1
|
Tan J, Sun X, Zhao H, Guan H, Gao S, Zhou P. Double-strand DNA break repair: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2023; 4:e388. [PMID: 37808268 PMCID: PMC10556206 DOI: 10.1002/mco2.388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Double-strand break (DSB), a significant DNA damage brought on by ionizing radiation, acts as an initiating signal in tumor radiotherapy, causing cancer cells death. The two primary pathways for DNA DSB repair in mammalian cells are nonhomologous end joining (NHEJ) and homologous recombination (HR), which cooperate and compete with one another to achieve effective repair. The DSB repair mechanism depends on numerous regulatory variables. DSB recognition and the recruitment of DNA repair components, for instance, depend on the MRE11-RAD50-NBS1 (MRN) complex and the Ku70/80 heterodimer/DNA-PKcs (DNA-PK) complex, whose control is crucial in determining the DSB repair pathway choice and efficiency of HR and NHEJ. In-depth elucidation on the DSB repair pathway's molecular mechanisms has greatly facilitated for creation of repair proteins or pathways-specific inhibitors to advance precise cancer therapy and boost the effectiveness of cancer radiotherapy. The architectures, roles, molecular processes, and inhibitors of significant target proteins in the DSB repair pathways are reviewed in this article. The strategy and application in cancer therapy are also discussed based on the advancement of inhibitors targeted DSB damage response and repair proteins.
Collapse
Affiliation(s)
- Jinpeng Tan
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceChina
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Xingyao Sun
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceChina
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Hongling Zhao
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Hua Guan
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Shanshan Gao
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ping‐Kun Zhou
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceChina
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| |
Collapse
|
2
|
Wolska-Kuśnierz B, Gregorek H, Chrzanowska K, Piątosa B, Pietrucha B, Heropolitańska-Pliszka E, Pac M, Klaudel-Dreszler M, Kostyuchenko L, Pasic S, Marodi L, Belohradsky BH, Čižnár P, Shcherbina A, Kilic SS, Baumann U, Seidel MG, Gennery AR, Syczewska M, Mikołuć B, Kałwak K, Styczyński J, Pieczonka A, Drabko K, Wakulińska A, Gathmann B, Albert MH, Skarżyńska U, Bernatowska E. Nijmegen Breakage Syndrome: Clinical and Immunological Features, Long-Term Outcome and Treatment Options - a Retrospective Analysis. J Clin Immunol 2015; 35:538-49. [PMID: 26271390 DOI: 10.1007/s10875-015-0186-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 07/27/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE Nijmegen Breakage Syndrome (NBS) is a rare inherited condition, characterized by microcephaly, chromosomal instability, immunodeficiency, and predisposition to malignancy. This retrospective study, characterizing the clinical and immunological status of patients with NBS at time of diagnosis, was designed to assess whether any parameters were useful in disease prognosis, and could help determine patients qualified for hematopoietic stem cell transplantation. METHODS The clinical and immunological characteristics of 149 NBS patients registered in the online database of the European Society for Immune Deficiencies were analyzed. RESULTS Of the 149 NBS patients, 91 (61%), of median age 14.3 years, remained alive at the time of analysis. These patients were clinically heterogeneous, with variable immune defects, ranging from negligible to severe dysfunction. Humoral deficiencies predisposed NBS patients to recurrent/chronic respiratory tract infections and worsened long-term clinical prognosis. Eighty malignancies, most of lymphoid origin (especially non-Hodgkin's lymphomas), were diagnosed in 42% of patients, with malignancy being the leading cause of death in this cohort. Survival probabilities at 5, 10, 20 and 30 years of age were 95, 85, 50 and 35%, respectively, and were significantly lower in patients with than without malignancies. CONCLUSIONS The extremely high incidence of malignancies, mostly non-Hodgkin's lymphomas, was the main risk factor affecting survival probability in NBS patients. Because treatment of NBS is very difficult and frequently unsuccessful, the search for an alternative medical intervention such as hematopoietic stem cell transplantation is of great clinical importance.
Collapse
Affiliation(s)
- Beata Wolska-Kuśnierz
- Department of Immunology, Children's Memorial Health Institute, 04-730 Av. Dzieci Polskich 20, Warsaw, Poland.
| | - Hanna Gregorek
- Department of Microbiology and Clinical Immunology, Children's Memorial Health Institute, 04-730 Av. Dzieci Polskich 20, Warsaw, Poland
| | - Krystyna Chrzanowska
- Department of Medical Genetics, Children's Memorial Health Institute, 04-730 Av. Dzieci Polskich 20, Warsaw, Poland
| | - Barbara Piątosa
- Histocompatibility Laboratory, Children's Memorial Health Institute, 04-730 Av. Dzieci Polskich 20, Warsaw, Poland
| | - Barbara Pietrucha
- Department of Immunology, Children's Memorial Health Institute, 04-730 Av. Dzieci Polskich 20, Warsaw, Poland
| | | | - Małgorzata Pac
- Department of Immunology, Children's Memorial Health Institute, 04-730 Av. Dzieci Polskich 20, Warsaw, Poland
| | - Maja Klaudel-Dreszler
- Gastrology, Hepatology Department, Children's Memorial Health Institute, 04-730 Av. Dzieci Polskich 20, Warsaw, Poland
| | - Larysa Kostyuchenko
- Western-Ukrainian Centre of Paediatric Immunology, Western Ukrainian Specialized Children's Medical Centre, Dnisterska Street, 27, Lviv, 79035, Ukraine
| | - Srdjan Pasic
- Pediatric Immunology, Mother and Child Health Institute, Medical School, University of Belgrade, Radoja Dakica 6-8, 11070, Belgrade, Serbia
| | - Laszlo Marodi
- Department of Infectious and Pediatric Immunology, Medical and Health Science Center, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Bernd H Belohradsky
- University Childrens Hospital, Ludwig Maximilians University, Lindwurmstrasse 4, 80337, Munich, Germany
| | - Peter Čižnár
- 1st Pediatric Department, Comenius University Medical Faculty, Children University Hospital, Mickiewiczova 13th, Bratislava, 813 69, Slovakia
| | - Anna Shcherbina
- Department of Сlinical Immunology and Allergy, Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, 1 Samori Mashela Str., Moscow, 117917, Russia
| | - Sara Sebnem Kilic
- Department of Paediatric Immunology, Uludag University School of Medicine, Özlüce Mh., 16120, Bursa, Turkey
| | - Ulrich Baumann
- Department of Pediatric Pulmonology and Neonatology, Medical School Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Markus G Seidel
- Department of Pediatrics and Adolescent Medicine, St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria.,Division of Pediatric Hematology-Oncology, Department of Pediatric and Adolescent Medicine, Medical University Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Andrew R Gennery
- Institute of Cellular Medicine, Child Health, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Małgorzata Syczewska
- Department of Paediatric Rehabilitation, Children's Memorial Health Institute, 04-730 Av. Dzieci Polskich 20, Warsaw, Poland
| | - Bożena Mikołuć
- Department of Pediatrics and Developmental Disorders of Children and Adolescents, Medical University Bialystok, 15-089 Jana Kilinskiego str. 1, Białystok, Poland
| | - Krzysztof Kałwak
- Department of Pediatric Hematology, Oncology and BMT, Wroclaw Medical University, 50-368 Bujwida Str. 44, Wroclaw, Poland
| | - Jan Styczyński
- Department of Pediatric Hematology and Oncology, Collegium Medicum, Nicolaus Copernicus University, 85-094 Curie-Skłodowskiej 9 str., Bydgoszcz, Poland
| | - Anna Pieczonka
- Department of Pediatric Hematology, Oncology and Haematopoietic Stem Cell Transplantation, University of Medical Sciences, Poznań, 60-572 Szpitalna str. 27/33, Poznań, Poland
| | - Katarzyna Drabko
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University, Lublin, 20-093 W. Chodźki str. 2, Lublin, Poland
| | - Anna Wakulińska
- Department of Oncology, Children's Memorial Health Institute, 04-730 Av. Dzieci Polskich 20, Warsaw, Poland
| | - Benjamin Gathmann
- Centre of Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Robert-Koch-Str. 1, 79106, Freiburg, Germany
| | - Michael H Albert
- Department of Pediatric Hematology/Oncology, Dr. von Hauner University Children's Hospital, Lindwurmstraße 4, 80337, Munich, Germany
| | - Urszula Skarżyńska
- Department of Immunology, Children's Memorial Health Institute, 04-730 Av. Dzieci Polskich 20, Warsaw, Poland
| | - Ewa Bernatowska
- Department of Immunology, Children's Memorial Health Institute, 04-730 Av. Dzieci Polskich 20, Warsaw, Poland
| | | |
Collapse
|
3
|
Abstract
Nijmegen breakage syndrome (NBS) is a rare autosomal recessive syndrome of chromosomal instability mainly characterized by microcephaly at birth, combined immunodeficiency and predisposition to malignancies. Due to a founder mutation in the underlying NBN gene (c.657_661del5) the disease is encountered most frequently among Slavic populations. The principal clinical manifestations of the syndrome are: microcephaly, present at birth and progressive with age, dysmorphic facial features, mild growth retardation, mild-to-moderate intellectual disability, and, in females, hypergonadotropic hypogonadism. Combined cellular and humoral immunodeficiency with recurrent sinopulmonary infections, a strong predisposition to develop malignancies (predominantly of lymphoid origin) and radiosensitivity are other integral manifestations of the syndrome. The NBN gene codes for nibrin which, as part of a DNA repair complex, plays a critical nuclear role wherever double-stranded DNA ends occur, either physiologically or as a result of mutagenic exposure. Laboratory findings include: (1) spontaneous chromosomal breakage in peripheral T lymphocytes with rearrangements preferentially involving chromosomes 7 and 14, (2) sensitivity to ionizing radiation or radiomimetics as demonstrated in vitro by cytogenetic methods or by colony survival assay, (3) radioresistant DNA synthesis, (4) biallelic hypomorphic mutations in the NBN gene, and (5) absence of full-length nibrin protein. Microcephaly and immunodeficiency are common to DNA ligase IV deficiency (LIG4 syndrome) and severe combined immunodeficiency with microcephaly, growth retardation, and sensitivity to ionizing radiation due to NHEJ1 deficiency (NHEJ1 syndrome). In fact, NBS was most commonly confused with Fanconi anaemia and LIG4 syndrome. Genetic counselling should inform parents of an affected child of the 25% risk for further children to be affected. Prenatal molecular genetic diagnosis is possible if disease-causing mutations in both alleles of the NBN gene are known. No specific therapy is available for NBS, however, hematopoietic stem cell transplantation may be one option for some patients. Prognosis is generally poor due to the extremely high rate of malignancies. Zespół Nijmegen (Nijmegen breakage syndrome; NBS) jest rzadkim schorzeniem z wrodzoną niestabilnością chromosomową dziedziczącym się w sposób autosomalny recesywny, charakteryzującym się przede wszystkim wrodzonym małogłowiem, złożonymi niedoborami odporności i predyspozycją do rozwoju nowotworów. Choroba występuje najczęściej w populacjach słowiańskich, w których uwarunkowana jest mutacją założycielską w genie NBN (c.657_661del5). Do najważniejszych objawów zespołu zalicza się: małogłowie obecne od urodzenia i postępujące z wiekiem, charakterystyczne cechy dysmorfii twarzy, opóźnienie wzrastania, niepełnosprawność intelektualną w stopniu lekkim do umiarkowanego oraz hipogonadyzm hipogonadotropowy u dziewcząt. Na obraz choroby składają się także: niedobór odporności komórkowej i humoralnej, który jest przyczyną nawracających infekcji, znaczna predyspozycja do rozwoju nowotworów złośliwych (zwłaszcza układu chłonnego), a także zwiększona wrażliwość na promieniowanie jonizujące. Wyniki badań laboratoryjnych wykazują: (1) spontaniczną łamliwość chromosomów w limfocytach T krwi obwodowej, z preferencją do rearanżacji chromosomów 7 i 14, (2) nadwrażliwość na promieniowanie jonizujące lub radiomimetyki, co można wykazać metodami in vitro, (3) radiooporność syntezy DNA, (4) hipomorficzne mutacje na obu allelach genu NBN, oraz (5) brak w komórkach pełnej cząsteczki białka, nibryny. Małogłowie i niedobór odporności występują także w zespole niedoboru ligazy IV (LIG4) oraz w zespole niedoboru NHEJ1. Rodzice powinni otrzymać poradę genetyczną ze względu na wysokie ryzyko (25%) powtórzenia się choroby u kolejnego potomstwa. Możliwe jest zaproponowanie molekularnej diagnostyki prenatalnej jeżeli znane są obie mutacje będące przyczyną choroby. Nie ma możliwości zaproponowania specyficznej terapii, ale przeszczep szpiku może być alternatywą dla niektórych pacjentów. Generalnie prognoza nie jest pomyślna z uwagi na wysokie ryzyko rozwoju nowotworu.
Collapse
|
4
|
Dual functions of Nbs1 in the repair of DNA breaks and proliferation ensure proper V(D)J recombination and T-cell development. Mol Cell Biol 2010; 30:5572-81. [PMID: 20921278 DOI: 10.1128/mcb.00917-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunodeficiency and lymphoid malignancy are hallmarks of the human disease Nijmegen breakage syndrome (NBS; OMIM 251260), which is caused by NBS1 mutations. Although NBS1 has been shown to bind to the T-cell receptor alpha (TCRα) locus, its role in TCRβ rearrangement is unclear. Hypomorphic mutations of Nbs1 in mice and patients result in relatively mild T-cell deficiencies, raising the question of whether the truncated Nbs1 protein might have clouded a certain function of NBS1 in T-cell development. Here we show that the deletion of the entire Nbs1 protein in T-cell precursors (Nbs1(T-del)) results in severe lymphopenia and a hindrance to the double-negative 3 (DN3)-to-DN4 transition in early T-cell development, due to abnormal TCRβ coding and signal joints as well as the functions of Nbs1 in T-cell expansion. Chromatin immunoprecipitation (ChIP) analysis of the TCR loci reveals that Nbs1 depletion compromises the loading of Mre11/Rad50 to V(D)J-generated DNA double-strand breaks (DSBs) and thereby affects resection of DNA termini and chromatin conformation of the postcleavage complex. Although a p53 deficiency relieves the DN3→DN4 transition block, neither a p53 deficiency nor ectopic expression of TCRαβ rescues the major T-cell loss in Nbs1(T-del) mice. All together, these results demonstrate that Nbs1's functions in both repair of V(D)J-generated DSBs and proliferation are essential for T-cell development.
Collapse
|
5
|
Loss of juxtaposition of RAG-induced immunoglobulin DNA ends is implicated in the precursor B-cell differentiation defect in NBS patients. Blood 2010; 115:4770-7. [PMID: 20378756 DOI: 10.1182/blood-2009-10-250514] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Nijmegen breakage syndrome (NBS) is a rare inherited condition, characterized by microcephaly, radiation hypersensitivity, chromosomal instability, an increased incidence of (mostly) lymphoid malignancies, and immunodeficiency. NBS is caused by hypomorphic mutations in the NBN gene (8q21). The NBN protein is a subunit of the MRN (Mre11-Rad50-NBN) nuclear protein complex, which associates with double-strand breaks. The immunodeficiency in NBS patients can partly be explained by strongly reduced absolute numbers of B lymphocytes and T lymphocytes. We show that NBS patients have a disturbed precursor B-cell differentiation pattern and significant disturbances in the resolution of recombination activating gene-induced IGH breaks. However, the composition of the junctional regions as well as the gene segment usage of the reduced number of successful immunoglobulin gene rearrangements were highly similar to healthy controls. This indicates that the NBN defect leads to a quantitative defect in V(D)J recombination through loss of juxtaposition of recombination activating gene-induced DNA ends. The resulting reduction in bone marrow B-cell efflux appeared to be partly compensated by significantly increased proliferation of mature B cells. Based on these observations, we conclude that the quantitative defect will affect the B-cell receptor repertoire, thus contributing to the observed immunodeficiency in NBS patients.
Collapse
|
6
|
Taylor EM, Cecillon SM, Bonis A, Chapman JR, Povirk LF, Lindsay HD. The Mre11/Rad50/Nbs1 complex functions in resection-based DNA end joining in Xenopus laevis. Nucleic Acids Res 2009; 38:441-54. [PMID: 19892829 PMCID: PMC2811014 DOI: 10.1093/nar/gkp905] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The repair of DNA double-strand breaks (DSBs) is essential to maintain genomic integrity. In higher eukaryotes, DNA DSBs are predominantly repaired by non-homologous end joining (NHEJ), but DNA ends can also be joined by an alternative error-prone mechanism termed microhomology-mediated end joining (MMEJ). In MMEJ, the repair of DNA breaks is mediated by annealing at regions of microhomology and is always associated with deletions at the break site. In budding yeast, the Mre11/Rad5/Xrs2 complex has been demonstrated to play a role in both classical NHEJ and MMEJ, but the involvement of the analogous MRE11/RAD50/NBS1 (MRN) complex in end joining in higher eukaryotes is less certain. Here we demonstrate that in Xenopus laevis egg extracts, the MRN complex is not required for classical DNA-PK-dependent NHEJ. However, the XMRN complex is necessary for resection-based end joining of mismatched DNA ends. This XMRN-dependent end joining process is independent of the core NHEJ components Ku70 and DNA-PK, occurs with delayed kinetics relative to classical NHEJ and brings about repair at sites of microhomology. These data indicate a role for the X. laevis MRN complex in MMEJ.
Collapse
Affiliation(s)
- Elaine M Taylor
- Divisions of Medicine and Biomedical and Life Sciences, School of Health and Medicine, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| | | | | | | | | | | |
Collapse
|
7
|
Deriano L, Stracker TH, Baker A, Petrini JHJ, Roth DB. Roles for NBS1 in alternative nonhomologous end-joining of V(D)J recombination intermediates. Mol Cell 2009; 34:13-25. [PMID: 19362533 DOI: 10.1016/j.molcel.2009.03.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 01/28/2009] [Accepted: 03/20/2009] [Indexed: 11/29/2022]
Abstract
Recent work has highlighted the importance of alternative, error-prone mechanisms for joining DNA double-strand breaks (DSBs) in mammalian cells. These noncanonical, nonhomologous end-joining (NHEJ) pathways threaten genomic stability but remain poorly characterized. The RAG postcleavage complex normally prevents V(D)J recombination-associated DSBs from accessing alternative NHEJ. Because the MRE11/RAD50/NBS1 complex localizes to RAG-mediated DSBs and possesses DNA end tethering, processing, and joining activities, we asked whether it plays a role in the mechanism of alternative NHEJ or participates in regulating access of DSBs to alternative repair pathways. We find that NBS1 is required for alternative NHEJ of hairpin coding ends, suppresses alternative NHEJ of signal ends, and promotes proper resolution of inversional recombination intermediates. These data demonstrate that the MRE11 complex functions at two distinct levels, regulating repair pathway choice (likely through enhancing the stability of DNA end complexes) and participating in alternative NHEJ of coding ends.
Collapse
Affiliation(s)
- Ludovic Deriano
- Department of Pathology, The Helen L and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine and , New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
8
|
Helmink BA, Bredemeyer AL, Lee BS, Huang CY, Sharma GG, Walker LM, Bednarski JJ, Lee WL, Pandita TK, Bassing CH, Sleckman BP. MRN complex function in the repair of chromosomal Rag-mediated DNA double-strand breaks. ACTA ACUST UNITED AC 2009; 206:669-79. [PMID: 19221393 PMCID: PMC2699138 DOI: 10.1084/jem.20081326] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The Mre11–Rad50–Nbs1 (MRN) complex functions in the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) at postreplicative stages of the cell cycle. During HR, the MRN complex functions directly in the repair of DNA DSBs and in the initiation of DSB responses through activation of the ataxia telangiectasia-mutated (ATM) serine-threonine kinase. Whether MRN functions in DNA damage responses before DNA replication in G0/G1 phase cells has been less clear. In developing G1-phase lymphocytes, DNA DSBs are generated by the Rag endonuclease and repaired during the assembly of antigen receptor genes by the process of V(D)J recombination. Mice and humans deficient in MRN function exhibit lymphoid phenotypes that are suggestive of defects in V(D)J recombination. We show that during V(D)J recombination, MRN deficiency leads to the aberrant joining of Rag DSBs and to the accumulation of unrepaired coding ends, thus establishing a functional role for MRN in the repair of Rag-mediated DNA DSBs. Moreover, these defects in V(D)J recombination are remarkably similar to those observed in ATM-deficient lymphocytes, suggesting that ATM and MRN function in the same DNA DSB response pathways during lymphocyte antigen receptor gene assembly.
Collapse
Affiliation(s)
- Beth A Helmink
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Demuth I, Digweed M. The clinical manifestation of a defective response to DNA double-strand breaks as exemplified by Nijmegen breakage syndrome. Oncogene 2008; 26:7792-8. [PMID: 18066092 DOI: 10.1038/sj.onc.1210876] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The autosomal recessive genetic disorder Nijmegen breakage syndrome (NBS) was first described in 1981 in patients living in Nijmegen, Holland. NBS patients display a characteristic facial appearance, microcephaly and a range of symptoms including immunodeficiency, increased cancer risk and growth retardation. In addition, NBS patient cells were found to have elevated levels of chromosomal damage and to be sensitive to ionizing irradiation (IR). This radiosensitivity had fatal consequences in some undiagnosed patients. The most dangerous DNA lesion caused by IR is considered to be the double-strand break (DSB) and indeed, NBS patient cells are sensitive to all mutagens that produce DSBs directly or indirectly. We discuss here our current understanding of how a deficiency in DSB repair manifests as the particular symptom complex of NBS.
Collapse
Affiliation(s)
- I Demuth
- Institut für Humangenetik, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | | |
Collapse
|
10
|
Jankovic M, Nussenzweig A, Nussenzweig MC. Antigen receptor diversification and chromosome translocations. Nat Immunol 2007; 8:801-8. [PMID: 17641661 DOI: 10.1038/ni1498] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Double-stranded DNA breaks (DSBs) can result in chromosomal abnormalities, including deletions, translocations and aneuploidy, which can promote neoplastic transformation. DSBs arise accidentally during DNA replication and can be induced by environmental factors such as ultraviolet light or ionizing radiation, and they are generated during antigen receptor-diversification reactions in lymphocytes. Cellular pathways that maintain genomic integrity use sophisticated mechanisms that recognize and repair all DSBs regardless of their origin. Such pathways, along with DNA-damage checkpoints, ensure that either the damage is properly repaired or cells with damaged DNA are eliminated. Here we review how impaired DNA-repair or DNA-damage checkpoints can lead to genetic instability and predispose lymphocytes undergoing diversification of antigen receptor genes to malignant transformation.
Collapse
Affiliation(s)
- Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10021-6399, USA
| | | | | |
Collapse
|
11
|
Donahue SL, Tabah AA, Schmitz K, Aaron A, Campbell C. Defective signal joint recombination in fanconi anemia fibroblasts reveals a role for Rad50 in V(D)J recombination. J Mol Biol 2007; 370:449-58. [PMID: 17524422 PMCID: PMC2727996 DOI: 10.1016/j.jmb.2007.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 03/02/2007] [Accepted: 03/05/2007] [Indexed: 10/23/2022]
Abstract
V(D)J recombination of immunoglobulin loci is dependent on the immune cell-specific Rag1 and Rag2 proteins as well as a number of ubiquitously expressed cellular DNA repair proteins that catalyze non-homologous end-joining of DNA double-strand breaks. The evolutionarily conserved Rad50/Mre11/Nibrin protein complex has a role in DNA double-strand break-repair, suggesting that these proteins, too, may participate in V(D)J recombination. Recent findings demonstrating that Rad50 function is defective in cells from patients afflicted with Fanconi anemia provide a possible mechanistic explanation for previous findings that lymphoblasts derived from these patients exhibit subtle defects in V(D)J recombination of extrachromosomal plasmid molecules. Here, we describe a series of findings that provide convincing evidence for a role of the Rad50 protein complex in V(D)J recombination. We found that the fidelity of V(D)J signal joint recombination in fibroblasts from patients afflicted with Fanconi anemia was reduced by nearly tenfold, compared to that observed in fibroblasts from normal donors. Second, we observed that antibody-mediated inhibition of the Rad50, Mre11, or Nibrin proteins reduced the fidelity of signal joint recombination significantly in wild-type cells. The latter finding was somewhat unexpected, because signal joint rejoining in cells from patients with Nijmegen breakage syndrome, which results from mutations in the Nibrin gene, occurs with normal fidelity. However, introduction of anti-Nibrin antibodies into these cells reduced the fidelity of signal joint recombination dramatically. These data reveal for the first time a role for the Rad50 complex in V(D)J recombination, and demonstrate that the protein product of the disease-causing allele responsible for Nijmegen breakage syndrome encodes a protein with residual DNA double-strand break repair activity.
Collapse
Affiliation(s)
| | | | - Kyle Schmitz
- From the Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis MN 55455
| | - Ashley Aaron
- From the Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis MN 55455
| | - Colin Campbell
- From the Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis MN 55455
| |
Collapse
|
12
|
Baker A, Rohleder KJ, Hanakahi LA, Ketner G. Adenovirus E4 34k and E1b 55k oncoproteins target host DNA ligase IV for proteasomal degradation. J Virol 2007; 81:7034-40. [PMID: 17459921 PMCID: PMC1933317 DOI: 10.1128/jvi.00029-07] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cells infected by adenovirus E4 mutants accumulate end-to-end concatemers of the viral genome that are assembled from unit-length viral DNAs by nonhomologous end joining (NHEJ). Genome concatenation can be prevented by expression either of E4 11k (product of E4orf3) or of the complex of E4 34k (product of E4orf6) and E1b 55k. Both E4 11k and the E4 34k/E1b 55k complex prevent concatenation at least in part by inactivation of the host protein Mre11: E4 11k sequesters Mre11 in aggresomes, while the E4 34k/E1b 55k complex participates in a virus-specific E3 ubiquitin ligase that mediates ubiquitination and proteasomal degradation. The E4 34k/E1b 55k complex, but not E4 11k, also inhibits NHEJ activity on internal breaks in the viral genome and on V(D)J recombination substrate plasmids, suggesting that it may interfere with NHEJ independently of its effect on Mre11. We show here that DNA ligase IV, which performs the joining step of NHEJ, is degraded as a consequence of adenovirus infection. Degradation is dependent upon E4 34k and E1b 55k, functional proteasomes, and the activity of cellular cullin 5, a component of the adenoviral ubiquitin ligase. DNA ligase IV also interacts physically with E1b 55k. The data demonstrate that DNA ligase IV, like Mre11, is a substrate for the adenovirus-specific E3 ubiquitin ligase; identify an additional viral approach to prevention of genome concatenation; and provide a mechanism for the general inhibition of NHEJ by adenoviruses.
Collapse
Affiliation(s)
- Amy Baker
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
13
|
Pan-Hammarström Q, Zhao Y, Hammarström L. Class switch recombination: a comparison between mouse and human. Adv Immunol 2007; 93:1-61. [PMID: 17383538 DOI: 10.1016/s0065-2776(06)93001-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Humans and mice separated more than 60 million years ago. Since then, evolution has led to a multitude of changes in their genomic sequences. The divergence of genes has resulted in differences both in the innate and adaptive immune systems. In this chapter, we focus on species difference with regard to immunoglobulin class switch recombination (CSR). We have compared the immunoglobulin constant region gene loci from human and mouse, with an emphasis on the switch regions, germ line transcription promoters, and 3' enhancers. We have also compared pathways/factors that are involved in CSR. Although there are remarkable similarities in the cellular machinery involved in CSR, there are also a number of unique features in each species.
Collapse
Affiliation(s)
- Qiang Pan-Hammarström
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | | | | |
Collapse
|
14
|
Matei IR, Guidos CJ, Danska JS. ATM-dependent DNA damage surveillance in T-cell development and leukemogenesis: the DSB connection. Immunol Rev 2006; 209:142-58. [PMID: 16448540 DOI: 10.1111/j.0105-2896.2006.00361.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The immune system is capable of recognizing and eliminating an enormous array of pathogens due to the extremely diverse antigen receptor repertoire of T and B lymphocytes. However, the development of lymphocytes bearing receptors with unique specificities requires the generation of programmed double strand breaks (DSBs) coupled with bursts of proliferation, rendering lymphocytes susceptible to mutations contributing to oncogenic transformation. Consequently, mechanisms responsible for monitoring global genomic integrity must be activated during lymphocyte development to limit the oncogenic potential of antigen receptor locus recombination. Mutations in ATM (ataxia-telangiectasia mutated), a kinase that coordinates DSB monitoring and the response to DNA damage, result in impaired T-cell development and predispose to T-cell leukemia. Here, we review recent evidence providing insight into the mechanisms by which ATM promotes normal lymphocyte development and protects from neoplastic transformation.
Collapse
Affiliation(s)
- Irina R Matei
- Program in Developmental Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | | | | |
Collapse
|
15
|
Clejan I, Boerckel J, Ahmed S. Developmental modulation of nonhomologous end joining in Caenorhabditis elegans. Genetics 2006; 173:1301-17. [PMID: 16702421 PMCID: PMC1526663 DOI: 10.1534/genetics.106.058628] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Homologous recombination and nonhomologous end joining (NHEJ) are important DNA double-strand break repair pathways in many organisms. C. elegans strains harboring mutations in the cku-70, cku-80, or lig-4 NHEJ genes displayed multiple developmental abnormalities in response to radiation-induced DNA damage in noncycling somatic cells. These phenotypes did not result from S-phase, DNA damage, or mitotic checkpoints, apoptosis, or stress response pathways that regulate dauer formation. However, an additional defect in him-10, a kinetochore component, synergized with NHEJ mutations for the radiation-induced developmental phenotypes, suggesting that they may be triggered by mis-segregation of chromosome fragments. Although NHEJ was an important DNA repair pathway for noncycling somatic cells in C. elegans, homologous recombination was used to repair radiation-induced DNA damage in cycling somatic cells and in germ cells at all times. Noncycling germ cells that depended on homologous recombination underwent cell cycle arrest in G2, whereas noncycling somatic cells that depended on NHEJ arrested in G1, suggesting that cell cycle phase may modulate DNA repair during development. We conclude that error-prone NHEJ plays little or no role in DNA repair in C. elegans germ cells, possibly ensuring homology-based double-strand break repair and transmission of a stable genome from one generation to the next.
Collapse
Affiliation(s)
- Iuval Clejan
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | | | | |
Collapse
|
16
|
Digweed M. Genomic Instability in Fanconi Anaemia and Nijmegen Breakage Syndrome. Genome Integr 2006. [DOI: 10.1007/7050_013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
17
|
Löbrich M, Jeggo PA. Harmonising the response to DSBs: a new string in the ATM bow. DNA Repair (Amst) 2005; 4:749-59. [PMID: 15978533 DOI: 10.1016/j.dnarep.2004.12.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Accepted: 12/16/2004] [Indexed: 01/12/2023]
Abstract
Ataxia telangiestasia mutated protein (ATM) is the major kinase that initiates the DNA damage signal transduction response following exposure to ionising radiation (IR) in mammalian cells. DNA non-homologous end-joining (NHEJ) is the most significant double strand break (DSB) repair pathway in mammalian cells. ATM-defective cell lines display cell cycle checkpoint defects and show pronounced radiosensitivity. ATM signalling was previously thought to be dispensable for NHEJ. This review discusses recent findings that ATM activates an end-processing mechanism dependent upon Artemis, a nuclease that also functions to cleave the hairpin intermediate generated during V(D)J recombination. ATM/Artemis-dependent end-processing is required for the repair of a sub-fraction (approximately 10%) of DSBs induced by IR and makes a significant contribution to survival following exposure to ionising radiation. This result represents a new role for ATM and demonstrates a novel cross communication between the DNA repair and signal transduction machinery.
Collapse
Affiliation(s)
- Markus Löbrich
- Fachrichtung Biophysik, Universität des Saarlandes, D-66421 Homburg/Saar, Germany.
| | | |
Collapse
|
18
|
Abstract
Double-strand breaks (DSBs) arise endogenously during normal cellular processes and exogenously by genotoxic agents such as ionizing radiation (IR). DSBs are one of the most severe types of DNA damage, which if left unrepaired are lethal to the cell. Several different DNA repair pathways combat DSBs, with nonhomologous end-joining (NHEJ) being one of the most important in mammalian cells. Competent NHEJ catalyses repair of DSBs by joining together and ligating two free DNA ends of little homology (microhomology) or DNA ends of no homology. The core components of mammalian NHEJ are the catalytic subunit of DNA protein kinase (DNA-PK(cs)), Ku subunits Ku70 and Ku80, Artemis, XRCC4 and DNA ligase IV. DNA-PK is a nuclear serine/threonine protein kinase that comprises a catalytic subunit (DNA-PK(cs)), with the Ku subunits acting as the regulatory element. It has been proposed that DNA-PK is a molecular sensor for DNA damage that enhances the signal via phosphorylation of many downstream targets. The crucial role of DNA-PK in the repair of DSBs is highlighted by the hypersensitivity of DNA-PK(-/-) mice to IR and the high levels of unrepaired DSBs after genotoxic insult. Recently, DNA-PK has emerged as a suitable genetic target for molecular therapeutics such as siRNA, antisense and novel inhibitory small molecules. This review encompasses the recent literature regarding the role of DNA-PK in the protection of genomic stability and focuses on how this knowledge has aided the development of specific DNA-PK inhibitors, via both small molecule and directed molecular targeting techniques. This review promotes the inhibition of DNA-PK as a valid approach to enhance the tumor-cell-killing effects of treatments such as IR.
Collapse
Affiliation(s)
- Spencer J Collis
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD 21231, USA.
| | | | | | | |
Collapse
|
19
|
Abstract
DNA double strand breaks (DSBs) are among the most dangerous lesions that can occur in the genome of eukaryotic cells. Proper repair of chromosomal DSBs is critical for maintaining cellular viability and genomic integrity and, in multi-cellular organisms, for suppression of tumorigenesis. Thus, eukaryotic cells have evolved specialized and redundant molecular mechanisms to sense, respond to, and repair DSBs. In this chapter, we provide an overview of the progress that has been made over the last decade in elucidating the identity and function of components that participate in the cellular response to chromosomal DSBs. Then, we discuss, in more depth, the response to DSBs that occur in the context of the V(D)J recombination and IgH class switch recombination reactions that occur in cells of the lymphocyte lineage.
Collapse
Affiliation(s)
- Craig H Bassing
- Department of Genetics, The CBR Institute for Biomedical Research, The Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
20
|
Budman J, Chu G. Processing of DNA for nonhomologous end-joining by cell-free extract. EMBO J 2005; 24:849-60. [PMID: 15692565 PMCID: PMC549622 DOI: 10.1038/sj.emboj.7600563] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Accepted: 01/03/2005] [Indexed: 12/22/2022] Open
Abstract
In mammalian cells, nonhomologous end-joining (NHEJ) repairs DNA double-strand breaks created by ionizing radiation and V(D)J recombination. We have developed a cell-free system capable of processing and joining noncompatible DNA ends. The system had key features of NHEJ in vivo, including dependence on Ku, DNA-PKcs, and XRCC4/Ligase4. The NHEJ reaction had striking properties. Processing of noncompatible ends involved polymerase and nuclease activities that often stabilized the alignment of opposing ends by base pairing. To achieve this, polymerase activity efficiently synthesized DNA across discontinuities in the template strand, and nuclease activity removed a limited number of nucleotides back to regions of microhomology. Processing was suppressed for DNA ends that could be ligated directly, biasing the reaction to preserve DNA sequence and maintain genomic integrity. DNA sequence internal to the ends influenced the spectrum of processing events for noncompatible ends. Furthermore, internal DNA sequence strongly influenced joining efficiency, even in the absence of processing. These results support a model in which DNA-PKcs plays a central role in regulating the processing of ends for NHEJ.
Collapse
Affiliation(s)
- Joe Budman
- Departments of Medicine and Biochemistry, Stanford University, Stanford, CA, USA
| | - Gilbert Chu
- Departments of Medicine and Biochemistry, Stanford University, Stanford, CA, USA
- Departments of Medicine and Biochemistry, Stanford University, CCSR Building Room 1145, 269 Campus Drive, Stanford, CA 94305-5151, USA. Tel.: +1 650 725 6442; Fax: +1 650 736 2282; E-mail:
| |
Collapse
|
21
|
Abstract
Efficient repair of DNA double-strand breaks is essential for the maintenance of chromosomal integrity. In higher eukaryotes, non-homologous end-joining (NHEJ) DNA is the primary pathway that repairs these breaks. NHEJ also functions in developing lymphocytes to repair strand breaks that occur during V(D)J recombination, the site-specific recombination process that provides for the assembly of functional antigen-receptor genes. If V(D)J recombination is impaired, B- and T-lymphocyte development is blocked resulting in severe combined immunodeficiency disease. In the last decade, an intensive research effort has focused on NHEJ resulting in a reasonable understanding of how double-strand breaks are resolved. Six distinct gene products have been identified that function in this pathway (Ku70, Ku86, XRCC4, DNA ligase IV, Artemis, and DNA-PKcs). Three of these comprise one complex, the DNA-dependent protein kinase (DNA-PK). This protein complex is central during NHEJ, because DNA-PK initially recognizes and binds to the damaged DNA and then targets the other repair activities to the site of DNA damage. In this review, we discuss recent developments that have provided insight into how DNA-PK functions, once bound to DNA ends.
Collapse
Affiliation(s)
- Katheryn Meek
- College of Veterinary Medicine and Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
22
|
Demuth I, Frappart PO, Hildebrand G, Melchers A, Lobitz S, Stöckl L, Varon R, Herceg Z, Sperling K, Wang ZQ, Digweed M. An inducible null mutant murine model of Nijmegen breakage syndrome proves the essential function of NBS1 in chromosomal stability and cell viability. Hum Mol Genet 2004; 13:2385-97. [PMID: 15333589 DOI: 10.1093/hmg/ddh278] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The human genetic disorder, Nijmegen breakage syndrome, is characterized by radiosensitivity, immunodeficiency, chromosomal instability and an increased risk for cancer of the lymphatic system. The NBS1 gene codes for a protein, nibrin, involved in the processing/repair of DNA double strand breaks and in cell cycle checkpoints. Most patients are homozygous for a founder mutation, a 5 bp deletion, which might not be a null mutation, as functionally relevant truncated nibrin proteins are observed, at least in vitro. In agreement with this hypothesis, null mutation of the homologous gene, Nbn, is lethal in mice. Here, we have used Cre recombinase/loxP technology to generate an inducible Nbn null mutation allowing the examination of DNA-repair and cell cycle-checkpoints in the complete absence of nibrin. Induction of Nbn null mutation leads to the loss of the G2/M checkpoint, increased chromosome damage, radiomimetic-sensitivity and cell death. In vivo, this particularly affects the lymphatic tissues, bone marrow, thymus and spleen, whereas liver, kidney and muscle are hardly affected. In vitro, null mutant murine fibroblasts can be rescued from cell death by transfer of human nibrin cDNA and, more significantly, by a cDNA carrying the 5 bp deletion. This demonstrates, for the first time, that the common human mutation is hypomorphic and that the expression of a truncated protein is sufficient to restore nibrin's vital cellular functions.
Collapse
Affiliation(s)
- Ilja Demuth
- Institut für Humangenetik, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Digweed M, Sperling K. Nijmegen breakage syndrome: clinical manifestation of defective response to DNA double-strand breaks. DNA Repair (Amst) 2004; 3:1207-17. [PMID: 15279809 DOI: 10.1016/j.dnarep.2004.03.004] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Nijmegen breakage syndrome is a rare autosomal recessive genetic disease belonging to a group of disorders often called chromosome instability syndromes. In addition to a characteristic facial appearance and microcephaly, patients suffering from Nijmegen breakage syndrome have a range of symptoms including radiosensitivity, immunodeficiency, increased cancer risk and growth retardation. The underlying gene, NBS1, is located on human chromosome 8q21 and codes for a protein product termed nibrin, Nbs1 or p95. Over 90% of patients are homozygous for a founder mutation: a deletion of five base pairs which leads to a framehift and protein truncation. The protein nibrin/Nbs1 is suspected to be involved in the cellular response to DNA damage caused by ionising irradiation, thus accounting for the radiosensitivity of Nijmegen breakage syndrome. We review here some of the more recent findings on the NBS1 gene and discuss how they impinge on the clinical manifestation of the disease.
Collapse
Affiliation(s)
- Martin Digweed
- Institute of Human Genetics, Charité-University Medicine Berlin, Augustenburger platz 1, Berlin 13353, Germany.
| | | |
Collapse
|
24
|
Lieber MR, Ma Y, Pannicke U, Schwarz K. The mechanism of vertebrate nonhomologous DNA end joining and its role in V(D)J recombination. DNA Repair (Amst) 2004; 3:817-26. [PMID: 15279766 DOI: 10.1016/j.dnarep.2004.03.015] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The vertebrate immune system generates double-strand DNA (dsDNA) breaks to generate the antigen receptor repertoire of lymphocytes. After those double-strand breaks have been created, the DNA joinings required to complete the process are carried out by the nonhomologous DNA end joining pathway, or NHEJ. The NHEJ pathway is present not only in lymphocytes, but in all eukaryotic cells ranging from yeast to humans. The NHEJ pathway is needed to repair these physiologic breaks, as well as challenging pathologic breaks that arise from ionizing radiation and oxidative damage to DNA.
Collapse
Affiliation(s)
- Michael R Lieber
- USC Norris Comprehensive Cancer Ctr., Rm. 5428, University of Southern California Keck School of Medicine, Department of Pathology, Los Angeles, CA 90033, USA.
| | | | | | | |
Collapse
|
25
|
O'Driscoll M, Gennery AR, Seidel J, Concannon P, Jeggo PA. An overview of three new disorders associated with genetic instability: LIG4 syndrome, RS-SCID and ATR-Seckel syndrome. DNA Repair (Amst) 2004; 3:1227-35. [PMID: 15279811 DOI: 10.1016/j.dnarep.2004.03.025] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Around 15-20 hereditary disorders associated with impaired DNA damage response mechanisms have been previously described. The range of clinical features associated with these disorders attests to the significant role that these pathways play during development. Recently, three new such disorders have been reported extending the importance of the damage response pathways to human health. LIG4 syndrome is conferred by hypomorphic mutations in DNA ligase IV, an essential component of DNA non-homologous end-joining (NHEJ), and is associated with pancytopaenia, developmental and growth delay and dysmorphic facial features. Radiosensitive severe combined immunodeficiency (RS-SCID) is caused by mutations in Artemis, a protein that plays a subsidiary role in non-homologous end-joining although it is not an essential component. RS-SCID is characterised by severe combined immunodeficiency but patients have no overt developmental abnormalities. ATR-Seckel syndrome is caused by mutations in ataxia telangiectasia and Rad3 related protein (ATR), a component of a DNA damage signalling pathway. ATR-Seckel syndrome patients have dramatic microcephaly and marked growth and developmental delay. The clinical features of these patients are considered in the light of the function of the defective protein.
Collapse
Affiliation(s)
- M O'Driscoll
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, East Sussex BN1 9RQ, UK
| | | | | | | | | |
Collapse
|
26
|
Schwarz K, Ma Y, Pannicke U, Lieber MR. Human severe combined immune deficiency and DNA repair. Bioessays 2004; 25:1061-70. [PMID: 14579247 DOI: 10.1002/bies.10344] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Human severe combined immune deficiency (SCID) is the most serious inherited immunological deficit. Recent work has revealed defects in the predominant pathway for double-strand break repair called nonhomologous DNA end joining, or NHEJ. Progress in the biochemistry and genetics of NHEJ and of human SCID has proven to be synergistic between these two fields in a manner that covers the range from biochemical etiology to considerations about possible gene therapy for the B- SCID patients.
Collapse
Affiliation(s)
- Klaus Schwarz
- Department of Transfusion Medicine, University of Ulm, Germany.
| | | | | | | |
Collapse
|
27
|
Zhang J, Willers H, Feng Z, Ghosh JC, Kim S, Weaver DT, Chung JH, Powell SN, Xia F. Chk2 phosphorylation of BRCA1 regulates DNA double-strand break repair. Mol Cell Biol 2004; 24:708-18. [PMID: 14701743 PMCID: PMC343805 DOI: 10.1128/mcb.24.2.708-718.2004] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 09/04/2003] [Accepted: 10/23/2003] [Indexed: 12/29/2022] Open
Abstract
The pathway determining malignant cellular transformation, which depends upon mutation of the BRCA1 tumor suppressor gene, is poorly defined. A growing body of evidence suggests that promotion of DNA double-strand break repair by homologous recombination (HR) may be the means by which BRCA1 maintains genomic stability, while a role of BRCA1 in error-prone nonhomologous recombination (NHR) processes has just begun to be elucidated. The BRCA1 protein becomes phosphorylated in response to DNA damage, but the effects of phosphorylation on recombinational repair are unknown. In this study, we tested the hypothesis that the BRCA1-mediated regulation of recombination requires the Chk2- and ATM-dependent phosphorylation sites. We studied Rad51-dependent HR and random chromosomal integration of linearized plasmid DNA, a subtype of NHR, which we demonstrate to be dependent on the Mre11-Rad50-Nbs1 complex. Prevention of Chk2-mediated phosphorylation via mutation of the serine 988 residue of BRCA1 disrupted both the BRCA1-dependent promotion of HR and the suppression of NHR. Similar results were obtained when endogenous Chk2 kinase activity was inhibited by expression of a dominant-negative Chk2 mutant. Surprisingly, the opposing regulation of HR and NHR did not require the ATM phosphorylation sites on serines 1423 and 1524. Together, these data suggest a functional link between recombination control and breast cancer predisposition in carriers of Chk2 and BRCA1 germ line mutations. We propose a dual regulatory role for BRCA1 in maintaining genome integrity, whereby BRCA1 phosphorylation status controls the selectivity of repair events dictated by HR and error-prone NHR.
Collapse
Affiliation(s)
- Junran Zhang
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gennery AR, O'Driscoll M. Unravelling the web of DNA repair disorders. Clin Exp Immunol 2003; 134:385-7. [PMID: 14632741 PMCID: PMC1808886 DOI: 10.1111/j.1365-2249.2003.02316.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2003] [Indexed: 11/30/2022] Open
|
29
|
Abstract
An increased mutation rate in human cells is a critical contributing factor for the development of malignancy. Many autosomal recessive genetic disorders are known, in which an increased mutation rate and predisposition for cancer can be attributed to a deficiency in DNA repair or associated processes. Some of these DNA repair deficiencies are manifested at the level of the mitotic chromosome as increased breakage, particularly after treatment with specific mutagens. The examination of the response of cells from patients with these disorders to carcinogens offers the opportunity to elucidate the mechanisms operating in human cells to combat DNA damage and mutation. Over the last few years, the underlying genes in many of these syndromes have been identified, enabling a much more detailed definition of the processes disturbed. This review concentrates on two of the chromosomal breakage syndromes, Fanconi anaemia and Nijmegen breakage syndrome, which have both distinct and common cellular features.
Collapse
Affiliation(s)
- Martin Digweed
- Institut für Humangenetik, Charité-Campus Virchow Klinikum, Humboldt Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
30
|
Lieber MR, Ma Y, Pannicke U, Schwarz K. Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol 2003; 4:712-20. [PMID: 14506474 DOI: 10.1038/nrm1202] [Citation(s) in RCA: 711] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Non-homologous DNA end-joining (NHEJ)--the main pathway for repairing double-stranded DNA breaks--functions throughout the cell cycle to repair such lesions. Defects in NHEJ result in marked sensitivity to ionizing radiation and ablation of lymphocytes, which rely on NHEJ to complete the rearrangement of antigen-receptor genes. NHEJ is typically imprecise, a characteristic that is useful for immune diversification in lymphocytes, but which might also contribute to some of the genetic changes that underlie cancer and ageing.
Collapse
Affiliation(s)
- Michael R Lieber
- Norris Comprehensive Cancer Center, Department of Pathology, University of Southern California School of Medicine, 1441 Eastlake Avenue, MS 9176, Los Angeles, California 90089, USA.
| | | | | | | |
Collapse
|
31
|
Chen L, Huang S, Lee L, Davalos A, Schiestl RH, Campisi J, Oshima J. WRN, the protein deficient in Werner syndrome, plays a critical structural role in optimizing DNA repair. Aging Cell 2003; 2:191-9. [PMID: 12934712 DOI: 10.1046/j.1474-9728.2003.00052.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Werner syndrome (WS) predisposes patients to cancer and premature aging, owing to mutations in WRN. The WRN protein is a RECQ-like helicase and is thought to participate in DNA double-strand break (DSB) repair by non-homologous end joining (NHEJ) or homologous recombination (HR). It has been previously shown that non-homologous DNA ends develop extensive deletions during repair in WS cells, and that this WS phenotype was complemented by wild-type (wt) WRN. WRN possesses both 3' --> 5' exonuclease and 3' --> 5' helicase activities. To determine the relative contributions of each of these distinct enzymatic activities to DSB repair, we examined NHEJ and HR in WS cells (WRN-/-) complemented with either wtWRN, exonuclease-defective WRN (E-), helicase-defective WRN (H-) or exonuclease/helicase-defective WRN (E-H-). The single E-and H- mutants each partially complemented the NHEJ abnormality of WRN-/- cells. Strikingly, the E-H- double mutant complemented the WS deficiency nearly as efficiently as did wtWRN. Similarly, the double mutant complemented the moderate HR deficiency of WS cells nearly as well as did wtWRN, whereas the E- and H- single mutants increased HR to levels higher than those restored by either E-H- or wtWRN. These results suggest that balanced exonuclease and helicase activities of WRN are required for optimal HR. Moreover, WRN appears to play a structural role, independent of its enzymatic activities, in optimizing HR and efficient NHEJ repair. Another human RECQ helicase, BLM, suppressed HR but had little or no effect on NHEJ, suggesting that mammalian RECQ helicases have distinct functions that can finely regulate recombination events.
Collapse
Affiliation(s)
- Lishan Chen
- Department of Pathology, University of Washington, Seattle, WA 98195-7470, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Cellular DNA continuously incurs damage and a range of damage response mechanisms function to maintain genomic integrity in the face of this onslaught. During the development of the immune response, the cell utilises three defined processes, V(D)J recombination, class switch recombination and somatic hypermutation, to create genetic diversity in developing T and B cells. Curiously, the damage response mechanisms employed to maintain genomic stability in somatic cells have been exploited and adapted to help generate diversity during immune development. As a consequence of this overlap, there is mounting evidence that disorders attributable to impaired damage response mechanisms display associated immunodeficiency. Since double strand breaks (DSB) are created during at least two of the mechanisms used to create immunoglobulin diversity, namely V(D)J recombination and class switch recombination, it is not surprising that disorders associated with defects in the response to double strand breaks are those most associated with immunodeficiency. Here, we review the steps involved in the generation of genetic diversity during immune development with a focus on the damage response mechanisms employed and then consider human immunodeficiency disorders associated with impaired damage response mechanisms.
Collapse
Affiliation(s)
- Mark O'Driscoll
- Genome Damage and Stability Centre, University of Sussex, East Sussex, BN1 9RR, UK
| | | |
Collapse
|
33
|
D'Amours D, Jackson SP. The Mre11 complex: at the crossroads of dna repair and checkpoint signalling. Nat Rev Mol Cell Biol 2002; 3:317-27. [PMID: 11988766 DOI: 10.1038/nrm805] [Citation(s) in RCA: 675] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Mre11 complex is a multisubunit nuclease that is composed of Mre11, Rad50 and Nbs1/Xrs2. Mutations in the genes that encode components of this complex result in DNA- damage sensitivity, genomic instability, telomere shortening and aberrant meiosis. The molecular defect that underlies these phenotypes has long been thought to be related to a DNA repair deficiency. However, recent studies have uncovered functions for the Mre11 complex in checkpoint signalling and DNA replication.
Collapse
Affiliation(s)
- Damien D'Amours
- Wellcome Trust and Cancer Research, UK Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | | |
Collapse
|
34
|
Ma Y, Pannicke U, Schwarz K, Lieber MR. Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 2002; 108:781-94. [PMID: 11955432 DOI: 10.1016/s0092-8674(02)00671-2] [Citation(s) in RCA: 798] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mutations in the Artemis protein in humans result in hypersensitivity to DNA double-strand break-inducing agents and absence of B and T lymphocytes (radiosensitive severe combined immune deficiency [RS-SCID]). Here, we report that Artemis forms a complex with the 469 kDa DNA-dependent protein kinase (DNA-PKcs) in the absence of DNA. The purified Artemis protein alone possesses single-strand-specific 5' to 3' exonuclease activity. Upon complex formation, DNA-PKcs phosphorylates Artemis, and Artemis acquires endonucleolytic activity on 5' and 3' overhangs, as well as hairpins. Finally, the Artemis:DNA-PKcs complex can open hairpins generated by the RAG complex. Thus, DNA-PKcs regulates Artemis by both phosphorylation and complex formation to permit enzymatic activities that are critical for the hairpin-opening step of V(D)J recombination and for the 5' and 3' overhang processing in nonhomologous DNA end joining.
Collapse
Affiliation(s)
- Yunmei Ma
- Norris Comprehensive Cancer Center, Rm. 5428, Departments of Biochemistry & Molecular Biology, Pathology, Biological Sciences, and Molecular Microbiology & Immunology, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | | | | | | |
Collapse
|
35
|
Jeggo PA, Concannon P. Immune diversity and genomic stability: opposite goals but similar paths. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2001; 65:88-96. [PMID: 11809363 DOI: 10.1016/s1011-1344(01)00243-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
DNA damage response mechanisms serve to protect cells from exogenous and endogenous DNA damaging agents with the aim of maintaining genomic stability. In contrast, the generation of an efficient immune response requires the creation of a repertoire of distinct immunoglobulin and T cell receptor genes able to recognise the huge array of antigens that may be encountered in a lifetime. Surprisingly, cells have exploited the same mechanisms used to maintain genomic integrity to create genetic diversity during immune development. Here, we review the damage response mechanisms operating on DNA double strand breaks and their function during development of the immune response. We discuss disorders that are associated with immunodeficiency and defective responses to the presence of DNA double strand breaks.
Collapse
Affiliation(s)
- P A Jeggo
- Genome Damage and Stability Centre, University of Sussex, Brighton, East Sussex, UK.
| | | |
Collapse
|
36
|
O'Driscoll M, Cerosaletti KM, Girard PM, Dai Y, Stumm M, Kysela B, Hirsch B, Gennery A, Palmer SE, Seidel J, Gatti RA, Varon R, Oettinger MA, Neitzel H, Jeggo PA, Concannon P. DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency. Mol Cell 2001; 8:1175-85. [PMID: 11779494 DOI: 10.1016/s1097-2765(01)00408-7] [Citation(s) in RCA: 373] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
DNA ligase IV functions in DNA nonhomologous end-joining and V(D)J recombination. Four patients with features including immunodeficiency and developmental and growth delay were found to have mutations in the gene encoding DNA ligase IV (LIG4). Their clinical phenotype closely resembles the DNA damage response disorder, Nijmegen breakage syndrome (NBS). Some of the mutations identified in the patients directly disrupt the ligase domain while others impair the interaction between DNA ligase IV and Xrcc-4. Cell lines from the patients show pronounced radiosensitivity. Unlike NBS cell lines, they show normal cell cycle checkpoint responses but impaired DNA double-strand break rejoining. An unexpected V(D)J recombination phenotype is observed involving a small decrease in rejoining frequency coupled with elevated imprecision at signal junctions.
Collapse
Affiliation(s)
- M O'Driscoll
- Genome Damage and Stability Unit, University of Sussex, Brighton, East Sussex, BN1 9RR, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|