1
|
Schultes FPJ, Welter L, Hufnagel D, Heghmanns M, Kasanmascheff M, Mügge C. An Active and Versatile Electron Transport System for Cytochrome P450 Monooxygenases from the Alkane Degrading Organism Acinetobacter sp. OC4. Chembiochem 2024; 25:e202400098. [PMID: 38787654 DOI: 10.1002/cbic.202400098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
Cytochrome P450 monooxygenases (CYPs) are valuable biocatalysts for the oxyfunctionalization of non-activated carbon-hydrogen bonds. Most CYPs rely on electron transport proteins as redox partners. In this study, the ferredoxin reductase (FdR) and ferredoxin (FD) for a cytochrome P450 monooxygenase from Acinetobacter sp. OC4 are investigated. Upon heterologous production of both proteins independently in Escherichia coli, spectral analysis showed their reduction capability towards reporter electron acceptors, e. g., cytochrome c. The individual proteins' specific activity towards cytochrome c reduction was 25 U mg-1. Furthermore, the possibility to enhance electron transfer by artificial fusion of the units was elucidated. FdR and FD were linked by helical linkers [EAAAK]n, flexible glycine linkers [GGGGS]n or rigid proline linkers [EPPPP]n of n=1-4 sequence repetitions. The system with a glycine linker (n=4) reached an appreciable specific activity of 19 U mg-1 towards cytochrome c. Moreover, their ability to drive different members of the CYP153A subfamily is demonstrated. By creating artificial self-sufficient P450s with FdR, FD, and a panel of four CYP153A representatives, effective hydroxylation of n-hexane in a whole-cell system was achieved. The results indicate this protein combination to constitute a functional and versatile surrogate electron transport system for this subfamily.
Collapse
Affiliation(s)
- Fabian Peter Josef Schultes
- Ruhr-University Bochum, Faculty of Biology and Biotechnology, Microbial Biotechnology, Universitätsstraße 150, 44780, Bochum, Germany
| | - Leon Welter
- Ruhr-University Bochum, Faculty of Biology and Biotechnology, Microbial Biotechnology, Universitätsstraße 150, 44780, Bochum, Germany
| | - Doreen Hufnagel
- Ruhr-University Bochum, Faculty of Biology and Biotechnology, Microbial Biotechnology, Universitätsstraße 150, 44780, Bochum, Germany
| | - Melanie Heghmanns
- Technical University Dortmund, Faculty for Chemistry and Chemical Biology, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Müge Kasanmascheff
- Technical University Dortmund, Faculty for Chemistry and Chemical Biology, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Carolin Mügge
- Ruhr-University Bochum, Faculty of Biology and Biotechnology, Microbial Biotechnology, Universitätsstraße 150, 44780, Bochum, Germany
| |
Collapse
|
2
|
Lesanavičius M, Seo D, Maurutytė G, Čėnas N. Redox Properties of Bacillus subtilis Ferredoxin:NADP + Oxidoreductase: Potentiometric Characteristics and Reactions with Pro-Oxidant Xenobiotics. Int J Mol Sci 2024; 25:5373. [PMID: 38791410 PMCID: PMC11121358 DOI: 10.3390/ijms25105373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Bacillus subtilis ferredoxin:NADP+ oxidoreductase (BsFNR) is a thioredoxin reductase-type FNR whose redox properties and reactivity with nonphysiological electron acceptors have been scarcely characterized. On the basis of redox reactions with 3-acetylpyridine adenine dinucleotide phosphate, the two-electron reduction midpoint potential of the flavin adenine dinucleotide (FAD) cofactor was estimated to be -0.240 V. Photoreduction using 5-deazaflavin mononucleotide (5-deazaFMN) as a photosensitizer revealed that the difference in the redox potentials between the first and second single-electron transfer steps was 0.024 V. We examined the mechanisms of the reduction of several different groups of non-physiological electron acceptors catalyzed by BsFNR. The reactivity of quinones and aromatic N-oxides toward BsFNR increased when increasing their single-electron reduction midpoint redox potentials. The reactivity of nitroaromatic compounds was lower due to their lower electron self-exchange rate, but it exhibited the same trend. A mixed single- and two-electron reduction reaction was characteristic of quinones, whereas reactions involving nitroaromatics proceeded exclusively via the one-electron reduction reaction. The oxidation of FADH• to FAD is the rate-limiting step during the oxidation of fully reduced FAD. The calculated electron transfer distances in the reaction with nitroaromatics were close to those of other FNRs including the plant-type enzymes, thus demonstrating their similar active site accessibility to low-molecular-weight oxidants despite the fundamental differences in their structures.
Collapse
Affiliation(s)
- Mindaugas Lesanavičius
- Department of Xenobiotics Biochemistry, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania; (M.L.); (G.M.)
| | - Daisuke Seo
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan;
| | - Gintarė Maurutytė
- Department of Xenobiotics Biochemistry, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania; (M.L.); (G.M.)
| | - Narimantas Čėnas
- Department of Xenobiotics Biochemistry, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania; (M.L.); (G.M.)
| |
Collapse
|
3
|
Seo D. The Role of the si-Face Tyrosine of a Homodimeric Ferredoxin-NADP + Oxidoreductase from Bacillus subtilis during Complex Formation and Redox Equivalent Transfer with NADP +/H and Ferredoxin. Antioxidants (Basel) 2023; 12:1741. [PMID: 37760044 PMCID: PMC10526003 DOI: 10.3390/antiox12091741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
In the crystal structure of ferredoxin-NADP+ oxidoreductase from Bacillus subtilis (BsFNR), Tyr50 stacks on the si-face of the isoalloxazine ring portion of the FAD prosthetic group. This configuration is highly conserved among the homodimeric ferredoxin-NAD(P)+ oxidoreductases (FNR) from Gram-positive bacteria and photosynthetic bacteria. In this report, pre-steady state reactions of Tyr50 variants with NADP+/NADPH and ferredoxin from B. subtilis (BsFd) were examined with stopped-flow spectrophotometry to assess the effects of the mutation on the formation of FNR-substrate complexes and following redox equivalent transfer. Mixing oxidized BsFNRs with NADPH resulted in a rapid complex formation followed by a rate-limiting hydride transfer. The substitution substantially modulated the intensity of the charge transfer absorption band and decreased the observed hydride transfer rates compared to the wild type. Reduction of the Y50W mutant by NADPH proceeded in a monophasic manner, while the Y50G and Y50S mutants did in biphasic phases. The reduced Tyr50 mutants hardly promoted the reduction of NADP+. Mixing oxidized BsFNRs with reduced BsFd resulted in the reduction of the FNRs. The observed FNR reduction rates of the three variants were comparable, but in the Y50G and Y50S mutants, the amount of the reduced FNR at the rapid phase was decreased, and a slow FNR reduction phase was observed. The obtained results suggest that the replacements of Tyr50 with Gly and Ser permitted the conformational change in the reduced form, which induced an asymmetric kinetic behavior between the protomers of the homodimeric BsFNR.
Collapse
Affiliation(s)
- Daisuke Seo
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| |
Collapse
|
4
|
Greule A, Stok JE, De Voss JJ, Cryle MJ. Unrivalled diversity: the many roles and reactions of bacterial cytochromes P450 in secondary metabolism. Nat Prod Rep 2019; 35:757-791. [PMID: 29667657 DOI: 10.1039/c7np00063d] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: 2000 up to 2018 The cytochromes P450 (P450s) are a superfamily of heme-containing monooxygenases that perform diverse catalytic roles in many species, including bacteria. The P450 superfamily is widely known for the hydroxylation of unactivated C-H bonds, but the diversity of reactions that P450s can perform vastly exceeds this undoubtedly impressive chemical transformation. Within bacteria, P450s play important roles in many biosynthetic and biodegradative processes that span a wide range of secondary metabolite pathways and present diverse chemical transformations. In this review, we aim to provide an overview of the range of chemical transformations that P450 enzymes can catalyse within bacterial secondary metabolism, with the intention to provide an important resource to aid in understanding of the potential roles of P450 enzymes within newly identified bacterial biosynthetic pathways.
Collapse
Affiliation(s)
- Anja Greule
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia. and EMBL Australia, Monash University, Clayton, Victoria 3800, Australia
| | - Jeanette E Stok
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia.
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia.
| | - Max J Cryle
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia. and EMBL Australia, Monash University, Clayton, Victoria 3800, Australia and Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| |
Collapse
|
5
|
Ortega Ugalde S, Boot M, Commandeur JNM, Jennings P, Bitter W, Vos JC. Function, essentiality, and expression of cytochrome P450 enzymes and their cognate redox partners in Mycobacterium tuberculosis: are they drug targets? Appl Microbiol Biotechnol 2019; 103:3597-3614. [PMID: 30810776 PMCID: PMC6469627 DOI: 10.1007/s00253-019-09697-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 11/26/2022]
Abstract
This review covers the current knowledge of the cytochrome P450 enzymes (CYPs) of the human pathogen Mycobacterium tuberculosis (Mtb) and their endogenous redox partners, focusing on their biological function, expression, regulation, involvement in antibiotic resistance, and suitability for exploitation as antitubercular targets. The Mtb genome encodes twenty CYPs and nine associated redox partners required for CYP catalytic activity. Transposon insertion mutagenesis studies have established the (conditional) essentiality of several of these enzymes for in vitro growth and host infection. Biochemical characterization of a handful of Mtb CYPs has revealed that they have specific physiological functions in bacterial virulence and persistence in the host. Analysis of the transcriptional response of Mtb CYPs and redox partners to external insults and to first-line antibiotics used to treat tuberculosis showed a diverse expression landscape, suggesting for some enzymes a potential role in drug resistance. Combining the knowledge about the physiological roles and expression profiles indicates that, at least five Mtb CYPs, CYP121A1, CYP125A1, CYP139A1, CYP142A1, and CYP143A1, as well as two ferredoxins, FdxA and FdxC, can be considered promising novel therapeutic targets.
Collapse
Affiliation(s)
- Sandra Ortega Ugalde
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| | - Maikel Boot
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Jan N M Commandeur
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Paul Jennings
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Section of Molecular Microbiology, AIMMS, Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - J Chris Vos
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Lee JW, Niraula NP, Trinh CT. Harnessing a P450 fatty acid decarboxylase from Macrococcus caseolyticus for microbial biosynthesis of odd chain terminal alkenes. Metab Eng Commun 2018; 7:e00076. [PMID: 30197865 PMCID: PMC6127365 DOI: 10.1016/j.mec.2018.e00076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 12/21/2022] Open
Abstract
Alkenes are industrially important platform chemicals with broad applications. In this study, we report a direct microbial biosynthesis of terminal alkenes from fermentable sugars by harnessing a P450 fatty acid (FA) decarboxylase from Macrococcus caseolyticus (OleTMC). We first characterized OleTMC and demonstrated its in vitro H2O2-independent activities towards linear C10:0-C18:0 FAs, with higher activity for C16:0-C18:0 FAs. Next, we engineered a de novo alkene biosynthesis pathway, consisting of OleTMC and an engineered E. coli thioesterase (TesA) with compatible substrate specificities, and introduced this pathway into E. coli for terminal alkene biosynthesis from glucose. The recombinant E. coli EcNN101 produced a total of 17.78 ± 0.63 mg/L odd-chain terminal alkenes, comprising of 0.9% ± 0.5% C11 alkene, 12.7% ± 2.2% C13 alkene, 82.7% ± 1.7% C15 alkene, and 3.7% ± 0.8% C17 alkene, and a yield of 0.87 ± 0.03 (mg/g) on glucose. To improve alkene production, we identified and overcame the electron transfer limitation in OleTMC, by introducing a two-component redox system, consisting of a putidaredoxin reductase (CamA) and a putidaredoxin (CamB) from Pseudomonas putida, into EcNN101, and demonstrated the alkene production increased ~2.8 fold. Finally, to better understand the substrate specificities of OleTMC observed, we employed in silico protein modeling to illuminate the functional role of FA binding pocket.
Collapse
Affiliation(s)
- Jong-Won Lee
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Narayan P. Niraula
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Cong T. Trinh
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
7
|
Linking cytochrome P450 enzymes from Mycobacterium tuberculosis to their cognate ferredoxin partners. Appl Microbiol Biotechnol 2018; 102:9231-9242. [PMID: 30136203 PMCID: PMC6208970 DOI: 10.1007/s00253-018-9299-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 01/13/2023]
Abstract
Mycobacterium tuberculosis (Mtb) codes for 20 cytochrome P450 enzymes (CYPs), considered potential drug-targets due to their essential roles in bacterial viability and host infection. Catalytic activity of mycobacterial CYPs is dependent on electron transfer from a NAD (P)H-ferredoxin-reductase (FNR) and a ferredoxin (Fd). Two FNRs (FdrA and FprA) and five ferredoxins (Fdx, FdxA, FdxC, FdxD, and Rv1786) have been found in the Mtb genome. However, as of yet, the cognate redox partnerships have not been fully established. This is confounded by the fact that heterologous redox partners are routinely used to reconstitute Mtb CYP metabolism. To this end, this study aimed to biochemically characterize and identify cognate redox partnerships for Mtb CYPs. Interestingly, all combinations of FNRs and ferredoxins were active in the reduction of oxidized cytochrome c, but steady-state kinetic assays revealed FdxD as the most efficient redox partner for FdrA, whereas Fdx coupled preferably with FprA. CYP121A1, CYP124A1, CYP125A1, and CYP142A1 metabolism with the cognate redox partners was reconstituted in vitro showing an unanticipated selectivity in the requirement for electron transfer partnership, which did not necessarily correlate with proximity in the genome. This is the first description of microbial P450 metabolism in which multiple ferredoxins are functionally linked to multiple CYPs.
Collapse
|
8
|
Structure and function of the cytochrome P450 peroxygenase enzymes. Biochem Soc Trans 2018; 46:183-196. [PMID: 29432141 PMCID: PMC5818669 DOI: 10.1042/bst20170218] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/12/2017] [Accepted: 12/18/2017] [Indexed: 11/17/2022]
Abstract
The cytochromes P450 (P450s or CYPs) constitute a large heme enzyme superfamily, members of which catalyze the oxidative transformation of a wide range of organic substrates, and whose functions are crucial to xenobiotic metabolism and steroid transformation in humans and other organisms. The P450 peroxygenases are a subgroup of the P450s that have evolved in microbes to catalyze the oxidative metabolism of fatty acids, using hydrogen peroxide as an oxidant rather than NAD(P)H-driven redox partner systems typical of the vast majority of other characterized P450 enzymes. Early members of the peroxygenase (CYP152) family were shown to catalyze hydroxylation at the α and β carbons of medium-to-long-chain fatty acids. However, more recent studies on other CYP152 family P450s revealed the ability to oxidatively decarboxylate fatty acids, generating terminal alkenes with potential applications as drop-in biofuels. Other research has revealed their capacity to decarboxylate and to desaturate hydroxylated fatty acids to form novel products. Structural data have revealed a common active site motif for the binding of the substrate carboxylate group in the peroxygenases, and mechanistic and transient kinetic analyses have demonstrated the formation of reactive iron-oxo species (compounds I and II) that are ultimately responsible for hydroxylation and decarboxylation of fatty acids, respectively. This short review will focus on the biochemical properties of the P450 peroxygenases and on their biotechnological applications with respect to production of volatile alkenes as biofuels, as well as other fine chemicals.
Collapse
|
9
|
Seo D, Soeta T, Sakurai H, Sétif P, Sakurai T. Pre-steady-state kinetic studies of redox reactions catalysed by Bacillus subtilis ferredoxin-NADP(+) oxidoreductase with NADP(+)/NADPH and ferredoxin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:678-87. [PMID: 26965753 DOI: 10.1016/j.bbabio.2016.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 02/12/2016] [Accepted: 03/01/2016] [Indexed: 11/30/2022]
Abstract
Ferredoxin-NADP(+) oxidoreductase ([EC1.18.1.2], FNR) from Bacillus subtilis (BsFNR) is a homodimeric flavoprotein sharing structural homology with bacterial NADPH-thioredoxin reductase. Pre-steady-state kinetics of the reactions of BsFNR with NADP(+), NADPH, NADPD (deuterated form) and B. subtilis ferredoxin (BsFd) using stopped-flow spectrophotometry were studied. Mixing BsFNR with NADP(+) and NADPH yielded two types of charge-transfer (CT) complexes, oxidized FNR (FNR(ox))-NADPH and reduced FNR (FNR(red))-NADP(+), both having CT absorption bands centered at approximately 600n m. After mixing BsFNR(ox) with about a 10-fold molar excess of NADPH (forward reaction), BsFNR was almost completely reduced at equilibrium. When BsFNR(red) was mixed with NADP(+), the amount of BsFNR(ox) increased with increasing NADP(+) concentration, but BsFNR(red) remained as the major species at equilibrium even with about 50-fold molar excess NADP(+). In both directions, the hydride-transfer was the rate-determining step, where the forward direction rate constant (~500 s(-1)) was much higher than the reverse one (<10 s(-1)). Mixing BsFd(red) with BsFNR(ox) induced rapid formation of a neutral semiquinone form. This process was almost completed within 1 ms. Subsequently the neutral semiquinone form was reduced to the hydroquinone form with an apparent rate constant of 50 to 70 s(-1) at 10°C, which increased as BsFd(red) increased from 40 to 120 μM. The reduction rate of BsFNR(ox) by BsFd(red) was markedly decreased by premixing BsFNR(ox) with BsFd(ox), indicating that the dissociation of BsFd(ox) from BsFNR(sq) is rate-limiting in the reaction. The characteristics of the BsFNR reactions with NADP(+)/NADPH were compared with those of other types of FNRs.
Collapse
Affiliation(s)
- Daisuke Seo
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan.
| | - Takahiro Soeta
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Hidehiro Sakurai
- Research Institute for Photobiological Hydrogen Production, Kanagawa University, Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan
| | - Pierre Sétif
- CEA, iBiTecS, 91191 Gif sur Yvette, France; CNRS/Université Paris-Sud/CEA, I2BC, 91190 Gif sur Yvette, France
| | - Takeshi Sakurai
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
10
|
Seo D, Naito H, Nishimura E, Sakurai T. Replacement of Tyr50 stacked on the si-face of the isoalloxazine ring of the flavin adenine dinucleotide prosthetic group modulates Bacillus subtilis ferredoxin-NADP(+) oxidoreductase activity toward NADPH. PHOTOSYNTHESIS RESEARCH 2015; 125:321-328. [PMID: 25698107 DOI: 10.1007/s11120-015-0099-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/11/2015] [Indexed: 06/04/2023]
Abstract
Ferredoxin-NAD(P)(+) oxidoreductases ([EC 1.18.1.2], [EC 1.18.1.3], FNRs) from green sulfur bacteria, purple non-sulfur bacteria and most of Firmicutes, such as Bacillus subtilis (BsFNR) are homo-dimeric flavoproteins homologous to bacterial NADPH-thioredoxin reductase. These FNRs contain two unique aromatic residues stacked on the si- and re-face of the isoalloxazine ring moiety of the FAD prosthetic group whose configurations are often found among other types of flavoproteins including plant-type FNR and flavodoxin, but not in bacterial NADPH-thioredoxin reductase. To investigate the role of the si-face Tyr50 residue in BsFNR, we replaced Tyr50 with Gly, Ser, and Trp and examined its spectroscopic properties and enzymatic activities in the presence of NADPH and ferredoxin (Fd) from B. subtilis (BsFd). The replacement of Tyr50 to Gly (Y50G), Ser (Y50S), and Trp (Y50W) in BsFNR resulted in a blue shift of the FAD transition bands. The Y50G and Y50S mutations enhanced the FAD fluorescence emission, whereas those of the wild type and Y50W mutant were quenched. All three mutants decreased thermal stabilities compared to wild type. Using a diaphorase assay, the k cat values for the Y50G and Y50S mutants in the presence of NADPH and ferricyanide were decreased to less than 5 % of the wild type activity. The Y50W mutant retained approximately 20 % reactivity in the diaphorase assay and BsFd-dependent cytochrome c reduction assay relative to wild type. The present results suggest that Tyr50 modulates the electronic properties and positioning of the prosthetic group.
Collapse
Affiliation(s)
- Daisuke Seo
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan,
| | | | | | | |
Collapse
|
11
|
Seo D, Asano T, Komori H, Sakurai T. Role of the C-terminal extension stacked on the re-face of the isoalloxazine ring moiety of the flavin adenine dinucleotide prosthetic group in ferredoxin-NADP(+) oxidoreductase from Bacillus subtilis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 81:143-148. [PMID: 24529496 DOI: 10.1016/j.plaphy.2014.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/20/2014] [Indexed: 06/03/2023]
Abstract
Ferredoxin-NADP(+) oxidoreductase [EC 1.18.1.2] from Bacillus subtilis (BsFNR) is homologous to the bacterial NADPH-thioredoxin reductase, but possesses a unique C-terminal extension that covers the re-face of the isoalloxazine ring moiety of the flavin adenine dinucleotide (FAD) prosthetic group. In this report, we utilize BsFNR mutants depleted of their C-terminal residues to examine the importance of the C-terminal extension in reactions with NADPH and ferredoxin (Fd) from B. subtilis by spectroscopic and steady-state reaction analyses. The depletions of residues Y313 to K332 (whole C-terminal extension region) and S325 to K332 (His324 intact) resulted in significant increases in the catalytic efficiency with NADPH in diaphorase assay with ferricyanide, whereas Km values for ferricyanide were increased. In the cytochrome c reduction assay in the presence of B. subtilis ferredoxin, the S325-K332 depleted mutant displayed a significant decrease in the turnover rate with an Fd concentration range of 1-10 μM. The Y313-K332 depleted mutant demonstrated an increase in the rate of the direct reduction of horse heart cytochrome c in the absence of Fd. These data indicated that depletion of the C-terminal extension plays an important role in the reaction of BsFNR with ferredoxin.
Collapse
Affiliation(s)
- Daisuke Seo
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan.
| | - Tomoya Asano
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Takaramachi 13-1, Kanazawa, Ishikawa 920-0934, Japan
| | - Hirofumi Komori
- Faculty of Education, Kagawa University, 1-1 Saiwai, Takamatsu, Kagawa 760-8522, Japan
| | - Takeshi Sakurai
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
12
|
Exploring the electron transfer pathway in the oxidation of avermectin by CYP107Z13 in Streptomyces ahygroscopicus ZB01. PLoS One 2014; 9:e98916. [PMID: 24905717 PMCID: PMC4048220 DOI: 10.1371/journal.pone.0098916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 05/08/2014] [Indexed: 11/19/2022] Open
Abstract
Streptomyces ahygroscopicus ZB01 can effectively oxidize 4″-OH of avermectin to form 4″-oxo-avermectin. CYP107Z13 is responsible for this site-specific oxidation in ZB01. In the present study, we explored the electron transfer pathway in oxidation of avermectin by CYP107Z13 in ZB01. A putative [3Fe-4S] ferredoxin gene fd68 and two possible NADH-dependent ferredoxin reductase genes fdr18 and fdr28 were cloned from the genomic DNA of ZB01. fd68 gene disruption mutants showed no catalytic activity in oxidation of avermectin to form 4″-oxo-avermectin. To clarify whether FdR18 and FdR28 participate in the electron transfer during avermectin oxidation by CYP107Z13, two whole-cell biocatalytic systems were designed in E. coli BL21 (DE3), with one co-expressing CYP107Z13, Fd68 and FdR18 and the other co-expressing CYP107Z13, Fd68 and FdR28. Both of the two biocatalytic systems were found to be able to mediate the oxidation of avermectin to form 4″-oxo-avermectin. Thus, we propose an electron transfer pathway NADH→FdR18/FdR28→Fd68→CYP107Z13 for oxidation of avermectin to form 4″-oxo-avermectin in ZB01.
Collapse
|
13
|
Zhang T, Zhang A, Bell SG, Wong LL, Zhou W. The structure of a novel electron-transfer ferredoxin from Rhodopseudomonas palustris HaA2 which contains a histidine residue in its iron-sulfur cluster-binding motif. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1453-64. [PMID: 24816113 DOI: 10.1107/s139900471400474x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/01/2014] [Indexed: 11/10/2022]
Abstract
Rhodopseudomonas palustris HaA2 contains a gene, RPB3630, encoding a ferredoxin, HaPuxC, with an atypical CXXHXXC(X)nCP iron-sulfur cluster-binding motif. The ferredoxin gene is associated with a cytochrome P450 (CYP) monooxygenase-encoding gene, CYP194A3, an arrangement which is conserved in several strains of bacteria. Similar ferredoxin genes are found in other bacteria, such as Mycobacterium tuberculosis, where they are also associated with CYP genes. The crystal structure of HaPuxC has been solved at 2.3 Å resolution. The overall fold of this [3Fe-4S] cluster-containing ferredoxin is similar to other [3Fe-4S] and [4Fe-4S] species, with the loop around the iron-sulfur cluster more closely resembling those of [3Fe-4S] ferredoxins. The side chain of His17 from the cluster-binding motif in HaPuxC points away from the vacant site of the cluster and interacts with Glu61 and one of the sulfide ions of the cluster. This is the first cytochrome P450 electron-transfer partner of this type to be structurally characterized and will provide a better understanding of the electron-transfer processes between these ferredoxins and their CYP enzymes.
Collapse
Affiliation(s)
- Ting Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Aili Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Stephen G Bell
- School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia
| | - Luet-Lok Wong
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, England
| | - Weihong Zhou
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
14
|
Exploring the biosynthesis of unsaturated fatty acids in Bacillus cereus ATCC 14579 and functional characterization of novel acyl-lipid desaturases. Appl Environ Microbiol 2013; 79:6271-9. [PMID: 23913431 DOI: 10.1128/aem.01761-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
At low temperatures, Bacillus cereus synthesizes large amounts of unsaturated fatty acids (UFAs) with double bonds in positions Δ5 and Δ10, as well as Δ5,10 diunsaturated fatty acids. Through sequence homology searches, we identified two open reading frames (ORFs) encoding a putative Δ5 desaturase and a fatty acid acyl-lipid desaturase in the B. cereus ATCC 14579 genome, and these were named BC2983 and BC0400, respectively. Functional characterization of ORFs BC2983 and BC0400 by means of heterologous expression in Bacillus subtilis confirmed that they both encode acyl-lipid desaturases that use phospholipids as the substrates and have Δ5 and Δ10 desaturase activities. Thus, these ORFs were correspondingly named desA (Δ5 desaturase) and desB (Δ10 desaturase). We established that DesA utilizes ferredoxin and flavodoxins (Flds) as electron donors for the desaturation reaction, while DesB preferably employs Flds. In addition, increased amounts of UFAs were found when B. subtilis expressing B. cereus desaturases was subjected to a cold shock treatment, indicating that the activity or the expression of these enzymes is upregulated in response to a decrease in growth temperature. This represents the first work reporting the functional characterization of fatty acid desaturases from B. cereus.
Collapse
|
15
|
A new cytochrome P450 system from Bacillus megaterium DSM319 for the hydroxylation of 11-keto-β-boswellic acid (KBA). Appl Microbiol Biotechnol 2013; 98:1701-17. [DOI: 10.1007/s00253-013-5029-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/27/2013] [Accepted: 05/30/2013] [Indexed: 12/11/2022]
|
16
|
Role of ferredoxin and flavodoxins in Bacillus subtilis fatty acid desaturation. J Bacteriol 2011; 193:4043-8. [PMID: 21665975 DOI: 10.1128/jb.05103-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis acyl lipid desaturase (Δ5-Des) is an iron-dependent integral membrane protein able to selectively introduce double bonds into long-chain fatty acids. In the last decade since its discovery, the molecular mechanism of Δ5-Des expression has been studied extensively. However, the mechanism of desaturation, which must rely on unknown bacterial proteins for electron transfer, has not yet been explored. The B. subtilis genome encodes three proteins that can act as potential electron donors of Δ5-Des, ferredoxin (Fer) and two flavodoxins (Flds) (YkuN and YkuP), which are encoded by the ykuNOP operon. Here we report that the disruption of either the fer gene or the ykuNOP operon decreases the desaturation of palmitic acid by ∼30%. Nevertheless, a fer ykuNOP mutant abolished the desaturation reaction almost completely. Our results establish Fer and the two Flds as redox partners for Δ5-Des and suggest that the Fer and Fld proteins could function physiologically in the biosynthesis of unsaturated fatty acids in B. subtilis. Although Flds have extensively been described as partners in a number of redox processes, this is the first report describing their role as electron donors in the fatty acid desaturation reaction.
Collapse
|
17
|
Bender G, Ragsdale SW. Evidence that ferredoxin interfaces with an internal redox shuttle in Acetyl-CoA synthase during reductive activation and catalysis. Biochemistry 2011; 50:276-86. [PMID: 21141812 PMCID: PMC3077469 DOI: 10.1021/bi101511r] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acetyl-CoA synthase (ACS), a subunit of the bifunctional CO dehydrogenase/acetyl-CoA synthase (CODH/ACS) complex of Moorella thermoacetica requires reductive activation in order to catalyze acetyl-CoA synthesis and related partial reactions, including the CO/[1-(14)C]-acetyl-CoA exchange reaction. We show that the M. thermoacetica ferredoxin(II) (Fd-II), which harbors two [4Fe-4S] clusters and is an electron acceptor for CODH, serves as a redox activator of ACS. The level of activation depends on the oxidation states of both ACS and Fd-II, which strongly suggests that Fd-II acts as a reducing agent. By the use of controlled potential enzymology, the midpoint reduction potential for the catalytic one-electron redox-active species in the CO/acetyl-CoA exchange reaction is -511 mV, which is similar to the midpoint reduction potential that was earlier measured for other reactions involving ACS. Incubation of ACS with Fd-II and CO leads to the formation of the NiFeC species, which also supports the role of Fd-II as a reductant for ACS. In addition to being a reductant, Fd-II can accept electrons from acetylated ACS, as observed by the increased intensity of the EPR spectrum of reduced Fd-II, indicating that there is a stored electron within an "electron shuttle" in the acetyl-Ni(II) form of ACS. This "shuttle" is proposed to serve as a redox mediator during activation and at different steps of the ACS catalytic cycle.
Collapse
Affiliation(s)
- Güneş Bender
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Stephen W. Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
18
|
O'Reilly E, Köhler V, Flitsch SL, Turner NJ. Cytochromes P450 as useful biocatalysts: addressing the limitations. Chem Commun (Camb) 2011; 47:2490-501. [DOI: 10.1039/c0cc03165h] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Expression, purification and characterization of two Clostridium acetobutylicum flavodoxins: Potential electron transfer partners for CYP152A2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:257-64. [DOI: 10.1016/j.bbapap.2010.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 06/10/2010] [Accepted: 06/17/2010] [Indexed: 11/18/2022]
|
20
|
Cryle MJ, Bell SG, Schlichting I. Structural and biochemical characterization of the cytochrome P450 CypX (CYP134A1) from Bacillus subtilis: a cyclo-L-leucyl-L-leucyl dipeptide oxidase. Biochemistry 2010; 49:7282-96. [PMID: 20690619 DOI: 10.1021/bi100910y] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cytochrome P450 CypX (CYP134A1), isolated from Bacillus subtilis, has previously been implicated in the three-step oxidative transformation of the diketopiperazine cyclo-l-leucyl-l-leucyl into pulcherriminic acid, a precursor of the extracellular iron chelate pulcherrimin. In this study, we present the first experimental data relating to CYP134A1, where we show that CYP134A1 binds cyclo-l-leucyl-l-leucyl with an affinity of 24.5 +/- 0.5 muM. Structurally related diketopiperazines sharing similar alkyl side chains to cyclo-l-leucyl-l-leucyl also bind to CYP134A1 with comparable affinity. CYP134A1 is capable of catalyzing the in vitro oxidation of diketopiperazine substrates when supported with several alternate electron transfer partner systems. Products containing one additional oxygen atom and which are intermediate products of the expected pulcherriminic acid were identified by GCMS. The oxidation of related diketopiperazines reveals that different oxidative pathways exist for CYP134A1-catalyzed diketopiperazine oxidation. The crystal structure of CYP134A1 has been determined to 2.7 A resolution in the absence of substrate and in the presence of bound phenylimidazole ligands to 3.1 and 3.2 A resolution. The active site is dominated by hydrophobic residues and contains an unusual proline residue in place of the normally conserved alcohol residue that typically plays an important role in oxygen activation. The B-B(2) substrate recognition loop, which forms part of the active site, shows considerable flexibility and was found in both open and closed conformations in different structures. These results represent the first insights into the structural and biochemical basis underlying the multistep oxidation catalyzed by CYP134A1.
Collapse
Affiliation(s)
- Max J Cryle
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
21
|
Girhard M, Klaus T, Khatri Y, Bernhardt R, Urlacher VB. Characterization of the versatile monooxygenase CYP109B1 from Bacillus subtilis. Appl Microbiol Biotechnol 2010; 87:595-607. [DOI: 10.1007/s00253-010-2472-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 01/25/2010] [Accepted: 01/25/2010] [Indexed: 11/24/2022]
|
22
|
Seo D, Okabe S, Yanase M, Kataoka K, Sakurai T. Studies of interaction of homo-dimeric ferredoxin-NAD(P)+ oxidoreductases of Bacillus subtilis and Rhodopseudomonas palustris, that are closely related to thioredoxin reductases in amino acid sequence, with ferredoxins and pyridine nucleotide coenzymes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1794:594-601. [PMID: 19162251 DOI: 10.1016/j.bbapap.2008.12.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 12/17/2008] [Accepted: 12/18/2008] [Indexed: 11/30/2022]
Abstract
Ferredoxin-NADP(+) oxidoreductases (FNRs) of Bacillus subtilis (YumC) and Rhodopseudomonas palustris CGA009 (RPA3954) belong to a novel homo-dimeric type of FNR with high amino acid sequence homology to NADPH-thioredoxin reductases. These FNRs were purified from expression constructs in Escherichia coli cells, and their steady-state reactions with [2Fe-2S] type ferredoxins (Fds) from spinach and R. palustris, [4Fe-4S] type Fd from B. subtilis, NAD(P)(+)/NAD(P)H and ferricyanide were studied. From the K(m) and k(cat) values for the diaphorase activity with ferricyanide, it is demonstrated that both FNRs are far more specific for NADPH than for NADH. The UV-visible spectral changes induced by NADP(+) and B. subtilis Fd indicated that both FNRs form a ternary complex with NADP(+) and Fd, and that each of the two ligands decreases the affinities of the others. The steady-state kinetics of NADPH-cytochrome c reduction activity of YumC is consistent with formation of a ternary complex of NADPH and Fd during catalysis. These results indicate that despite their low sequence homology to other FNRs, these enzymes possess high FNR activity but with measurable differences in affinity for different types of Fds as compared to other more conventional FNRs.
Collapse
Affiliation(s)
- Daisuke Seo
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan.
| | | | | | | | | |
Collapse
|
23
|
Designing a whole-cell biotransformation system in Escherichia coli using cytochrome P450 from Streptomyces peucetius. Biotechnol Lett 2008; 30:1101-6. [PMID: 18259876 DOI: 10.1007/s10529-008-9654-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 01/21/2008] [Accepted: 01/22/2008] [Indexed: 10/22/2022]
Abstract
A biotransformation system was designed to co-express CYP107P3 (CSP4), cytochrome P450, from Streptomyces peuceticus, along with CamA (putidaredoxin reductase) and CamB (putidaredoxin) from Pseudomonas putida, the necessary reducing equivalents, in a class I type electron-transfer system in E. coli BL21 (DE3). This was carried out using two plasmids with different selection markers and compatible origins of replication. The study results showed that this biotransformation system was able to mediate the O-dealkylation of 7-ethoxycumarin.
Collapse
|
24
|
McLean KJ, Girvan HM, Munro AW. Cytochrome P450/redox partner fusion enzymes: biotechnological and toxicological prospects. Expert Opin Drug Metab Toxicol 2007; 3:847-63. [PMID: 18028029 DOI: 10.1517/17425255.3.6.847] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cytochromes P450 (CYPs) are versatile oxidase catalysts that play pivotal roles in drug metabolism. They are highly regarded as biotechnological tools for their capacity to perform regio- and stereo-selective oxidations. Human CYPs source electrons for oxygen activation from one or more separate redox partner enzymes. However, several CYP enzymes are now known in which the CYP is covalently linked to a reductase system. Some of these systems offer distinct advantages over typical CYPs as efficient, self-contained units capable of important biotransformations, including synthesis of high value chemicals and pharmaceuticals. Protein engineering has been widely applied to produce variant CYP fusions with desirable activities. The review focuses on the nature and diversity of CYP/redox partner fusion enzymes and their biocatalytic potential.
Collapse
Affiliation(s)
- Kirsty J McLean
- University of Manchester, Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, 131 Princess Street, Manchester M1 7DN, UK
| | | | | |
Collapse
|
25
|
Ruijssenaars HJ, Sperling EMGM, Wiegerinck PHG, Brands FTL, Wery J, de Bont JAM. Testosterone 15β-hydroxylation by solvent tolerant Pseudomonas putida S12. J Biotechnol 2007; 131:205-8. [PMID: 17655961 DOI: 10.1016/j.jbiotec.2007.06.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 06/12/2007] [Indexed: 11/26/2022]
Abstract
A steroid 15beta-hydroxylating whole-cell solvent tolerant biocatalyst was constructed by expressing the Bacillus megaterium steroid hydroxylase CYP106A2 in the solvent tolerant Pseudomonas putida S12. Testosterone hydroxylation was improved by a factor 16 by co-expressing Fer, a putative Fe-S protein from Bacillus subtilis. In addition, the specificity for 15beta-hydroxylation was improved by mutating threonine residue 248 of CYP106A2 into valine. These new insights provide the basis for an optimized whole-cell steroid-hydroxylating biocatalyst that can be applied with an organic solvent phase.
Collapse
|
26
|
Munro AW, Girvan HM, McLean KJ. Variations on a (t)heme--novel mechanisms, redox partners and catalytic functions in the cytochrome P450 superfamily. Nat Prod Rep 2007; 24:585-609. [PMID: 17534532 DOI: 10.1039/b604190f] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Andrew W Munro
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | | | | |
Collapse
|
27
|
Hannemann F, Bichet A, Ewen KM, Bernhardt R. Cytochrome P450 systems—biological variations of electron transport chains. Biochim Biophys Acta Gen Subj 2007; 1770:330-44. [PMID: 16978787 DOI: 10.1016/j.bbagen.2006.07.017] [Citation(s) in RCA: 567] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 07/29/2006] [Indexed: 02/02/2023]
Abstract
Cytochromes P450 (P450) are hemoproteins encoded by a superfamily of genes nearly ubiquitously distributed in different organisms from all biological kingdoms. The reactions carried out by P450s are extremely diverse and contribute to the biotransformation of drugs, the bioconversion of xenobiotics, the bioactivation of chemical carcinogens, the biosynthesis of physiologically important compounds such as steroids, fatty acids, eicosanoids, fat-soluble vitamins and bile acids, the conversion of alkanes, terpenes and aromatic compounds as well as the degradation of herbicides and insecticides. Cytochromes P450 belong to the group of external monooxygenases and thus receive the necessary electrons for oxygen cleavage and substrate hydroxylation from different redox partners. The classical as well as the recently discovered P450 redox systems are compiled in this paper and classified according to their composition.
Collapse
Affiliation(s)
- Frank Hannemann
- FR 8.3-Biochemistry, Saarland University, D-66041 Saarbrücken, Germany
| | | | | | | |
Collapse
|
28
|
Webb ME, Marquet A, Mendel RR, Rébeillé F, Smith AG. Elucidating biosynthetic pathways for vitamins and cofactors. Nat Prod Rep 2007; 24:988-1008. [PMID: 17898894 DOI: 10.1039/b703105j] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The elucidation of the pathways to the water-soluble vitamins and cofactors has provided many biochemical and chemical challenges. This is a reflection both of their complex chemical nature, and the fact that they are often made in small amounts, making detection of the enzyme activities and intermediates difficult. Here we present an orthogonal review of how these challenges have been overcome using a combination of methods, which are often ingenious. We make particular reference to some recent developments in the study of biotin, pantothenate, folate, pyridoxol, cobalamin, thiamine, riboflavin and molybdopterin biosynthesis.
Collapse
Affiliation(s)
- Michael E Webb
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.
| | | | | | | | | |
Collapse
|
29
|
McLean KJ, Warman AJ, Seward HE, Marshall KR, Girvan HM, Cheesman MR, Waterman MR, Munro AW. Biophysical characterization of the sterol demethylase P450 from Mycobacterium tuberculosis, its cognate ferredoxin, and their interactions. Biochemistry 2006; 45:8427-43. [PMID: 16819841 DOI: 10.1021/bi0601609] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mycobacterium tuberculosis encodes a P450 of the sterol demethylase family (CYP51) chromosomally located adjacent to a ferredoxin (Fdx). CYP51 and Fdx were purified to homogeneity and characterized. Spectroscopic analyses were consistent with cysteinate- and aqua-ligated heme iron in CYP51. An epsilon419 of 134 mM(-1) cm(-1) was determined for oxidized CYP51. Analysis of interactions of 1-, 2-, and 4-phenylimidazoles with CYP51 showed that the 1- and 4-forms were heme iron-coordinating inhibitors, while 2-phenylimidazole induced a substrate-like optical shift. The 2-phenyimidazole-bound CYP51 demonstrated unusual decreases in high-spin heme iron content at elevated temperatures and an almost complete absence of high-spin heme iron by low-temperature EPR. These data suggest thermally induced alterations in CYP51 active site structure and/or binding modes for the small ligand. Reduction of CYP51 in the presence of carbon monoxide leads to formation of an Fe(II)-CO complex with a Soret absorption maximum at 448.5 nm, which collapses (at 0.246 min(-1) at pH 7.0) forming a species with a Soret maximum at 421.5 nm (the inactive P420 form). The rate of P420 formation is accelerated at lower pH, consistent with protonation of the cysteinate (Cys 394) to a thiol underlying the P450-P420 transition. The P450 form is stabilized by estriol, which induces a type I spectral shift on binding CYP51 (Kd = 21.7 microM). Nonstandard spectral changes occur on CYP51 reduction (using either dithionite or natural redox partners), including a blue-shifted Soret band and development of a strong feature at approximately 558.5 nm, suggestive of cysteine thiol ligation. Thus, ligand-free ferrous CYP51 is prone to thiolate ligand protonation even in the absence of carbon monoxide. Analysis of reoxidized CYP51 demonstrates that the enzyme re-forms P450, indicating that Cys 394 thiol is readily deprotonated to thiolate in the ferric form. Spectroscopic analysis of Fdx by EPR (resonance at g = 2.03) and magnetic CD (intensity for oxidized and reduced forms and signal intensity dependence on field strength and temperature) demonstrated that Fdx binds a [3Fe-4S] iron-sulfur cluster. Potentiometric studies show that the midpoint potential for ligand-free CYP51 is -375 mV, increasing to -225 mV in the estriol-bound form. The Fdx potential is -31 mV. Fdx forms a productive electron transfer complex with CYP51 and reduces it at a rate of 3.0 min(-1) in the ligand-free form and 4.3 min(-1) in the estriol-bound form, despite a thermodynamic barrier. Steady-state analysis of a M. tuberculosis class I redox system comprising flavoprotein reductase A (FprA), Fdx, and estriol-bound CYP51 indicates heme iron reduction as a rate-limiting step.
Collapse
Affiliation(s)
- Kirsty J McLean
- Manchester Interdisciplinary Biocentre, School of Chemical Engineering and Analytical Sciences, University of Manchester, Jackson's Mill, P.O. Box 88, Sackville Street, Manchester M60 1QD, UK
| | | | | | | | | | | | | | | |
Collapse
|
30
|
McLean KJ, Clift D, Lewis DG, Sabri M, Balding PR, Sutcliffe MJ, Leys D, Munro AW. The preponderance of P450s in the Mycobacterium tuberculosis genome. Trends Microbiol 2006; 14:220-8. [PMID: 16581251 DOI: 10.1016/j.tim.2006.03.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2005] [Revised: 02/14/2006] [Accepted: 03/21/2006] [Indexed: 11/26/2022]
Abstract
The genome of Mycobacterium tuberculosis (Mtb) encodes 20 different cytochrome P450 enzymes (P450s). P450s are mono-oxygenases, which are historically considered to facilitate prokaryotic usage of unusual carbon sources. However, their preponderance in Mtb strongly indicates crucial physiological functions, as does the fact that polycyclic azoles (known P450 inhibitors) have potent anti-mycobacterial effects. Recent structural and enzyme characterization data reveal novel features for at least two Mtb P450s (CYP121 and CYP51). Genome analysis, knockout studies and structural comparisons signify important roles in cell biology and pathogenesis for various P450s and redox partner enzymes in Mtb. Elucidation of structure, function and metabolic roles will be essential in targeting the P450s as an 'Achilles heel' in this major human pathogen.
Collapse
Affiliation(s)
- Kirsty J McLean
- Manchester Interdisciplinary Biocentre, School of Chemical Engineering and Analytical Science and School of Life Sciences, University of Manchester, Jackson's Mill, Sackville Street, Manchester, UK, M60 1QD
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Park YJ, Yoo CB, Choi SY, Lee HB. Purifications and characterizations of a ferredoxin and its related 2-oxoacid:ferredoxin oxidoreductase from the hyperthermophilic archaeon, Sulfolobus solfataricus P1. BMB Rep 2006; 39:46-54. [PMID: 16466637 DOI: 10.5483/bmbrep.2006.39.1.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The coenzyme A-acylating 2-oxoacid:ferredoxin oxidoreductase and ferredoxin (an effective electron acceptor) were purified from the hyperthermophilic archaeon, Sulfolobus solfataricus P1 (DSM1616). The purified ferredoxin is a monomeric protein with an apparent molecular mass of approximately 11 kDa by SDS-PAGE and of 11,180+/-50 Da by MALDI-TOF mass spectrometry. Ferredoxin was identified to be a dicluster, [3Fe-4S][4Fe-4S], type ferredoxin by spectrophotometric and EPR studies, and appeared to be zinc-containing based on the shared homology of its N-terminal sequence with those of known zinc-containing ferredoxins. On the other hand, the purified 2-oxoacid: ferredoxin oxidoreductase was found to be a heterodimeric enzyme consisting of 69 kDa alpha and 34 kDa beta subunits by SDS-PAGE and MALDI-TOF mass spectrometry. The purified enzyme showed a specific activity of 52.6 units/mg for the reduction of cytochrome c with 2-oxoglutarate as substrate at 55 degrees C, pH 7.0. Maximum activity was observed at 70 degrees C and the optimum pH for enzymatic activity was 7.0 -8.0. The enzyme displays broad substrate specificity toward 2-oxoacids, such as pyruvate, 2-oxobutyrate, and 2-oxoglutarate. Among the 2-oxoacids tested (pyruvate, 2-oxobutyrate, and 2-oxoglutarate), 2-oxoglutarate was found to be the best substrate with Km and kcat values of 163 microM and 452 min(-1), respectively. These results provide useful information for structural studies on these two proteins and for studies on the mechanism of electron transfer between the two.
Collapse
Affiliation(s)
- Young-Jun Park
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, 200-701, Korea
| | | | | | | |
Collapse
|
32
|
Sielaff B, Andreesen JR. Kinetic and binding studies with purified recombinant proteins ferredoxin reductase, ferredoxin and cytochrome P450 comprising the morpholine mono-oxygenase from Mycobacterium sp. strain HE5. FEBS J 2005; 272:1148-59. [PMID: 15720389 DOI: 10.1111/j.1742-4658.2005.04550.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The P450mor system from Mycobacterium sp. strain HE5, supposed to catalyse the hydroxylation of different N-heterocycles, is composed of three components: ferredoxin reductase (FdRmor), Fe3S4 ferredoxin (Fdmor) and cytochrome P450 (P450mor). In this study, we purified Fdmor and P450mor as recombinant proteins as well as FdRmor, which has been isolated previously. Kinetic investigations of the redox couple FdRmor/Fdmor revealed a 30-fold preference for the NADH-dependent reduction of nitroblue tetrazolium (NBT) and an absolute requirement for Fdmor in this reaction, compared with the NADH-dependent reduction of cytochrome c. The quite low Km (5.3 +/- 0.3 nm) of FdRmor for Fdmor, measured with NBT as the electron acceptor, indicated high specificity. The addition of sequences providing His-tags to the N- or C-terminus of Fdmor did not significantly alter kinetic parameters, but led to competitive background activities of these fusion proteins. Production of P450mor as an N-terminal His-tag fusion protein enabled the purification of this protein in its spectral active form, which has previously not been possible for wild-type P450mor. The proposed substrates morpholine, piperidine or pyrrolidine failed to produce substrate-binding spectra of P450mor under any conditions. Pyridine, metyrapone and different azole compounds generated type II binding spectra and the Kd values determined for these substances suggested that P450mor might have a preference for more bulky and/or hydrophobic molecules. The purified recombinant proteins FdRmor, Fdmor and P450mor were used to reconstitute the homologous P450-containing mono-oxygenase, which was shown to convert morpholine.
Collapse
Affiliation(s)
- Bernhard Sielaff
- Institut für Mikrobiologie, Martin-Luther-Universität Halle, Germany
| | | |
Collapse
|
33
|
Lawson RJ, Leys D, Sutcliffe MJ, Kemp CA, Cheesman MR, Smith SJ, Clarkson J, Smith WE, Haq I, Perkins JB, Munro AW. Thermodynamic and biophysical characterization of cytochrome P450 BioI from Bacillus subtilis. Biochemistry 2004; 43:12410-26. [PMID: 15449931 DOI: 10.1021/bi049132l] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome P450 BioI (CYP107H1) from Bacillus subtilis is involved in the early stages of biotin synthesis. Previous studies have indicated that BioI can hydroxylate fatty acids and may also perform an acyl bond cleavage reaction [Green, A. J., Rivers, S. L., Cheesman, M., Reid, G. A., Quaroni, L. G., Macdonald, I. D. G., Chapman, S. K., and Munro, A. W. (2001) J. Biol. Inorg. Chem. 6, 523-533. Stok, J. E., and De Voss, J. J. (2000) Arch. Biochem. Biophys. 384, 351-360]. Here we show novel binding features of P450 BioI--specifically that it binds steroids (including testosterone and progesterone) and polycyclic azole drugs with similar affinity to that for fatty acids (K(d) values in the range 0.1-160 microM). Sigmoidal binding curves for titration of BioI with azole drugs suggests a cooperative process in this case. BioI as isolated from Escherichia coli is in a mixed heme iron spin state. Alteration of the pH of the buffer system affects the heme iron spin-state equilibrium (higher pH increasing the low-spin content). Steroids containing a carbonyl group at the C(3) position induce a shift in heme iron spin-state equilibrium toward the low-spin form, whereas fatty acids produce a shift toward the high-spin form. Electron paramagnetic resonance (EPR) studies confirm the heme iron spin-state perturbation inferred from optical titrations with steroids and fatty acids. Potentiometric studies demonstrate that the heme iron reduction potential becomes progressively more positive as the proportion of high-spin heme iron increases (potential for low-spin BioI = -330 +/- 1 mV; for BioI as purified from E. coli (mixed-spin) = 228 +/- 2 mV; for palmitoleic acid-bound BioI = -199 +/- 2 mV). Extraction of bound substrate-like molecule from purified BioI indicates palmitic acid to be bound. Differential scanning calorimetry studies indicate that the BioI protein structure is stabilized by binding of steroids and bulky azole drugs, a result confirmed by resonance Raman studies and by analysis of disruption of BioI secondary and tertiary structure by the chaotrope guanidinium chloride. Molecular modeling of the BioI structure indicates that a disulfide bond is present between Cys250 and Cys275. Calorimetry shows that structural stability of the protein was altered by addition of the reductant dithiothreitol, suggesting that the disulfide is important to integrity of BioI structure.
Collapse
|
34
|
Lawson RJ, von Wachenfeldt C, Haq I, Perkins J, Munro AW. Expression and Characterization of the Two Flavodoxin Proteins of Bacillus subtilis, YkuN and YkuP: Biophysical Properties and Interactions with Cytochrome P450 BioI. Biochemistry 2004; 43:12390-409. [PMID: 15449930 DOI: 10.1021/bi049131t] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The two flavodoxins (YkuN and YkuP) from Bacillus subtilis have been cloned, overexpressed in Escherichia coli and purified. DNA sequencing, mass spectrometry, and flavin-binding properties showed that both YkuN and YkuP were typical short-chain flavodoxins (158 and 151 amino acids, respectively) and that an error in the published B. subtilis genome sequence had resulted in an altered reading frame and misassignment of YkuP as a long-chain flavodoxin. YkuN and YkuP were expressed in their blue (neutral semiquinone) forms and reoxidized to the quinone form during purification. Potentiometry confirmed the strong stabilization of the semiquinone form by both YkuN and YkuP (midpoint reduction potential for oxidized/semiquinone couple = -105 mV/-105 mV) with respect to the hydroquinone (midpoint reduction potential for semiquinone/hydroquinone couple = -382 mV/-377 mV). Apoflavodoxin forms were generated by trichloroacetic acid treatment. Circular dichroism studies indicated that flavin mononucleotide (FMN) binding led to considerable structural rearrangement for YkuP but not for YkuN. Both apoflavodoxins bound FMN but not riboflavin avidly, as expected for short-chain flavodoxins. Structural stability studies with the chaotrope guanidinium chloride revealed that there is moderate destabilization of secondary and tertiary structure on FMN removal from YkuN, but that YkuP apoflavodoxin has similar (or slightly higher) stability compared to the holoprotein. Differential scanning calorimetry reveals further differences in structural stability. YkuP has a lower melting temperature than YkuN, and its endotherm is composed of a single transition, while that for YkuN is biphasic. Optical and fluorimetric titrations with oxidized flavodoxins revealed strong affinity (K(d) values consistently <5 microM) for their potential redox partner P450 BioI, YkuN showing tighter binding. Stopped-flow reduction studies indicated that the maximal electron-transfer rate (k(red)) to fatty acid-bound P450 BioI occurs from YkuN and YkuP at approximately 2.5 s(-1), considerably faster than from E. coli flavodoxin. Steady-state turnover with YkuN or YkuP, fatty acid-bound P450 BioI, and E. coli NADPH-flavodoxin reductase indicated that both flavodoxins supported lipid hydroxylation by P450 BioI with turnover rates of up to approximately 100 min(-1) with lauric acid as substrate. Interprotein electron transfer is a likely rate-limiting step. YkuN and YkuP supported monohydroxylation of lauric acid and myristic acid, but secondary oxygenation of the primary product was observed with both palmitic acid and palmitoleic acid as substrates.
Collapse
|
35
|
Seo D, Kamino K, Inoue K, Sakurai H. Purification and characterization of ferredoxin-NADP+ reductase encoded by Bacillus subtilis yumC. Arch Microbiol 2004; 182:80-9. [PMID: 15252706 DOI: 10.1007/s00203-004-0701-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 06/16/2004] [Accepted: 06/21/2004] [Indexed: 11/26/2022]
Abstract
From Bacillus subtilis cell extracts, ferredoxin-NADP+ reductase (FNR) was purified to homogeneity and found to be the yumC gene product by N-terminal amino acid sequencing. YumC is a approximately 94-kDa homodimeric protein with one molecule of non-covalently bound FAD per subunit. In a diaphorase assay with 2,6-dichlorophenol-indophenol as electron acceptor, the affinity for NADPH was much higher than that for NADH, with Km values of 0.57 microM vs >200 microM. Kcat values of YumC with NADPH were 22.7 s(-1) and 35.4 s(-1) in diaphorase and in a ferredoxin-dependent NADPH-cytochrome c reduction assay, respectively. The cell extracts contained another diaphorase-active enzyme, the yfkO gene product, but its affinity for ferredoxin was very low. The deduced YumC amino acid sequence has high identity to that of the recently identified Chlorobium tepidum FNR. A genomic database search indicated that there are more than 20 genes encoding proteins that share a high level of amino acid sequence identity with YumC and which have been annotated variously as NADH oxidase, thioredoxin reductase, thioredoxin reductase-like protein, etc. These genes are found notably in gram-positive bacteria, except Clostridia, and less frequently in archaea and proteobacteria. We propose that YumC and C. tepidum FNR constitute a new group of FNR that should be added to the already established plant-type, bacteria-type, and mitochondria-type FNR groups.
Collapse
Affiliation(s)
- Daisuke Seo
- Department of Biology, School of Education, Waseda University, 1-6-1 Nishiwaseda, Shinjuku, 169-8050, Tokyo, Japan.
| | | | | | | |
Collapse
|
36
|
Hlavica P, Schulze J, Lewis DFV. Functional interaction of cytochrome P450 with its redox partners: a critical assessment and update of the topology of predicted contact regions. J Inorg Biochem 2003; 96:279-97. [PMID: 12888264 DOI: 10.1016/s0162-0134(03)00152-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The problem of donor-acceptor recognition has been the most important and intriguing one in the area of P450 research. The present review outlines the topological background of electron-transfer complex formation, showing that the progress in collaborative investigations, combining physical techniques with chemical-modification and immunolocalization studies as well as site-directed mutagenesis experiments, has increasingly enabled the substantiation of hypothetical work resulting from homology modelling of P450s. Circumstantial analysis reveals the contact regions for redox proteins to cluster on the proximal face of P450s, constituting parts of the highly conserved, heme-binding core fold. However, more variable structural components located in the periphery of the hemoprotein molecules also participate in donor docking. The cross-reactivity of electron carriers, purified from pro- and eukaryotic sources, with a diversity of P450 species points at a possible evolutionary conservation of common anchoring domains. While electrostatic mechanisms appear to dominate orientation toward each other of the redox partners to generate pre-collisional encounter complexes, hydrophobic forces are likely to foster electron transfer events by through-bonding or pi-stacking interactions. Moreover, electron-tunneling pathways seem to be operative as well. The availability of new P450 crystal structures together with improved validation strategies will undoubtedly permit the production of increasingly satisfactory three-dimensional donor-acceptor models serving to better understand the molecular principles governing functional association of the redox proteins.
Collapse
Affiliation(s)
- P Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Nussbaumstrasse 26, D-80336, Munich, Germany.
| | | | | |
Collapse
|