1
|
Abdelhadi AA, Elarabi NI, Ibrahim SM, Abdel-Maksoud MA, Abdelhaleem HAR, Almutairi S, Malik A, Kiani BH, Henawy AR, Halema AA. Hybrid-genome sequence analysis of Enterobacter cloacae FACU and morphological characterization: insights into a highly arsenic-resistant strain. Funct Integr Genomics 2024; 24:174. [PMID: 39320439 DOI: 10.1007/s10142-024-01441-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024]
Abstract
Many organisms have adapted to survive in environments with high levels of arsenic (As), a naturally occurring metalloid with various oxidation states and a common element in human activities. These organisms employ diverse mechanisms to resist the harmful effects of arsenic compounds. Ten arsenic-resistant bacteria were isolated from contaminated wastewater in this study. The most efficient bacterial isolate able to resist 15,000 ppm Na2HAsO4·7H2O was identified using the 16S rRNA gene and whole genome analysis as Enterobacter cloacae FACU. The arsenic E. cloacae FACU biosorption capability was analyzed. To further unravel the genetic determinants of As stress resistance, the whole genome sequence of E. cloacae FACU was performed. The FACU complete genome sequence consists of one chromosome (5.7 Mb) and two plasmids, pENCL 1 and pENCL 2 (755,058 and 1155666 bp, respectively). 7152 CDSs were identified in the E. cloacae FACU genome. The genome consists of 130 genes for tRNA and 21 for rRNAs. The average G + C content was found to be 54%. Sequencing analysis annotated 58 genes related to resistance to many heavy metals, including 16 genes involved in arsenic efflux transporter and arsenic reduction (five arsRDABC genes) and 42 genes related to lead, zinc, mercury, nickel, silver, copper, cadmium and chromium in FACU. Scanning electron microscopy (SEM) confirmed the difference between the morphological responses of the As-treated FACU compared to the control strain. The study highlights the genes involved in the mechanism of As stress resistance, metabolic pathways, and potential activity of E. cloacae FACU at the genetic level.
Collapse
Affiliation(s)
- Abdelhadi A Abdelhadi
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt.
| | - Nagwa I Elarabi
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt.
| | - Saifeldeen M Ibrahim
- Biotechnology Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
- Bioinformatics Department, Agricultural Genetic Engineering Research Institute, ARC, Giza, Egypt
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Heba A R Abdelhaleem
- College of Biotechnology, Misr University for Science and Technology (MUST), 6th October City, Egypt
| | - Saeedah Almutairi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bushra Hafeez Kiani
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachuesetts, 01609, USA
| | - Ahmed R Henawy
- Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Asmaa A Halema
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
2
|
Algarni S, Gudeta DD, Han J, Nayak R, Foley SL. Genotypic analyses of IncHI2 plasmids from enteric bacteria. Sci Rep 2024; 14:9802. [PMID: 38684834 PMCID: PMC11058233 DOI: 10.1038/s41598-024-59870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Incompatibility (Inc) HI2 plasmids are large (typically > 200 kb), transmissible plasmids that encode antimicrobial resistance (AMR), heavy metal resistance (HMR) and disinfectants/biocide resistance (DBR). To better understand the distribution and diversity of resistance-encoding genes among IncHI2 plasmids, computational approaches were used to evaluate resistance and transfer-associated genes among the plasmids. Complete IncHI2 plasmid (N = 667) sequences were extracted from GenBank and analyzed using AMRFinderPlus, IntegronFinder and Plasmid Transfer Factor database. The most common IncHI2-carrying genera included Enterobacter (N = 209), Escherichia (N = 208), and Salmonella (N = 204). Resistance genes distribution was diverse, with plasmids from Escherichia and Salmonella showing general similarity in comparison to Enterobacter and other taxa, which grouped together. Plasmids from Enterobacter and other taxa had a higher prevalence of multiple mercury resistance genes and arsenic resistance gene, arsC, compared to Escherichia and Salmonella. For sulfonamide resistance, sul1 was more common among Enterobacter and other taxa, compared to sul2 and sul3 for Escherichia and Salmonella. Similar gene diversity trends were also observed for tetracyclines, quinolones, β-lactams, and colistin. Over 99% of plasmids carried at least 25 IncHI2-associated conjugal transfer genes. These findings highlight the diversity and dissemination potential for resistance across different enteric bacteria and value of computational-based approaches for the resistance-gene assessment.
Collapse
Affiliation(s)
- Suad Algarni
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA.
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA.
| | - Dereje D Gudeta
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Jing Han
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Rajesh Nayak
- Office of Regulatory Compliance and Risk Management, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Steven L Foley
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA.
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
3
|
Identification and Genome Analysis of an Arsenic-Metabolizing Strain of Citrobacter youngae IITK SM2 in Middle Indo-Gangetic Plain Groundwater. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6384742. [PMID: 35309170 PMCID: PMC8930248 DOI: 10.1155/2022/6384742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022]
Abstract
Whole-genome sequencing (WGS) data of a bacterial strain IITK SM2 isolated from an aquifer located in the middle Indo-Gangetic plain is reported here, along with its physiological, morphological, biochemical, and redox-transformation characteristics in the presence of dissolved arsenic (As). The aquifer exhibits oxidizing conditions relative to As speciation. Analyses based on 16S rRNA and recN sequences indicate that IITK SM2 was clustered with C. youngae NCTC 13708T and C. pasteuri NCTC UMH17T. However, WGS analyses using the digital DNA-DNA hybridization and Rapid Annotations using Subsystems Technology suggest that IITK SM2 belongs to a strain of C. youngae. This strain can effectively reduce As(V) to As(III) but cannot oxidize As(III) to As(V). It exhibited high resistance to As(V) [32,000 mg L-1] and As(III) [1,100 mg L-1], along with certain other heavy metals typically found in contaminated groundwater. WGS analysis also indicates the presence of As-metabolizing genes such as arsC, arsB, arsA, arsD, arsR, and arsH in this strain. Although these genes have been identified in several As(V)-reducers, the clustering of these genes in the forms of arsACBADR, arsCBRH, and an independent arsC gene has not been observed in any other Citrobacter species or other selected As(V)-reducing strains of Enterobacteriaceae family. Moreover, there were differences in the number of genes corresponding to membrane transporters, virulence and defense, motility, protein metabolism, phages, prophages, and transposable elements in IITK SM2 when compared to other strains. This genomic dataset will facilitate subsequent molecular and biochemical analyses of strain IITK SM2 to identify the reasons for high arsenic resistance in Citrobacter youngae and understand its role in As mobilization in middle Indo-Gangetic plain aquifers.
Collapse
|
4
|
Abstract
Brevundimonas sp. is a bacteria able to grow in metal(loid) contaminated soil from Puchuncaví Valley, central Chile. This study has isolated a bacterial strain capable of growth under high doses of arsenic (As) (6000 mg L−1), and a draft genome sequence was generated. Additionally, real-time PCR was performed to examine the effect of As on some genes related to As resistance. Results demonstrated a total of 3275 predicted annotated genes with several genes related to the ars operon, metal(loid) resistance-related genes, metal efflux pumps, and detoxifying enzymes. Real-time PCR showed that the arsB involved in the efflux of As was down-regulated, whereas arsR, arsH, and ACR3 did not show differences with the addition of As. Our study provides novel evidence of diverse As regulating systems in tolerant bacteria that will lead to a better understanding of how microorganisms overcome toxic elements and colonize As contaminated soils and to the possible use of their specific properties in bioremediation.
Collapse
|
5
|
Soleja N, Manzoor O, Khan P, Mohsin M. Engineering genetically encoded FRET-based nanosensors for real time display of arsenic (As 3+) dynamics in living cells. Sci Rep 2019; 9:11240. [PMID: 31375744 PMCID: PMC6677752 DOI: 10.1038/s41598-019-47682-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023] Open
Abstract
Arsenic poisoning has been a major concern that causes severe toxicological damages. Therefore, intricate and inclusive understanding of arsenic flux rates is required to ascertain the cellular concentration and establish the carcinogenetic mechanism of this toxicant at real time. The lack of sufficiently sensitive sensing systems has hampered research in this area. In this study, we constructed a fluorescent resonance energy transfer (FRET)-based nanosensor, named SenALiB (Sensor for Arsenic Linked Blackfoot disease) which contains a metalloregulatory arsenic-binding protein (ArsR) as the As3+ sensing element inserted between the FRET pair enhanced cyan fluorescent protein (ECFP) and Venus. SenALiB takes advantage of the ratiometic FRET readout which measures arsenic with high specificity and selectivity. SenALiB offers rapid detection response, is stable to pH changes and provides highly accurate, real-time optical readout in cell-based assays. SenALiB-676n with a binding constant (Kd) of 0.676 × 10−6 M is the most efficient affinity mutant and can be a versatile tool for dynamic measurement of arsenic concentration in both prokaryotes and eukaryotes in vivo in a non-invasive manner.
Collapse
Affiliation(s)
- Neha Soleja
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Ovais Manzoor
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Parvez Khan
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, 110025, India
| | - Mohd Mohsin
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
6
|
Ben Fekih I, Zhang C, Li YP, Zhao Y, Alwathnani HA, Saquib Q, Rensing C, Cervantes C. Distribution of Arsenic Resistance Genes in Prokaryotes. Front Microbiol 2018; 9:2473. [PMID: 30405552 PMCID: PMC6205960 DOI: 10.3389/fmicb.2018.02473] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022] Open
Abstract
Arsenic is a metalloid that occurs naturally in aquatic and terrestrial environments. The high toxicity of arsenic derivatives converts this element in a serious problem of public health worldwide. There is a global arsenic geocycle in which microbes play a relevant role. Ancient exposure to arsenic derivatives, both inorganic and organic, has represented a selective pressure for microbes to evolve or acquire diverse arsenic resistance genetic systems. In addition, arsenic compounds appear to have been used as a toxin in chemical warfare for a long time selecting for an extended range of arsenic resistance determinants. Arsenic resistance strategies rely mainly on membrane transport pathways that extrude the toxic compounds from the cell cytoplasm. The ars operons, first discovered in bacterial R-factors almost 50 years ago, are the most common microbial arsenic resistance systems. Numerous ars operons, with a variety of genes and different combinations of them, populate the prokaryotic genomes, including their accessory plasmids, transposons, and genomic islands. Besides these canonical, widespread ars gene clusters, which confer resistance to the inorganic forms of arsenic, additional genes have been discovered recently, which broadens the spectrum of arsenic tolerance by detoxifying organic arsenic derivatives often used as toxins. This review summarizes the presence, distribution, organization, and redundance of arsenic resistance genes in prokaryotes.
Collapse
Affiliation(s)
- Ibtissem Ben Fekih
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chengkang Zhang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Ping Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Zhao
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hend A Alwathnani
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Quaiser Saquib
- Department of Zoology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Carlos Cervantes
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana, Morelia, Mexico
| |
Collapse
|
7
|
Genome-Guided Characterization of Ochrobactrum sp. POC9 Enhancing Sewage Sludge Utilization-Biotechnological Potential and Biosafety Considerations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15071501. [PMID: 30013002 PMCID: PMC6069005 DOI: 10.3390/ijerph15071501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/07/2018] [Accepted: 07/12/2018] [Indexed: 11/17/2022]
Abstract
Sewage sludge is an abundant source of microorganisms that are metabolically active against numerous contaminants, and thus possibly useful in environmental biotechnologies. However, amongst the sewage sludge isolates, pathogenic bacteria can potentially be found, and such isolates should therefore be carefully tested before their application. A novel bacterial strain, Ochrobactrum sp. POC9, was isolated from a sewage sludge sample collected from a wastewater treatment plant. The strain exhibited lipolytic, proteolytic, cellulolytic, and amylolytic activities, which supports its application in biodegradation of complex organic compounds. We demonstrated that bioaugmentation with this strain substantially improved the overall biogas production and methane content during anaerobic digestion of sewage sludge. The POC9 genome content analysis provided a deeper insight into the biotechnological potential of this bacterium and revealed that it is a metalotolerant and a biofilm-producing strain capable of utilizing various toxic compounds. The strain is resistant to rifampicin, chloramphenicol and β-lactams. The corresponding antibiotic resistance genes (including blaOCH and cmlA/floR) were identified in the POC9 genome. Nevertheless, as only few genes in the POC9 genome might be linked to pathogenicity, and none of those genes is a critical virulence factor found in severe pathogens, the strain appears safe for application in environmental biotechnologies.
Collapse
|
8
|
Heavy Metal Susceptibility of Escherichia coli Isolated from Urine Samples from Sweden, Germany, and Spain. Antimicrob Agents Chemother 2018. [PMID: 29530862 PMCID: PMC5923176 DOI: 10.1128/aac.00209-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Antimicrobial resistance is a major health care problem, with the intensive use of heavy metals and biocides recently identified as a potential factor contributing to the aggravation of this situation. The present study investigated heavy metal susceptibility and genetic resistance determinants in Escherichia coli isolated from clinical urine samples from Sweden, Germany, and Spain. A total of 186 isolates were tested for their sodium arsenite, silver nitrate, and copper(II) sulfate MICs. In addition, 88 of these isolates were subjected to whole-genome sequencing for characterization of their genetic resistance determinants and epidemiology. For sodium arsenite, the isolates could be categorized into a resistant and a nonresistant group based on MIC values. Isolates of the resistant group exhibited the chromosomal ars operon and belonged to non-B2 phylogenetic groups; in contrast, within the B2 phylogroup, no ars operon was found, and the isolates were susceptible to sodium arsenite. Two isolates also harbored the silver/copper resistance determinant pco/sil, and they belonged to sequence types ST10 (phylogroup A) and ST295 (phylogroup C). The ST295 isolate had a silver nitrate MIC of ≥512 mg/liter and additionally produced extended-spectrum beta-lactamases. To our knowledge, this is the first study to describe the distribution of the arsenic resistance ars operon within phylogroups of E. coli strains isolated from patients with urinary tract infections. The arsenic resistance ars operon was present only in all non-B2 clades, which have previously been associated with the environment and commensalism in both humans and animals, while B2 clades lacked the ars operon.
Collapse
|
9
|
Li J, Pawitwar SS, Rosen BP. The organoarsenical biocycle and the primordial antibiotic methylarsenite. Metallomics 2017; 8:1047-1055. [PMID: 27730229 DOI: 10.1039/c6mt00168h] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Arsenic is the most pervasive environmental toxic substance. As a consequence of its ubiquity, nearly every organism has genes for resistance to inorganic arsenic. In bacteria these genes are found largely in bacterial arsenic resistance (ars) operons. Recently a parallel pathway for synthesis and degradation of methylated arsenicals has been identified. The arsM gene product encodes the ArsM (AS3MT in animals) As(iii) S-adenosylmethionine methyltransferase that methylates inorganic trivalent arsenite in three sequential steps to methylarsenite MAs(iii), dimethylarsenite (DMAs(iii) and trimethylarsenite (TMAs(iii)). MAs(iii) is considerably more toxic than As(iii), and we have proposed that MAs(iii) was a primordial antibiotic. Under aerobic conditions these products are oxidized to nontoxic pentavalent arsenicals, so that methylation became a detoxifying pathway after the atmosphere became oxidizing. Other microbes have acquired the ability to regenerate MAs(v) by reduction, transforming it again into toxic MAs(iii). Under this environmental pressure, MAs(iii) resistances evolved, including the arsI, arsH and arsP genes. ArsI is a C-As bond lyase that demethylates MAs(iii) back to less toxic As(iii). ArsH re-oxidizes MAs(iii) to MAs(v). ArsP actively extrudes MAs(iii) from cells. These proteins confer resistance to this primitive antibiotic. This oscillation between MAs(iii) synthesis and detoxification is an essential component of the arsenic biogeocycle.
Collapse
Affiliation(s)
- Jiaojiao Li
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 S.W. 8 Street, Miami, FL 33199 USA
| | - Shashank S Pawitwar
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 S.W. 8 Street, Miami, FL 33199 USA
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 S.W. 8 Street, Miami, FL 33199 USA
| |
Collapse
|
10
|
Chen J, Nadar VS, Rosen BP. A novel MAs(III)-selective ArsR transcriptional repressor. Mol Microbiol 2017; 106:469-478. [PMID: 28861914 DOI: 10.1111/mmi.13826] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2017] [Indexed: 11/29/2022]
Abstract
Microbial expression of genes for resistance to heavy metals and metalloids is usually transcriptionally regulated by the toxic ions themselves. Arsenic is a ubiquitous, naturally occurring toxic metalloid widely distributed in soil and groundwater. Microbes biotransform both arsenate (As(V)) and arsenite (As(III)) into more toxic methylated metabolites methylarsenite (MAs(III)) and dimethylarsenite (DMAs(III)). Environmental arsenic is sensed by members of the ArsR/SmtB family. The arsR gene is autoregulated and is typically part of an operon that contains other ars genes involved in arsenic detoxification. To date every identified ArsR is regulated by inorganic As(III). Here we described a novel ArsR from Shewanella putrefaciens selective for MAs(III). SpArsR orthologs control expression of two MAs(III) resistance genes, arsP that encodes the ArsP MAs(III) efflux permease, and arsH encoding the ArsH MAs(III) oxidase. SpArsR has two conserved cysteine residues, Cys101 and Cys102. Mutation of either resulted in loss of MAs(III) binding, indicating that they form an MAs(III) binding site. SpArsR can be converted into an As(III)-responsive repressor by introduction of an additional cysteine that allows for three-coordinate As(III) binding. Our results indicate that SpArsR evolved selectivity for MAs(III) over As(III) in order to control expression of genes for MAs(III) detoxification.
Collapse
Affiliation(s)
- Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Venkadesh Sarkarai Nadar
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
11
|
Saha RP, Samanta S, Patra S, Sarkar D, Saha A, Singh MK. Metal homeostasis in bacteria: the role of ArsR-SmtB family of transcriptional repressors in combating varying metal concentrations in the environment. Biometals 2017; 30:459-503. [PMID: 28512703 DOI: 10.1007/s10534-017-0020-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 05/09/2017] [Indexed: 02/02/2023]
Abstract
Bacterial infections cause severe medical problems worldwide, resulting in considerable death and loss of capital. With the ever-increasing rise of antibiotic-resistant bacteria and the lack of development of new antibiotics, research on metal-based antimicrobial therapy has now gained pace. Metal ions are essential for survival, but can be highly toxic to organisms if their concentrations are not strictly controlled. Through evolution, bacteria have acquired complex metal-management systems that allow them to acquire metals that they need for survival in different challenging environments while evading metal toxicity. Metalloproteins that controls these elaborate systems in the cell, and linked to key virulence factors, are promising targets for the anti-bacterial drug development. Among several metal-sensory transcriptional regulators, the ArsR-SmtB family displays greatest diversity with several distinct metal-binding and nonmetal-binding motifs that have been characterized. These prokaryotic metolloregulatory transcriptional repressors represses the expression of operons linked to stress-inducing concentrations of metal ions by directly binding to the regulatory regions of DNA, while derepression results from direct binding of metal ions by these homodimeric proteins. Many bacteria, e.g., Mycobacterium tuberculosis, Bacillus anthracis, etc., have evolved to acquire multiple metal-sensory motifs which clearly demonstrate the importance of regulating concentrations of multiple metal ions. Here, we discussed the mechanisms of how ArsR-SmtB family regulates the intracellular bioavailability of metal ions both inside and outside of the host. Knowledge of the metal-challenges faced by bacterial pathogens and their survival strategies will enable us to develop the next generation drugs.
Collapse
Affiliation(s)
- Rudra P Saha
- Department of Biotechnology, School of Biotechnology, Adamas University, Kolkata, 700126, India.
| | - Saikat Samanta
- Department of Microbiology, School of Science, Adamas University, Kolkata, 700126, India
| | - Surajit Patra
- Department of Biotechnology, School of Biotechnology, Adamas University, Kolkata, 700126, India
| | - Diganta Sarkar
- Department of Biotechnology, Techno India University, Kolkata, 700091, India
| | - Abinit Saha
- Department of Biotechnology, School of Biotechnology, Adamas University, Kolkata, 700126, India
| | - Manoj Kumar Singh
- Department of Biotechnology, School of Biotechnology, Adamas University, Kolkata, 700126, India
| |
Collapse
|
12
|
Abstract
Arsenic is the most pervasive environmental substance and is classified by the International Agency for Research on Cancer as a Group 1 human carcinogen. Nearly every organism has resistance pathways for inorganic arsenic, and in bacteria, their genes are found in arsenic resistance (ars) operons. Recently, a parallel pathway for organic arsenicals has been identified. The ars genes responsible for the organoarsenical detoxification includes arsM, which encodes an As(III) S-adenosylmethionine methyltransferase, arsI, which encodes a C–As bond lyase, and arsH, which encodes a methylarsenite oxidase. The identification and properties of arsM, arsI and arsH are described in this review.
Collapse
|
13
|
Yu X, Zheng W, Bhat S, Aquilina JA, Zhang R. Transcriptional and posttranscriptional regulation of Bacillus sp. CDB3 arsenic-resistance operon ars1. PeerJ 2015; 3:e1230. [PMID: 26355338 PMCID: PMC4562236 DOI: 10.7717/peerj.1230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 08/16/2015] [Indexed: 11/24/2022] Open
Abstract
Bacillus sp. CDB3 possesses a novel eight-gene ars cluster (ars1, arsRYCDATorf7orf8) with some unusual features in regard to expression regulation. This study demonstrated that the cluster is a single operon but can also produce a short three-gene arsRYC transcript. A hairpin structure formed by internal inverted repeats between arsC and arsD was shown to diminish the expression of the full operon, thereby probably acting as a transcription attenuator. A degradation product of the arsRYC transcript was also identified. Electrophoretic mobility shift analysis demonstrated that ArsR interacts with the ars1 promoter forming a protein-DNA complex that could be impaired by arsenite. However, no interaction was detected between ArsD and the ars1 promoter, suggesting that the CDB3 ArsD protein may not play a regulatory role. Compared to other ars gene clusters, regulation of the Bacillus sp. CDB3 ars1 operon is more complex. It represents another example of specific mRNA degradation in the transporter gene region and possibly the first case of attenuator-mediated regulation of ars operons.
Collapse
Affiliation(s)
- Xuefei Yu
- School of Biological Sciences, University of Wollongong , Wollongong, NSW , Australia
| | - Wei Zheng
- Current affiliation: Research Center on Life Sciences and Environmental Sciences, Harbin University of Commerce , Harbin , China
| | - Somanath Bhat
- Current affiliation: National Measurement Institute of Australia , Lindfield, NSW , Australia
| | - J Andrew Aquilina
- School of Biological Sciences, University of Wollongong , Wollongong, NSW , Australia
| | - Ren Zhang
- School of Biological Sciences, University of Wollongong , Wollongong, NSW , Australia
| |
Collapse
|
14
|
Yang Y, Wu S, Lilley RM, Zhang R. The diversity of membrane transporters encoded in bacterial arsenic-resistance operons. PeerJ 2015; 3:e943. [PMID: 26020003 PMCID: PMC4435449 DOI: 10.7717/peerj.943] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/17/2015] [Indexed: 11/20/2022] Open
Abstract
Transporter-facilitated arsenite extrusion is the major pathway of arsenic resistance within bacteria. So far only two types of membrane-bound transporter proteins, ArsB and ArsY (ACR3), have been well studied, although the arsenic transporters in bacteria display considerable diversity. Utilizing accumulated genome sequence data, we searched arsenic resistance (ars) operons in about 2,500 bacterial strains and located over 700 membrane-bound transporters which are encoded in these operons. Sequence analysis revealed at least five distinct transporter families, with ArsY being the most dominant, followed by ArsB, ArsP (a recently reported permease family), Major Facilitator protein Superfamily (MFS) and Major Intrinsic Protein (MIP). In addition, other types of transporters encoded in the ars operons were found, but in much lower frequencies. The diversity and evolutionary relationships of these transporters with regard to arsenic resistance will be discussed.
Collapse
Affiliation(s)
- Yiren Yang
- School of Biological Sciences, University of Wollongong , NSW , Australia
| | - Shiyang Wu
- School of Biological Sciences, University of Wollongong , NSW , Australia
| | | | - Ren Zhang
- School of Biological Sciences, University of Wollongong , NSW , Australia
| |
Collapse
|
15
|
Chen J, Bhattacharjee H, Rosen BP. ArsH is an organoarsenical oxidase that confers resistance to trivalent forms of the herbicide monosodium methylarsenate and the poultry growth promoter roxarsone. Mol Microbiol 2015; 96:1042-52. [PMID: 25732202 DOI: 10.1111/mmi.12988] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2015] [Indexed: 11/29/2022]
Abstract
Environmental organoarsenicals are produced by microorganisms and are introduced anthropogenically as herbicides and antimicrobial growth promoters for poultry and swine. Nearly every prokaryote has an ars (arsenic resistance) operon, and some have an arsH gene encoding an atypical flavodoxin. The role of ArsH in arsenic resistance has been unclear. Here we demonstrate that ArsH is an organoarsenical oxidase that detoxifies trivalent methylated and aromatic arsenicals by oxidation to pentavalent species. Escherichia coli, which does not have an arsH gene, is very sensitive to the trivalent forms of the herbicide monosodium methylarsenate [MSMA or MAs(V)] and antimicrobial growth promoter roxarsone [Rox(V)], as well as to phenylarsenite [PhAs(III), also called phenylarsine oxide or PAO]. Pseudomonas putida has two chromosomally encoded arsH genes and is highly resistant to the trivalent forms of these organoarsenicals. A derivative of P. putida with both arsH genes deleted is sensitive to MAs(III), PhAs(III) or Rox(III). P. putida arsH expressed in E. coli conferred resistance to each trivalent organoarsenical. Cells expressing PpArsH oxidized the trivalent organoarsenicals. PpArsH was purified, and the enzyme in vitro similarly oxidized the trivalent organoarsenicals. These results suggest that ArsH catalyzes a novel biotransformation that confers resistance to environmental methylated and aromatic arsenicals.
Collapse
Affiliation(s)
- Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Hiranmoy Bhattacharjee
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
16
|
Hobman JL, Crossman LC. Bacterial antimicrobial metal ion resistance. J Med Microbiol 2014; 64:471-497. [PMID: 25418738 DOI: 10.1099/jmm.0.023036-0] [Citation(s) in RCA: 231] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/17/2014] [Indexed: 01/23/2023] Open
Abstract
Metals such as mercury, arsenic, copper and silver have been used in various forms as antimicrobials for thousands of years with until recently, little understanding of their mode of action. The discovery of antibiotics and new organic antimicrobial compounds during the twentieth century saw a general decline in the clinical use of antimicrobial metal compounds, with the exception of the rediscovery of the use of silver for burns treatments and niche uses for other metal compounds. Antibiotics and new antimicrobials were regarded as being safer for the patient and more effective than the metal-based compounds they supplanted. Bacterial metal ion resistances were first discovered in the second half of the twentieth century. The detailed mechanisms of resistance have now been characterized in a wide range of bacteria. As the use of antimicrobial metals is limited, it is legitimate to ask: are antimicrobial metal resistances in pathogenic and commensal bacteria important now? This review details the new, rediscovered and 'never went away' uses of antimicrobial metals; examines the prevalence and linkage of antimicrobial metal resistance genes to other antimicrobial resistance genes; and examines the evidence for horizontal transfer of these genes between bacteria. Finally, we discuss the possible implications of the widespread dissemination of these resistances on re-emergent uses of antimicrobial metals and how this could impact upon the antibiotic resistance problem.
Collapse
Affiliation(s)
- Jon L Hobman
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Lisa C Crossman
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
17
|
Kang YS, Shi Z, Bothner B, Wang G, McDermott TR. Involvement of the Acr3 and DctA anti-porters in arsenite oxidation in Agrobacterium tumefaciens 5A. Environ Microbiol 2014; 17:1950-62. [PMID: 24674103 DOI: 10.1111/1462-2920.12468] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 03/22/2014] [Indexed: 12/01/2022]
Abstract
Microbial arsenite (AsIII) oxidation forms a critical piece of the arsenic cycle in nature, though our understanding of how and why microorganisms oxidize AsIII remains rudimentary. Our model organism Agrobacterium tumefaciens 5A contains two distinct ars operons (ars1 and ars2) that are similar in their coding region content. The ars1 operon is located nearby the aio operon that is essential for AsIII oxidation. The AsIII/H(+) anti-porters encoded by acr3-1 and acr3-2 are required for maximal AsIII and antimonite (SbIII) resistance, but acr3-1 (negatively regulated by ArsR-1) appears more active in this regard and also required for AsIII oxidation and expression of aioBA. A malate-phosphate anti-porter DctA is regulated by RpoN and AsIII, and is required for normal growth with malate as a sole carbon source. Qualitatively, a ΔdctA mutant was normal for AsIII oxidation and AsIII/SbIII resistance at metalloid concentrations inhibitory to the Δacr3-1 mutant; however, aioBA induction kinetics was significantly phase-shift delayed. Acr3 involvement in AsIII/SbIII resistance is reasonably well understood, but the role of Acr3 and DctA anti-porters in AsIII oxidation and its regulation is unexpected, and suggests that controlled AsIII trafficking across the cytoplasmic membrane is important to a process understood to occur in the periplasm.
Collapse
Affiliation(s)
- Yoon-Suk Kang
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, 59717, USA
| | - Zunji Shi
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, 59717, USA.,State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Timothy R McDermott
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, 59717, USA
| |
Collapse
|
18
|
Yamamura S, Watanabe K, Suda W, Tsuboi S, Watanabe M. Effect of antibiotics on redox transformations of arsenic and diversity of arsenite-oxidizing bacteria in sediment microbial communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 48:350-357. [PMID: 24328206 DOI: 10.1021/es403971s] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In the present study, we investigated the effect of antibiotics on microbial arsenate (As(V)) reduction and arsenite (As(III)) oxidation in sediments collected from a small pond and eutrophic lake. The As(V)-reducing activities were less susceptible to chloramphenicol in aerobic conditions than in anaerobic conditions. Aerobic As(V) reduction proceeded in the presence of diverse types of antibiotics, suggesting that As-resistant bacteria are widely antibiotic resistant. In contrast, some antibiotics, e.g., chloramphenicol, strongly inhibited aerobic As(III) oxidation. In addition, bacterial As(III) oxidase genes were scarcely amplified and Proteobacteria -related 16S rRNA genes drastically decreased in chloramphenicol-amended cultures. Erythromycin and lincomycin, which successfully target many Gram-positive bacteria, scarcely affected As(III) oxidation, although they decreased the diversity of As(III) oxidase genes. These results indicate that the aerobic As(III) oxidizers in the sediment cultures are mainly composed of Proteobacteria and are more sensitive to certain types of antibiotics than the aerobic As(V) reducers. Our results suggest that antibiotic disturbance of environmental microbial communities may affect the biogeochemical cycle of As.
Collapse
Affiliation(s)
- Shigeki Yamamura
- Center for Regional Environmental Research, National Institute for Environmental Studies , 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | | | | | | | | |
Collapse
|
19
|
Noormohamed A, Fakhr MK. Arsenic resistance and prevalence of arsenic resistance genes in Campylobacter jejuni and Campylobacter coli isolated from retail meats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:3453-64. [PMID: 23965921 PMCID: PMC3774448 DOI: 10.3390/ijerph10083453] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/02/2013] [Accepted: 07/29/2013] [Indexed: 11/30/2022]
Abstract
Studies that investigate arsenic resistance in the foodborne bacterium Campylobacter are limited. A total of 552 Campylobacter isolates (281 Campylobacter jejuni and 271 Campylobacter coli) isolated from retail meat samples were subjected to arsenic resistance profiling using the following arsenic compounds: arsanilic acid (4–2,048 μg/mL), roxarsone (4–2048 μg/mL), arsenate (16–8,192 μg/mL) and arsenite (4–2,048 μg/mL). A total of 223 of these isolates (114 Campylobacter jejuni and 109 Campylobacter coli) were further analyzed for the presence of five arsenic resistance genes (arsP, arsR, arsC, acr3, and arsB) by PCR. Most of the 552 Campylobacter isolates were able to survive at higher concentrations of arsanilic acid (512–2,048 μg/mL), roxarsone (512–2,048 μg/mL), and arsenate (128–1,024 μg/mL), but at lower concentrations for arsenite (4–16 μg/mL). Ninety seven percent of the isolates tested by PCR showed the presence of arsP and arsR genes. While 95% of the Campylobacter coli isolates contained a larger arsenic resistance operon that has all of the four genes (arsP, arsR, arsC and acr3), 85% of the Campylobacter jejuni isolates carried the short operon (arsP, and arsR). The presence of arsC and acr3 did not significantly increase arsenic resistance with the exception of conferring resistance to higher concentrations of arsenate to some Campylobacter isolates. arsB was prevalent in 98% of the tested Campylobacter jejuni isolates, regardless of the presence or absence of arsC and acr3, but was completely absent in Campylobacter coli. To our knowledge, this is the first study to determine arsenic resistance and the prevalence of arsenic resistance genes in such a large number of Campylobacter isolates.
Collapse
Affiliation(s)
- Aneesa Noormohamed
- Department of Biological Science, The University of Tulsa, Tulsa, OK 74104, USA.
| | | |
Collapse
|
20
|
Zheng W, Scifleet J, Yu X, Jiang T, Zhang R. Function of arsATorf7orf8 of Bacillus sp. CDB3 in arsenic resistance. J Environ Sci (China) 2013; 25:1386-1392. [PMID: 24218851 DOI: 10.1016/s1001-0742(12)60154-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Bacillus sp. CDB3 isolated from an arsenic contaminated cattle dip site possesses an uncommon arsenic resistance (ars) operon bearing eight genes in the order of arsRYCDATorf7orf8. We investigated the functions of arsA, arsT, orf7 and orf8 in arsenic resistance using a plasmid-based gene knockout approach in the ars gene deficient Escherichia coli strain AW3110. The CDB3 arsA gene was shown to play a significant role in resistance, suggesting that the encoded ArsA may couple with the arsenite transporter, forming an ArsAY complex that can enhance arsenite extrusion efficiency. The disruption of either arsTor orf7 was not observed to affect arsenic resistance in the heterologous E. coli host, but their involvement in arsenic resistance can not be excluded. The orf8 gene is predicted to encode a putative dual-specificity protein phosphatase which also shares certain homology to arsenate reductases. The function loss of orf8 resulted in a remarkable decrease in resistance to arsenate, though not arsenite. To examine if this effect was due to the reduction of arsenate by orf8, the arsC gene within the 8-gene operon was disrupted. The resulting abolishment of arsenate resistance suggests that the involvement of orf8 in arsenic resistance is not via reductase activity.
Collapse
Affiliation(s)
- Wei Zheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| | | | | | | | | |
Collapse
|
21
|
Kruger MC, Bertin PN, Heipieper HJ, Arsène-Ploetze F. Bacterial metabolism of environmental arsenic--mechanisms and biotechnological applications. Appl Microbiol Biotechnol 2013; 97:3827-41. [PMID: 23546422 DOI: 10.1007/s00253-013-4838-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/05/2013] [Accepted: 03/06/2013] [Indexed: 01/13/2023]
Abstract
Arsenic causes threats for environmental and human health in numerous places around the world mainly due to its carcinogenic potential at low doses. Removing arsenic from contaminated sites is hampered by the occurrence of several oxidation states with different physicochemical properties. The actual state of arsenic strongly depends on its environment whereby microorganisms play important roles in its geochemical cycle. Due to its toxicity, nearly all organisms possess metabolic mechanisms to resist its hazardous effects, mainly by active extrusion, but also by extracellular precipitation, chelation, and intracellular sequestration. Some microbes are even able to actively use various arsenic compounds in their metabolism, either as an electron donor or as a terminal electron acceptor for anaerobic respiration. Some microorganisms can also methylate inorganic arsenic, probably as a resistance mechanism, or demethylate organic arsenicals. Bioavailability of arsenic in water and sediments is strongly influenced by such microbial activities. Therefore, understanding microbial reactions to arsenic is of importance for the development of technologies for improved bioremediation of arsenic-contaminated waters and environments. This review gives an overview of the current knowledge on bacterial interactions with arsenic and on biotechnologies for its detoxification and removal.
Collapse
Affiliation(s)
- Martin C Kruger
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | | | | | | |
Collapse
|
22
|
Eppinger M, Radnedge L, Andersen G, Vietri N, Severson G, Mou S, Ravel J, Worsham PL. Novel plasmids and resistance phenotypes in Yersinia pestis: unique plasmid inventory of strain Java 9 mediates high levels of arsenic resistance. PLoS One 2012; 7:e32911. [PMID: 22479347 PMCID: PMC3316555 DOI: 10.1371/journal.pone.0032911] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 02/06/2012] [Indexed: 12/21/2022] Open
Abstract
Growing evidence suggests that the plasmid repertoire of Yersinia pestis is not restricted to the three classical virulence plasmids. The Java 9 strain of Y. pestis is a biovar Orientalis isolate obtained from a rat in Indonesia. Although it lacks the Y. pestis-specific plasmid pMT, which encodes the F1 capsule, it retains virulence in mouse and non-human primate animal models. While comparing diverse Y. pestis strains using subtractive hybridization, we identified sequences in Java 9 that were homologous to a Y. enterocolitica strain carrying the transposon Tn2502, which is known to encode arsenic resistance. Here we demonstrate that Java 9 exhibits high levels of arsenic and arsenite resistance mediated by a novel promiscuous class II transposon, named Tn2503. Arsenic resistance was self-transmissible from Java 9 to other Y. pestis strains via conjugation. Genomic analysis of the atypical plasmid inventory of Java 9 identified pCD and pPCP plasmids of atypical size and two previously uncharacterized cryptic plasmids. Unlike the Tn2502-mediated arsenic resistance encoded on the Y. enterocolitica virulence plasmid; the resistance loci in Java 9 are found on all four indigenous plasmids, including the two novel cryptic plasmids. This unique mobilome introduces more than 105 genes into the species gene pool. The majority of these are encoded by the two entirely novel self-transmissible plasmids, which show partial homology and synteny to other enterics. In contrast to the reductive evolution in Y. pestis, this study underlines the major impact of a dynamic mobilome and lateral acquisition in the genome evolution of the plague bacterium.
Collapse
Affiliation(s)
- Mark Eppinger
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
| | - Lyndsay Radnedge
- Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Gary Andersen
- Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Nicholas Vietri
- United States Army Medical Research Institute of Infectious Diseases, Bacteriology Division, Fort Detrick, Maryland, United States of America
| | - Grant Severson
- United States Army Medical Research Institute of Infectious Diseases, Bacteriology Division, Fort Detrick, Maryland, United States of America
| | - Sherry Mou
- United States Army Medical Research Institute of Infectious Diseases, Bacteriology Division, Fort Detrick, Maryland, United States of America
| | - Jacques Ravel
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
| | - Patricia L. Worsham
- United States Army Medical Research Institute of Infectious Diseases, Bacteriology Division, Fort Detrick, Maryland, United States of America
| |
Collapse
|
23
|
Hervás M, López-Maury L, León P, Sánchez-Riego AM, Florencio FJ, Navarro JA. ArsH from the cyanobacterium Synechocystis sp. PCC 6803 is an efficient NADPH-dependent quinone reductase. Biochemistry 2012; 51:1178-87. [PMID: 22304305 DOI: 10.1021/bi201904p] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cyanobacterium Synechocystis sp. PCC 6803 possesses an arsenic resistance operon that encodes, among others, an ArsH protein. ArsH is a flavin mononucleotide (FMN)-containing protein of unknown function and a member of the family of NADPH-dependent FMN reductases. The nature of its final electron acceptor and the role of ArsH in the resistance to arsenic remained to be clarified. Here we have expressed and purified Synechocystis ArsH and conducted an intensive biochemical study. We present kinetic evidence supporting a quinone reductase activity for ArsH, with a preference for quinones with hydrophobic substituents. By using steady-state activity measurements, as well as stopped-flow and laser-flash photolysis kinetic analyses, it has been possible to establish the mechanism of the process and estimate the values of the kinetic constants. Although the enzyme is able to stabilize the anionic semiquinone form of the FMN, reduction of quinones involves the hydroquinone form of the flavin cofactor, and the enzymatic reaction occurs through a ping-pong-type mechanism. ArsH is able to catalyze one-electron reactions (oxygen and cytocrome c reduction), involving the FMN semiquinone form, but with lower efficiency. In addition, arsH mutants are sensitive to the oxidizing agent menadione, suggesting that ArsH plays a role in the response to oxidative stress caused by arsenite.
Collapse
Affiliation(s)
- Manuel Hervás
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, cicCartuja, Américo Vespucio 49, 41092 Seville, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Bhat S, Luo X, Xu Z, Liu L, Zhang R. Bacillus sp. CDB3 isolated from cattle dip-sites possesses two ars gene clusters. J Environ Sci (China) 2011; 23:95-101. [PMID: 21476346 DOI: 10.1016/s1001-0742(10)60378-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Contamination of soil and water by arsenic is a global problem. In Australia, the dipping of cattle in arsenic-containing solution to control cattle ticks in last centenary has left many sites heavily contaminated with arsenic and other toxicants. We had previously isolated five soil bacterial strains (CDB1-5) highly resistant to arsenic. To understand the resistance mechanism, molecular studies have been carried out. Two chromosome-encoded arsenic resistance (ars) gene clusters have been cloned from CDB3 (Bacillus sp.). They both function in Escherichia coli and cluster 1 exerts a much higher resistance to the toxic metalloid. Cluster 2 is smaller possessing four open reading frames (ORFs) arsRorf2BC, similar to that identified in Bacillus subtilis Skin element. Among the eight ORFs in cluster 1 five are analogs of common ars genes found in other bacteria, however, organized in a unique order arsRBCDA instead of arsRDABC. Three other putative genes are located directly downstream and designated as arsTIP based on the homologies of their theoretical translation sequences respectively to thioredoxin reductases, iron-sulphur cluster proteins and protein phosphatases. The latter two are novel of any known ars operons. The arsD gene from Bacillus species was cloned for the first time and the predict protein differs from the well studied E. coli ArsD by lacking two pairs of C-terminal cysteine residues. Its functional involvement in arsenic resistance has been confirmed by a deletion experiment. There exists also an inverted repeat in the intergenic region between arsC and arsD implying some unknown transcription regulation.
Collapse
Affiliation(s)
- Somanath Bhat
- School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia.
| | | | | | | | | |
Collapse
|
25
|
García-Fernández A, Carattoli A. Plasmid double locus sequence typing for IncHI2 plasmids, a subtyping scheme for the characterization of IncHI2 plasmids carrying extended-spectrum beta-lactamase and quinolone resistance genes. J Antimicrob Chemother 2010; 65:1155-61. [PMID: 20356905 DOI: 10.1093/jac/dkq101] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES IncHI2 plasmids are frequently encountered in clinical enterobacterial strains associated with the dissemination of relevant antimicrobial resistance genes. These plasmids are usually >250 kb, and technical difficulties can impair plasmid DNA purification and comparison by restriction fragment length polymorphism. We analysed the available IncHI2 whole DNA plasmid sequences to devise a rapid typing scheme to categorize the members of this plasmid family into homogeneous groups. METHODS We compared the available full IncHI2 plasmid sequences, identifying conserved and variable regions within the backbone of this plasmid family, to devise an IncHI2 typing method based on sequence typing and multiplex PCRs. A collection of IncHI2 plasmids carrying extended-spectrum beta-lactamase and quinolone resistance genes, identified in strains from different sources (animals and humans) and geographical origins, was tested by these typing systems. RESULTS We devised a plasmid double locus sequence typing (pDLST) scheme and a multiplex PCR discriminating IncHI2 plasmid variants. These systems were tested on a collection of IncHI2 plasmids, demonstrating that the plasmids carrying blaCTX-M-2 and blaCTX-M-9 belonged to two major plasmid variants, which were highly conserved among different enterobacterial species disseminated in several European countries. CONCLUSIONS The ability to recognize and subcategorize plasmids by pDLST in homogeneous groups on the basis of their phylogenetic relatedness can be helpful to analyse their distribution in nature and to discover of their evolutionary origin.
Collapse
Affiliation(s)
- Aurora García-Fernández
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | |
Collapse
|
26
|
Ryan MP, Pembroke JT, Adley CC. Novel Tn4371-ICE like element in Ralstonia pickettii and genome mining for comparative elements. BMC Microbiol 2009; 9:242. [PMID: 19941653 PMCID: PMC2789088 DOI: 10.1186/1471-2180-9-242] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 11/26/2009] [Indexed: 11/22/2022] Open
Abstract
Background Integrative Conjugative Elements (ICEs) are important factors in the plasticity of microbial genomes. An element related to the ICE Tn4371 was discovered during a bioinformatic search of the Ralstonia pickettii 12J genome. This element was analysed and further searches carried out for additional elements. A PCR method was designed to detect and characterise new elements of this type based on this scaffold and a culture collection of fifty-eight Ralstonia pickettii and Ralstonia insidiosa strains were analysed for the presence of the element. Results Comparative sequence analysis of bacterial genomes has revealed the presence of a number of uncharacterised Tn4371-like ICEs in the genomes of several β and γ- Proteobacteria. These elements vary in size, GC content, putative function and have a mosaic-like structure of plasmid- and phage-like sequences which is typical of Tn4371-like ICEs. These elements were found after a through search of the GenBank database. The elements, which are found in Ralstonia, Delftia, Acidovorax, Bordetella, Comamonas, Acidovorax, Congregibacter, Shewanella, Pseudomonas Stenotrophomonas, Thioalkalivibrio sp. HL-EbGR7, Polaromonas, Burkholderia and Diaphorobacter sp. share a common scaffold. A PCR method was designed (based on the Tn4371- like element detected in the Ralstonia pickettii 12J genome) to detect and characterise new elements of this type. Conclusion All elements found in this study possess a common scaffold of core genes but contain different accessory genes. A new uniform nomenclature is suggested for ICEs of the Tn4371 family. Two novel Tn4371-like ICE were discovered and characterised, using the novel PCR method described in two different isolates of Ralstonia pickettii from laboratory purified water.
Collapse
Affiliation(s)
- Michael P Ryan
- Microbiology Laboratory, Department of Chemical and Environmental Sciences, University of Limerick, Limerick, Ireland.
| | | | | |
Collapse
|
27
|
Branco R, Chung AP, Morais PV. Sequencing and expression of two arsenic resistance operons with different functions in the highly arsenic-resistant strain Ochrobactrum tritici SCII24T. BMC Microbiol 2008; 8:95. [PMID: 18554386 PMCID: PMC2440759 DOI: 10.1186/1471-2180-8-95] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 06/13/2008] [Indexed: 11/16/2022] Open
Abstract
Background Arsenic (As) is a natural metalloid, widely used in anthropogenic activities, that can exist in different oxidation states. Throughout the world, there are several environments contaminated with high amounts of arsenic where many organisms can survive. The most stable arsenical species are arsenate and arsenite that can be subject to chemically and microbiologically oxidation, reduction and methylation reactions. Organisms surviving in arsenic contaminated environments can have a diversity of mechanisms to resist to the harmful effects of arsenical compounds. Results The highly metal resistant Ochrobactrum tritici SCII24 was able to grow in media with arsenite (50 mM), arsenate (up to 200 mM) and antimonite (10 mM). This strain contains two arsenic and antimony resistance operons (ars1 and ars2), which were cloned and sequenced. Sequence analysis indicated that ars1 operon contains five genes encoding the following proteins: ArsR, ArsD, ArsA, CBS-domain-containing protein and ArsB. The ars2 operon is composed of six genes that encode two other ArsR, two ArsC (belonging to different families of arsenate reductases), one ACR3 and one ArsH-like protein. The involvement of ars operons in arsenic resistance was confirmed by cloning both of them in an Escherichia coli ars-mutant. The ars1 operon conferred resistance to arsenite and antimonite on E. coli cells, whereas the ars2 operon was also responsible for resistance to arsenite and arsenate. Although arsH was not required for arsenate resistance, this gene seems to be important to confer high levels of arsenite resistance. None of ars1 genes were detected in the other type strains of genus Ochrobactrum, but sequences homologous with ars2 operon were identified in some strains. Conclusion A new strategy for bacterial arsenic resistance is described in this work. Two operons involved in arsenic resistance, one giving resistance to arsenite and antimonite and the other giving resistance to arsenate were found in the same bacterial strain.
Collapse
Affiliation(s)
- Rita Branco
- IMAR-Laboratory of Microbiology 3004-517 Coimbra, Portugal.
| | | | | |
Collapse
|
28
|
Ye J, Yang HC, Rosen BP, Bhattacharjee H. Crystal structure of the flavoprotein ArsH from Sinorhizobium meliloti. FEBS Lett 2007; 581:3996-4000. [PMID: 17673204 PMCID: PMC1989112 DOI: 10.1016/j.febslet.2007.07.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 07/06/2007] [Accepted: 07/12/2007] [Indexed: 10/23/2022]
Abstract
Purified ArsH from Sinorhizobium meliloti exhibits NADPH:FMN-dependent reduction of molecular O2 to hydrogen peroxide and catalyzes reduction of azo dyes. The structure of ArsH was determined at 1.8A resolution. ArsH crystallizes with eight molecules in the asymmetric unit forming two tetramers. Each monomer has a core domain with a central five-stranded parallel beta-sheet and two monomers interact to form a classical flavodoxin-like dimer. The N- and C-terminal extensions of ArsH are involved in interactions between subunits and tetramer formation. The structure may provide insight in how ArsH participates in arsenic detoxification.
Collapse
Affiliation(s)
| | - Hung-Chi Yang
- Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA
| | - Barry P. Rosen
- Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA
| | | |
Collapse
|
29
|
García A, Navarro F, Miró E, Villa L, Mirelis B, Coll P, Carattoli A. Acquisition and diffusion of bla CTX-M-9 gene by R478-IncHI2 derivative plasmids. FEMS Microbiol Lett 2007; 271:71-7. [PMID: 17391369 DOI: 10.1111/j.1574-6968.2007.00695.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Escherichia coli and Salmonella enterica isolates carrying the bla(CTX-M-9) gene located on plasmids prevailed at the Hospital de la Santa Creu i Sant Pau, Barcelona, Spain in the 1996-1999 period. The bla(CTX-M-9)-carrying plasmids showed a great variability in size, suggesting the mobilization of the gene among different plasmid scaffolds. The aim of the present work was to identify and better characterize the plasmids involved in the spread of the bla(CTX-M-9) gene. Results showed that the majority of these strains carried plasmids belonging to the IncHI2 incompatibility group. The IncHI2 plasmids were further characterized, and found to be related to the reference IncHI2 plasmid R478.
Collapse
Affiliation(s)
- Aurora García
- Servei de Microbiologia, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
30
|
Kane SR, Chakicherla AY, Chain PSG, Schmidt R, Shin MW, Legler TC, Scow KM, Larimer FW, Lucas SM, Richardson PM, Hristova KR. Whole-genome analysis of the methyl tert-butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1. J Bacteriol 2007; 189:1931-45. [PMID: 17158667 PMCID: PMC1855728 DOI: 10.1128/jb.01259-06] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 11/29/2006] [Indexed: 11/20/2022] Open
Abstract
Methylibium petroleiphilum PM1 is a methylotroph distinguished by its ability to completely metabolize the fuel oxygenate methyl tert-butyl ether (MTBE). Strain PM1 also degrades aromatic (benzene, toluene, and xylene) and straight-chain (C(5) to C(12)) hydrocarbons present in petroleum products. Whole-genome analysis of PM1 revealed an approximately 4-Mb circular chromosome and an approximately 600-kb megaplasmid, containing 3,831 and 646 genes, respectively. Aromatic hydrocarbon and alkane degradation, metal resistance, and methylotrophy are encoded on the chromosome. The megaplasmid contains an unusual t-RNA island, numerous insertion sequences, and large repeated elements, including a 40-kb region also present on the chromosome and a 29-kb tandem repeat encoding phosphonate transport and cobalamin biosynthesis. The megaplasmid also codes for alkane degradation and was shown to play an essential role in MTBE degradation through plasmid-curing experiments. Discrepancies between the insertion sequence element distribution patterns, the distributions of best BLASTP hits among major phylogenetic groups, and the G+C contents of the chromosome (69.2%) and plasmid (66%), together with comparative genome hybridization experiments, suggest that the plasmid was recently acquired and apparently carries the genetic information responsible for PM1's ability to degrade MTBE. Comparative genomic hybridization analysis with two PM1-like MTBE-degrading environmental isolates (approximately 99% identical 16S rRNA gene sequences) showed that the plasmid was highly conserved (ca. 99% identical), whereas the chromosomes were too diverse to conduct resequencing analysis. PM1's genome sequence provides a foundation for investigating MTBE biodegradation and exploring the genetic regulation of multiple biodegradation pathways in M. petroleiphilum and other MTBE-degrading beta-proteobacteria.
Collapse
Affiliation(s)
- Staci R Kane
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ordóñez E, Letek M, Valbuena N, Gil JA, Mateos LM. Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032. Appl Environ Microbiol 2005; 71:6206-15. [PMID: 16204540 PMCID: PMC1266000 DOI: 10.1128/aem.71.10.6206-6215.2005] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium glutamicum is able to grow in media containing up to 12 mM arsenite and 500 mM arsenate and is one of the most arsenic-resistant microorganisms described to date. Two operons (ars1 and ars2) involved in arsenate and arsenite resistance have been identified in the complete genome sequence of Corynebacterium glutamicum. The operons ars1 and ars2 are located some distance from each other in the bacterial chromosome, but they are both composed of genes encoding a regulatory protein (arsR), an arsenite permease (arsB), and an arsenate reductase (arsC); operon ars1 contains an additional arsenate reductase gene (arsC1') located immediately downstream from arsC1. Additional arsenite permease and arsenate reductase genes (arsB3 and arsC4) scattered on the chromosome were also identified. The involvement of ars operons in arsenic resistance in C. glutamicum was confirmed by gene disruption experiments of the three arsenite permease genes present in its genome. Wild-type and arsB3 insertional mutant C. glutamicum strains were able to grow with up to 12 mM arsenite, whereas arsB1 and arsB2 C. glutamicum insertional mutants were resistant to 4 mM and 9 mM arsenite, respectively. The double arsB1-arsB2 insertional mutant was resistant to only 0.4 mM arsenite and 10 mM arsenate. Gene amplification assays of operons ars1 and ars2 in C. glutamicum revealed that the recombinant strains containing the ars1 operon were resistant to up to 60 mM arsenite, this being one of the highest levels of bacterial resistance to arsenite so far described, whereas recombinant strains containing operon ars2 were resistant to only 20 mM arsenite. Northern blot and reverse transcription-PCR analysis confirmed the presence of transcripts for all the ars genes, the expression of arsB3 and arsC4 being constitutive, and the expression of arsR1, arsB1, arsC1, arsC1', arsR2, arsB2, and arsC2 being inducible by arsenite.
Collapse
Affiliation(s)
- Efrén Ordóñez
- Area de Microbiología, Departamento de Ecología, Genética y Microbiología, Universidad de León, 24071 León, Spain
| | | | | | | | | |
Collapse
|
32
|
Gilmour MW, Thomson NR, Sanders M, Parkhill J, Taylor DE. The complete nucleotide sequence of the resistance plasmid R478: defining the backbone components of incompatibility group H conjugative plasmids through comparative genomics. Plasmid 2004; 52:182-202. [PMID: 15518875 DOI: 10.1016/j.plasmid.2004.06.006] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Indexed: 11/25/2022]
Abstract
Horizontal transfer of resistance determinants amongst bacteria can be achieved by conjugative plasmid DNA elements. We have determined the complete 274,762 bp sequence of the incompatibility group H (IncH) plasmid R478, originally isolated from the Gram negative opportunistic pathogen Serratia marcescens. This self-transferable extrachromosomal genetic element contains 295 predicted genes, of which 144 are highly similar to coding sequences of IncH plasmids R27 and pHCM1. The regions of similarity among these three IncH plasmids principally encode core plasmid determinants (i.e., replication, partitioning and stability, and conjugative transfer) and we conducted a comparative analysis to define the minimal IncHI plasmid backbone determinants. No resistance determinants are included in the backbone and most of the sequences unique to R478 were contained in a large contiguous region between the two transfer regions. These findings indicate that plasmid evolution occurs through gene acquisition/loss predominantly in regions outside of the core determinants. Furthermore, a modular evolution for R478 was signified by the presence of gene neighbors or operons that were highly related to sequences from a wide range of chromosomal, transposon, and plasmid elements. The conjugative transfer regions are most similar to sequences encoded on SXT, Rts1, pCAR1, R391, and pRS241d. The dual partitioning modules encoded on R478 resemble numerous sequences; including pMT1, pCTX-M3, pCP301, P1, P7, and pB171. R478 also codes for resistance to tetracycline (Tn10), chloramphenicol (cat), kanamycin (aphA), mercury (similar to Tn21), silver (similar to pMG101), copper (similar to pRJ1004), arsenic (similar to pYV), and tellurite (two separate regions similar to IncHI2 ter determinants and IncP kla determinants). Other R478-encoded sequences are related to Tn7, IS26, tus, mucAB, and hok, where the latter is surrounded by insLKJ, and could potentially be involved in post-segregation killing. The similarity to a diverse set of bacterial sequences highlights the ability of horizontally transferable DNA elements to acquire and disseminate genetic traits through the bacterial gene pool.
Collapse
Affiliation(s)
- Matthew W Gilmour
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alta., Canada T6G 2R3
| | | | | | | | | |
Collapse
|
33
|
Sun Y, Polishchuk EA, Radoja U, Cullen WR. Identification and quantification of arsC genes in environmental samples by using real-time PCR. J Microbiol Methods 2004; 58:335-49. [PMID: 15279938 DOI: 10.1016/j.mimet.2004.04.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 04/24/2004] [Accepted: 04/26/2004] [Indexed: 11/24/2022]
Abstract
The arsC gene is responsible for the first step in arsenate biotransformation encoding the enzyme arsenate reductase. The quantitative real-time PCR method was developed to quantify the abundance of the arsC genes in environmental samples contaminated with arsenic. Two sets of primers that showed high specificity for the target arsC gene were designed based on consensus sequences from 13 bacterial species. The arsC gene was used as an external standard instead of total DNA in the calibration curve for real-time PCR, which was linear over six orders of magnitude and the detection limit was estimated to be about three copies of the gene. Soil samples from arsenic contaminated sites were screened for arsC genes by using PCR and showed the presence of this gene. The copy numbers of the gene ranging from 0.88 x 10(4) to 1.56 x 10(5) per ng total DNA were found in eight arsenic contaminated samples. Soil samples from a bioreactor containing pulp mill biomass and high concentration of arsenate showed a tenfold higher count of arsC gene copies than soil samples collected underground from an arsenic-rich gold mine.
Collapse
Affiliation(s)
- Yongmei Sun
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | | | | | | |
Collapse
|
34
|
Li R, Haile JD, Kennelly PJ. An arsenate reductase from Synechocystis sp. strain PCC 6803 exhibits a novel combination of catalytic characteristics. J Bacteriol 2004; 185:6780-9. [PMID: 14617642 PMCID: PMC262706 DOI: 10.1128/jb.185.23.6780-6789.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The deduced protein product of open reading frame slr0946 from Synechocystis sp. strain PCC 6803, SynArsC, contains the conserved sequence features of the enzyme superfamily that includes the low-molecular-weight protein-tyrosine phosphatases and the Staphylococcus aureus pI258 ArsC arsenate reductase. The recombinant protein product of slr0946, rSynArsC, exhibited vigorous arsenate reductase activity (V(max) = 3.1 micro mol/min. mg), as well as weak phosphatase activity toward p-nitrophenyl phosphate (V(max) = 0.08 micro mol/min. mg) indicative of its phosphohydrolytic ancestry. pI258 ArsC from S. aureus is the prototype of one of three distinct families of detoxifying arsenate reductases. The prototypes of the others are Acr2p from Saccharomyces cerevisiae and R773 ArsC from Escherichia coli. All three have converged upon catalytic mechanisms involving an arsenocysteine intermediate. While SynArsC is homologous to pI258 ArsC, its catalytic mechanism exhibited a unique combination of features. rSynArsC employed glutathione and glutaredoxin as the source of reducing equivalents, like Acr2p and R773 ArsC, rather than thioredoxin, as does the S. aureus enzyme. As postulated for Acr2p and R773 ArsC, rSynArsC formed a covalent complex with glutathione in an arsenate-dependent manner. rSynArsC contains three essential cysteine residues like pI258 ArsC, whereas the yeast and E. coli enzymes require only one cysteine for catalysis. As in the S. aureus enzyme, these "extra" cysteines apparently shuttle a disulfide bond to the enzyme's surface to render it accessible for reduction. SynArsC and pI258 ArsC thus appear to represent alternative branches in the evolution of their shared phosphohydrolytic ancestor into an agent of arsenic detoxification.
Collapse
Affiliation(s)
- Renhui Li
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | |
Collapse
|