1
|
Li X, Cui K, Fang W, Chen Q, Xu D, Mai K, Zhang Y, Ai Q. High level of dietary olive oil decreased growth, increased liver lipid deposition and induced inflammation by activating the p38 MAPK and JNK pathways in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2019; 94:157-165. [PMID: 31465874 DOI: 10.1016/j.fsi.2019.08.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/16/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
A feeding experiment was conducted to determine the effects of fish oil replaced by olive oil (OO) on growth performance, serum biochemical, antioxidant capacity and inflammatory response in large yellow croaker (Larimichthys crocea). Four iso-nitrogenous and iso-lipidic diets were formulated by replacing fish oil (FO) with 0% (the control group), 33.3%, 66.7% and 100% OO. Fish fed the diet with 100% OO had the lowest growth performance among dietary treatments. However, there were no significant differences in SGR and FI among fish fed diets with 0% (the control group), 33.3% and 66.7% OO (P > 0.05). As to morphological parameters, HSI was significantly increased in fish fed the diet with 100% OO than the control group (P < 0.05). Furthermore, the lipid content of the liver in fish fed the diet with 100% OO was significantly higher than the control group (P < 0.05). Fish fed the diet with 100% OO had the highest content of C18:1n-9 among dietary treatments. Serum total triglyceride (TG), low-density lipoprotein-cholesterol (LDL-C) levels and activity of serum alanine transaminase (ALT) were significantly increased in fish fed the diet with 100% OO compared with the control group (P < 0.05). Meanwhile, dietary OO decreased the activity of superoxide dismutase (SOD) and the total antioxidant capacity (T-AOC) in fish fed diets with increasing dietary OO levels. However, the content of malondialdehyde (MDA) was significantly increased in fish fed the diet with 100% OO compared with the control group (P < 0.05). The expression of pro-inflammatory genes, COX-2, IL-1β and TNFα, were significantly increased in the liver of fish fed the diet with 100% OO compared with the control group (P < 0.05), which was probably due to the activation of p38 mitogen-activated protein kinase (p38 MAPK) pathways and Jun N-terminal kinase (JNK) as the increased protein ratio of p-p38 MAPK to p38 MAPK and p-JNK to JNK. These results suggested that high level of dietary OO decreased the growth performance and antioxidant capacity but induced inflammation via the activation of p38 MAPK and JNK pathways in large yellow croaker.
Collapse
Affiliation(s)
- Xueshan Li
- Key laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and the key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Kun Cui
- Key laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and the key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Wei Fang
- Key laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and the key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Qiang Chen
- Key laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and the key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Dan Xu
- Key laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and the key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Kangsen Mai
- Key laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and the key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Yanjiao Zhang
- Key laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and the key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Qinghui Ai
- Key laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and the key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong, 266237, People's Republic of China.
| |
Collapse
|
2
|
Shelly A, Banerjee C, Saurav GK, Ray A, Rana VS, Raman R, Mazumder S. Aeromonas hydrophila-induced alterations in cytosolic calcium activate pro-apoptotic cPKC-MEK1/2-TNFα axis in infected headkidney macrophages of Clarias gariepinus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:392-402. [PMID: 28713009 DOI: 10.1016/j.dci.2017.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 06/07/2023]
Abstract
Alterations in intracellular-calcium (Ca2+)i homeostasis is critical to Aeromonas hydrophila-induced headkidney macrophages (HKM) apoptosis of Clarias gariepinus, though the implications are poorly understood. Here, we describe the role of intermediate molecules of Ca2+-signaling pathway that are involved in HKM apoptosis. We observed phosphoinositide-3-kinase/phospholipase C is critical for (Ca2+)i release in infected HKM. Heightened protein kinase-C (PKC) activity and phosphorylation of MEK1/2-ERK1/2 was noted which declined in presence of 2-APB, Go6976 and PD98059, inhibitors to IP3-receptor, conventional PKC isoforms (cPKC) and MEK1/2 respectively implicating Ca2+/cPKC/MEK-ERK1/2 axis imperative in A. hydrophila-induced HKM apoptosis. Significant tumor necrosis factor-α (TNFα) production and its subsequent reduction in presence of MEK-ERK1/2 inhibitor U0126 suggested TNFα production downstream to cPKC-mediated signaling via MEK1/2-ERK1/2 pathway. RNAi and inhibitor studies established the role of TNFα in inducing caspase-8-mediated apoptosis of infected HKM. We conclude, alterations in A. hydrophila-induced (Ca2+)i alterations activate cPKC-MEK1/2-ERK1/2-TNFα signaling cascade triggering HKM apoptosis.
Collapse
Affiliation(s)
- Asha Shelly
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Chaitali Banerjee
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Gunjan Kumar Saurav
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Atish Ray
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Vipin Singh Rana
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Rajagopal Raman
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
3
|
Wang T, Yan J, Xu W, Ai Q, Mai K. Characterization of Cyclooxygenase-2 and its induction pathways in response to high lipid diet-induced inflammation in Larmichthys crocea. Sci Rep 2016; 6:19921. [PMID: 26830811 PMCID: PMC4735279 DOI: 10.1038/srep19921] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/21/2015] [Indexed: 12/26/2022] Open
Abstract
The present study was conducted to investigate the effects of a high-lipid diet (HLD) on cyclooxygenase (Cox)-2 expression and the signalling pathways related to low-grade inflammation in the large yellow croaker (Larmichthys crocea). An isolated 2508 bp cDNA clone of cox-2 contained an open reading frame spanning 1827 bp encoding a protein with 608 amino acid residues. The over-expression of cox-2 was consistent with the activation of c-Jun N-terminal kinases (JNKs) and p38 mitogen-activated protein kinase (MAPK) in HLD-fed fish. The activation of the activator protein-1 (AP-1) and the nuclear transcription factor kappa-B (NF-κB) signalling pathways in HLD-fed fish and the significant increase of cox-2 promoter-luciferase activity in vitro indicated that AP-1 and NF-κB could combine cox-2 promoter to promote its transcription, respectively. Together, HLD-induced inflammation up-regulates cox-2 expression via JNKs and p38 MAPK-dependent NF-κB and AP-1 pathways. The present study provides important insight into the signal transduction pathways involved in HLD-induced inflammation, which is detrimental to the health and production of fish as well as to the health of fish consumers.
Collapse
Affiliation(s)
- Tianjiao Wang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| | - Jing Yan
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| | - Wei Xu
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| | - Qinghui Ai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| |
Collapse
|
4
|
Synergistic effects of acute warming and low pH on cellular stress responses of the gilthead seabream Sparus aurata. J Comp Physiol B 2014; 185:185-205. [PMID: 25395253 DOI: 10.1007/s00360-014-0875-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 11/04/2014] [Accepted: 11/04/2014] [Indexed: 12/31/2022]
Abstract
The present study assesses the resilience of the Mediterranean gilthead seabream (Sparus aurata) to acute warming and water acidification, using cellular indicators of systemic to molecular responses to various temperatures and CO2 concentrations. Tissue metabolic capacity derived from enzyme measurements, citrate synthase, 3-hydroxyacyl CoA dehydrogenase (HOAD), as well as lactate dehydrogenase. Cellular stress and signaling responses were identified from expression patterns of Hsp70 and Hsp90, the phosphorylation of p38 MAPK, JNKs and ERKs, from protein ubiquitylation and finally from the levels of transcription factor Hif-1α as an indicator of systemic hypoxemia. Exposure to elevated CO2 levels at temperatures higher than 24 °C generally caused an increase in fish mortality above the rate caused by warming alone, indicating effects of the two factors and a failure of acclimation and thus the limits of phenotypic plasticity to be reached. As a potential reason, tissue-dependent induction and stabilization of Hif-1α indicate hypoxemic conditions. Their exacerbation by enhanced CO2 levels is linked to the persistent expression of Hsp70 and Hsp90, oxidative stress and activation of MAPK and ubiquitin pathways. Antioxidant defence is enhanced by expression of catalase and glutathione reductase, however, leaving superoxide dismutase suppressed by elevated CO2 levels. On longer timescales in specimens surviving warming and CO2 exposures, various metabolic adjustments initiate a preference to oxidize lipid via HOAD for energy supply. These processes indicate significant acclimation up to a limit and a time-limited capacity to survive extreme conditions passively by exploiting mechanisms of cellular resilience.
Collapse
|
5
|
Pierrard MA, Roland K, Kestemont P, Dieu M, Raes M, Silvestre F. Fish peripheral blood mononuclear cells preparation for future monitoring applications. Anal Biochem 2012; 426:153-65. [DOI: 10.1016/j.ab.2012.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 03/19/2012] [Accepted: 04/04/2012] [Indexed: 01/08/2023]
|
6
|
FEIDANTSIS KONSTANTINOS, PÖRTNER HANSO, MARKOU THOMAIS, LAZOU ANTIGONE, MICHAELIDIS BASILE. Involvement of p38 MAPK in the Induction of Hsp70 During Acute Thermal Stress in Red Blood Cells of the Gilthead Sea Bream, Sparus aurata. ACTA ACUST UNITED AC 2012; 317:303-10. [DOI: 10.1002/jez.1725] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 01/13/2012] [Accepted: 02/16/2012] [Indexed: 11/10/2022]
Affiliation(s)
- KONSTANTINOS FEIDANTSIS
- Laboratory of Animal Physiology; Department of Zoology; Faculty of Sciences; School of Biology; University of Thessaloniki; Thessaloniki; Greece
| | - HANS O. PÖRTNER
- Alfred-Wegener-Institut für Polar-und Meeresforschung; Physiologie mariner Tiere; Bremerhaven; Germany
| | - THOMAIS MARKOU
- Laboratory of Animal Physiology; Department of Zoology; Faculty of Sciences; School of Biology; University of Thessaloniki; Thessaloniki; Greece
| | - ANTIGONE LAZOU
- Laboratory of Animal Physiology; Department of Zoology; Faculty of Sciences; School of Biology; University of Thessaloniki; Thessaloniki; Greece
| | - BASILE MICHAELIDIS
- Laboratory of Animal Physiology; Department of Zoology; Faculty of Sciences; School of Biology; University of Thessaloniki; Thessaloniki; Greece
| |
Collapse
|
7
|
Tellez-Bañuelos MC, Ortiz-Lazareno PC, Santerre A, Casas-Solis J, Bravo-Cuellar A, Zaitseva G. Effects of low concentration of endosulfan on proliferation, ERK1/2 pathway, apoptosis and senescence in Nile tilapia (Oreochromis niloticus) splenocytes. FISH & SHELLFISH IMMUNOLOGY 2011; 31:1291-1296. [PMID: 22008288 DOI: 10.1016/j.fsi.2011.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/10/2011] [Accepted: 10/03/2011] [Indexed: 05/31/2023]
Abstract
Endosulfan is a potent organochlorinated pesticide that is known to induce side effects in aquatic organisms, including Oreochromis niloticus (Nile tilapia). It has been previously shown that endosulfan induces oxidative stress and non-specific activation of splenic macrophages and exacerbated serum interleukin-2 synthesis in Nile tilapia. Endosulfan may promote proliferation of T cells through MAP kinase (MAPK) activated signal transductions. The ERK family of MAPKs includes ERK1 and ERK2. Phosphorylated ERK1/2 (pERK1/2) molecules are involved in many aspects of cellular survival, and are important for apoptosis or oxidative stress-induced senescence. In order to study the mechanisms by which endosulfan affects fish health, the present study was aimed at evaluating the in vitro effects of this insecticide on proliferation, the ERK1/2 pathway, apoptosis and cell senescence in splenocytes from Nile tilapia. Lymphoproliferation was evaluated by colorimetric method using the WST-1 assay. Flow cytometry was used to assess pERK1/2, apoptosis and senescence, using Annexin V-FITC and β-galactosidase respectively. Experimental data showed that exposure to 7 μg mL(-1) of endosulfan per se increased cellular proliferation, but decreased the lymphoproliferative response to mitogenic stimulus with PMA + ionomycin. Splenocytes exposed to endosulfan for 15-180 min showed significantly higher levels of pERK1/2 than the non-exposed control. Endosulfan mediated a decrease in etoposide-induced apoptosis and provoked cell senescence. In conclusion, exposure of immune cells to a low concentration of endosulfan deregulates their function and may facilitate the development of multiple diseases.
Collapse
|
8
|
Aksakal E, Ceyhun SB, Erdoğan O, Ekinci D. Acute and long-term genotoxicity of deltamethrin to insulin-like growth factors and growth hormone in rainbow trout. Comp Biochem Physiol C Toxicol Pharmacol 2010; 152:451-5. [PMID: 20647053 DOI: 10.1016/j.cbpc.2010.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 07/11/2010] [Accepted: 07/14/2010] [Indexed: 02/01/2023]
Abstract
We report here the acute and long-term influences of deltamethrin on the expression of IGF-I, IGF-II and GH-I in rainbow trout muscles. We treated rainbow trouts with different concentrations of deltamethrin (0.25 microg/L, 1 microg/L and 2.5 microg/L) and observed the alterations in mRNA expression levels of IGF-I, IGF-II and GH-I at different time intervals (at 6th, 12th, 24th, 48th, 72nd hours and 30th day). The mRNA levels significantly decreased with increasing deltamethrin concentrations for acute administration. Interestingly, a significant recovery in GH-I expression was seen after the 72nd hour up to 30th day while no significant differences were observed for IGF-I and IGF-II between the same time intervals. Here we demonstrate that deltamethrin exposure decreases the expression of IGF-I, IGF-II and GH-I in rainbow trout which might cause undesirable outcomes not only in growth, but also in development and reproduction.
Collapse
Affiliation(s)
- Ercüment Aksakal
- Atatürk University, Agriculture Faculty, Department of Agricultural Biotechnology, 25240, Erzurum, Turkey.
| | | | | | | |
Collapse
|
9
|
Franco JL, Trevisan R, Posser T, Trivella DBB, Hoppe R, Martins Rosa J, Fernandes Dinslaken D, Decker H, Inês Tasca C, Bainy Leal R, Freire Marques MR, Dias Bainy AC, Luiz Dafre A. Biochemical alterations in caged Nile tilapia Oreochromis niloticus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:864-872. [PMID: 20346509 DOI: 10.1016/j.ecoenv.2010.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 02/27/2010] [Accepted: 03/03/2010] [Indexed: 05/29/2023]
Abstract
Joinville is an important industrial city in Santa Catarina, southern Brazil, and also a risk factor for the Babitonga drainage basin. Oxidative stress-related parameters were evaluated in caged tilapia (Oreochromis niloticus) exposed for 7 days (sites S1 and S2) in a Babitonga drainage basin tributary river. Site S1 showed enhanced levels of hepatic CYP1A, CYP2B-like and glutathione S-transferase activity, while site S2 showed decreased levels of glutathione and increased lipoperoxidation indexes, catalase, glutathione peroxidase and glutathione reductase activity. Correlation analyses revealed that oxidative stress-related parameters behaved like a group of interrelated variables, while CYPs and glutathione S-transferase seem to be independent. New putative biomarkers were evaluated in the tilapia brain. Caspase-3 activation (both sites), decreased in p38MAPK phosphorylation (site S2) and decreased expression in HSP70 (site S1) were observed. Data indicate that employed variables, when used as a group (oxidative stress-related parameters, CYP1A/2B-like, caspase-3, HSP70 and protein kinases) can be useful as predictors of pollution.
Collapse
Affiliation(s)
- Jeferson Luis Franco
- Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Tellez-Bañuelos MC, Santerre A, Casas-Solis J, Zaitseva G. Endosulfan increases seric interleukin-2 like (IL-2L) factor and immunoglobulin M (IgM) of Nile tilapia (Oreochromis niloticus) challenged with Aeromona hydrophila. FISH & SHELLFISH IMMUNOLOGY 2010; 28:401-405. [PMID: 19944172 DOI: 10.1016/j.fsi.2009.11.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 11/04/2009] [Accepted: 11/14/2009] [Indexed: 05/28/2023]
Abstract
Endosulfan is a persistent organochlorine insecticide which is extremely toxic to fish. It is known to induce immunological alterations in juvenile Nile tilapia (Oreochromis niloticus) such as increases in phagocytic activity and reactive oxygen species production of spleen macrophages. The purpose of the present study was to demonstrate the effects of acute exposure to a sublethal concentration of endosulfan (7 ppb, 96 h) on parameters of the adaptive humoral immune response of the aforementioned aquatic organism. The effect of endosulfan on the capacity of immune cells to produce interleukin-2 like (IL-2L) factor and immunoglobulin M (IgM) in response to a challenge with (1/2) LD50 of the infectious bacteria Aeromonas hydrophila was evaluated. Experimental results indicate that short, sublethal, endosulfan exposure triggers a succession of events beginning with non-specific activation of macrophages followed by an exacerbated synthesis of the IL-2L factor by activated B cells. This leads to significantly increased secretion of IgM and could in turn facilitate autoantibody production and the development of autoimmune pathologies.
Collapse
Affiliation(s)
- Martha Cecilia Tellez-Bañuelos
- Departamento de Biología Celular y Molecular, Universidad de Guadalajara, Carretera a Nogales Km 15.5, z.p. 45110, Las Agujas, Zapopan, Jalisco, Mexico
| | | | | | | |
Collapse
|
11
|
Vergani L, Lanza C, Scarabelli L, Canesi L, Gallo G. Heavy metal and growth hormone pathways in metallothionein regulation in fish RTH-149 cell line. Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:572-80. [PMID: 19154796 DOI: 10.1016/j.cbpc.2008.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 12/15/2008] [Accepted: 12/15/2008] [Indexed: 10/21/2022]
Abstract
Interference between heavy metals and growth hormone (GH) on cell signaling has been previously demonstrated in fish cells. This study was aimed at assessing their effects on expression of the metallothionein isoforms MT-A and MT-B. The results indicate that all heavy metals induce MT-A more markedly than MT-B, but differences appeared when metals were combined with GH. For MT-B induction, a positive interference between metals and GH was observed for Zn(2+)/GH and Cd(2+)/GH, a negative interference for Hg(2+)/GH. With regards to MT-A, no interference was observed for Zn(2+)/GH and Hg(2+)/GH, while a negative interference occurred with Cu(2+)/GH and a positive interference with Cd(2+)/GH. The possible mechanisms underlying the differential regulation of metallothioneins include different signaling pathways. The results show that STAT5 and ERKs responded differently to different combinations, and Zn(2+)/GH and Cd(2+)/GH exerted a slight positive interference on ERK activation. On the other hand, a synergic rise in [Ca(2+)](i) occurred for all combinations except for Cu(2+)/GH. Our data suggest that the cross-talk between heavy metals and GH resulting in MT transcription modulation does not strictly depend on Ca(2+) signalling; (ii)ERK activation may represent the point of cross-talk between Zn(2+) or Cd(2+) and GH, converging on MT-B transcription, probably through a differential recruitment of transcription factors.
Collapse
Affiliation(s)
- Laura Vergani
- Department of Biology, University of Genova, Genova, Italy.
| | | | | | | | | |
Collapse
|
12
|
Randelli E, Buonocore F, Scapigliati G. Cell markers and determinants in fish immunology. FISH & SHELLFISH IMMUNOLOGY 2008; 25:326-340. [PMID: 18722788 DOI: 10.1016/j.fsi.2008.03.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 03/28/2008] [Indexed: 05/26/2023]
Abstract
Despite the impressive increase in the cloning and expression of genes encoding fish immunoregulatory molecules, the knowledge on "in vivo" and "in vitro" functional immunology of the corresponding peptide products is still at an initial stage. This is partly due to the lacking of specific markers for immunoregulatory peptides, that represent an indispensible tool to dissect immune reactions and to trace the fate of cellular events downstream of the activation. In this review we summarise the available information on functional immune activities of some teleost species and discuss the obtained data in an evolutionary and applied context.
Collapse
Affiliation(s)
- Elisa Randelli
- Dipartimento di Scienze Ambientali, Università della Tuscia, 01100 Viterbo, Italy
| | | | | |
Collapse
|
13
|
Verjan N, Ooi EL, Nochi T, Kondo H, Hirono I, Aoki T, Kiyono H, Yuki Y. A soluble nonglycosylated recombinant infectious hematopoietic necrosis virus (IHNV) G-protein induces IFNs in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2008; 25:170-180. [PMID: 18499475 DOI: 10.1016/j.fsi.2008.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 03/31/2008] [Accepted: 04/09/2008] [Indexed: 05/26/2023]
Abstract
Viral glycoproteins interact with cell-surface receptors to mediate virus entry and innate immune system activation. We found that a soluble recombinant infectious hematopoietic necrosis virus G-protein (rIHNV-G) stimulated an early innate immune response mediated by proinflammatory cytokines, IFN1 and IFN-gamma in rainbow trout (Oncorhynchus mykiss) fry. Expression of both IFN1 and IFN-gamma mRNA transcripts was an early event and was rIHNV-G dose-dependent. In addition, preliminary evidence revealed that the innate immune response induced by rIHNV-G protein could protect rainbow trout fry from a subsequent IHNV virus challenge. Finally, the binding and distribution of FITC-rIHNV-G protein on rainbow trout spleen and head kidney leukocytes resemble morphological changes which occur on the cell membrane during antigen-receptor interaction including membrane reorganization, patching, polarization and capping. Thus a soluble nonglycosylated rIHNV-G protein could mediate the activation of rainbow trout leukocytes, with concomitant production of proinflammatory cytokines and IFNs.
Collapse
Affiliation(s)
- Noel Verjan
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Canosa LF, Chang JP, Peter RE. Neuroendocrine control of growth hormone in fish. Gen Comp Endocrinol 2007; 151:1-26. [PMID: 17286975 DOI: 10.1016/j.ygcen.2006.12.010] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 12/12/2006] [Accepted: 12/22/2006] [Indexed: 10/23/2022]
Abstract
The biological actions of growth hormone (GH) are pleiotropic, including growth promotion, energy mobilization, gonadal development, appetite, and social behavior. Accordingly, the regulatory network for GH is complex and includes many endocrine and environmental factors. In fish, the neuroendocrine control of GH is multifactorial with multiple inhibitors and stimulators of pituitary GH secretion. In fish, GH release is under a tonic negative control exerted mainly by somatostatin. Sex steroid hormones and nutritional status influence the level of brain expression and effectiveness of some of these GH neuroendocrine regulatory factors, suggesting that their relative importance differs under different physiological conditions. At the pituitary level, some, if not all, somatotropes can respond to multiple regulators. Therefore, ligand- and function-specificity, as well as the integrative responses to multiple signals must be achieved at the level of signal transduction mechanisms. Results from investigations on a limited number of stimulatory and inhibitory GH-release regulators indicate that activation of different but convergent intracellular pathways and the utilization of specific intracellular Ca(2+) stores are some of the strategies utilized. However, more work remains to be done in order to better understand the integrative mechanisms of signal transduction at the somatotrope level and the relevance of various GH regulators in different physiological circumstances.
Collapse
Affiliation(s)
- Luis Fabián Canosa
- Department of Biological Sciences, University of Alberta, Edmonton, Alta., Canada T6G 2E9
| | | | | |
Collapse
|
15
|
Ossum CG, Wulff T, Hoffmann EK. Regulation of the mitogen-activated protein kinase p44 ERK activity during anoxia/recovery in rainbow trout hypodermal fibroblasts. J Exp Biol 2006; 209:1765-76. [PMID: 16621957 DOI: 10.1242/jeb.02152] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SUMMARY
It is well known from various mammalian cells that anoxia has a major impact on the mitogen-activated protein kinase ERK, but a possible similar effect in fish cells has not been investigated. Here we characterise a p44ERK-like protein in the rainbow trout cell line RTHDF and study the effect of (i) serum stimulation, (ii) sodium azide (chemical anoxia) and removal of azide (recovery) and (iii) anoxia (PO2<0.1%) and recovery. During both chemical and true anoxia p44ERK was inhibited and recovery resulted in robust reactivation of p44ERK activity, far above the initial level. The inhibition was secondary to activation of p38MAPK and the increase was MEK dependent, as SB203580 inhibited the dephosphorylation during anoxia and the presence of PD98059 inhibited phosphorylation of p44ERK during recovery. In addition, we demonstrated that the reactivation of p44ERK during recovery also was dependent on reactive oxygen species and a PP1/PP2A-like phosphatase.
Collapse
Affiliation(s)
- Carlo G Ossum
- Institute of Molecular Biology and Physiology, Department of Biochemistry, The August Krogh Building, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark.
| | | | | |
Collapse
|
16
|
Leal RB, Ribeiro SJ, Posser T, Cordova FM, Rigon AP, Zaniboni Filho E, Bainy ACD. Modulation of ERK1/2 and p38(MAPK) by lead in the cerebellum of Brazilian catfish Rhamdia quelen. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2006; 77:98-104. [PMID: 16360892 DOI: 10.1016/j.aquatox.2005.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 10/28/2005] [Accepted: 11/08/2005] [Indexed: 05/05/2023]
Abstract
Lead (Pb2+) is a neurotoxic trace metal, widespread in aquatic environment that can change physiologic, biochemical and behavioral parameters in diverse fish species. Chemical exposure may drive modulation of mitogen-activated protein kinases (MAPKs) that are a family of highly conserved enzymes which comprise ubiquitous groups of signaling proteins playing critical regulatory roles in cell physiology. Extracellular signal-regulated kinases (ERK1/2) and p38(MAPK) control complex programs such as gene expression, embryogenesis, cell differentiation, cell proliferation, cell death and synaptic plasticity. Little information is available about MAPKs in aquatic organisms and their modulation by trace metals. The aim of this work was to determine the modulation of ERK1/2 and p38(MAPK) phosphorylation by Pb2+ in vivo and in vitro, in cerebellar slices of the catfish, Rhamdia quelen. In the in vitro model, slices were incubated for 3 h with lead acetate (1-10 microM). In the in vivo studies, the animals were exposed for 2 days to lead acetate (1 mg L(-1)). ERK1/2 and p38(MAPK) (total and phosphorylated forms) were immunodetected in cerebellar slices by Western blotting. Pb2+ added in vitro at 5 and 10 microM increased significantly the phosphorylation of both MAPKs. The in vivo exposed animals also showed a significant increase of ERK1/2 and p38(MAPK) phosphorylation without changes in the total content of the enzymes. In conclusion, the present work indicates that it is possible to evaluate the ERK1/2 and p38(MAPK) activation in the central nervous system (CNS) of a freshwater fish largely distributed in South America. Moreover, Pb2+, an important environmental pollutant may activate in vitro and in vivo ERK1/2 and p38(MAPK) enzymes. These findings are important considering the functional and ecologic implications associated to Pb2+ exposure of a freshwater fish species, such as R. quelen, and the roles of ERK1/2 and p38(MAPK) in the control of brain development, neuroplasticity and cell death.
Collapse
Affiliation(s)
- Rodrigo B Leal
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| | | | | | | | | | | | | |
Collapse
|
17
|
Morrison RN, Hayball JD, Cook MT, Nowak BF. Anti-immunoglobulin binding and activation of snapper (Pagrus auratus) leucocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2002; 26:247-255. [PMID: 11755674 DOI: 10.1016/s0145-305x(01)00070-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In order to perform specific immunological assays we have produced and characterised three monoclonal antibodies (MAbs) that bind snapper (Pagrus auratus, Bloch and Schneider) immunoglobulin (Ig). Hybridomas were produced and screened for anti-Ig production using ELISA, Western blot and flow cytometry. All three MAbs (designated 2C5, 4A2 and 1C6) bound specifically to the heavy (H) chain of reduced Ig in Western blot. Furthermore, 1C6 was shown to bind to reduced skin mucus Ig H chain and all three MAbs cross-reacted with the H chain of Atlantic salmon and rainbow trout Ig. In flow cytometric analyses 2C5 and 4A2 bound to B cell populations in the peripheral blood and lymphoid organs. Furthermore, cross-linked 2C5 induced an increase in intracellular protein tyrosine phosphorylation in peripheral blood lymphocytes. Phosphorylated proteins exhibited similar molecular weights to those of mammalian Igalpha and Igbeta and may represent snapper mIg accessory molecule analogues. These data exhibit the potential use of 2C5, 4A2 and 1C6 in both cellular and biochemical analyses of populations of snapper leucocytes.
Collapse
Affiliation(s)
- Richard N Morrison
- School of Aquaculture and CRC for Aquaculture, Tasmanian Aquaculture and Fisheries Institute, University of Tasmania, Launceston, Tasmania, Australia, 7250.
| | | | | | | |
Collapse
|