1
|
Kim JH, Afridi R, Han J, Jung HG, Kim SC, Hwang EM, Shim HS, Ryu H, Choe Y, Hoe HS, Suk K. Gamma subunit of complement component 8 is a neuroinflammation inhibitor. Brain 2021; 144:528-552. [PMID: 33382892 DOI: 10.1093/brain/awaa425] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 12/20/2022] Open
Abstract
The complement system is part of the innate immune system that comprises several small proteins activated by sequential cleavages. The majority of these complement components, such as components 3a (C3a) and C5a, are chemotactic and pro-inflammatory. However, in this study, we revealed an inhibitory role of complement component 8 gamma (C8G) in neuroinflammation. In patients with Alzheimer's disease, who exhibit strong neuroinflammation, we found higher C8G levels in brain tissue, CSF, and plasma. Our novel findings also showed that the expression level of C8G increases in the inflamed mouse brain, and that C8G is mainly localized to brain astrocytes. Experiments using recombinant C8G protein and shRNA-mediated knockdown showed that C8G inhibits glial hyperactivation, neuroinflammation, and cognitive decline in acute and chronic animal models of Alzheimer's disease. Additionally, we identified sphingosine-1-phosphate receptor 2 (S1PR2) as a novel interaction protein of C8G and demonstrated that astrocyte-derived C8G interacts with S1PR2 to antagonize the pro-inflammatory action of S1P in microglia. Taken together, our results reveal the previously unrecognized role of C8G as a neuroinflammation inhibitor. Our findings pave the way towards therapeutic containment of neuroinflammation in Alzheimer's disease and related neurological diseases.
Collapse
Affiliation(s)
- Jong-Heon Kim
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Ruqayya Afridi
- Department of Pharmacology and Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jin Han
- Department of Pharmacology and Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyun-Gug Jung
- Center for Neuromedicine and Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Seung-Chan Kim
- Center for Neuromedicine and Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Eun Mi Hwang
- Center for Neuromedicine and Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Hyun Soo Shim
- Center for Neuromedicine and Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Hoon Ryu
- Center for Neuromedicine and Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea
- VA Boston Healthcare System, Boston, MA, USA
- Boston University Alzheimer's Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Youngshik Choe
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Hyang-Sook Hoe
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Kyoungho Suk
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Pharmacology and Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
2
|
Asimakopoulou A, Weiskirchen R. Lipocalin 2 in the pathogenesis of fatty liver disease and nonalcoholic steatohepatitis. ACTA ACUST UNITED AC 2015. [DOI: 10.2217/clp.14.65] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
3
|
Hepatitis C virus infection upregulates CD55 expression on the hepatocyte surface and promotes association with virus particles. J Virol 2013; 87:7902-10. [PMID: 23658447 DOI: 10.1128/jvi.00917-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
CD55 limits excessive complement activation on the host cell surface by accelerating the decay of C3 convertases. In this study, we observed that hepatitis C virus (HCV) infection of hepatocytes or HCV core protein expression in transfected hepatocytes upregulated CD55 expression at the mRNA and protein levels. Further analysis suggested that the HCV core protein or full-length (FL) genome enhanced CD55 promoter activity in a luciferase-based assay, which was further augmented in the presence of interleukin-6. Mutation of the CREB or SP-1 binding site on the CD55 promoter impaired HCV core protein-mediated upregulation of CD55. HCV-infected or core protein-transfected Huh7.5 cells displayed greater viability in the presence of CD81 and CD55 antibodies and complement. Biochemical analysis revealed that CD55 was associated with cell culture-grown HCV after purification by sucrose density gradient ultracentrifugation. Consistent with this, a polyclonal antibody to CD55 captured cell culture-grown HCV. Blocking antibodies against CD55 or virus envelope glycoproteins in the presence of normal human serum as a source of complement inhibited HCV infection. The inhibition was enhanced in the presence of both the antibodies and serum complement. Collectively, these results suggest that HCV induces and associates with a negative regulator of the complement pathway, a likely mechanism for immune evasion.
Collapse
|
4
|
Navarathna DHMLP, Lionakis MS, Lizak MJ, Munasinghe J, Nickerson KW, Roberts DD. Urea amidolyase (DUR1,2) contributes to virulence and kidney pathogenesis of Candida albicans. PLoS One 2012; 7:e48475. [PMID: 23144764 PMCID: PMC3483220 DOI: 10.1371/journal.pone.0048475] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/26/2012] [Indexed: 12/24/2022] Open
Abstract
The intracellular enzyme urea amidolyase (Dur1,2p) enables C. albicans to utilize urea as a sole nitrogen source. Because deletion of the DUR1,2 gene reduces survival of C. albicans co-cultured with a murine macrophage cell line, we investigated the role of Dur1,2p in pathogenesis using a mouse model of disseminated candidiasis. A dur1,2Δ/dur1,2Δ strain was significantly less virulent than the wild-type strain, showing significantly higher survival rate, better renal function, and decreased and less sustained fungal colonization in kidney and brain. Complementation of the mutant restored virulence. DUR1,2 deletion resulted in a milder host inflammatory reaction. Immunohistochemistry, flow cytometry, and magnetic resonance imaging showed decreased phagocytic infiltration into infected kidneys. Systemic cytokine levels of wild-type mice infected with the dur1,2 mutant showed a more balanced systemic pro-inflammatory cytokine response. Host gene expression and protein analysis in infected kidneys revealed parallel changes in the local immune response. Significant differences were observed in the kidney IL-1 inflammatory pathway, IL-15 signaling, MAP kinase signaling, and the alternative complement pathway. We conclude that Dur1,2p is important for kidney colonization during disseminated candidiasis and contributes to an unbalanced host inflammatory response and subsequent renal failure. Therefore, this Candida-specific enzyme may represent a useful drug target to protect the host from kidney damage associated with disseminated candidiasis.
Collapse
Affiliation(s)
- Dhammika H. M. L. P. Navarathna
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michail S. Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Martin J. Lizak
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jeeva Munasinghe
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kenneth W. Nickerson
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
5
|
Timár KK, Dallos A, Kiss M, Husz S, Bos JD, Asghar SS. Expression of terminal complement components by human keratinocytes. Mol Immunol 2007; 44:2578-86. [PMID: 17267037 DOI: 10.1016/j.molimm.2006.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 12/10/2006] [Accepted: 12/14/2006] [Indexed: 11/16/2022]
Abstract
Human keratinocytes are important constituents of the skin immune system. They produce several cytokines, chemokines as well as some complement proteins. As regards soluble complement proteins, so far keratinocytes have been shown to synthesize only C3, factor B, factor H and factor I. Synthesis and regulation of synthesis of other complement proteins has not yet been studied. Here we studied the synthesis of terminal complement components, C5-C9 by human keratinocytes. We also studied the regulation of terminal complement synthesis in keratinocytes by several cytokines, namely, IL-1alpha, IL-2, IL-6, TGF-beta1, TNF-alpha, and IFN-gamma. Human keratinocytes constitutively expressed C5, C7, C8gamma and C9 mRNA but not C6, C8alpha and C8beta mRNA. They released C7 and C9, but not C5, C6 and C8. None of the cytokines tested had any influence on the synthesis of terminal components except TNF-alpha, which strongly upregulated C9 production. In conclusion, we demonstrate that keratinocytes are capable of synthesizing some of the terminal complement components and that the synthesis of C9 is regulated by TNF-alpha.
Collapse
Affiliation(s)
- Krisztina K Timár
- Department of Dermatology, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
6
|
Chang YT, Liu HN, Yu CW, Lin MW, Huang CH, Chen CC, Liu MT, Lee DD, Wang WJ, Tsai SF. Cytokine gene polymorphisms in bullous pemphigoid in a Chinese population. Br J Dermatol 2005; 154:79-84. [PMID: 16403098 DOI: 10.1111/j.1365-2133.2005.06938.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Bullous pemphigoid (BP) is an autoimmune bullous disease mostly associated with autoantibodies to the hemidesmosomal BP autoantigens BP180 and BP230. High levels of interleukin (IL)-1beta, IL-4, IL-5, IL-6, IL-8, IL-10, IL-13, tumour necrosis factor (TNF)-alpha and interferon (IFN)-gamma have been detected in skin lesions or sera of patients with BP. Cytokine gene polymorphisms may affect cytokine production and contribute to susceptibility to autoimmune diseases. Until now, no cytokine gene polymorphism study has been conducted on patients with BP. OBJECTIVES We aimed to determine whether the genetic polymorphisms of the cytokine genes might influence the development of BP. METHODS DNA samples were obtained from 96 BP patients and 174 control subjects. Using direct sequencing and microsatellite genotyping, we examined 23 polymorphisms in 11 cytokine genes including the IL-1alpha, IL-1beta, IL-1 receptor antagonist, IL-4, IL-6, IL-8, IL-10, IL-13, IL-4 receptor, TNF-alpha and IFN-gamma genes. RESULTS Although the BP patients were more likely to carry the -511T and -31C alleles of the IL-1beta gene (P = 0.04), the significance disappeared after correction for multiple testing (Pc). There was complete linkage disequilibrium between the -511T and -31C alleles of the IL-1beta gene. In female patients with BP, the associations with IL-1beta (-511T) and (-31C) alleles were much stronger (68% vs. 40.6%, odds ratio = 3.11, Pc = 0.006). No significantly different allelic and genotypic distributions of other cytokine gene polymorphisms could be found between the patients with BP and controls. Moreover, no association with the extent of disease involvement (localized or generalized) was observed. CONCLUSIONS The IL-1beta (-511) and (-31) polymorphisms were significantly associated with BP in women. The other genetic polymorphisms of cytokine genes that we analysed do not appear to be associated with BP susceptibility in our Chinese population.
Collapse
Affiliation(s)
- Y T Chang
- Department of Dermatology, Taipei Veterans General Hospital, Shih-Pai, Taipei 11217, Taiwan, Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Lipocalins as biochemical markers of disease have been used extensively. The clinical indications relate to almost any field of medicine, such as inflammatory disease, cancer, lipid disorders, liver and kidney function. Some of the more well-known lipocalins that have been used as markers of disease are orosomucoid, Protein HC (alpha(1)-microglobulin), apolipoprotein D, retinol-binding protein, complement C8 gamma, prostaglandin D synthase and human tear prealbumin, and these markers will be briefly reviewed in this article. Emphasis, however, will be put on the description of another newly described lipocalin, i.e. human neutrophil lipocalin/neutrophil gelatinase-associated lipocalin (HNL/NGAL), since the body fluid measurement of HNL/NGAL was shown to be a superior means to distinguish between acute viral and bacterial infections and also to accurately reflect the activity and involvement of neutrophils in a variety of other diseases.
Collapse
Affiliation(s)
- S Xu
- Department of Medical Sciences, Clinical Chemistry, University of Uppsala, S-751 85 Uppsala, Sweden.
| | | |
Collapse
|
8
|
Spiller OB, Criado-García O, Rodríguez De Córdoba S, Morgan BP. Cytokine-mediated up-regulation of CD55 and CD59 protects human hepatoma cells from complement attack. Clin Exp Immunol 2000; 121:234-41. [PMID: 10931136 PMCID: PMC1905706 DOI: 10.1046/j.1365-2249.2000.01305.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatic parenchymal cells respond in many different ways to acute-phase cytokines. Some responses may protect against damage by liver-derived inflammatory mediators. Previous investigations have shown that cytokines cause increased secretion by hepatoma cells of soluble complement regulatory proteins, perhaps providing protection from complement attack. More important to cell protection are the membrane complement regulators. Here we examine, using flow cytometry and Northern blotting, the effects of different cytokines, singly or in combination, on expression of membrane-bound complement regulators by a hepatoma cell line. The combination of tumour necrosis factor-alpha, IL-1beta, and IL-6 caused increased expression of CD55 (three-fold) and CD59 (two-fold) and decreased expression of CD46 at day 3 post-exposure. Interferon-gamma reduced expression of CD59 and strongly antagonized the up-regulatory effects on CD59 mediated by the other cytokines. Complement attack on antibody-sensitized hepatoma cells following a 3-day incubation with the optimum combination of acute-phase cytokines revealed increased resistance to complement-mediated lysis and decreased C3b deposition. During the acute-phase response there is an increased hepatic synthesis of the majority of complement effector proteins. Simultaneous up-regulation of expression of CD55 and CD59 may serve to protect hepatocytes from high local concentrations of complement generated during the acute-phase response.
Collapse
MESH Headings
- Acute-Phase Reaction/genetics
- Acute-Phase Reaction/immunology
- Antigens, Neoplasm/biosynthesis
- Antigens, Neoplasm/genetics
- CD55 Antigens/biosynthesis
- CD55 Antigens/genetics
- CD59 Antigens/biosynthesis
- CD59 Antigens/genetics
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/microbiology
- Carcinoma, Hepatocellular/pathology
- Complement Membrane Attack Complex/antagonists & inhibitors
- Complement System Proteins/immunology
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Interleukin-1/pharmacology
- Interleukin-6/pharmacology
- Liver Neoplasms/immunology
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- RNA, Messenger/biosynthesis
- RNA, Neoplasm/biosynthesis
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/immunology
- Tumor Necrosis Factor-alpha/pharmacology
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- O B Spiller
- Complement Biology Group, Department of Medical Biochemistry, University of Wales College of Medicine, Cardiff, UK.
| | | | | | | |
Collapse
|