associated with the inhibition of STATs/ Bcl-X(L) signal transduction pathway.
Collapse
Affiliation(s)
- Guangsen Zhang
- Institute of Molecular Hematology, the Second Xiang-ya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | | |
Collapse
|
27
|
Moosavi MA, Yazdanparast R, Sanati MH. The Cytotoxic and Anti-proliferative Effects of 3-Hydrogenkwadaphnin in K562 and Jurkat Cells Is Reduced by Guanosine. BMB Rep 2005; 38:391-8. [PMID: 16053705 DOI: 10.5483/bmbrep.2005.38.4.391] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
3-hydrogenwadaphnin (3-HK) is a new daphnane-type diterpene ester isolated from Dendrostellera lessertii with strong anti-tumoral activity in animal models and in cultures. Here, prolonged effects of this new agent on proliferation and viability of several different cancerous cell lines were evaluated. Using [(3)H]thymidine incorporation, it was found that the drug inhibited cell proliferation and induced G1/S cell cycle arrest in leukemic cells 24 h after a single dose treatment. The cell viability of Jurkat cells was also decreased by almost 10 %, 31 % and 40 % after a single dose treatment (7.5 nM) at 24, 48 and 72 h, respectively. The drug-treated cells were stained with acridine orange/ ethidium bromide to document the chromatin condensation and DNA fragmentation. These observations were further confirmed by detection of DNA laddering pattern in the agarose gel electrophoresis of the extracted DNA from the treated cells. Treatment of K562 cells with the drug at 7.5, 15 and 30 nM caused apoptosis in 25 %, 45 % and 65 % of the cells, respectively. Exogenous addition of 25-50 microM guanosine and/or deoxyguanosine to the cell culture of the drug-treated cells restored DNA synthesis, released cell arrest at G1/S checkpoint and decreased the apoptotic cell death caused by the drug. These observations were not made using adenosine. However, the drug effects on K562 cells were potentiated by hypoxanthine. Based on these observations, perturbation of GTP metabolism is considered as one of the main reasons for apoptotic cell death by 3-HK.
Collapse
Affiliation(s)
- Mohammad Amin Moosavi
- Institute of Biochemistry and Biophysics, P. O. Box. 13145-1384, University of Tehran, Tehran, Iran
| | | | | |
Collapse
|
28
|
Hong SJ, Rim GS, Yang HI, Yin CS, Koh HG, Jang MH, Kim CJ, Choe BK, Chung JH. Bee venom induces apoptosis through caspase-3 activation in synovial fibroblasts of patients with rheumatoid arthritis. Toxicon 2005; 46:39-45. [PMID: 15922390 DOI: 10.1016/j.toxicon.2005.03.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Revised: 03/05/2005] [Accepted: 03/07/2005] [Indexed: 11/15/2022]
Abstract
Bee venom (BV) has been used traditionally for the control of pain and inflammation in various chronic inflammatory diseases, including rheumatoid arthritis (RA) in Oriental medicine. However, it is still unclear how BV exerts its beneficial effects on the clinical course of RA patients. To investigate the effect of BV on the treatment of rheumatoid synovitis, we examined the inhibition of cell growth and induction of apoptosis in human rheumatoid synovial fibroblasts. Rheumatoid synovial fibroblasts were surgically obtained from patients with RA. Cell proliferation and viability were assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The apoptosis of synovial cells treated with 10 microg/ml BV for 24 h was identified by 4,6-diamidino-2-phenylindole (DAPI) staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay, DNA fragmentation assay, RT-PCR, and Western blot analysis. It was demonstrated that rheumatoid synovial cells treated with 10 microg/ml BV for 24 h exhibited apoptotic features and fragmentation of DNA. In addition, BV induces apoptosis in rheumatoid synovial cells through a decrease in BCL2 expression and an increase in BAX and caspase-3 (CASP3) expression. It is suggested that BV inhibits the proliferation of rheumatoid synovial cells through induction of apoptosis by CASP3 activation.
Collapse
Affiliation(s)
- Seung-Jae Hong
- Department of Internal Medicine, College of Medicine, Pochon CHA University, 351 Yatap-dong, Bundang-gu, Sungnam-si, Kyonggi-do 463-712, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Subhashini J, Mahipal SVK, Reddanna P. Anti-proliferative and apoptotic effects of celecoxib on human chronic myeloid leukemia in vitro. Cancer Lett 2005; 224:31-43. [PMID: 15911099 DOI: 10.1016/j.canlet.2004.11.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 10/30/2004] [Accepted: 11/02/2004] [Indexed: 01/04/2023]
Abstract
Celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, is the only non-steroidal anti-inflammatory drug so far which has been approved by the FDA for adjuvant treatment of patients with familial adenomatous polyposis. The molecular mechanism responsible for the anti-cancer effects of celecoxib is not fully understood. There is little data on the potential role of COX-2 in lymphoma pathogenesis. In view of the reported induction of apoptosis in cancer cells by cyclooxygenase-2 inhibitors, the present study is undertaken to test the effect of celecoxib on human chronic myeloid leukemia cell line, K562 and other hematopoietic cancer cell lines like Jurkat (human T lymphocytes), HL60 (human promyelocytic leukemia) and U937 (human macrophage). Treatment of these cells with celecoxib (10-100 microM) dose-dependently, reduced cell growth with arrest of the cell cycle at G0/G1 phase and induction of apoptosis. Further mechanism of apoptosis induction was elucidated in detail in K562 cell line. Apoptosis was mediated by release of cytochrome c into the cytoplasm and cleavage of poly (ADP-ribose) polymerase-1 (PARP-1). This was followed by DNA fragmentation. The level of anti-apoptotic protein Bcl-2 was decreased without any change in the pro-apoptotic Bax. Celecoxib also inhibited NF-kB activation. Celecoxib thus potentiates apoptosis as shown by MTT assay, cytochrome c leakage, PARP cleavage, DNA fragmentation, Bcl-2 downregulation and possibly by inhibiting NF-kB activation.
Collapse
Affiliation(s)
- J Subhashini
- Department of Animal Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | | | | |
Collapse
|
30
|
Pilátová M, Sarisský M, Kutschy P, Mirossay A, Mezencev R, Curillová Z, Suchý M, Monde K, Mirossay L, Mojzis J. Cruciferous phytoalexins: antiproliferative effects in T-Jurkat leukemic cells. Leuk Res 2005; 29:415-21. [PMID: 15725476 DOI: 10.1016/j.leukres.2004.09.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Accepted: 09/24/2004] [Indexed: 01/31/2023]
Abstract
We tested antiproliferative activity of selected cruciferous phytoalexins including brassinin, 1-methoxybrassinin, (+/-)-spirobrassin, (+/-)-1-methoxyspirobrassinin and (+/-)-1-methoxyspirobrassinol, in leukemic Jurkat cell. The most effective of the tested phytoalexins was 1-methoxybrassinin with IC(50) 10 micromol l(-1). However, significant effect of all phytoalexines was also determined at concentration 1 micromol l(-1). In 1-methoxybrassinin-treated Jurkat cells, we found significant increase in the fraction of cells with a sub-G(0)/G(1) DNA content, which is considered to be a marker of cell death by apoptosis. Apoptosis was also confirmed by the annexin V staining. In summary, 1-methoxybrassinin exerted potent antiproliferative activity probably due to cell cycle arrest and apoptosis induction.
Collapse
Affiliation(s)
- M Pilátová
- Department of Pharmacology, Faculty of Medicine, P.J. Safárik University, Kosice, Slovakia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
AIM: To study the effect of indomethacin (IN) on human colon cancer cell line SW480 with p53 mutant and SW480 transfected wild-type p53 (wtp53/SW480) in vitro and investigate molecular mechanism of anti-tumor effect of IN on colon cancer.
METHODS: SW480 cells and wtp53/SW480 cells were treated with different concentrations of IN respectively, the expressions of CDK2, CDK4 and p21WAF1/CIP1 protein were detected by Western blotting.
RESULTS: IN gradually down-regulated the expression of CDK2, CDK4 protein of wtp53/SW480 cells in a dose-dependent manner, and inhibitory effect reached the maximum level at 600 μmol/L; IN up-regulated the expression of p21WAF1/CIP1 protein in a dose-dependent manner at a certain concentration range, and the expression reached the maximum level at 400 μmol/L, and returned to the base level at 600 μmol/L. The expression of CDK2, CDK4 and p21WAF1/CIP1 protein of SW480 cells did not change.
CONCLUSION: IN exerts antitumor effect partly through down regulation of the expression of CDK2, CDK4 protein and up regulation of the expression of p21WAF1/PIC1.
Collapse
Affiliation(s)
- Mei-Hua Xu
- Department of Gastroenterology, Xiangya Hospital, Central South University, 141 Xiangya Road, Changsha 410008, Hunan Province, China.
| | | |
Collapse
|
32
|
Chang JK, Wang GJ, Tsai ST, Ho ML. Nonsteroidal anti-inflammatory drug effects on osteoblastic cell cycle, cytotoxicity, and cell death. Connect Tissue Res 2005; 46:200-10. [PMID: 16546823 DOI: 10.1080/03008200500344025] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Previous studies indicated that nonsteroidal anti-inflammatory drugs (NSAIDs) suppress bone repair, growth, and remodeling in vivo. Our previous in vitro study demonstrated that indomethacin and ketorolac inhibited osteoblast proliferation. In this study, we further investigated the influences of 4 NSAIDs on cell cycle kinetics, cytotoxicity, and cell death pattern in osteoblast cultures from rat fetal calvaria. Our results showed that NSAIDs significantly arrested cell cycle at the G(0)/G(1) phase and induced cytotoxicity and cell death of osteoblasts. Apoptosis was more pronounced than necrosis caused by NSAIDs. Among these NSAIDs, piroxicam showed the least effect to produce osteoblastic dysfunction. Moreover, we found that the cytotoxic and apoptotic effects of NSAIDs on osteoblasts might not be prostaglandin related. These results suggest that the NSAID effects on cell cycle arrest and cell death induction in osteoblasts may be one of the important mechanisms contributing to their suppressive effect on bone formation.
Collapse
Affiliation(s)
- Je-Ken Chang
- Department of Orthopaedics, School of Medicine, Orthopaedic Research Center, Kaohsiung Medical University Chug-Ho Memorial Hospital, Kaohsiung, Taiwan
| | | | | | | |
Collapse
|
33
|
Yu L, Wang Z. Difference in expression of Bcl-2 and Bcl-xl genes in cisplatin-sensitive and cisplatin-resistant human in ovarian cancer cell lines. Curr Med Sci 2004; 24:151-3. [PMID: 15315167 DOI: 10.1007/bf02885416] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Indexed: 11/30/2022]
Abstract
To investigate the expression of Bcl-2 and Bcl-xl gene in sensitive (A2780) and drug-resistance (AD6) human ovarian cancer cell lines and explore the molecular mechanism of multidrug resistance, A2780 and AD6 were detected by using DNA gel electrophoresis, flow cytometry and RT-PCR. Our results showed that (1) "DNA ladder" was observed in A2780 and AD6 after cisplatin treatment; (2) after 3.0, 6.0, 9.9 microg/ml of cisplatin treatment, a significant difference was noted in the rate of apoptosis between in A2780 and AD6 (P<0.05); (3) Bcl-2 and Bcl-xl genes were overexpressed in AD6. After cisplatin treatment, the expression of Bcl-2 and Bcl-xl genes was down-regulated in A2780 and AD6. It is concluded that cisplatin could induce the apoptosis of ovarian cancer cells, and the over-expression of Bcl-2 and Bcl-xl genes may contribute to apoptotic inhibition and the development of multidrug-resistance of human ovarian cancer.
Collapse
Affiliation(s)
- Lili Yu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | | |
Collapse
|
34
|
Zhang GY, Xu MH, Xie ZX, He CM. Effect of indomethacin on induction of apoptosis in colonic cancer cell line SW480 transferred by wild-type p53 gene. Shijie Huaren Xiaohua Zazhi 2003; 11:1706-1710. [DOI: 10.11569/wcjd.v11.i11.1706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the anti-tumor effect of indomethacin on colon cancer.
METHODS SW480 cells were transferred by wtp53 gene, treated with different concentrations of indomethacin. Apoptosis was analyzed by acridine orange and ethidium bromide staining, and electron microscopy. Expressions of Bcl-2, Bax and p21WAF1/CIPI protein were detected by Western blotting.
RESULTS Indomethacin induced apoptosis in wtp53/SW480 cells. Typical cell morphological changes included cytoplasm and nuclear shrinkage, nuclear fragmentation and formation of apoptotic bodies. The count of apoptotic cells was dose and time-dependent, and the apoptotic cells accounted for 5.0±2.0% in SW480 cells, 60.1±2.0% in wtp53/SW480 cells treated with 600 μmol/L indomethacin for 72 h (P<0.01), with a significant difference between the two groups. The expression of Bcl-2 protein of wtp53/SW480 cells was down-regulated by indomethacin in a dose dependent manner. The expression of Bax protein did not change, and the expressions of Bcl-2 and Bax protein of SW480 cells did not change either. The expression of p21WAF1/CIPI protein of wtp53/SW480 cells was up-regulated, reaching the maximal level at the concentration of 400 μmol/L indomethacin and returning to control level at the concentration of 600 μmol/L indomethacin
CONCLUSION Indomethacin could induce apoptosis in wtp53/SW480 cells by down-regulating the expression of Bcl-2 protein and up-regulating the expression of p21WAF1/CIPI protein, but no change in Bax protein.
Collapse
Affiliation(s)
- Gui-Ying Zhang
- Department of Gastroenterology, Xiangya Hospital, Zhongnan University, Changsha 410008, Hunan Province, China
| | - Mei-Hua Xu
- Department of Gastroenterology, Xiangya Hospital, Zhongnan University, Changsha 410008, Hunan Province, China
| | - Zhao-Xia Xie
- Department of Gastroenterology, Xiangya Hospital, Zhongnan University, Changsha 410008, Hunan Province, China
| | - Chun-Mei He
- Cancer Research Institute, Xiangya Medical College, Zhongnan University, Changsha 410078, Hunan Province, China
| |
Collapse
|
35
|
Abstract
On the strength of in vitro, in vivo, observational, and clinical data, nonsteroidal antiinflammatory drugs (NSAIDs)-also referred to as COX inhibitors-have emerged as lead compounds for cancer prevention, and possible adjuncts to cancer therapy. Thus far, the routine use of NSAIDs for these indications is limited, largely owing to toxicity concerns, the paucity of efficacy data for any specific target organ, and uncertainties with regard to the most appropriate regimen (i.e., the best agent, formulation, dose, route of administration, and duration). Strategies to address these concerns primarily aim to improve the therapeutic index (i.e., benefit:risk ratio) of COX inhibitors by 1) minimizing systemic exposures whenever feasible, 2) achieving greater mechanistic specificity, 3) coadministering agents that provide prophylaxis against common toxicities, and 4) coadministering other effective anticancer agents. Clinical trials testing most of these strategies have been completed or are under way. The National Cancer Institute has a substantial research portfolio dedicated to the identification, testing, and development of NSAIDs as preventive and therapeutic anticancer agents. Discovering how to apply NSAIDs in persons with-or at risk for-cancer, although challenging, has the potential for considerable clinical and public health benefits.
Collapse
Affiliation(s)
- Asad Umar
- Gastrointestinal & Other Cancers Research Group, National Cancer Institute, Division of Cancer Prevention, Bethesda, Maryland 20892-7317, USA
| | | | | | | |
Collapse
|
36
|
Sánchez-Alcázar JA, Bradbury DA, Pang L, Knox AJ. Cyclooxygenase (COX) inhibitors induce apoptosis in non-small cell lung cancer through cyclooxygenase independent pathways. Lung Cancer 2003; 40:33-44. [PMID: 12660005 DOI: 10.1016/s0169-5002(02)00530-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclooxygenase (COX) inhibitors are chemopreventive in many tumours but the role of COX inhibition in their effects is contentious. Here we determined if COX inhibitors influenced apoptosis in two non-small cell lung cancer cells one which over expresses COX-2 (MOR-P) and one which expresses neither isoform (H-460). NS398, a selective COX inhibitor, and indomethacin, a non-selective COX inhibitor, were cytotoxic in both cell lines, independently of their COX-2 expression. Furthermore, the cytotoxic concentrations were far greater than the concentrations required to inhibit COX. As indomethacin was more effective we used it in mechanistic studies. Indomethacin induced apoptotic cell death assessed as cytochrome c and apoptotic inducing factor (AIF) release, caspase activation, PARP, lamin B and gelsolin cleavage, chromatin condensation and nuclear fragmentation. The pan-caspase inhibitor, z-VAD, attenuated cell death, and blocked caspase activation, PARP cleavage and nuclear fragmentation without preventing cytochrome c release, suggesting that cytochrome c release is upstream of caspase activation. These observations suggest that COX inhibitors induce apoptosis in non-small lung cancer cells through cytochrome c and AIF release, and subsequent caspase activation, independently of COX-2 expression and prostaglandin production.
Collapse
Affiliation(s)
- José A Sánchez-Alcázar
- Division of Respiratory Medicine, Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK
| | | | | | | |
Collapse
|
37
|
Jang MH, Shin MC, Lim S, Han SM, Park HJ, Shin I, Lee JS, Kim KA, Kim EH, Kim CJ. Bee venom induces apoptosis and inhibits expression of cyclooxygenase-2 mRNA in human lung cancer cell line NCI-H1299. J Pharmacol Sci 2003; 91:95-104. [PMID: 12686753 DOI: 10.1254/jphs.91.95] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
To investigate whether bee venom (BV) induces apoptosis, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, terminal deoxynucleotidyl transferase- mediated dUTP nick end-labeling assay, 4,6-diamidino-2-phenylindole staining, flow cytometric analysis, and DNA fragmentation assay were performed on NCI-H1299 lung cancer cells treated with BV. Through morphological and biochemical analyses, it was demonstrated that NCI-H1299 cells treated with BV exhibit several features of apoptosis. In addition, reverse transcription-polymerase chain reaction and prostaglandin E(2) (PGE(2)) immunoassay were performed to verify whether BV possesses an inhibitory effect on the expression of cyclooxygenase (COX) and PGE(2 )synthesis. Expression of COX-2 mRNA and synthesis of PGE(2) were inhibited by BV. These results suggest the possibility that BV may exert an anti-tumor effect on human lung cancer.
Collapse
Affiliation(s)
- Mi-Hyeon Jang
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abiru S, Nakao K, Ichikawa T, Migita K, Shigeno M, Sakamoto M, Ishikawa H, Hamasaki K, Nakata K, Eguchi K. Aspirin and NS-398 inhibit hepatocyte growth factor-induced invasiveness of human hepatoma cells. Hepatology 2002; 35:1117-24. [PMID: 11981761 DOI: 10.1053/jhep.2002.32676] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit cyclooxygenase (COX) activity and are considered to exert antitumor actions in a variety of cancer cells, although the effects are unlikely entirely due to COX inhibition. Because clinical observations suggest that hepatocyte growth factor (HGF) can promote metastasis of hepatoma cells while stimulating tumor invasiveness, we investigated the effect of aspirin and NS-398, a selective COX-2 inhibitor, on HGF-mediated invasiveness of HepG2 human hepatoma cells. HGF stimulated the invasiveness of HepG2 cells in Matrigel cell invasion assay, together with increased expression of matrix metalloproteinase (MMP) 9. Addition of aspirin or NS-398, similar to PD98059, which acts as a specific inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK), an upstream kinase regulating extracellular signal-regulated kinase (ERK)1/2, abrogated such actions of HGF without affecting cell viability. Aspirin and NS-398, in contrast to PD98059, did not suppress ERK1/2 phosphorylation induced by HGF. However, both agents inhibited the kinase activity of ERK1/2 induced by HGF and repressed HGF-induced phosphorylation of 90-kd ribosomal S6 kinase (RSK) and Elk-1, key downstream substrates of ERK1/2, resulting in the suppression of transcriptional activity of Elk-1 as well as nuclear factor kappaB (NF-kappaB) and AP-1, which are involved in MMP-9 gene regulation. In conclusion, our results suggest that aspirin and NS-398 inhibit HGF-induced invasiveness of HepG2 human hepatoma cells through ERK1/2.
Collapse
Affiliation(s)
- Seigou Abiru
- First Department of Internal Medicine, Nagasaki University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Li HL, Chen DD, Li XH, Zhang HW, Lü JH, Ren XD, Wang CC. JTE-522-induced apoptosis in human gastric adenocarinoma cell line AGS cells by caspase activation accompanying cytochrome C release, membrane translocation of Bax and loss of mitochondrial membrane potential. World J Gastroenterol 2002; 8:217-23. [PMID: 11925595 PMCID: PMC4658354 DOI: 10.3748/wjg.v8.i2.217] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of the mitochondrial pathway in JTE-522-induced apoptosis and to investigate the relationship between cytochrome C release, caspase activity and loss of mitochondrial membrane potential (△Ψm).
METHODS: Cell culture, cell counting, ELISA assay, TUNEL, flow cymetry, Western blot and fluorometric assay were employed to investigate the effect of JTE-522 on cell proliferation and apoptosis in AGS cells and related molecular mechanism.
RESULTS: JTE-522 inhibited the growth of AGS cells and induced the apoptosis. Caspases 8 and 9 were activated during apoptosis as judged by the appearance of cleavage products from procaspase and the caspase activities to cleave specific fluorogenic substrates. To elucidate whether the activation of caspases 8 and 9 was required for the apoptosis induction, we examined the effect of caspase-specific inhibitors on apoptosis. The results showed that caspase inhibitors significantly inhibited the apoptosis induced by JTE-522. In addition, the membrane translocation of Bax and cytosolic release of cytochrome C accompanying with the decrease of the uptake of Rhodamin 123, were detected at an early stage of apoptosis. Furthermore, Bax translocation, cytochrome C release, and caspase 9 activation were blocked by Z-VAD.fmk and Z-IETD-CHO.
CONCLUSION: The present data indicate a crucial association between activation of caspases 8, 9, cytochrome C release, membrane translocation of Bax, loss of △Ψm and JTE-522-induced apoptosis in AGS cells.
Collapse
Affiliation(s)
- Hong-Liang Li
- Department of Pharmacology, Jinan University Pharmacy College, Guangzhou 510632, Guangdong Province, China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Vondrácek J, Stika J, Soucek K, Minksová K, Bláha L, Hofmanová J, Kozubík A. Inhibitors of arachidonic acid metabolism potentiate tumour necrosis factor-alpha-induced apoptosis in HL-60 cells. Eur J Pharmacol 2001; 424:1-11. [PMID: 11470254 DOI: 10.1016/s0014-2999(01)01124-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We investigated whether and how could various modulators of arachidonic acid metabolism affect apoptosis induced by tumour necrosis factor-alpha (TNF-alpha) in human myeloid leukaemia HL-60 cells. These included arachinonyltrifluoromethyl ketone (AACOCF3; cytosolic phospholipase A2 inhibitor), indomethacin (cyclooxygenase inhibitor), MK-886 (3-[1-(4-chlorobenzyl)-3-t-butyl-thio-5-isopropylindol-2-yl]-2,2-dimethyl propanoic acid; 5-lipoxygenase-activating protein inhibitor), nordihydroguaiaretic acid (general lipoxygenase inhibitor), and arachidonic acid itself. Incubation of HL-60 cells with nordihydroguaiaretic acid resulted in apoptosis and it was characterised by mitochondria membrane depolarisation, release of cytochrome c from mitochondria into cytosol and activation of caspase-3. Indomethacin and nordihydroguaiaretic acid synergistically potentiated TNF-alpha-induced apoptosis, while arachidonic acid, AACOCF3 and MK-886 did not modulate its effects. Furthermore, indomethacin potentiated apoptosis in cells treated with a differentiating agent, all-trans retinoic acid, which induces resistance to TNF-alpha. However, the observed effects were probably not associated either with the cyclooxygenase- or lipoxygenase-dependent activities of indomethacin and nordihydroguaiaretic acid, respectively. Since indomethacin may reportedly activate peroxisome proliferator-activated receptors (PPARs), the effects of specific ligands of PPARs on apoptosis were studied as well. It was found that selective PPARs ligands had no effects on TNF-alpha-induced apoptosis. The findings suggest that arachidonic acid metabolism does not play a key role in regulation of apoptosis induced by TNF-alpha in the present model. Nevertheless, our data raise the possibility that indomethacin could potentially be used to improve the treatment of human myeloid leukaemia.
Collapse
Affiliation(s)
- J Vondrácek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65, Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|