1
|
Long H, Tian Y, Zhang D, Li L, Hao R, Li H, Wang C, Ru X, Deng Q, Huang Y, Zhu C. Synergistic integration of transcriptomics and metabolomics analyses provides novel insights into the mechanisms underlying unsynchronized growth of greater amberjack (Seriola dumerili). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101441. [PMID: 39961181 DOI: 10.1016/j.cbd.2025.101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/20/2025] [Accepted: 02/07/2025] [Indexed: 03/12/2025]
Abstract
Greater amberjack (Seriola dumerili) has a significant value in the global aquaculture industry because of its adaptive traits and rapid growth rate. However, the unsynchronized growth of greater amberjack poses challenges in its cultivation, and the molecular mechanisms underlying it remain unclear. In the current study, greater amberjack individuals showing growth differences were collected and subjected to transcriptomics and metabolomics analyses. Metabolomics analysis revealed 164 and 206 significantly different metabolites (SDMs) in the positive ion mode (POS) and negative ion mode (NEG) of liquid chromatography-tandem mass spectrometry (LC-MS/MS), respectively (VIP > 1 and P < 0.05). Transcriptomics analysis confirmed 534 differentially expressed genes (DEGs), with |log2FC| > 1 and false discovery rate (FDR) < 0.05. A total of 87 enriched pathways were identified by integrated metabolomics and transcriptomics analyses and exhibited that fast-growing group (FG) hold enhanced digestive and anabolic capacities, superior glycine synthesis capability, strong feeding behavior, and high skeletal biomineralization activity, while the slow-growing group (SG) consumed additional energy to cope with environmental stress, and growth was hindered during the generation of immune responses. These results revealed the underlying molecular mechanisms of unsynchronized growth in S. dumerili, and promoted the selection process for growth traits.
Collapse
Affiliation(s)
- Hongzhao Long
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China
| | - Yali Tian
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China
| | - Dongying Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China
| | - Liancheng Li
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China
| | - Ruijuan Hao
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China.
| | - Hang Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China
| | - Chen Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China
| | - Xiaoying Ru
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China
| | - Qiuxia Deng
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China
| | - Yang Huang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang 524088, China
| | - Chunhua Zhu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang 524088, China.
| |
Collapse
|
2
|
Porras-Rivera G, Górski K, Colin N. Behavioral biomarkers in fishes: A non-lethal approach to assess the effects of chemical pollution on freshwater ecosystems. ENVIRONMENTAL RESEARCH 2024; 260:119607. [PMID: 39002628 DOI: 10.1016/j.envres.2024.119607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
The expansion of the human population and the escalating use of chemical products pose a considerable threat to aquatic biodiversity. Consequently, there is an imperative need for the implementation of non-lethal, cost-effective, and easily deployable biomonitoring tools. In this context, fish and their behavior as biomarkers have gained prominence in monitoring of freshwater ecosystems. The aim of this study was to assess the state of art in the use of behavioral biomarkers in ecotoxicology, emphasizing their role as informative tools for global environmental monitoring. Through a systematic literature search, ninety-two articles focusing on the evaluation of behavioral changes in freshwater fish in response to pollution were identified. The most prevalent keywords were "behavior" (7%) and "zebrafish" (6%). Experiments were conducted in countries with expansive territories, such as the United States (18%) and Brazil (17%). Exotic species were primarily employed (58%), with Danio rerio (26%) being the most frequently studied species. Among pollutants, pesticides (32%) and medicines (25%) were the most frequently studied, while locomotion (38%) and social behaviors (18%) were the most frequently evaluated behaviors. Across these studies, authors consistently reported significant changes in the behavior of fish exposed to contaminants, including decreased swimming speed and compromised feeding efficiency. The review findings affirm that evaluating behavioral biomarkers in freshwater fish offers an informative, non-lethal, cost-effective, and easily implementable approach to understanding pollution impacts on freshwater ecosystems. Although few studies on behavioral biomarkers were available to date, the number has rapidly increased in recent years. Furthermore, a variety of novel approaches and study models are being included. Research into behavioral biomarkers is crucial for understanding and managing environmental risks in freshwater ecosystems. Nevertheless, further studies are needed to enhance our understanding of behavioral toxicity indicators, considering factors such as life stage, sex, and breeding season in the tested species.
Collapse
Affiliation(s)
- Geraldine Porras-Rivera
- Doctorado en Ciencias Mención Ecología y Evolución, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile; Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile
| | - Konrad Górski
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile; Facultad de Ciencias, Universidad Católica de La Santísima Concepción, Concepción, 4030000, Chile
| | - Nicole Colin
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile; Programa Austral Patagonia, Universidad Austral de Chile, Valdivia, 5090000, Chile.
| |
Collapse
|
3
|
Crawford SG, Coker RH, O’Hara TM, Breed GA, Gelatt T, Fadely B, Burkanov V, Rivera PM, Rea LD. Fasting durations of Steller sea lion pups vary among subpopulations-evidence from two plasma metabolites. CONSERVATION PHYSIOLOGY 2023; 11:coad084. [PMID: 38026798 PMCID: PMC10673819 DOI: 10.1093/conphys/coad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 08/28/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Geographic differences in population growth trends are well-documented in Steller sea lions (Eumetopias jubatus), a species of North Pacific pinniped listed under the U.S. Endangered Species Act in 1990 following a marked decline in population abundance that began during the 1970s. As population growth is intrinsically linked to pup production and survival, examining factors related to pup physiological condition provides useful information to management authorities regarding potential drivers of regional differences. During dam foraging trips, pups predictably transition among three fasting phases, distinguished by the changes in the predominant metabolic byproduct. We used standardized ranges of two plasma metabolites (blood urea nitrogen and β-hydroxybutyrate) to assign pups to fasting categories (n = 1528, 1990-2016, 12 subpopulations): Recently Fed-Phase I (digestion/assimilation-expected hepatic/muscle glycogen usage), Phase II (expected lipid utilization), transitioning between Phases II-III (expected lipid utilization with increased protein reliance), or Phase III (expected protein catabolism). As anticipated, the majority of pups were classified as Recently Fed-Phase I (overall mean proportion = 0.72) and few pups as Phase III (overall mean proportion = 0.04). By further comparing pups in Short (Recently Fed-Phase II) and Long (all other pups) duration fasts, we identified three subpopulations with significantly (P < 0.03) greater proportions of pups dependent upon endogenous sources of energy for extended periods, during a life stage of somatic growth and development: the 1) central (0.27 ± 0.09) and 2) western (0.36 ± 0.13) Aleutian Island (declining population trend) and 3) southern Southeast Alaska (0.32 ± 0.06; increasing population trend) subpopulations had greater Long fast proportions than the eastern Aleutian Islands (0.10 ± 0.05; stabilized population). Due to contrasting population growth trends among these highlighted subpopulations over the past 50+ years, both density-independent and density-dependent factors likely influence the dam foraging trip duration, contributing to longer fasting durations for pups at some rookeries.
Collapse
Affiliation(s)
- Stephanie G Crawford
- Department of Biology and Wildlife and Institute of Northern Engineering, University of Alaska Fairbanks, 1764 Tanana Loop, Fairbanks, Alaska 99775, USA
| | - Robert H Coker
- Montana Center for Work Physiology and Exercise Metabolism, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA
| | - Todd M O’Hara
- Veterinary Integrative Biosciences, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 402 Raymond Stotzer Parkway, Bldg 2, College Station, Texas 77843, USA
| | - Greg A Breed
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA
| | - Tom Gelatt
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 7600 Sand Point Way N.E., Bldg. 4, Seattle, Washington 98115, USA
| | - Brian Fadely
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 7600 Sand Point Way N.E., Bldg. 4, Seattle, Washington 98115, USA
| | - Vladimir Burkanov
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 7600 Sand Point Way N.E., Bldg. 4, Seattle, Washington 98115, USA
| | - Patricia M Rivera
- Center for Alaska Native Health Research, Institute of Arctic Biology, University of Alaska Fairbanks, 2141 Koyukuk Drive, Fairbanks, Alaska 99775, USA
| | - Lorrie D Rea
- Institute of Northern Engineering, University of Alaska Fairbanks, 1764 Tanana Loop, Fairbanks, Alaska 99775, USA
| |
Collapse
|
4
|
Bouzidi I, Sellami B, Boulanger A, Joyeux C, Harrath AH, Albeshr MF, Pacioglu O, Boufahja F, Beyrem H, Mougin K. Metallic nanoparticles affect uptake of polycyclic aromatic hydrocarbons and impacts in the Mediterranean mussels Mytilus galloprovincialis. MARINE POLLUTION BULLETIN 2023; 188:114641. [PMID: 36706550 DOI: 10.1016/j.marpolbul.2023.114641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/23/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The impact of metallic nanoparticles (NPs) on the uptake and toxicity of persistent organic pollutants by marine bivalves was assessed through a comparative laboratory study by exposing mussels to polycyclic aromatic hydrocarbon (PAHs), in the presence and absence of ZnO and TiO2 NPs. PAHs and NPs concentration was analyzed after 14 days of exposure in mussels by GC/MS and ICP/AES. Furthermore, impact on the physiology and neurotoxicity of PAHs and NPs acting alone or in mixtures were also determined. Our results confirmed the bio-uptake of PAHs and NPs by mussels. In addition, the exposure NPs-PAHs resulted in different bio-uptake profile to that of PAHs alone. The NPs and accumulation of PAHs led to disturbance of essential metals concentration and to different impact profiles in the filtration and respiration capacities as well as in the acetylcholinesterase activity. Antagonist interactions between NPs and PAHs could occur after exposure.
Collapse
Affiliation(s)
- Imen Bouzidi
- University of Carthage, Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia; Université de Strasbourg, Université de Haute Alsace, Institut de Science des Matériaux, IS2M-CNRS-UMR 7361, 15 Rue Jean Starcky, 68057 Mulhouse, France
| | - Badreddine Sellami
- Institut National des Sciences et Technologies de la Mer, Tabarka, Tunisia
| | - Anna Boulanger
- Laboratoire d'Innovation Moléculaire et Applications UMR CNRS 7042-LIMA, IRJBD Equipe Biomolécules, Synthèse et Méthodologies Université de Haute-Alsace, Université de Strasbourg, France
| | - Cecile Joyeux
- Laboratoire d'Innovation Moléculaire et Applications UMR CNRS 7042-LIMA, IRJBD Equipe Biomolécules, Synthèse et Méthodologies Université de Haute-Alsace, Université de Strasbourg, France
| | - Abdel Halim Harrath
- King Saud University, Zoology Department, College of Science, Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammed Fahad Albeshr
- King Saud University, Zoology Department, College of Science, Box 2455, Riyadh 11451, Saudi Arabia
| | - Octavian Pacioglu
- National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Fehmi Boufahja
- University of Carthage, Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia.
| | - Hamouda Beyrem
- University of Carthage, Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Karine Mougin
- Université de Strasbourg, Université de Haute Alsace, Institut de Science des Matériaux, IS2M-CNRS-UMR 7361, 15 Rue Jean Starcky, 68057 Mulhouse, France
| |
Collapse
|
5
|
Fu CW, Horng JL, Chou MY. Fish Behavior as a Neural Proxy to Reveal Physiological States. Front Physiol 2022; 13:937432. [PMID: 35910555 PMCID: PMC9326089 DOI: 10.3389/fphys.2022.937432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Behaviors are the integrative outcomes of the nervous system, which senses and responds to the internal physiological status and external stimuli. Teleosts are aquatic organisms which are more easily affected by the surrounding environment compared to terrestrial animals. To date, behavioral tests have been widely used to assess potential environmental risks using fish as model animals. In this review, we summarized recent studies regarding the effects of internal and external stimuli on fish behaviors. We concluded that behaviors reflect environmental and physiological changes, which have possible implications for environmental and physiological assessments.
Collapse
Affiliation(s)
- Chih-Wei Fu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- *Correspondence: Ming-Yi Chou,
| |
Collapse
|
6
|
Fu CW, Horng JL, Tong SK, Cherng BW, Liao BK, Lin LY, Chou MY. Exposure to silver impairs learning and social behaviors in adult zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124031. [PMID: 33265049 DOI: 10.1016/j.jhazmat.2020.124031] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/07/2020] [Accepted: 09/16/2020] [Indexed: 06/12/2023]
Abstract
Silver and silver nanoparticles are used in several consumer products, particularly sterilizing agents. Ag+ released from the particles causes physiological damages of aquatic organisms. However, the effects of silver on neural and behavioral functions of fish remain unclear. Here, we used zebrafish as a model to investigate the impacts of silver on social, learning and memory behaviors in teleost. Adult zebrafish showed mortality rates of 12.875% and 100% on 72 h exposure to 30 and ≥ 50 ppb of silver nitrate, respectively. Silver accumulation in the brain increased on exposure to 10 and 30 ppb of AgNO3. The physical fitness of the zebrafish, measured by novel tank diving test and swimming performance, decreased after 72 h incubation in 30 ppb of AgNO3. Exposure to 10 ppb of AgNO3 impaired social preference, social recognition, learning, and memory, but did not affect anxiety level, aggressiveness, and shoaling behavior. In situ hybridization of c-fos mRNA showed that AgNO3 treatment decreased neural activity in the brain areas crucial for learning, memory, and social behaviors, including the medial and dorsal zones of the dorsal telencephalic area. In conclusion, 72 h exposure to AgNO3 in a sublethal level impaired learning and social behaviors, indicating neurotoxicity in adult zebrafish.
Collapse
Affiliation(s)
- Chih-Wei Fu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Sok-Keng Tong
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Bor-Wei Cherng
- Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Bo-Kai Liao
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Li-Yih Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
7
|
Willacker JJ, Eagles-Smith CA, Blazer VS. Mercury bioaccumulation in freshwater fishes of the Chesapeake Bay watershed. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:459-484. [PMID: 32239332 DOI: 10.1007/s10646-020-02193-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Chemical contaminants are a threat to the Chesapeake Bay watershed, with mercury (Hg) among the most prevalent causes of impairment. Despite this, large-scale patterns of Hg concentrations, and the potential risks to fish, wildlife, and humans across the watershed, are poorly understood. We compiled fish Hg data from state monitoring programs and recent research efforts to address this knowledge gap and provide a comprehensive assessment of fish Hg concentrations in the watershed's freshwater habitats. The resulting dataset consisted of nearly 8000 total Hg (THg) concentrations from 600 locations. Across the watershed, fish THg concentrations spanned a 44-fold range, with mean concentrations varying by 2.6- and 8.8-fold among major sub-watersheds and individual 8-digit hydrological units, respectively. Although, mean THg concentrations tended to be moderate, fish frequently exceeded benchmarks for potential adverse health effects, with 45, 48, and 36% of all samples exceeding benchmarks for human, avian piscivore, and fish risk, respectively. Importantly, the percentage of fish exceeding these benchmarks was not uniform among species or locations. The variation in fish THg concentrations among species and sites highlights the roles of waterbody, landscape, and ecological processes in shaping broad patterns in Hg risk across the watershed. We outline an integrated Hg monitoring program that could identify key factors influencing Hg concentrations across the watershed and facilitate the implementation of management strategies to mitigate the risks posed by Hg.
Collapse
Affiliation(s)
- James J Willacker
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Collin A Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA.
| | - Vicki S Blazer
- U.S. Geological Survey, Leetown Science Center, National Fish Health Research Laboratory, 11649 Leetown Road, Kearneysville, WV, 25430, USA
| |
Collapse
|
8
|
Ward JL, Korn V, Auxier AN, Schoenfuss HL. Temperature and Estrogen Alter Predator-Prey Interactions between Fish Species. Integr Org Biol 2020; 2:obaa008. [PMID: 33791552 PMCID: PMC7671136 DOI: 10.1093/iob/obaa008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A variety of environmental estrogens are commonly detected in human-impacted waterways. Although much is known about the effects of these environmental estrogens on the reproductive physiology and behavior of individuals within species, comparatively less is known about how these compounds alter the outcomes of interactions between species. Furthermore, few studies have considered how the effects of contaminants are modulated by natural variation in abiotic factors, such as temperature. To help fill this knowledge gap, we conducted a factorial experiment to examine the independent and combined effects of estrone (E1) and temperature on the outcome of predator-prey interactions between two common North American freshwater fishes, fathead minnows (Pimephales promelas) and bluegill sunfish (Lepomis macrochirus). Larval fathead minnows and adult sunfish were exposed to either a low (mean±standard deviation, 90.1 ± 18 ng/L; n = 16) or high (414 ± 147 ng/L; n = 15) concentration of E1 or to a solvent control for 30 days at one of four natural seasonal temperatures (15°C, 18°C, 21°C, and 24°C) before predation trials were performed. Exposure to E1 was associated with a significant increase in larval predation mortality that was independent of temperature. Across all temperature treatments, approximately 74% of control minnows survived; this survivorship significantly exceeded that of minnows exposed to either concentration of E1 (49% and 53% for minnows exposed to the low and high concentrations, respectively). However, exposure to E1 also impaired the prey-capture success of sunfish, partially mitigating predation pressure on exposed minnows. Overall prey-capture success by sunfish showed an inverted U-shaped distribution with temperature, with maximal prey consumption occurring at 21°C. This study illustrates the vulnerability of organismal interactions to estrogenic pollutants and highlights the need to include food web interactions in assessments of risk.
Collapse
Affiliation(s)
- J L Ward
- Department of Biology, Ball State University, 2111 W Riverside Ave, Muncie, IN 47306, USA
| | - V Korn
- Aquatic Toxicology Laboratory, Department of Biology, St. Cloud State University, 720 4th Avenue South, St Cloud, MN 56301, USA
| | - A N Auxier
- Department of Biology, Ball State University, 2111 W Riverside Ave, Muncie, IN 47306, USA
| | - H L Schoenfuss
- Aquatic Toxicology Laboratory, Department of Biology, St. Cloud State University, 720 4th Avenue South, St Cloud, MN 56301, USA
| |
Collapse
|
9
|
Yang L, Zhang Y, Wang F, Luo Z, Guo S, Strähle U. Toxicity of mercury: Molecular evidence. CHEMOSPHERE 2020; 245:125586. [PMID: 31881386 DOI: 10.1016/j.chemosphere.2019.125586] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/28/2019] [Accepted: 12/08/2019] [Indexed: 05/25/2023]
Abstract
Minamata disease in Japan and the large-scale poisoning by methylmercury (MeHg) in Iraq caused wide public concerns about the risk emanating from mercury for human health. Nowadays, it is widely known that all forms of mercury induce toxic effects in mammals, and increasing evidence supports the concern that environmentally relevant levels of MeHg could impact normal biological functions in wildlife. The information of mechanism involved in mercurial toxicity is growing but knowledge gaps still exist between the adverse effects and mechanisms of action, especially at the molecular level. A body of data obtained from experimental studies on mechanisms of mercurial toxicity in vivo and in vitro points to that disruption of the antioxidant system may play an important role in the mercurial toxic effects. Moreover, the accumulating evidence indicates that signaling transduction, protein or/and enzyme activity, and gene regulation are involving in mediating toxic and adaptive response to mercury exposure. We conducted here a comprehensive review of mercurial toxic effects on wildlife and human, in particular synthesized key findings of molecular pathways involved in mercurial toxicity from the cells to human. We discuss the molecular evidence related mercurial toxicity to the adverse effects, with particular emphasis on the gene regulation. The further studies relying on Omic analysis connected to adverse effects and modes of action of mercury will aid in the evaluation and validation of causative relationship between health outcomes and gene expression.
Collapse
Affiliation(s)
- Lixin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China.
| | - Yuanyuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Feifei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Zidie Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Shaojuan Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Uwe Strähle
- Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
10
|
Lawson AJ, Moore CT, Rainwater TR, Nilsen FM, Wilkinson PM, Lowers RH, Guillette LJ, McFadden KW, Jodice PGR. Nonlinear patterns in mercury bioaccumulation in American alligators are a function of predicted age. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:135103. [PMID: 31863991 DOI: 10.1016/j.scitotenv.2019.135103] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
Mercury is a widespread, naturally occurring contaminant that biomagnifies in wetlands due to the methylation of this element by sulfate-reducing bacteria. Species that feed at the top trophic level within wetlands are predicted to have higher mercury loads compared to species feeding at lower trophic levels and are therefore often used for mercury biomonitoring. However, mechanisms for mercury bioaccumulation in sentinel species are often poorly understood, due to a lack of long-term studies or an inability to differentiate between confounding variables. We examined mercury bioaccumulation patterns in the whole blood of American alligators (Alligator mississippiensis) from a long-term mark-recapture study (1979-2017) in South Carolina, USA. Using a growth model and auxiliary information on predicted age at first capture, we differentiated between age- and size-related variation in mercury bioaccumulation, which are often confounded in alligators due to their determinate growth pattern. Contrary to predictions that the oldest or largest individuals were likely to have the highest mercury concentrations, our best-supported model indicated a peak in mercury concentration at 30-40 years of age, depending on the sex, and lower concentrations in the youngest and oldest animals. To evaluate the robustness of our findings, we re-analyzed data from a previously published study of mercury in alligators sampled at Merritt Island National Wildlife Refuge in Florida. Unlike the South Carolina data, the data from Florida contained minimal auxiliary information regarding age, yet the best supported model similarly indicated a peaked rather than increasing relationship between mercury and body size, a less-precise indicator of age. These findings highlight how long-term monitoring can differentiate between confounding variables (e.g., age and size) to better elucidate complex relationships between contaminant exposure and demographic factors in sentinel species.
Collapse
Affiliation(s)
- Abigail J Lawson
- Department of Forestry and Environmental Conservation, Clemson University, 261 Lehotsky Hall, Clemson, SC 29634, USA.
| | - Clinton T Moore
- U.S. Geological Survey, Georgia Cooperative Fish and Wildlife Research Unit, Warnell School of Forestry and Natural Resources, University of Georgia, 180 E. Green Street, Athens, GA 30602, USA.
| | - Thomas R Rainwater
- Department of Forestry and Environmental Conservation, Clemson University, 261 Lehotsky Hall, Clemson, SC 29634, USA; Baruch Institute of Coastal Ecology and Forest Science, Clemson University, P.O. Box 596, Georgetown, SC 29442, USA; Tom Yawkey Wildlife Center, 1 Yawkey Way, Georgetown, SC 29440, USA.
| | - Frances M Nilsen
- Department of Obstetrics and Gynecology, Marine Biomedicine and Environmental Science Center, Hollings Marine Laboratory, Medical University of South Carolina, Charleston, SC 29412, USA.
| | | | - Russell H Lowers
- Integrated Mission Support Service (IMSS), Kennedy Space Center, FL 32899, USA.
| | - Louis J Guillette
- Department of Obstetrics and Gynecology, Marine Biomedicine and Environmental Science Center, Hollings Marine Laboratory, Medical University of South Carolina, Charleston, SC 29412, USA
| | - K W McFadden
- U.S. Geological Survey, South Carolina Cooperative Fish and Wildlife Research Unit, 261 Lehotsky Hall, Clemson University, Clemson, SC 29634, USA
| | - Patrick G R Jodice
- U.S. Geological Survey, South Carolina Cooperative Fish and Wildlife Research Unit, 261 Lehotsky Hall, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
11
|
Ehnert-Russo SL, Gelsleichter J. Mercury Accumulation and Effects in the Brain of the Atlantic Sharpnose Shark (Rhizoprionodon terraenovae). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 78:267-283. [PMID: 31760438 DOI: 10.1007/s00244-019-00691-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Few published studies have examined whether the elevated concentrations of the nonessential toxic metal mercury (Hg) often observed in shark muscle also occur in the shark brain or whether Hg accumulation affects shark neurophysiology. Therefore, this study examined accumulation and distribution of Hg in the shark brain, as well as effects of Hg on oxidative stress in the shark central nervous system, with particular focus on the Atlantic sharpnose shark (Rhizoprionodon terraenovae). Sharks were collected along the southeastern U.S. coast throughout most of this species' U.S. geographical range. Total Hg (THg) concentrations were measured in and compared between shark muscle and brain, whereas known biomarkers of Hg-induced neurological effects, including glutathione depletion, lipid peroxidation, and concentrations of a protein marker of glial cell damage (S100b), were measured in shark cerebrospinal fluid. Brain THg concentrations were correlated with muscle THg levels but were significantly lower and did not exceed most published thresholds for neurological effects, suggesting limited potential for detrimental responses. Biomarker concentrations supported this premise, because these data were not correlated with brain THg levels. Hg speciation also was examined. Unlike muscle, methylmercury (MeHg) did not comprise a high percentage of THg in the brain, suggesting that differential uptake or loss of organic and inorganic Hg and/or demethylation of MeHg may occur in this organ. Although Hg accumulation in the shark brain generally fell below toxicity thresholds, higher THg levels were measured in the shark forebrain compared with the midbrain and hindbrain. Therefore, there is potential for selective effects on certain aspects of shark neurophysiology if brain Hg accumulation is increased.
Collapse
Affiliation(s)
- S L Ehnert-Russo
- University of North Florida, 1 UNF Dr, Jacksonville, FL, 32224, USA
| | - J Gelsleichter
- University of North Florida, 1 UNF Dr, Jacksonville, FL, 32224, USA.
| |
Collapse
|
12
|
Pereira P, Korbas M, Pereira V, Cappello T, Maisano M, Canário J, Almeida A, Pacheco M. A multidimensional concept for mercury neuronal and sensory toxicity in fish - From toxicokinetics and biochemistry to morphometry and behavior. Biochim Biophys Acta Gen Subj 2019; 1863:129298. [PMID: 30768958 DOI: 10.1016/j.bbagen.2019.01.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/16/2019] [Accepted: 01/30/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Neuronal and sensory toxicity of mercury (Hg) compounds has been largely investigated in humans/mammals with a focus on public health, while research in fish is less prolific and dispersed by different species. Well-established premises for mammals have been governing fish research, but some contradictory findings suggest that knowledge translation between these animal groups needs prudence [e.g. the relative higher neurotoxicity of methylmercury (MeHg) vs. inorganic Hg (iHg)]. Biochemical/physiological differences between the groups (e.g. higher brain regeneration in fish) may determine distinct patterns. This review undertakes the challenge of identifying sensitive cellular targets, Hg-driven biochemical/physiological vulnerabilities in fish, while discriminating specificities for Hg forms. SCOPE OF REVIEW A functional neuroanatomical perspective was conceived, comprising: (i) Hg occurrence in the aquatic environment; (ii) toxicokinetics on central nervous system (CNS)/sensory organs; (iii) effects on neurotransmission; (iv) biochemical/physiological effects on CNS/sensory organs; (v) morpho-structural changes on CNS/sensory organs; (vi) behavioral effects. The literature was also analyzed to generate a multidimensional conceptualization translated into a Rubik's Cube where key factors/processes were proposed. MAJOR CONCLUSIONS Hg neurosensory toxicity was unequivocally demonstrated. Some correspondence with toxicity mechanisms described for mammals (mainly at biochemical level) was identified. Although the research has been dispersed by numerous fish species, 29 key factors/processes were pinpointed. GENERAL SIGNIFICANCE Future trends were identified and translated into 25 factors/processes to be addressed. Unveiling the neurosensory toxicity of Hg in fish has a major motivation of protecting ichtyopopulations and ecosystems, but can also provide fundamental knowledge to the field of human neurodevelopment.
Collapse
Affiliation(s)
- Patrícia Pereira
- Department of Biology and CESAM, University of Aveiro, Aveiro 3810-193, Portugal
| | - Malgorzata Korbas
- Science Division, Canadian Light Source Inc., Saskatoon, Canada; Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Canada
| | - Vitória Pereira
- Department of Biology and CESAM, University of Aveiro, Aveiro 3810-193, Portugal
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - João Canário
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Armando Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine (EM), University of Minho, Campus of Gualtar, Braga 4750-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Mário Pacheco
- Department of Biology and CESAM, University of Aveiro, Aveiro 3810-193, Portugal.
| |
Collapse
|
13
|
Green AJ, Planchart A. The neurological toxicity of heavy metals: A fish perspective. Comp Biochem Physiol C Toxicol Pharmacol 2018; 208:12-19. [PMID: 29199130 PMCID: PMC5936656 DOI: 10.1016/j.cbpc.2017.11.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 12/11/2022]
Abstract
The causes of neurodegenerative diseases are complex with likely contributions from genetic susceptibility and environmental exposures over an organism's lifetime. In this review, we examine the role that aquatic models, especially zebrafish, have played in the elucidation of mechanisms of heavy metal toxicity and nervous system function over the last decade. Focus is applied to cadmium, lead, and mercury as significant contributors to central nervous system morbidity, and the application of numerous transgenic zebrafish expressing fluorescent reporters in specific neuronal populations or brain regions enabling high-resolution neurodevelopmental and neurotoxicology research.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Behavior, Animal/drug effects
- Disease Models, Animal
- Gene Expression Regulation, Developmental/drug effects
- Heavy Metal Poisoning, Nervous System/etiology
- Heavy Metal Poisoning, Nervous System/genetics
- Heavy Metal Poisoning, Nervous System/metabolism
- Heavy Metal Poisoning, Nervous System/pathology
- Humans
- Metals, Heavy/toxicity
- Nerve Degeneration
- Nervous System/drug effects
- Nervous System/metabolism
- Nervous System/pathology
- Nervous System/physiopathology
- Neurons/drug effects
- Neurons/metabolism
- Neurons/pathology
- Risk Assessment
- Water Pollutants, Chemical/toxicity
- Zebrafish/genetics
- Zebrafish/metabolism
Collapse
Affiliation(s)
- Adrian J Green
- Graduate Program in Toxicology, North Carolina State University, Raleigh, NC 27695, United States; Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Antonio Planchart
- Graduate Program in Toxicology, North Carolina State University, Raleigh, NC 27695, United States; Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, United States; W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
14
|
Puga S, Cardoso V, Pinto-Ribeiro F, Pacheco M, Almeida A, Pereira P. Brain morphometric profiles and their seasonal modulation in fish (Liza aurata) inhabiting a mercury contaminated estuary. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:318-328. [PMID: 29499575 DOI: 10.1016/j.envpol.2018.02.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/09/2018] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Abstract
Mercury (Hg) is a potent neurotoxicant known to induce important adverse effects on fish, but a deeper understanding is lacking regarding how environmental exposure affects the brain morphology and neural plasticity of specific brain regions in wild specimens. In this work, it was evaluated the relative volume and cell density of the lateral pallium, hypothalamus, optic tectum and molecular layer of the cerebellum on wild Liza aurata captured in Hg-contaminated (LAR) and non-contaminated (SJ) sites of a coastal system (Ria de Aveiro, Portugal). Given the season-related variations in the environment that fish are naturally exposed, this assessment was performed in the winter and summer. Hg triggered a deficit in cell density of hypothalamus during the winter that could lead to hormonal dysfunctions, while in the summer Hg promoted larger volumes of the optic tectum and cerebellum, indicating the warm period as the most critical for the manifestation of putative changes in visual acuity and motor-dependent tasks. Moreover, in fish from the SJ site, the lateral pallium relative volume and the cell density of the hypothalamus and optic tectum were higher in the winter than in summer. Thus, season-related stimuli strongly influence the size and/or cell density of specific brain regions in the non-contaminated area, pointing out the ability of fish to adapt to environmental and physiological demands. Conversely, fish from the Hg-contaminated site showed a distinct seasonal profile of brain morphology, presenting a larger optic tectum in the summer, as well as a larger molecular layer of the cerebellum with higher cell density. Moreover, Hg exposure impaired the winter-summer variation of the lateral pallium relative size (as observed at SJ). Altogether, seasonal variations in fish neural morphology and physiology should be considered when performing ecotoxicological studies in order to better discriminate the Hg neurotoxicity.
Collapse
Affiliation(s)
- Sónia Puga
- Life and Health Sciences Research Institute (ICVS), School of Medicine (EM), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Vera Cardoso
- Life and Health Sciences Research Institute (ICVS), School of Medicine (EM), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine (EM), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Mário Pacheco
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Armando Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine (EM), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Patrícia Pereira
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
15
|
Silva-Filho EV, Kütter VT, Figueiredo TS, Tessier E, Rezende CE, Teixeira DC, Silva CA, Donard OFX. Mercury speciation in plankton from the Cabo Frio Bay, SE--Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2014; 186:8141-8150. [PMID: 25117495 DOI: 10.1007/s10661-014-3992-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/31/2014] [Indexed: 06/03/2023]
Abstract
Mercury (Hg) is considered a global pollutant, and the scientific community has shown great concern about its toxicity as it may affect the biota of entire systems, through bioaccumulation and bioamplification processes of its organic form, methylmercury (MeHg), along food web. However, few research studies deal with bioaccumulation of Hg from marine primary producers and the first-order consumers. So, this study aims to determine Hg distribution and concentration levels in phytoplankton and zooplankton in the Cabo Frio Bay, Brazil, a site influenced by coastal upwelling. The results from Hg speciation analyses show that inorganic mercury Hg(II) was the predominant specie in plankton from this bay. The annual Hg species distribution in plankton shown mean concentration of 2.00 ± 1.28 ng Hg(II) g(-1) and 0.15 ± 0.08 ng MeHg g(-1) wet weight (phytoplankton) and 2.5 ± 2.03 ng Hg(II) g(-1) and 0.25 ± 0.09 ng MeHg g(-1) wet weight (zooplankton). Therefore, upwelling zones should be considered in the Hg biogeochemical cycle models as a process that enhances Hg(II) bioaccumulation in plankton, raising its bioavailability and shelf deposition.
Collapse
Affiliation(s)
- Emmanoel V Silva-Filho
- Departamento de Geoquímica, Instituto de Química, Universidade Federal Fluminense, Outeiro São João Batista s/n, 24020-141, Niterói, RJ, Brazil,
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Mela M, Guiloski IC, Doria HB, Rabitto IS, da Silva CA, Maraschi AC, Prodocimo V, Freire CA, Randi MAF, Ribeiro CAO, de Assis HCS. Risks of waterborne copper exposure to a cultivated freshwater Neotropical catfish (Rhamdia quelen). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 88:108-116. [PMID: 23211555 DOI: 10.1016/j.ecoenv.2012.11.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 10/22/2012] [Accepted: 11/01/2012] [Indexed: 06/01/2023]
Abstract
As it is the case in all animal food production systems, it is often necessary to treat farmed fish for diseases and parasites. Quite frequently, fish farmers still rely on the aggressive use of copper to control bacterial infections and infestations by ecto-parasites, and to manage the spread of diseases. The susceptibility of the neotropical fish Rhamdia quelen to copper was here evaluated at different waterborne copper concentrations (2, 7 or 11 μg Cu L(-1)) for 96 h, through a multi biomarkers approach. Liver histopathological findings revealed leukocyte infiltration, hepatocyte vacuolization and areas of necrosis, causing raised levels of lesions upon exposure to 7 and 11 μg Cu L(-1). Decreased occurrence of free melano-macrophages and increased densities of melano-macrophage centers were noted upon exposure to 11 μg Cu L(-1). Gills showed damages on their secondary lamellae already at 2 μg Cu L(-1); hypertrophy and loss of the microridges of pavement cells at 7 and 11 μg L(-1), and increased in chloride cell (CC) apical surface area (4.9-fold) and in CC density (1.5-fold) at 11 μg Cu L(-1). In the liver, catalase (CAT), glutathione peroxidase activities (GPx) and glutathione concentration (GSH) remained unchanged, compared to the control group. However, there was inhibition of 7-ethoxyresorufin-O-deethylase (EROD) at all copper concentrations tested. Glutathione reductase activity (GR) was reduced and levels of lipid peroxidation (LPO) were increased at 11 μg Cu L(-1). Glutathione S-transferase activity (GST) at 7 μg Cu L(-1) and superoxide dismutase activity (SOD) at both 7 and 11 μg Cu L(-1) were reduced. However, copper exposure did not alter brain and muscle acetylcholinesterase (AChE) activity. Osmoregulatory function was also disturbed, in agreement with the above-mentioned changes noted in the gills, as detected by plasma osmolality reduction in the group exposed to 11 μg Cu L(-1), and plasma chloride reduction at 2 μg Cu L(-1). These concentrations also, coherently, lead to inhibition of branchial carbonic anhydrase activity. In the kidney, increased carbonic anhydrase activity was measured in the groups exposed to 2 and 7 μg Cu L(-1). When these effects are compared to data available in the literature for other freshwater fish, also for 96 h of exposure, R. quelen appears as a relatively sensitive species. In addition, the concentrations employed here were quite low in comparison to levels used for disease control in real culture practices (ranging from 4 μg Cu L(-1) used against bacteria to 6000 μg Cu L(-1) against fungal infections). We can conclude that the concentrations frequently employed in aquaculture are in fact not safe enough for this species. Such data are essential for the questioning and establishment of new policies to the sector.
Collapse
Affiliation(s)
- M Mela
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Valenti TW, Gould GG, Berninger JP, Connors KA, Keele NB, Prosser KN, Brooks BW. Human therapeutic plasma levels of the selective serotonin reuptake inhibitor (SSRI) sertraline decrease serotonin reuptake transporter binding and shelter-seeking behavior in adult male fathead minnows. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:2427-35. [PMID: 22296170 PMCID: PMC6072683 DOI: 10.1021/es204164b] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) represent a class of pharmaceuticals previously reported in aquatic ecosystems. SSRIs are designed to treat depression and other disorders in humans, but are recognized to elicit a variety of effects on aquatic organisms, ranging from neuroendocrine disruption to behavioral perturbations. However, an understanding of the relationships among mechanistic responses associated with SSRI targets and ecologically important behavioral responses of fish remains elusive. Herein, linking Adverse Outcomes Pathways (AOP) models with internal dosimetry represent potential approaches for developing an understanding of pharmaceutical risks to aquatic life. We selected sertraline as a model SSRI for a 28-d study with adult male fathead minnows. Binding activity of the serotonin reuptake transporter (SERT), previously demonstrated in mammals and fish models to respond to sertraline exposure, was selected as an endpoint associated with therapeutic activity. Shelter-seeking behavior was monitored using digital tracking software to diagnose behavioral abnormalities. Fish plasma levels of sertraline exceeding human therapeutic doses were accurately modeled from external exposure concentrations when pH influences on ionization and log D were considered. We observed statistically significant decreases in binding at the therapeutic target (SERT) and shelter-seeking behavior when fish plasma levels exceeded human therapeutic thresholds. Such observations highlights the strengths of coupling physiologically based pharmacokinetic modeling and AOP approaches and suggest that internal dosimetry should be monitored to advance an understanding of the ecological consequences of SSRI exposure to aquatic vertebrates.
Collapse
Affiliation(s)
- Theodore W Valenti
- The Institute of Ecological, Earth, and Environmental Sciences, Baylor University, Waco, Texas 76798, United States.
| | | | | | | | | | | | | |
Collapse
|
18
|
Langer-Jaesrich M, Kienle C, Köhler HR, Gerhardt A. Impairment of trophic interactions between zebrafish (Danio rerio) and midge larvae (Chironomus riparius) by chlorpyrifos. ECOTOXICOLOGY (LONDON, ENGLAND) 2010; 19:1294-301. [PMID: 20628814 DOI: 10.1007/s10646-010-0516-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/29/2010] [Indexed: 05/20/2023]
Abstract
The effects of chemicals on biotic interactions, such as competition and predation, have rarely been investigated in aquatic ecotoxicology. This study presents a new approach for the investigation of predator-prey interactions between zebrafish (Danio rerio) and midge larvae (Chironomus riparius) impaired by chlorpyrifos (CHP), a neurotoxic insecticide. With a simple experimental design including four different treatments: (1) control, (2) predator exposed, (3) prey exposed and (4) both, predator and prey, exposed, we were able to detect by visual observation an increase in the feeding rate of zebrafish preying on exposed chironomids after acute (2 h) exposure to 6 μg/l CHP. Previously, a decrease in the burrowing behaviour of exposed chironomid larvae was observed. However, when pre-exposing simultaneously both predators and prey, no significant differences in the feeding rate of zebrafish were observed. This suggests an impairment in prey recognition of the exposed zebrafish. At a lower CHP concentration (1 μg/l), no differences in feeding rate of zebrafish were observed. We therefore propose the use of trophic interactions as parameters in higher tier studies for chemical testing and evaluation of ecotoxicological risk assessment.
Collapse
Affiliation(s)
- Miriam Langer-Jaesrich
- Department of Animal Physiological Ecology, University of Tübingen, Konrad-Adenauer-Str. 20, 72072, Tübingen, Germany.
| | | | | | | |
Collapse
|
19
|
Smith LE, Carvan MJ, Dellinger JA, Ghorai JK, White DB, Williams FE, Weber DN. Developmental selenomethionine and methylmercury exposures affect zebrafish learning. Neurotoxicol Teratol 2009; 32:246-55. [PMID: 19800969 DOI: 10.1016/j.ntt.2009.09.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 09/09/2009] [Accepted: 09/22/2009] [Indexed: 11/24/2022]
Abstract
Methylmercury (MeHg) is a ubiquitous environmental pollutant and has been shown to affect learning in vertebrates following relatively low exposures. Zebrafish were used to model long-term learning deficits after developmental MeHg exposure. Selenomethionine (SeMet) co-exposure was used to evaluate its role in neuroprotection. Embryos were exposed from 2 to 24h post fertilization to (1) MeHg without SeMet, (2) SeMet without MeHg and (3) in combination of MeHg and SeMet. In case (1), the levels of MeHg were 0.00, 0.01, 0.03, 0.06, 0.10, and 0.30 microM. In case (2), the levels of SeMet were 0.00. 0.03, 0.06, 0.10, and 0.30 microM. In case (3), co-exposure levels of (MeHg, SeMet) were (0.03, 0.03), (0.03, 0.06), (0.03, 0.10), (0.03, 0.30), (0.10, 0.03), (0.10, 0.06), (0.10, 0.10), and (0.10, 0.30) microM. Learning functions were tested in individual adults, 4 months after developmental exposure using a spatial alternation paradigm with food delivery on alternating sides of the aquarium. Low levels of MeHg (<0.1 microM) exposure delayed learning in treated fish; fish exposed to higher MeHg levels were unable to learn the task; SeMet co-exposure did not prevent this deficit. These data are consistent with findings in laboratory rodents. The dorsal and lateral telencephalon are the primary brain regions in fish involved in spatial learning and memory. Adult telencephalon cell body density decreased significantly at all MeHg exposures >0.01 microM MeHg. SeMet co-exposure ameliorated but did not prevent changes in telencephalon cell body density. In summary, MeHg affected both learning and brain structure, but SeMet only partially reversed the latter.
Collapse
Affiliation(s)
- Leigh E Smith
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53204, United States
| | | | | | | | | | | | | |
Collapse
|
20
|
Zhang YM, Liu XZ, Lu H, Mei L, Liu ZP. Lipid peroxidation and ultrastructural modifications in brain after perinatal exposure to lead and/or cadmium in rat pups. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2009; 22:423-429. [PMID: 20163068 DOI: 10.1016/s0895-3988(10)60021-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
OBJECTIVE To assess lipid peroxidation and ultrastructural modifications in rat brains following perinatal exposure to lead (Pb) and/or cadmium (Cd). METHODS Female rats were divided into four groups: control group, Pb (300 mg/L) group, Cd group (10 mg/L) and Pb+Cd (300 mg/L, 10 mg/L) group. The compounds were delivered in the drinking water throughout pregnancy and lactation. RESULTS The levels of compounds in blood and brain of the Pb+Cd group were similar to those of other groups, but the effects of Pb+Cd on pups' body and brain weights were higher than on other compounds. Electron microscopy revealed that Pb and Cd had effects on mitochondrial swelling, disruption and cristae loss, Nissl body dissolution, degenerated organelles and vacuoles, cytomembrane disappearance, and nuclear chromoplasm concentration. The activity of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT), acetylcholinesterase (AChE) was decreased, whereas the activity of maleic dialdehyde (MDA) was increased. CONCLUSION Perinatal exposure to low doses of Pb and Cd can produce alterations in lipid peroxidation and ultrastructural modifications in rat brains, and exposure to both metals can result in greater damages.
Collapse
Affiliation(s)
- Yu-Mei Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | | | | | | | | |
Collapse
|
21
|
Barbieri E. The use of active metabolism and swimming activity to evaluate the toxicity of dodecyl benzene sodium sulfonate (LAS-C12) on the Mugil platanus (Mullet) according to temperature and salinity. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2007; 79:707-19. [PMID: 17710915 DOI: 10.2175/106143007x196697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Active metabolism and swimming activity were used to study the effects of dodecyl benzene sodium sulfonate (LAS-C12) in Mugil platanus, a species traditionally considered as estuarine. The effects of exposure to different concentrations of LAS-C12 (0.0, 1.0, 2.5, and 5.0 mg/L) on the active metabolism and swimming activity of Mugil platanus were evaluated. The active metabolism and swimming activity were estimated through experiments conducted on each of 9 possible combinations of three temperatures (35, 20, and 15 degrees C) and three salinities (35, 20, and 5 per thousand). The results show that the active metabolism increases according to the LAS-C12 concentration in all temperatures and salinities studied. At the highest tested concentration (5.0 mg/L), the active metabolism was 111%; 84.8 and 105% higher than the control, at 35 per thousand salinity at the three temperatures. However, the swimming activity decreased according to the LAS-C12 concentration in all temperatures and salinities studied. At the highest tested concentration, the swimming activity was 78.6, 73.6, and 78.7% less than the control, at 25 degrees C at the three salinities. The active metabolism and swimming activity averages, achieved in the different salinities studied, were not significantly different, as a result of the LAS-C12 concentration.
Collapse
Affiliation(s)
- Edison Barbieri
- Instituto de Pesca-APTA-SAA/SP, Caixa Postal 61, Cananéia, São Paulo, Cep 11990-000, Brasil.
| |
Collapse
|
22
|
Alves Costa JRM, Mela M, da Silva de Assis HC, Pelletier E, Randi MAF, de Oliveira Ribeiro CA. Enzymatic inhibition and morphological changes in Hoplias malabaricus from dietary exposure to lead(II) or methylmercury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2007; 67:82-8. [PMID: 16757027 DOI: 10.1016/j.ecoenv.2006.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 03/17/2006] [Accepted: 03/25/2006] [Indexed: 05/10/2023]
Abstract
Neotropical fish traíra (Hoplias malabaricus) were used to investigate the effects of dietary doses of metals through individual exposures to either inorganic lead(II) or methylmercury, respectively, 21 microg Pb2+g(-1) w.w. and 75 ng H(3)C-Hg+g(-1) w.w., every 5 days, for 70 days (14 doses). The erythrocyte delta-aminolevulinic acid dehydratase (ALAd) activity was inhibited after 14 doses of Pb2+ and H(3)C-Hg+. The muscle cholinesterase (ChE) activity was inhibited after 14 doses of H(3)C-Hg+. Damage in cytoskeleton and nuclei were observed after exposure to inorganic lead. Individuals exposed to H(3)C-Hg+ showed the presence of atypical granules and vesicles, cytoplasm disorganization, and mitochondria damages in hepatocytes also after 14 doses. The present results demonstrate that erythrocyte ALAd and muscle ChE activities can be used as long-term biomarkers of sublethal, subchronic, and trophic exposures to Pb2+, and H(3)C-Hg+ in fish. Also the morphological aspects described in the present work confirm the toxicity of both studied metals.
Collapse
|
23
|
Liao CY, Fu JJ, Shi JB, Zhou QF, Yuan CG, Jiang GB. Methylmercury accumulation, histopathology effects, and cholinesterase activity alterations in medaka (Oryzias latipes) following sublethal exposure to methylmercury chloride. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2006; 22:225-233. [PMID: 21783714 DOI: 10.1016/j.etap.2006.03.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 03/29/2006] [Indexed: 05/31/2023]
Abstract
A series of specific toxicological effects including bioaccumulation of the pollutant, histological changes and influences on cholinesterase (ChE) activities were examined in the adult Japanese medaka after the exposure to graded sublethal concentrations (40, 20, 10, 5, 2.5ngHg/mL) of methylmercury chloride (MMC). Methylmercury (MeHg) contents in the exposed medaka tissues ranged from 0.03 to 64.4μgHg/g (wet weight, w.w.). High concentrations of MeHg were accumulated in the liver and brain, while the concentrations in muscle and fat were relatively low. A dose-dependent and exposure time-dependent increase of MeHg contents in tissues was observed. Histopathological changes, such as oedema, vacuolization, pyknotic nucleus, telangiectasis, and degenerative sperm, can clearly be observed in the slices from the liver, gill, and male gonad of the exposed medaka. Inhibition of ChE activity was common in the exposed fish's brain, liver, gill, and muscle. The serious intoxication of MMC to medaka was definitely demonstrated herein.
Collapse
Affiliation(s)
- Chun-Yang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | | | | | | | | | | |
Collapse
|
24
|
Devlin EW. Acute toxicity, uptake and histopathology of aqueous methyl mercury to fathead minnow embryos. ECOTOXICOLOGY (LONDON, ENGLAND) 2006; 15:97-110. [PMID: 16400529 DOI: 10.1007/s10646-005-0051-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/27/2005] [Indexed: 05/06/2023]
Abstract
Early life stages of fishes have been shown to be especially susceptible to the toxic effects of heavy metal pollution. In this study, fathead minnow (Pimephales promelas) embryos were exposed in the laboratory to a graded series of aqueous methyl mercury concentrations under continuous-flow conditions. A number of toxicological endpoints were examined including; acute toxicity, bioaccumulation, protein production, impact on mitosis, gross and histopathology. Acute toxicity, reported as LC50 values of methyl mercury, ranged from 221 microg/l (95% C.I. 246-196 microg/l) for 24-h tests to 39 microg/l (95% C.I. 54-24 microg/l) for 96-h exposures. Fathead minnow embryos were shown to rapidly take up mercury from the surrounding water. Mercury levels in embryos reached levels of 2.80 microg/g wet weight after 96 h exposure to 40 microg/l methyl mercury. An initial elevation of total protein in embryo was observed in embryos exposed to 25 microg/l methyl mercury during the first 12 h of development. At later stages, significantly lower levels of protein/microg embryo were observed. Methyl mercury had no effect on mitotic stages (p=0.05) in early, cleaving blastula-stage embryos. Live embryos and serial sections were utilized to characterize changes in embryo morphology and histopathology.
Collapse
Affiliation(s)
- Edward W Devlin
- Biology Department, Hampden-Sydney College, Hampden-Sydney, VA 23901, USA.
| |
Collapse
|