1
|
Ramakrishnan P. O-GlcNAcylation and immune cell signaling: A review of known and a preview of unknown. J Biol Chem 2024; 300:107349. [PMID: 38718861 PMCID: PMC11180344 DOI: 10.1016/j.jbc.2024.107349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 06/06/2024] Open
Abstract
The dynamic and reversible modification of nuclear and cytoplasmic proteins by O-GlcNAcylation significantly impacts the function and dysfunction of the immune system. O-GlcNAcylation plays crucial roles under both physiological and pathological conditions in the biochemical regulation of all immune cell functions. Three and a half decades of knowledge acquired in this field is merely sufficient to perceive that what we know is just the prelude. This review attempts to mark out the known regulatory roles of O-GlcNAcylation in key signal transduction pathways and specific protein functions in the immune system and adumbrate ensuing questions toward the unknown functions.
Collapse
Affiliation(s)
- Parameswaran Ramakrishnan
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA; The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA; Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA; University Hospitals-Cleveland Medical Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
2
|
Tsai CF, Wang YT, Hsu CC, Kitata RB, Chu RK, Velickovic M, Zhao R, Williams SM, Chrisler WB, Jorgensen ML, Moore RJ, Zhu Y, Rodland KD, Smith RD, Wasserfall CH, Shi T, Liu T. A streamlined tandem tip-based workflow for sensitive nanoscale phosphoproteomics. Commun Biol 2023; 6:70. [PMID: 36653408 PMCID: PMC9849344 DOI: 10.1038/s42003-022-04400-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
Effective phosphoproteome of nanoscale sample analysis remains a daunting task, primarily due to significant sample loss associated with non-specific surface adsorption during enrichment of low stoichiometric phosphopeptide. We develop a tandem tip phosphoproteomics sample preparation method that is capable of sample cleanup and enrichment without additional sample transfer, and its integration with our recently developed SOP (Surfactant-assisted One-Pot sample preparation) and iBASIL (improved Boosting to Amplify Signal with Isobaric Labeling) approaches provides a streamlined workflow enabling sensitive, high-throughput nanoscale phosphoproteome measurements. This approach significantly reduces both sample loss and processing time, allowing the identification of >3000 (>9500) phosphopeptides from 1 (10) µg of cell lysate using the label-free method without a spectral library. It also enables precise quantification of ~600 phosphopeptides from 100 sorted cells (single-cell level input for the enriched phosphopeptides) and ~700 phosphopeptides from human spleen tissue voxels with a spatial resolution of 200 µm (equivalent to ~100 cells) in a high-throughput manner. The new workflow opens avenues for phosphoproteome profiling of mass-limited samples at the low nanogram level.
Collapse
Affiliation(s)
- Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| | - Yi-Ting Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Chuan-Chih Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Reta Birhanu Kitata
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Rosalie K Chu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Marija Velickovic
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Rui Zhao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Sarah M Williams
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - William B Chrisler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Marda L Jorgensen
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Ying Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Clive H Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| |
Collapse
|
3
|
Chang YH, Weng CL, Lin KI. O-GlcNAcylation and its role in the immune system. J Biomed Sci 2020; 27:57. [PMID: 32349769 PMCID: PMC7189445 DOI: 10.1186/s12929-020-00648-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
O-linked-N-acetylglucosaminylation (O-GlcNAcylation) is a type of glycosylation that occurs when a monosaccharide, O-GlcNAc, is added onto serine or threonine residues of nuclear or cytoplasmic proteins by O-GlcNAc transferase (OGT) and which can be reversibly removed by O-GlcNAcase (OGA). O-GlcNAcylation couples the processes of nutrient sensing, metabolism, signal transduction and transcription, and plays important roles in development, normal physiology and physiopathology. Cumulative studies have indicated that O-GlcNAcylation affects the functions of protein substrates in a number of ways, including protein cellular localization, protein stability and protein/protein interaction. Particularly, O-GlcNAcylation has been shown to have intricate crosstalk with phosphorylation as they both modify serine or threonine residues. Aberrant O-GlcNAcylation on various protein substrates has been implicated in many diseases, including neurodegenerative diseases, diabetes and cancers. However, the role of protein O-GlcNAcylation in immune cell lineages has been less explored. This review summarizes the current understanding of the fundamental biochemistry of O-GlcNAcylation, and discusses the molecular mechanisms by which O-GlcNAcylation regulates the development, maturation and functions of immune cells. In brief, O-GlcNAcylation promotes the development, proliferation, and activation of T and B cells. O-GlcNAcylation regulates inflammatory and antiviral responses of macrophages. O-GlcNAcylation promotes the function of activated neutrophils, but inhibits the activity of nature killer cells.
Collapse
Affiliation(s)
- Yi-Hsuan Chang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Dist., Taipei, 115, Taiwan
| | - Chia-Lin Weng
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Dist., Taipei, 115, Taiwan.,Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 110, Taiwan
| | - Kuo-I Lin
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Dist., Taipei, 115, Taiwan. .,Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 110, Taiwan.
| |
Collapse
|
4
|
Haines RR, Barwick BG, Scharer CD, Majumder P, Randall TD, Boss JM. The Histone Demethylase LSD1 Regulates B Cell Proliferation and Plasmablast Differentiation. THE JOURNAL OF IMMUNOLOGY 2018; 201:2799-2811. [PMID: 30232138 DOI: 10.4049/jimmunol.1800952] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/22/2018] [Indexed: 01/01/2023]
Abstract
B cells undergo epigenetic remodeling as they differentiate into Ab-secreting cells (ASC). LSD1 is a histone demethylase known to decommission active enhancers and cooperate with the ASC master regulatory transcription factor Blimp-1. The contribution of LSD1 to ASC formation is poorly understood. In this study, we show that LSD1 is necessary for proliferation and differentiation of mouse naive B cells (nB) into plasmablasts (PB). Following LPS inoculation, LSD1-deficient hosts exhibited a 2-fold reduction of splenic PB and serum IgM. LSD1-deficient PB exhibited derepression and superinduction of genes involved in immune system processes; a subset of these being direct Blimp-1 target-repressed genes. Cell cycle genes were globally downregulated without LSD1, which corresponded to a decrease in the proliferative capacity of LSD1-deficient activated B cells. PB lacking LSD1 displayed increased histone H3 lysine 4 monomethylation and chromatin accessibility at nB active enhancers and the binding sites of transcription factors Blimp-1, PU.1, and IRF4 that mapped to LSD1-repressed genes. Together, these data show that LSD1 is required for normal in vivo PB formation, distinguish LSD1 as a transcriptional rheostat and epigenetic modifier of B cell differentiation, and identify LSD1 as a factor responsible for decommissioning nB active enhancers.
Collapse
Affiliation(s)
- Robert R Haines
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - Benjamin G Barwick
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | | | - Parimal Majumder
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - Troy D Randall
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| |
Collapse
|
5
|
Wu JL, Wu HY, Tsai DY, Chiang MF, Chen YJ, Gao S, Lin CC, Lin CH, Khoo KH, Chen YJ, Lin KI. Temporal regulation of Lsp1 O-GlcNAcylation and phosphorylation during apoptosis of activated B cells. Nat Commun 2016; 7:12526. [PMID: 27555448 PMCID: PMC4999498 DOI: 10.1038/ncomms12526] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 07/11/2016] [Indexed: 01/08/2023] Open
Abstract
Crosslinking of B-cell receptor (BCR) sets off an apoptosis programme, but the underlying pathways remain obscure. Here we decipher the molecular mechanisms bridging B-cell activation and apoptosis mediated by post-translational modification (PTM). We find that O-GlcNAcase inhibition enhances B-cell activation and apoptosis induced by BCR crosslinking. This proteome-scale analysis of the functional interplay between protein O-GlcNAcylation and phosphorylation in stimulated mouse primary B cells identifies 313 O-GlcNAcylation-dependent phosphosites on 224 phosphoproteins. Among these phosphoproteins, temporal regulation of the O-GlcNAcylation and phosphorylation of lymphocyte-specific protein-1 (Lsp1) is a key switch that triggers apoptosis in activated B cells. O-GlcNAcylation at S209 of Lsp1 is a prerequisite for the recruitment of its kinase, PKC-β1, to induce S243 phosphorylation, leading to ERK activation and downregulation of BCL-2 and BCL-xL. Thus, we demonstrate the critical PTM interplay of Lsp1 that transmits signals for initiating apoptosis after BCR ligation. B cell receptor (BCR) activation can trigger signalling causing apoptosis in order to eliminate auto-reactive B cells. Here the authors show that the O-GlcNAcylation and phosphorylation of lymphocyte-specific protein-1 are involved in a switch that regulates the initiation of apoptosis induced by BCR cross-linking.
Collapse
Affiliation(s)
- Jung-Lin Wu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan.,Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hsin-Yi Wu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Dong-Yan Tsai
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | | | - Yi-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Shijay Gao
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Kuo-I Lin
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
6
|
Leukocyte-specific protein 1 regulates T-cell migration in rheumatoid arthritis. Proc Natl Acad Sci U S A 2015; 112:E6535-43. [PMID: 26554018 DOI: 10.1073/pnas.1514152112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Copy number variations (CNVs) have been implicated in human diseases. However, it remains unclear how they affect immune dysfunction and autoimmune diseases, including rheumatoid arthritis (RA). Here, we identified a novel leukocyte-specific protein 1 (LSP1) deletion variant for RA susceptibility located in 11p15.5. We replicated that the copy number of LSP1 gene is significantly lower in patients with RA, which correlates positively with LSP1 protein expression levels. Differentially expressed genes in Lsp1-deficient primary T cells represent cell motility and immune and cytokine responses. Functional assays demonstrated that LSP1, induced by T-cell receptor activation, negatively regulates T-cell migration by reducing ERK activation in vitro. In mice with T-cell-dependent chronic inflammation, loss of Lsp1 promotes migration of T cells into the target tissues as well as draining lymph nodes, exacerbating disease severity. Moreover, patients with RA show diminished expression of LSP1 in peripheral T cells with increased migratory capacity, suggesting that the defect in LSP1 signaling lowers the threshold for T-cell activation. To our knowledge, our work is the first to demonstrate how CNVs result in immune dysfunction and a disease phenotype. Particularly, our data highlight the importance of LSP1 CNVs and LSP1 insufficiency in the pathogenesis of RA and provide previously unidentified insights into the mechanisms underlying T-cell migration toward the inflamed synovium in RA.
Collapse
|
7
|
The association of CD81 polymorphisms with alloimmunization in sickle cell disease. Clin Dev Immunol 2013; 2013:937846. [PMID: 23762099 PMCID: PMC3674646 DOI: 10.1155/2013/937846] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 01/19/2023]
Abstract
The goal of the present work was to identify the candidate genetic markers predictive of alloimmunization in sickle cell disease (SCD). Red blood cell (RBC) transfusion is indicated for acute treatment, prevention, and abrogation of some complications of SCD. A well-known consequence of multiple RBC transfusions is alloimmunization. Given that a subset of SCD patients develop multiple RBC allo-/autoantibodies, while others do not in a similar multiple transfusional setting, we investigated a possible genetic basis for alloimmunization. Biomarker(s) which predicts (predict) susceptibility to alloimmunization could identify patients at risk before the onset of a transfusion program and thus may have important implications for clinical management. In addition, such markers could shed light on the mechanism(s) underlying alloimmunization. We genotyped 27 single nucleotide polymorphisms (SNPs) in the CD81, CHRNA10, and ARHG genes in two groups of SCD patients. One group (35) of patients developed alloantibodies, and another (40) had no alloantibodies despite having received multiple transfusions. Two SNPs in the CD81 gene, that encodes molecule involved in the signal modulation of B lymphocytes, show a strong association with alloimmunization. If confirmed in prospective studies with larger cohorts, the two SNPs identified in this retrospective study could serve as predictive biomarkers for alloimmunization.
Collapse
|
8
|
Grieb G, Steffens G, Pallua N, Bernhagen J, Bucala R. Circulating fibrocytes--biology and mechanisms in wound healing and scar formation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 291:1-19. [PMID: 22017972 DOI: 10.1016/b978-0-12-386035-4.00001-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fibrocytes were first described in 1994 as fibroblast-like, peripheral blood cells. These bone marrow-derived mesenchymal progenitor cells migrate into regions of tissue injury. They are unique in their expression of hematopoietic and monocyte lineage markers and extracellular matrix proteins. Several studies have focused on the specific role of fibrocytes in the process of wound repair and tissue regeneration. We discuss herein the biology and mechanistic action of fibrocytes in wound healing, scar formation, and maintenance of tissue integrity. Fibrocytes synthesize and secrete different cytokines, chemokines, and growth factors, providing a wound milieu that supports tissue repair. They further promote angiogenesis and contribute to wound closure via pathways involving specific cytokines, leukocyte-specific protein-1, serum amyloid P, and adenosine A(2A) receptors. Fibrocytes are involved in inflammatory fibrotic processes in such diseases as systemic fibrosis, atherosclerosis, asthma, hypertrophic scarring, and keloid formation. Accumulating literature has emphasized the important role of fibrocytes in wound healing and fibrosis. Detailed mechanisms nevertheless remain to be investigated to elucidate the full therapeutic potential of fibrocytes in the treatment of fibrosing disorders and the enhancement of tissue repair.
Collapse
Affiliation(s)
- Gerrit Grieb
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | |
Collapse
|
9
|
Chang M, Kanwar N, Feng E, Siu A, Liu X, Ma D, Jongstra J. PIM kinase inhibitors downregulate STAT3(Tyr705) phosphorylation. Mol Cancer Ther 2010; 9:2478-87. [PMID: 20667852 DOI: 10.1158/1535-7163.mct-10-0321] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Using a cell-based high-throughput screen designed to detect small chemical compounds that inhibit cell growth and survival, we identified three structurally related compounds, 21A8, 21H7, and 65D4, with differential activity on cancer versus normal cells. Introduction of structural modifications yielded compound M-110, which inhibits the proliferation of prostate cancer cell lines with IC(50)s of 0.6 to 0.9 μmol/L, with no activity on normal human peripheral blood mononuclear cells up to 40 μmol/L. Screening of 261 recombinant kinases and subsequent analysis revealed that M-110 is a selective inhibitor of the PIM kinase family, with preference for PIM-3. The prostate cancer cell line DU-145 and the pancreatic cancer cell line MiaPaCa2 constitutively express activated STAT3 (pSTAT3(Tyr705)). Treatment of DU-145 cells with M-110 or with a structurally unrelated PIM inhibitor, SGI-1776, significantly reduces pSTAT3(Tyr705) expression without affecting the expression of STAT3. Furthermore, treatment of DU-145 cells with M-110 attenuates the interleukin-6-induced increase in pSTAT3(Tyr705). To determine which of the three PIM kinases is most likely to inhibit expression of pSTAT3(Tyr705), we used PIM-1-, PIM-2-, or PIM-3-specific siRNA and showed that knockdown of PIM-3, but not of PIM-1 or PIM-2, in DU-145 cells results in a significant downregulation of pSTAT3(Tyr705). The phosphorylation of STAT5 on Tyr694 in 22Rv1 cells is not affected by M-110 or SGI-1776, suggesting specificity for pSTAT3(Tyr705). These results identify a novel role for PIM-3 kinase as a positive regulator of STAT3 signaling and suggest that PIM-3 inhibitors cause growth inhibition of cancer cells by downregulating the expression of pSTAT3(Tyr705).
Collapse
Affiliation(s)
- Marisa Chang
- Genetics and Development Division, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
10
|
Increased Severity of Bleomycin-Induced Skin Fibrosis in Mice with Leukocyte-Specific Protein 1 Deficiency. J Invest Dermatol 2008; 128:2767-76. [DOI: 10.1038/jid.2008.164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Harrison RE, Sikorski BA, Jongstra J. Leukocyte-specific protein 1 targets the ERK/MAP kinase scaffold protein KSR and MEK1 and ERK2 to the actin cytoskeleton. J Cell Sci 2004; 117:2151-7. [PMID: 15090600 DOI: 10.1242/jcs.00955] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The identification and characterization of scaffold and targeting proteins of the ERK/MAP kinase pathway is important to understand the function and intracellular organization of this pathway. The F-actin binding protein leukocyte-specific protein 1 (LSP1) binds to PKCβI and expression of B-LSP1, an LSP1 truncate containing the PKCβI binding residues, inhibits anti-IgM-induced translocation of PKCβI to the plasma membrane and anti-IgM-induced activation of ERK2. To understand the role of LSP1 in the regulation of PKCβI-dependent ERK2 activation, we investigated whether LSP1 interacts with ERK/MAP kinase pathway components and targets these proteins to the actin cytoskeleton. We show that LSP1 associates with the ERK scaffold protein KSR and with MEK1 and ERK2. LSP1-associated MEK1 is activated by anti-IgM treatment and this activation is inhibited by expression of B-LSP1, suggesting that the activation of LSP1-associated MEK1 is PKCβI dependent. Confocal microscopy showed that LSP1 targets KSR, MEK1 and ERK2 to peripheral actin filaments. Thus our data show that LSP1 is a cytoskeletal targeting protein for the ERK/MAP kinase pathway and support a model in which MEK1 and ERK2 are organized in a cytoskeletal signaling complex together with KSR, PKCβI and LSP1 and are activated by anti-IgM in a PKCβI-dependent manner.
Collapse
Affiliation(s)
- Rene E Harrison
- Cell Biology Programme, The Hospital for Sick Children Research Institute, Toronto, Ontario, M5G 1X8, Canada
| | | | | |
Collapse
|
12
|
Marafioti T, Jabri L, Pulford K, Brousset P, Mason DY, Delsol G. Leucocyte-specific protein (LSP1) in malignant lymphoma and Hodgkin's disease. Br J Haematol 2003; 120:671-8. [PMID: 12588355 DOI: 10.1046/j.1365-2141.2003.04137.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Biopsies from 319 haematopoietic neoplasms were immunostained for intracellular leucocyte-specific protein 1 (LSP1) to assess its distribution and to compare its diagnostic value with that of CD45 (leucocyte common antigen: LCA). Most small B-cell neoplasms expressed LSP1, but one third of diffuse large B-cell lymphomas (DLBCL) were LSP1 negative. Among the cases with DLBCL (76 samples) tested for both LSP1 and CD45, one fifth expressed only CD45, but five samples were LSP1-positive and negative for CD45. The latter pattern was also seen in four of nine myelomas. Five out of 14 T-lymphoblastic lymphomas co-expressed LSP1 and CD45, and three cases were LSP1 negative and CD45-positive. Most peripheral T-cell lymphomas co-expressed LSP1 and CD45. All anaplastic lymphoma kinase (ALK)-negative lymphomas of anaplastic large cell morphology (T and null phenotype) expressed LSP1 although the percentage of LSP1-positive tumour cells was variable, however, only seven out of 30 cases with ALK-positive lymphoma were LSP1 positive. LSP1 was expressed on Reed-Sternberg cells in 60 out of 66 cases with classic Hodgkin's disease but neoplastic cells were usually negative in lymphocyte predominant Hodgkin's. This study confirms the wide expression of LSP1 within haematopoietic neoplasms and its diagnostic value for a minority of lymphoid tumours that have lost CD45 expression. Furthermore, the strong expression of LSP1 in classic Hodgkin's disease, contrasting with its heterogeneous expression in ALK-negative anaplastic lymphomas, may help to distinguish the latter lymphomas from patients with tumour cell-rich Hodgkin's disease.
Collapse
Affiliation(s)
- Teresa Marafioti
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, UK.
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
B-cell development to antibody-producing plasma cells requires the concerted function of a large number of genes and proteins. Genome-level expression profiling during human B-cell maturation was studied in anti-immunoglobulin M-stimulated Ramos cells. cDNA microarrays were used to follow changes in the transcriptome over several days. Close to 1500 genes had significantly altered expression at least at one time point. The genes were organized into clusters based on expression profiles and were further characterized based on the functions of the coded proteins. Several groups of genes important for B cells were analyzed. Here we concentrate on genes involved in signal transduction and cytokines and their receptors. The results provide knowledge on the development of humoral immunity. Several new genes were found to be essential for B-cell development. They can be used as targets for research and possibly for drug development.
Collapse
Affiliation(s)
- Juha Ollila
- Department of Biosciences, Division of Biochemistry, P.O. Box 56, FIN-00014, University of Helsinki, Finland
| | | |
Collapse
|
14
|
Cao MY, Shinjo F, Heinrichs S, Soh JW, Jongstra-Bilen J, Jongstra J. Inhibition of anti-IgM-induced translocation of protein kinase C beta I inhibits ERK2 activation and increases apoptosis. J Biol Chem 2001; 276:24506-10. [PMID: 11333276 DOI: 10.1074/jbc.m103883200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the COOH-terminal residues 179-330 of the LSP1 protein in the LSP1(+) B-cell line W10 increases anti-IgM- or ionomycin-induced apoptosis, suggesting that expression of this LSP1 truncate (B-LSP1) interferes with a Ca(2+)-dependent step in anti-IgM signaling. Here we show that inhibition of Ca(2+)-dependent conventional protein kinase C (cPKC) isoforms with Gö6976 increases anti-IgM-induced apoptosis of W10 cells and that expression of B-LSP1 inhibits translocation of PKCbetaI but not of PKCbetaII or PKCalpha to the plasma membrane. The increased anti-IgM-induced apoptosis is partially reversed by overexpression of PKCbetaI. This shows that the B-LSP1-mediated inhibition of PKCbetaI leads to increased anti-IgM-induced apoptosis. Expression of constitutively active PKCbetaI protein in W10 cells activates the mitogen-activated protein kinase ERK2, whereas expression of B-LSP1 inhibits anti-IgM-induced activation of ERK2, suggesting that anti-IgM-activated PKCbetaI is involved in the activation of ERK2 and that inhibition of ERK2 activation contributes to the increased anti-IgM-induced apoptosis. Pull-down assays show that LSP1 interacts with PKCbetaI but not with PKCbetaII or PKCalpha in W10 cell lysates, while in vitro LSP1 and B-LSP1 bind directly to PKCbetaI. Thus, B-LSP1 is a unique reagent that binds PKCbetaI and inhibits anti-IgM-induced PKCbetaI translocation, leading to inhibition of ERK2 activation and increased apoptosis.
Collapse
Affiliation(s)
- M Y Cao
- Toronto Western Research Institute, Cell and Molecular Biology Division, University of Toronto, Toronto, Ontario M5T 2S8, Canada
| | | | | | | | | | | |
Collapse
|
15
|
Hannigan M, Zhan L, Ai Y, Huang C. Leukocyte‐specific gene 1 protein (LSP1) is involved in chemokine KC‐activated cytoskeletal reorganization in murine neutrophils
in vitro. J Leukoc Biol 2001. [DOI: 10.1189/jlb.69.3.497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Michael Hannigan
- Department of Pathology, University of Connecticut Health Center, Farmington
| | - Lijun Zhan
- Department of Pathology, University of Connecticut Health Center, Farmington
| | - Youxi Ai
- Department of Pathology, University of Connecticut Health Center, Farmington
| | - Chi‐Kuang Huang
- Department of Pathology, University of Connecticut Health Center, Farmington
| |
Collapse
|
16
|
Abstract
Abstract
Lymphocyte-specific protein 1, recently renamed leukocyte-specific protein 1 (LSP1), is an F-actin binding protein expressed in lymphocytes, macrophages, and neutrophils in mice and humans. This study examines LSP1-deficient (Lsp1−/−) mice for the development of myeloid and lymphocytic cell populations and their response to the development of peritonitis induced by thioglycollate (TG) and to a T-dependent antigen.Lsp1−/− mice exhibit significantly higher levels of resident macrophages in the peritoneum compared to wild-type (wt) mice, whereas the development of myeloid cells is normal. This increase, which is specific for conventional CD5−macrophages appears to be tissue specific and does not result from differences in adhesion to the peritoneal mesothelium. The level of peritoneal lymphocytes is decreased inLsp1−/− mice without affecting a particular lymphocytic subset. The proportions of precursor and mature lymphocytes in the central and peripheral tissues of Lsp1−/−mice are similar to those of wt mice andLsp1−/−mice mount a normal response to the T-dependent antigen, ovalbumin (OVA). On injection of TG, theLsp1−/−mice exhibit an accelerated kinetics of changes in peritoneal macrophage and neutrophil numbers as compared to wt including increased influx of these cells. LSP1− neutrophils demonstrate an enhanced chemotactic response in vitro to N-formyl methionyl-leucyl-phenylalanine (FMLP) and to the C-X-C chemokine, KC, indicating that their enhanced influx into the peritoneum may be a result of increased motility. Our data demonstrate that LSP1 is a negative regulator of neutrophil chemotaxis.
Collapse
|
17
|
Abstract
Lymphocyte-specific protein 1, recently renamed leukocyte-specific protein 1 (LSP1), is an F-actin binding protein expressed in lymphocytes, macrophages, and neutrophils in mice and humans. This study examines LSP1-deficient (Lsp1−/−) mice for the development of myeloid and lymphocytic cell populations and their response to the development of peritonitis induced by thioglycollate (TG) and to a T-dependent antigen.Lsp1−/− mice exhibit significantly higher levels of resident macrophages in the peritoneum compared to wild-type (wt) mice, whereas the development of myeloid cells is normal. This increase, which is specific for conventional CD5−macrophages appears to be tissue specific and does not result from differences in adhesion to the peritoneal mesothelium. The level of peritoneal lymphocytes is decreased inLsp1−/− mice without affecting a particular lymphocytic subset. The proportions of precursor and mature lymphocytes in the central and peripheral tissues of Lsp1−/−mice are similar to those of wt mice andLsp1−/−mice mount a normal response to the T-dependent antigen, ovalbumin (OVA). On injection of TG, theLsp1−/−mice exhibit an accelerated kinetics of changes in peritoneal macrophage and neutrophil numbers as compared to wt including increased influx of these cells. LSP1− neutrophils demonstrate an enhanced chemotactic response in vitro to N-formyl methionyl-leucyl-phenylalanine (FMLP) and to the C-X-C chemokine, KC, indicating that their enhanced influx into the peritoneum may be a result of increased motility. Our data demonstrate that LSP1 is a negative regulator of neutrophil chemotaxis.
Collapse
|