1
|
Xia Y, Eryilmaz E, Zhang Q, Cowburn D, Putterman C. Anti-DNA antibody mediated catalysis is isotype dependent. Mol Immunol 2015; 69:33-43. [PMID: 26655427 DOI: 10.1016/j.molimm.2015.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/29/2015] [Accepted: 11/01/2015] [Indexed: 12/27/2022]
Abstract
Anti-DNA antibodies are the serological hallmark of systemic lupus erythematosus, and participate in the pathogenesis of lupus nephritis by cross-reacting with multiple renal antigens. Previously, using a panel of murine anti-DNA IgGs that share identical variable regions but that differ in the constant regions, we demonstrated that the cross-reaction and renal pathogenicity of anti-DNA antibodies are isotype dependent. In this study, we investigated the catalytic potential of this anti-DNA antibody panel, and determined its isotype dependency. The three isotype switch variants (IgG1, IgG2a, IgG2b) and the parent IgG3 PL9-11 anti-DNA antibodies were compared in their catalysis of 500 base pair linear double stranded DNA and a 12-mer peptide (ALWPPNLHAWVP), by gel analysis, MALDI-TOF mass spectrometry, and nuclear magnetic resonance spectroscopy. The binding affinity of anti-DNA antibodies to double stranded DNA and peptide antigens were assessed by ELISA and surface plasmon resonance. We found that the PL9-11 antibody isotypes vary significantly in their potential to catalyze the cleavage of both linear and double stranded DNA and the proteolysis of peptides. The degree of the cleavage and proteolysis increases with the incubation temperature and time. While different PL9-11 isotypes have the same initial attack sites within the ALWPPNLHAWVP peptide, there was no correlation between binding affinity to the peptide and proteolysis rates. In conclusion, the catalytic properties of anti-DNA antibodies are isotype dependent. This finding provides further evidence that antibodies that share the same variable region, but which have different constant regions, are functionally distinct. The catalytic effects modulated by antibody constant regions need to be considered in the design of therapeutic antibodies (abzymes) and peptides designed to block pathogenic autoantibodies.
Collapse
Affiliation(s)
- Yumin Xia
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Ertan Eryilmaz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Qiuting Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - David Cowburn
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Chaim Putterman
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
2
|
Im SR, Im SW, Chung HY, Pravinsagar P, Jang YJ. Cell- and nuclear-penetrating anti-dsDNA autoantibodies have multiple arginines in CDR3 of VH and increase cellular level of pERK and Bcl-2 in mesangial cells. Mol Immunol 2015; 67:377-87. [DOI: 10.1016/j.molimm.2015.06.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 06/19/2015] [Accepted: 06/24/2015] [Indexed: 01/27/2023]
|
3
|
Timofeeva AM, Ivanisenko NV, Buneva VN, Nevinsky GA. Systemic lupus erythematosus: molecular cloning and analysis of recombinant monoclonal kappa light chain NGTA2-Me-pro-ChTr possessing two different activities-trypsin-like and metalloprotease. Int Immunol 2015; 27:633-45. [PMID: 26174315 DOI: 10.1093/intimm/dxv042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/09/2015] [Indexed: 11/14/2022] Open
Abstract
Polyclonal antibodies hydrolyzing myelin basic protein (MBP) can play an important role in the pathogenesis of multiple sclerosis and systemic lupus erythematosus (SLE). An immunoglobulin light chain phagemid library derived from peripheral blood lymphocytes of patients with SLE was used. The small pools of phage particles displaying light chains with different affinity for MBP were isolated by affinity chromatography on MBP-Sepharose. The fraction eluted with 0.5M NaCl was used for preparation of individual monoclonal light chains (MLChs, 26-27kDa). The clones were expressed in Escherichia coli in a soluble form; MLChs were purified by metal-chelating chromatography followed by gel filtration. In mammalians, there are serine proteases and metalloproteases. These and many other enzymes usually have only one active site and catalyze only one chemical reaction. In contrast to canonical proteases, one MLCh (NGTA2-Me-pro-ChTr) efficiently hydrolyzed MBP (but not other proteins) and four different oligopeptides corresponding to four immunodominant sequences containing cleavage sites of MBP. The proteolytic activity of MLCh was efficiently inhibited only by specific inhibitors of serine-like (phenylmethanesulfonylfluoride, PMSF) and metalloproteases (EDTA). It was shown that MLCh possess independent serine-like and metal-dependent activities. The principal existence of monoclonal antibodies with two different proteolytic activities is unexpected but very important for the further understanding of at present unknown biological functions of human antibodies.
Collapse
Affiliation(s)
- Anna M Timofeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Nikita V Ivanisenko
- Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Valentina N Buneva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia Novosibirsk State University, Novosibirsk 630090, Russia
| | - Georgy A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
4
|
Seo Y, Jun HR, Lee J, Park H, Kim M, Lee Y, Kwon MH. In-Cell RNA Hydrolysis Assay: A Method for the Determination of the RNase Activity of Potential RNases. Mol Biotechnol 2015; 57:506-12. [PMID: 25632893 PMCID: PMC4432088 DOI: 10.1007/s12033-015-9844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conventional procedures to assay RNA degradation by a protein with ribonuclease (RNase) activity require a step to isolate intact RNA molecules, which are used as a substrate. Here, we established a novel “In-cell RNA hydrolysis assay” in which RNAs within cells are used as a substrate for the RNA-hydrolyzing protein, thereby avoiding the need to prepare intact RNA molecules. In this method, the degree of RNA degradation is indicated by the fluorescence intensity of RNA molecules released from fixed and permeabilized cells following treatment with the potential RNase. A catalytic 3D8 antibody capable of degrading RNAs and pancreatic RNase A were used as model RNases. Our data demonstrate that the novel In-cell RNA hydrolysis assay is a reliable and sensitive method to analyze the activities of potential RNA-hydrolyzing proteins such as catalytic antibodies.
Collapse
Affiliation(s)
- Youngsil Seo
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 443-749, South Korea
| | | | | | | | | | | | | |
Collapse
|
5
|
Systemic lupus erythematosus: Molecular cloning of fourteen recombinant DNase monoclonal kappa light chains with different catalytic properties. Biochim Biophys Acta Gen Subj 2014; 1840:1725-37. [DOI: 10.1016/j.bbagen.2014.01.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 11/15/2022]
|
6
|
Kostrikina IA, Odintsova ES, Buneva VN, Nevinsky GA. Systemic lupus erythematosus: molecular cloning and analysis of recombinant DNase monoclonal κ light chain NGK-1. Int Immunol 2014; 26:439-50. [PMID: 24919596 DOI: 10.1093/intimm/dxu047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Because DNase antibodies are cytotoxic, enter the nucleus and cause DNA fragmentation inducing cell death by apoptosis, they can play an important role in the pathogenesis of different autoimmune pathologies and especially systemic lupus erythematosus (SLE). The interesting goal of catalytic antibodies research is not only to study a possible biological role of such antibodies, but also to develop in future new human and animal therapies that use the advantages offered by abzymes. An immunoglobulin κ light chain library from SLE patients was cloned into a phagemid vector. Phage particles displaying recombinant monoclonal antibody light chains (MLChs) capable of binding DNA were isolated by affinity chromatography on DNA-cellulose. Sixteen of the 46 MLChs efficiently hydrolyzed DNA; one MLCh (approximately 27-28kDa) was expressed in Escherichia coli and purified by metal chelating and gel filtration. MLCh NGK-1 was electrophoretically homogeneous and demonstrated a positive answer with mouse IgGs against light chains of human antibodies after western blotting. SDS-PAGE in a gel containing DNA demonstrated that the MLCh hydrolyzes DNA and is not contaminated by canonical DNases. The DNase MLCh was activated by several metal ions. The protein sequence of the DNase MLCh has homology with mammalian DNases I and shares with them several identical or similar (with the same side chain functionality) important amino acid residues, which are necessary for DNA hydrolysis and binding of Mg(2+) and Ca(2+) ions. The affinity of DNA for this first example of a MLCh (K(M) = 0.3 microM) was 150- to 200-fold higher than for human DNase I.
Collapse
Affiliation(s)
- Irina A Kostrikina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena S Odintsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Valentina N Buneva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia Novosibirsk State University, Novosibirsk 630090, Russia
| | - Georgy A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
7
|
Lee J, Kim HJ, Roh J, Seo Y, Kim M, Jun HR, Pham CD, Kwon MH. Functional consequences of complementarity-determining region deactivation in a multifunctional anti-nucleic acid antibody. J Biol Chem 2013; 288:35877-85. [PMID: 24155236 PMCID: PMC3861637 DOI: 10.1074/jbc.m113.508499] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many murine monoclonal anti-DNA antibodies (Abs) derived from mice models for systemic lupus erythematosus have additional cell-penetration and/or nucleic acid-hydrolysis properties. Here, we examined the influence of deactivating each complementarity-determining region (CDR) within a multifunctional anti-nucleic acid antibody (Ab) that possesses these activities, the catalytic 3D8 single chain variable fragment (scFv). CDR-deactivated 3D8 scFv variants were generated by replacing all of the amino acids within each CDR with Gly/Ser residues. The structure of 3D8 scFv accommodated single complete CDR deactivations. Different functional activities of 3D8 scFv were affected differently depending on which CDR was deactivated. The only exception was CDR1, located within the light chain (LCDR1); deactivation of LCDR1 abolished all of the functional activities of 3D8 scFv. A hybrid Ab, HW6/3D8L1, in which the LCDR1 from an unrelated Ab (HW6) was replaced with the LCDR1 from 3D8, acquired all activities associated with the 3D8 scFv. These results suggest that the activity of a multifunctional 3D8 scFv Ab can be modulated by single complete CDR deactivation and that the LCDR1 plays a crucial role in maintaining Ab properties. This study presents a new approach for determining the role of individual CDRs in multifunctional Abs with important implications for the future of Ab engineering.
Collapse
Affiliation(s)
- Jiyeon Lee
- From the Department of Biomedical Sciences, Graduate School, Ajou University, San 5, Woncheon-dong, Yeongtong-gu, Suwon 443-749, South Korea and
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Hifumi E, Fujimoto N, Arakawa M, Saito E, Matsumoto S, Kobayashi N, Uda T. Biochemical features of a catalytic antibody light chain, 22F6, prepared from human lymphocytes. J Biol Chem 2013; 288:19558-68. [PMID: 23677996 PMCID: PMC3707657 DOI: 10.1074/jbc.m113.454579] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Human antibody light chains belonging to subgroup II of germ line genes were amplified by a seminested PCR technique using B-lymphocytes taken from a human adult infected with influenza virus. Each gene of the human light chains was transferred into the Escherichia coli system. The recovered light chain was highly purified using a two-step purification system. Light chain 22F6 showed interesting catalytic features. The light chain cleaved a peptide bond of synthetic peptidyl-4-methyl-coumaryl-7-amide (MCA) substrates, such as QAR-MCA and EAR-MCA, indicating amidase activity. It also hydrolyzed a phosphodiester bond of both DNA and RNA. From the analysis of amino acid sequences and molecular modeling, the 22F6 light chain possesses two kinds of active sites as amidase and nuclease in close distances. The 22F6 catalytic light chain could suppress the infection of influenza virus type A (H1N1) of Madin-Darby canine kidney cells in an in vitro assay. In addition, the catalytic light chain clearly inhibited the infection of the influenza virus of BALB/c mice via nasal administration in an in vivo assay. In the experiment, the titer in the serum of the mice coinfected with the 22F6 light chain and H1N1 virus became considerably lowered compared with that of 22F6-non-coinfected mice. Note that the catalytic light chain was prepared from human peripheral lymphocyte and plays an important role in preventing infection by influenza virus. Considering the fact that the human light chain did not show any acute toxicity for mice, our procedure developed in this study must be unique and noteworthy for developing new drugs.
Collapse
Affiliation(s)
- Emi Hifumi
- Research Center for Applied Medical Engineering, Oita University, Dan-noharu 700, Oita-shi, Oita 870-1192, Japan.
| | | | | | | | | | | | | |
Collapse
|
9
|
Buneva VN, Krasnorutskii MA, Nevinsky GA. Natural antibodies to nucleic acids. BIOCHEMISTRY (MOSCOW) 2013; 78:127-143. [DOI: 10.1134/s0006297913020028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
10
|
A Novel Method for Real-Time, Continuous, Fluorescence-Based Analysis of Anti-DNA Abzyme Activity in Systemic Lupus. Autoimmune Dis 2012; 2012:814048. [PMID: 23251791 PMCID: PMC3521466 DOI: 10.1155/2012/814048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 09/25/2012] [Accepted: 10/31/2012] [Indexed: 11/17/2022] Open
Abstract
Systemic Lupus Erythematosus (SLE) is an autoimmune disease characterized by the production of antibodies against a variety of self-antigens including nucleic acids. These antibodies are cytotoxic, catalytic (hydrolyzing DNA, RNA, and protein), and nephritogenic. Current methods for investigating catalytic activities of natural abzymes produced by individuals suffering from autoimmunity are mostly discontinuous and often employ hazardous reagents. Here we demonstrate the utility of dual-labeled, fluorogenic DNA hydrolysis probes in highly specific, sensitive, continuous, fluorescence-based measurement of DNA hydrolytic activity of anti-ssDNA abzymes purified from the serum of patients suffering from SLE. An assay for the presence and levels of antibodies exhibiting hydrolytic activity could facilitate disease diagnosis, prediction of flares, monitoring of disease state, and response to therapy. The assay may allow indirect identification of additional targets of anti-DNA antibodies and the discovery of molecules that inhibit their activity. Combined, these approaches may provide new insights into molecular mechanisms of lupus pathogenesis.
Collapse
|
11
|
Role of Structure-Based Changes due to Somatic Mutation in Highly Homologous DNA-Binding and DNA-Hydrolyzing Autoantibodies Exemplified by A23P Substitution in the VH Domain. Autoimmune Dis 2012. [PMID: 23193442 PMCID: PMC3502752 DOI: 10.1155/2012/683829] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Anti-DNA autoantibodies are responsible for tissue injury in lupus. A subset of DNA-specific antibodies capable of DNA cleavage can be even more harmful after entering the living cells by destroying nuclear DNA. Origins of anti-DNA autoantibodies are not fully understood, and the mechanism of induction of DNA-cleaving activity remains speculative. The autoantibody BV04-01 derived from lupus-prone mouse is the only DNA-hydrolyzing immunoglobulin with known 3D structure. Identification and analysis of antibodies homologous to BV04-01 may help to understand molecular bases and origins of DNA-cleaving activity of autoantibodies. BLAST search identified murine anti-DNA autoantibody MRL-4 with sequences of variable region genes highly homologous to those of autoantibody BV04-01. Despite significant homology to BV04-01, not only MRL-4 had no DNA-cleaving activity, but also reversion of its unusual P23 mutation to the germline alanine resulted in a dramatic loss of affinity to DNA. Contrary to this effect, transfer of the P23 mutation to the BV04-01 has resulted in a significant drop in DNA binding and almost complete loss of catalytic activity. In the present paper we analyzed the properties of two homologous autoantibodies and mutants thereof and discussed the implications of unusual somatic mutations for the development of autoantibodies with DNA-binding and DNA-hydrolyzing activity.
Collapse
|
12
|
Hifumi E, Takao SI, Fujimoto N, Uda T. Catalytic and biochemical features of a monoclonal antibody heavy chain, JN1-2, raised against a synthetic peptide with a hemagglutinin molecule of influenza virus. J Am Chem Soc 2011; 133:15015-24. [PMID: 21861493 DOI: 10.1021/ja203922r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has long been an important issue to produce a catalytic antibody that possesses the ability to lose the infectivity of a bacteria or virus. The monoclonal antibody JN1-2 was generated using a synthetic peptide (TGLRNGITNKVNSVIEKAA) conjugated with human IgG. The peptide sequence includes the conserved region of the hemagglutinin molecule (HA(1) and HA(2) domains), which locates on the envelope of the influenza virus and plays an important role in influenza A virus infection. The monoclonal antibody specifically reacted with the HA2 domain, not only of H2 but also of an H1 strain of the H1N1 subtype (H1 strain). The heavy chain (JN1-2-H) isolated from the parent antibody showed catalytic activity cleaving the above antigenic peptide with very high turnover (kcat = 26 min(-1)), and it could slowly degrade the recombinant HA(2) domain by the catalytic function. Interestingly, the heavy chain exhibited the ability to reduce the infectivity of type A H1N1 but not type B, indicating specificity to type A. This characteristic monoclonal catalytic antibody heavy chain could suppress the infection of the influenza virus in vitro assays.
Collapse
Affiliation(s)
- Emi Hifumi
- Research Center for Applied Medical Engineering, Oita University, Oita-shi, Oita, Japan
| | | | | | | |
Collapse
|
13
|
Zein HS, El-Sehemy AA, Fares MO, ElHefnawi M, Teixeira da Silva JA, Miyatake K. Generation, characterization, and docking studies of DNA-hydrolyzing recombinant Fab antibodies. J Mol Recognit 2011; 24:862-74. [DOI: 10.1002/jmr.1129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Hifumi E, Higashi K, Uda T. Catalytic digestion of human tumor necrosis factor-α by antibody heavy chain. FEBS J 2010; 277:3823-32. [PMID: 20718866 DOI: 10.1111/j.1742-4658.2010.07785.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It has long been an important task to prepare a catalytic antibody capable of digesting a targeting crucial protein that controls specific life functions. Tumor necrosis factor-α (TNF-α) is a cytokine and an important molecule concerned with autoimmune diseases such as rheumatoid arthritis, chronic obstructive pulmonary disease, and Crohn's disease. A mAb (ETNF-6 mAb) raised against human TNF-α was prepared, and the steric conformation was created by using molecular modeling after the cDNA was sequenced. The heavy chain (ETNF-6-H) of the mAb was considered to possess a catalytic triad-like structure in the complementarity determining regions (CDRs). As a result, ETNF-6-H exhibited a peptidase and a protease activity. In fact, ETNF-6-H predominantly cleaved the Ser5-Arg6 bond of TNF-α at the first step, resulting in the generation of a fragment of ∼ 17 kDa. This fragment was digested to a smaller molecule of 15 kDa by scission of the Gln21-Ala22 bond. The intermediate product was further converted into a fragment of 13.3 kDa by successive cleavage of the Leu36-Leu37 and Asn39-Gly40 bonds. The heavy chain possessed a protease activity against TNF-α with a multicleavage site.
Collapse
Affiliation(s)
- Emi Hifumi
- Research Center for Applied Medical Engineering, Oita University, Oita, Japan
| | | | | |
Collapse
|
15
|
Pavlovic M, Kats A, Cavallo M, Chen R, Hartmann JX, Shoenfeld Y. Pathogenic and Epiphenomenal Anti-DNA Antibodies in SLE. Autoimmune Dis 2010; 2011:462841. [PMID: 21152217 PMCID: PMC2989704 DOI: 10.4061/2010/462841] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Accepted: 05/06/2010] [Indexed: 11/20/2022] Open
Abstract
The discoveries of natural and the development of manufactured highly efficient catalytic antibodies (abzymes) opens the door to many practical applications. One of the most fascinating is the use of such antibodies in human therapy and prevention (vaccination), of cancer, AIDS, autoimmune diseases. A special entity of naturally occurring DNA hydrolytic anti-DNA antibodies is emerging within past decades linked to autoimmune and lymphoproliferative disorders, such as systemic lupus erythematosus (SLE), multiple sclerosis (MS), Sjogren Syndrome (SS), B - Chronic lymphocytic leucosis (B-CLL), and Multiple Myeloma (MM). The origin of the antibodies is unknown. The underlying mechanisms of these activities are suggested to be penetration into the living cells and translocation in the nucleus, with recognition of the specific binding sites at particular (ss or ds) DNA. There are controversies in the literature whether hydrolysis is a sequence-specific event. The interplay between anti-DNA antibodies and DNA is not yet elucidated. This molecular “twist” also suggests that anti-DNA antibodies with DNA hydrolytic capacity could be the organism's immune response to a microbial attack, with microbial DNA, or specific genes within microbial DNA sequence, as a target for neutralization. The catalytic antibody-based approach can become a key tool in selective chemotherapeutic strategies.
Collapse
Affiliation(s)
- Mirjana Pavlovic
- Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | | | | | | | | | | |
Collapse
|
16
|
Molecular analysis of multicatalytic monoclonal antibodies. Mol Immunol 2010; 47:1747-56. [DOI: 10.1016/j.molimm.2010.02.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Accepted: 02/25/2010] [Indexed: 11/18/2022]
|
17
|
Belogurov A, Kozyr A, Ponomarenko N, Gabibov A. Catalytic antibodies: balancing between Dr. Jekyll and Mr. Hyde. Bioessays 2010; 31:1161-71. [PMID: 19795406 DOI: 10.1002/bies.200900020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The immunoglobulin molecule is a perfect template for the de novo generation of biocatalytic functions. Catalytic antibodies, or abzymes, obtained by the structural mimicking of enzyme active sites have been shown to catalyze numerous chemical reactions. Natural enzyme analogs for some of these reactions have not yet been found or possibly do not exist at all. Nowadays, the dramatic breakthrough in antibody engineering and expression technologies has promoted a considerable expansion of immunoglobulin's medical applications and is offering abzymes a unique chance to become a promising source of high-precision "catalytic vaccines." At the same time, the discovery of natural abzymes on the background of autoimmune disease revealed their beneficial and pathogenic roles in the disease progression. Thus, the conflicting Dr. Jekyll and Mr. Hyde protective and destructive essences of catalytic antibodies should be carefully considered in the development of therapeutic abzyme applications.
Collapse
Affiliation(s)
- Alexey Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | | | | | | |
Collapse
|
18
|
Kozyr AV, Gabibov AG. DNA-hydrolyzing Ab: Is catalytic activity a clue for physiological significance? Autoimmunity 2009; 42:359-61. [DOI: 10.1080/08916930902832009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Zein HS, da Silva JAT, Miyatake K. Monoclonal antibodies specific to Cucumber mosaic virus coat protein possess DNA-hydrolyzing activity. Mol Immunol 2009; 46:1527-33. [PMID: 19187964 DOI: 10.1016/j.molimm.2008.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 12/21/2008] [Accepted: 12/24/2008] [Indexed: 11/21/2022]
Abstract
Monoclonal antibodies (mAbs) specific to Cucumber mosaic virus coat protein (CMV-CP) were designed from cDNA and deduced amino acid sequences of the light chain genes of 10 out of 14 different hybridoma cell lines. Ten of these mAbs revealed a very restricted germline family VkappaII, within which gene bd2 has identical amino acid sequences with VIPase and an i41SL 1-2 catalytic antibody light chain, both of which possess peptidase activity. Four out of the 14 mAbs illustrated another germline family VkappaIA, within which gene bb1.1 had high homology with BV04-01 light chain mAb, which hydrolyses ssDNA. Interestingly, our mAbs showed DNA-hydrolytic activity at an optimum pH of 4-5, which is a typical pattern of autoimmune diseases in which autoantibodies hydrolyze supercoiled plasmid DNA. This is the first evidence ever that CMV-CP could stimulate catalytic antibodies, which have an identical sequence homology with autoantibodies. Furthermore, the CMV-CP-specific mAbs will be important for isolating antibodies specific to the CPs of bacteria, viruses, cancer cells, etc. that could be used for medical therapy.
Collapse
Affiliation(s)
- Haggag S Zein
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza 121613, Egypt.
| | | | | |
Collapse
|
20
|
Kim DS, Lee SH, Kim JS, Lee SC, Kwon MH, Kim YS. Generation of humanized anti-DNA hydrolyzing catalytic antibodies by complementarity determining region grafting. Biochem Biophys Res Commun 2009; 379:314-8. [DOI: 10.1016/j.bbrc.2008.12.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Accepted: 12/10/2008] [Indexed: 11/26/2022]
|
21
|
Park SY, Lee WR, Lee SC, Kwon MH, Kim YS, Kim JS. Crystal structure of single-domain VL of an anti-DNA binding antibody 3D8 scFv and its active site revealed by complex structures of a small molecule and metals. Proteins 2008; 71:2091-6. [PMID: 18338383 DOI: 10.1002/prot.22011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Suk-Youl Park
- Department of Chemistry and Institute of Basic Sciences, Chonnam National University, Gwangju 500-757, Korea
| | | | | | | | | | | |
Collapse
|
22
|
Pavlovic M, Chen R, Kats AM, Cavallo MF, Saccocio S, Keating P, Hartmann JX. Highly specific novel method for isolation and purification of lupus anti-DNA antibody via oligo-(dT) magnetic beads. Ann N Y Acad Sci 2007; 1108:203-17. [PMID: 17893987 DOI: 10.1196/annals.1422.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A novel method for isolation and purification of anti-ssDNA antibodies from human sera is developed. The process involves: antibody purification based on their affinity for single-stranded sequence of thymidines and removal of remaining components via protein G coated magnetic beads, with high affinity for only IgG subclass. The high degree of purity and molecular weights of healthy versus lupus anti-ssDNA antibodies were confirmed by SDS-PAGE and silver staining. Western blot confirmed IgG isotype. This novel technique allows for diagnostic purposes, structural and functional analysis of anti-DNA antibodies, and studies of their role in autoimmune diseases.
Collapse
Affiliation(s)
- Mirjana Pavlovic
- Department of Biological Sciences, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, Florida 33451, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Kim YR, Kim JS, Lee SH, Lee WR, Sohn JN, Chung YC, Shim HK, Lee SC, Kwon MH, Kim YS. Heavy and Light Chain Variable Single Domains of an Anti-DNA Binding Antibody Hydrolyze Both Double- and Single-stranded DNAs without Sequence Specificity. J Biol Chem 2006; 281:15287-95. [PMID: 16551636 DOI: 10.1074/jbc.m600937200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anti-DNA antibodies (Abs) are of biomedical interest because they are associated with autoimmune diseases in human and mice. Previously we isolated an anti-DNA monoclonal Ab 3D8 from an autoimmune-prone MRL-lpr/lpr mouse. Here we have characterized DNA binding kinetics and hydrolyzing activities of the recombinant single chain variable fragment (scFv) and the single variable domains of heavy chain (VH) and light chain (VL) using various single-stranded (ss) and double-stranded (ds) DNA substrates. All the Abs bound to both ds- and ssDNAs without significant preferential sequence specificity showing scFv higher affinities (KD = approximately 17-74 nm) than VH (KD = approximately 2.4-8.4 microm) and VL (KD = approximately 3.2-72 microm), and efficiently hydrolyzed both ds- and ssDNAs without sequence specificity in a Mg2+-dependent manner, except for the poor activity of 3D8 scFv for ss-(dT)40. Elucidated crystal structure-based His to Ala mutations on the complementarity determining regions of VH (His-H35 --> Ala) and/or VL (His-L94 --> Ala) of 3D8 scFv significantly inhibited the catalytic activities, indicating that the His residues are involved in the catalytic mechanism of 3D8 scFv. However, the DNA hydrolyzing activities of single domain VH and VL were not affected by the mutations, indicative of their different catalytic mechanisms from that of 3D8 scFv. Our results demonstrate single domain Abs with DNase activities for the first time, which might provide new insights into substrate recognition and catalytic mechanisms of anti-DNA Abs.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Antibodies, Antinuclear/chemistry
- Antibodies, Antinuclear/genetics
- Antibodies, Antinuclear/metabolism
- Base Sequence
- Crystallography, X-Ray
- DNA/genetics
- DNA/metabolism
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/metabolism
- Humans
- Hydrolysis
- Immunoglobulin Fragments/chemistry
- Immunoglobulin Fragments/genetics
- Immunoglobulin Fragments/metabolism
- Immunoglobulin Heavy Chains/chemistry
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/metabolism
- Immunoglobulin Light Chains/chemistry
- Immunoglobulin Light Chains/genetics
- Immunoglobulin Light Chains/metabolism
- In Vitro Techniques
- Kinetics
- Mice
- Mice, Inbred MRL lpr
- Models, Molecular
- Mutagenesis, Site-Directed
- Protein Conformation
- Protein Structure, Tertiary
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
Collapse
Affiliation(s)
- Young-Rim Kim
- Department of Microbiology, Ajou University School of Medicine, San 5, Woncheon-dong, Yeongtong-gu, Suwon 443-749, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Nguyen HTT, Jang YJ, Jeong S, Yu J. DNA-specific autoantibody cleaves DNA by hydrolysis of phosphodiester and glycosidic bond. Biochem Biophys Res Commun 2003; 311:767-73. [PMID: 14623339 DOI: 10.1016/j.bbrc.2003.10.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The DNA-recognizing autoantibodies were prepared in milligram scale and their catalytic activities were investigated using various standard substrates for hydrolysis of natural biomolecules such as DNA, carbohydrates, and proteins. Only phosphatase and glycosidase activity was found and no peptidase, sulfatase, or esterase activity was detected in most of anti-DNA monoclonal autoantibodies we tested. Antibody G1-2 showed the highest catalytic activities and its enzymatic characteristics were further investigated. The antibody showed phosphatase activity with sub-millimolar substrate specificity and 10(4)-10(5) rate enhancements. However, Ab G1-2 showed low micro-molar specificity with p-nitrophenyl-beta-D-N-acetylglucosamide with 10(4)-10(5) rate enhancements. Both of the catalytic activities showed pH maximum at 4-5, suggesting that the carboxylate(s) in antigen-binding site is involved in the catalytic mechanism. Chemical protection of carboxylate(s) with diazoacetamide showed much reduced activity of the Ab, confirming that the catalytic activity comes from carboxylate(s) in the Ag-binding region. The activities of phosphatase and glycosidase were thoroughly inhibited by DNA with almost identical K(i) values. These data suggest that DNA-binding site(s) is the enzymatic active site of the catalytic Abs. Capabilities of the DNA recognition might make it possible to confer the Ab the catalytic activity of phosphate and glycosidic bond hydrolysis, which can be the main cause of DNA cleavage.
Collapse
Affiliation(s)
- Hang Thi Thu Nguyen
- Life Sciences Division, The Korea Institute of Science and Technology, PO Box 131 Cheongryang, Seoul 130-650, Republic of Korea
| | | | | | | |
Collapse
|
25
|
Hasler P, Zouali M. Highlights of frontiers in autoimmunity: fundamental aspects and clinical perspectives. Expert Opin Ther Targets 2003; 7:125-30. [PMID: 12556208 DOI: 10.1517/14728222.7.1.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The aim of this meeting, on the shores of Balaton lake, was to discuss the ins, outs, ups and downs of autoimmune diseases. Participants were encouraged to discuss existing paradigms and to base their work on continuously reworked hypotheses derived from discoveries, rather than have it driven by theories based on a hypothesis. This event provided proof of the utility of modern approaches in defining the origin of this group of diseases as well as acting as an international forum for collaboration and dispute. Whilst highlighting the unique aspects of autoimmunity, this meeting suggested many avenues for future research and the design of novel strategies for immuno-intervention.
Collapse
Affiliation(s)
- Paul Hasler
- Rheumaklinik und Institut für Physikalische Medizin und Rehabilitation, Kantonsspital Aarau, Buchserstrasse, 5001 Aarau, Switzerland.
| | | |
Collapse
|
26
|
Affiliation(s)
- Jien-Wen Chien
- Department of Pediatrics, Changhua Christian Hospital, Changhua 500, Taiwan
| | | |
Collapse
|
27
|
Abstract
In patients with autoimmune diseases, anti-idiotypic antibodies directed to nucleoprotein complexes, DNA, and enzymes that participate in nucleic acid metabolism may be induced spontaneously by primary antigens and can have characteristics of the primary antigen, including catalytic activity. The first natural catalytic antibody, now termed abzyme, which hydrolyzes intestinal vasoactive peptide, was discovered by Paul et al. [Science 244 (1989) 1158]. Subsequently, other abzymes able to hydrolyze proteins, DNA, RNA, or polysaccharides have been found in the sera of patients with autoimmune and also viral pathologies. Further, we have discovered in the milk of healthy human mothers antibodies that catalyze the hydrolysis of RNA, DNA, nucleotides, and the phosphorylation of lipids and proteins. The phenomenon of catalysis by autoantibodies is extremely interesting and can potentially be applied to many different objectives including new types of efficient catalysts, evaluation of the functional roles of abzymes in innate and adaptive immunity, and understanding of certain aspects of self-tolerance and of the destructive responses in autoimmune diseases. In this review, we collate methods for purifying and characterizing natural abzymes especially those catalyzing DNA and RNA hydrolysis. We also describe new methods that we have developed to provide rigorous criteria that catalytic activity is an intrinsic property of some antibodies. Some major current themes are discussed as well as potential applications of abzymes in scientific, medical, and biotechnological fields.
Collapse
Affiliation(s)
- Georgy A Nevinsky
- Novosibirsk Institute of Bioorganic Chemistry, Siberian Division of Russian Academy of Sciences, Lavrentieva Ave. 8, Novosibirsk 630090, Russia.
| | | |
Collapse
|
28
|
Mouratou B, Rouyre S, Guesdon JL. A method for the detection and screening of catalytic anti-DNA antibodies. J Immunol Methods 2002; 269:147-55. [PMID: 12379359 DOI: 10.1016/s0022-1759(02)00231-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have developed a microtiter plate assay for the detection and screening of anti-DNA hydrolytic antibodies. The affinity-linked oligonucleotide nuclease assay (ALONA) makes use of substrates with a digoxigenin on the 5'-end of the 3'-biotinylated DNA strands. The substrate binds specifically to the wells of streptavidin-coated microtiter plates where the reaction takes place. Uncleaved substrate retains the digoxigenin label, which is then detected with an enzyme-labeled anti-digoxigenin antibody. We first assessed the efficiency of this assay by measuring S1 nuclease and DNase I activities and the inhibitory effect of EDTA on the reaction. The ALONA procedure was then successfully applied to the screening of a high number of hybridoma clones derived from nonimmunized (NZB x NZW)F1 mice with spontaneous lupus erythematosus. We detected three potential catalytic antibodies and investigated their substrate specificity. Overall, our findings demonstrate the value of the ALONA method for high throughput screening of potential nucleases and catalytic antibodies. Although this assay was designed for the selection of catalysts active in DNA hydrolysis, it can be adapted to detect most types of substrate cleavage reaction.
Collapse
Affiliation(s)
- Barbara Mouratou
- Laboratoire d'Ingénierie des Anticorps, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France.
| | | | | |
Collapse
|
29
|
Kozyr AV, Sashchenko LP, Kolesnikov AV, Zelenova NA, Khaidukov SV, Ignatova AN, Bobik TV, Gabibov AG, Alekberova ZS, Suchkov SV, Gnuchev NV. Anti-DNA autoantibodies reveal toxicity to tumor cell lines. Immunol Lett 2002; 80:41-7. [PMID: 11716964 DOI: 10.1016/s0165-2478(01)00308-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cytotoxicity of anti-DNA autoantibodies from sera of SLE and CLL patients was assayed on permanent cell lines L929, HL-60, Raji, and K562. L929 cells appeared to be the most sensitive to antibody treatment. DNA-hydrolyzing properties of the same autoantibody preparations were analyzed in parallel. The data obtained outlined the correlation between cytotoxicity and DNA-hydrolyzing properties of these autoantibodies. It was shown that treatment of the cells with cytotoxic anti-DNA autoantibodies induced internucleosomal DNA fragmentation and Annexin V binding to the cell surface characteristic of apoptotic pathway of cell death. A time-dependent profile of antibody-mediated toxicity to L929 cells suggested recruitment of at least two distinct mechanisms of cell death. The first peak of cell death observed in 3 h of incubation was completely inhibited by preincubation of cells with caspase inhibitor YVAD-CHO, while the second increase in cell mortality (18-30 h) persisted. Possible mechanisms for anti-DNA autoantibody cytotoxicity are discussed.
Collapse
MESH Headings
- Antibodies, Antinuclear/immunology
- Antibodies, Antinuclear/toxicity
- Caspase Inhibitors
- Caspases/metabolism
- Cell Death/drug effects
- DNA/immunology
- DNA/metabolism
- DNA Fragmentation/drug effects
- Flow Cytometry
- Humans
- Hydrolysis/drug effects
- Immune Sera/immunology
- Immune Sera/toxicity
- Immunoglobulin Fab Fragments/immunology
- Immunoglobulin Fab Fragments/toxicity
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Time Factors
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- A V Kozyr
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st., 16/10, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Torizawa T, Yamamoto N, Suzuki T, Nobuoka K, Komatsu Y, Morioka H, Nikaido O, Ohtsuka E, Kato K, Shimada I. DNA binding mode of the Fab fragment of a monoclonal antibody specific for cyclobutane pyrimidine dimer. Nucleic Acids Res 2000; 28:944-51. [PMID: 10648787 PMCID: PMC102577 DOI: 10.1093/nar/28.4.944] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Monoclonal antibodies specific for the cyclobutane pyrimidine dimer (CPD) are widely used for detection and quantification of DNA photolesions. However, the mechanisms of antigen binding by anti-CPD antibodies are little understood. Here we report NMR analyses of antigen recognition by TDM-2, which is a mouse monoclonal antibody specific for the cis - syn -cyclobutane thymine dimer (T[ c, s ]T). (31)P NMR and surface plasmon resonance data indicated that the epitope recognized by TDM-2 comprises hexadeoxynucleotides centered on the CPD. Chemical shift perturbations observed for TDM-2 Fab upon binding to d(T[ c, s ]T) and d(TAT[ c, s ]TAT) were examined in order to identify the binding sites for these antigen analogs. It was revealed that d(T[ c, s ]T) binds to the central part of the antibody-combining site, while the CPD-flanking nucleotides bind to the positively charged area of the V(H)domain via electrostatic interactions. By applying a novel NMR method utilizing a pair of spin-labeled DNA analogs, the orientation of DNA with respect to the antigen-binding site was determined: CPD-containing oligonucleotides bind to TDM-2 in a crooked form, draping the 3'-side of the nucleotides onto the H1 and H3 segments, with the 5'-side on the H2 and L3 segments. These data provide valuable information for antibody engineering of TDM-2.
Collapse
Affiliation(s)
- T Torizawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Vlassov A, Florentz C, Helm M, Naumov V, Buneva V, Nevinsky G, Giegé R. Characterization and selectivity of catalytic antibodies from human serum with RNase activity. Nucleic Acids Res 1998; 26:5243-50. [PMID: 9826744 PMCID: PMC147991 DOI: 10.1093/nar/26.23.5243] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
IgG purified from sera of several patients with systemic lupus erythematosus and hepatitis B are shown to present RNA hydrolyzing activities that are different from the weak RNase A-type activities found in the sera of healthy donors. Further investigation brings evidence for two intrinsic activities, one observed in low salt conditions and another specifically stimulated by Mg2+ions and distinguishable from human sera RNases. Cleavage of RNA substrates by the latter activity is not sequence-specific but sensitive to both subtle conformational and/or drastic folding changes, as evidenced by comparative analysis of couples of structurally well-studied RNA substrates. These include yeast tRNAAsp and its in vitro transcript and human mitochondrial tRNALys-derived in vitro transcripts. The discovery of catalytic antibodies with RNase activities is a first step towards creation of a new generation of tools for the investigation of RNA structure.
Collapse
MESH Headings
- Antibodies, Catalytic/blood
- Antibodies, Catalytic/chemistry
- Base Sequence
- Chromatography, Gel
- Electrophoresis, Polyacrylamide Gel
- Enzyme Activation
- Hepatitis B/blood
- Hepatitis B/enzymology
- Hepatitis B/immunology
- Hot Temperature
- Humans
- Hydrogen-Ion Concentration
- Hydrolysis
- Lupus Erythematosus, Systemic/blood
- Lupus Erythematosus, Systemic/enzymology
- Lupus Erythematosus, Systemic/immunology
- Magnesium/physiology
- Mitochondria/enzymology
- Molecular Sequence Data
- Protein Denaturation
- RNA, Transfer, Asp/metabolism
- RNA, Transfer, Lys/metabolism
- Ribonucleases/blood
- Ribonucleases/chemistry
- Saccharomyces cerevisiae
- Sodium/physiology
- Substrate Specificity
- Transcription, Genetic
Collapse
Affiliation(s)
- A Vlassov
- UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15, rue René Descartes, 67084 Strasbourg Cedex, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Kozyr AV, Kolesnikov AV, Aleksandrova ES, Sashchenko LP, Gnuchev NV, Favorov PV, Kotelnikov MA, Iakhnina EI, Astsaturov IA, Prokaeva TB, Alekberova ZS, Suchkov SV, Gabibov AG. Novel functional activities of anti-DNA autoantibodies from sera of patients with lymphoproliferative and autoimmune diseases. Appl Biochem Biotechnol 1998; 75:45-61. [PMID: 10214696 DOI: 10.1007/bf02787708] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
DNA-hydrolyzing activity of IgG autoantibodies from sera of patients with various types of lymphoproliferative diseases was investigated. The association of DNA-hydrolyzing activity with the antibody (Ab) fraction has been proved by newly developed affinity-capture assay. Study of abzyme incidence in blood tumors and systemic lupus erythematosis (SLE) revealed linkage of anti-DNA Ab catalysts to mature B-cell tumors, and increased probability of DNA-abzymes formation on the background of autoimmune manifestations. These data suggest possible similarity between mechanisms of abzyme formation in SLE and B-cell lymphomas. A new mechanism of formation of DNA-specific catalytic Abs has been proposed based on the increased crossreactivity of polyclonal DNA-abzymes to DNA-depleted nuclear matrix proteins. The possibility of the abzyme production as Ab to the energetically destabilized ground state of the antigen has been discussed. Preliminary results were obtained that indicate the complement-independent cytotoxicity of anti-DNA autoantibodies isolated from blood of patients with SLE and chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- A V Kozyr
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|