1
|
Marongiu F, Marongiu S, Ruberto MF, Faa G, Barcellona D. Trace Metals and The Hemostatic System. Clin Chim Acta 2023; 547:117458. [PMID: 37385467 DOI: 10.1016/j.cca.2023.117458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
In this narrative review we report the main relationships between trace metals and the hemostatic system since this aspect has seldom attracted the attention of the scientific community. A basic aspect to be considered is the importance of maintaining the fine control of all trace metals' levels since they have an important impact on the pathophysiology of the hemostatic system. It is worth noting that poor diet habits are responsible for most trace metal deficiencies, while pollution is responsible for dangerous exposure to them with a consequent negative impact on the general population. This appears of paramount importance in planning the implementation of food and nutrient support to ameliorate the hidden hunger and the quality of life of people especially in developing countries and limiting poisons both in the air and food. As it often happens, when damage to certain mechanisms takes a very long time to appear, no attention is paid to the importance of a systematic prevention to avoid late negative outcomes.
Collapse
Affiliation(s)
- F Marongiu
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy; Haemostasis and Thrombosis Unit, Azienda Ospedaliero-Universitaria (A.O.U.), Cagliari, Cagliari, Italy; Fondazione Arianna, Anticoagulazione.it, Bologna, Italy
| | - S Marongiu
- Department of Medicine, Azienda Tutela della Salute Cagliari, Cagliari, Italy.
| | - M F Ruberto
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy; Haemostasis and Thrombosis Unit, Azienda Ospedaliero-Universitaria (A.O.U.), Cagliari, Cagliari, Italy
| | - G Faa
- Department of Medical Sciences and Public Health, Division of Pathology, Azienda Ospedaliero-Universitaria (A.O.U.), di Cagliari - University Hospital San Giovanni di Dio, University of Cagliari, Cagliari, Italy; Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - D Barcellona
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy; Haemostasis and Thrombosis Unit, Azienda Ospedaliero-Universitaria (A.O.U.), Cagliari, Cagliari, Italy; Fondazione Arianna, Anticoagulazione.it, Bologna, Italy
| |
Collapse
|
2
|
Liu QS, Zhang Y, Sun Z, Gao Y, Zhou Q, Jiang G. A high-throughput assay for screening the abilities of per- and polyfluoroalkyl substances in inducing plasma kallikrein-like activity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113381. [PMID: 35255248 DOI: 10.1016/j.ecoenv.2022.113381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
The plasma consists of multiple functional serine zymogens, such as plasma kallikrein-kinin system (KKS), which are vulnerable to exogenous chemical exposure, and may closely relate to the deleterious effects. Testing whether the anthropogenic chemicals could increase the kallikrein-like activity in plasma or not would be of great help to understand their potentials in triggering the cascade activation of the plasma zymogens and explain the corresponding hematotoxicity. In this study, a novel high-throughput ex vivo assay was established to screen the abilities of emerging chemicals like per- and polyfluoroalkyl substances (PFASs) in inducing kallikrein-like activities on basis of using rat plasma as the protease zymogen source. Upon the optimization of the conditions in the test system, the assay gave sensitive fluorescent response to the stimulation of the positive control, dextran sulfate, and the dose-response showed a typical S-shaped curve with EC50 of 0.24 mg/L. The intra-plate and inter-plate relative standard deviations (RSDs) were less than 10% in the quantitative range of dextran sulfate, indicating a good reliability and repeatability of this newly-established assay. Using this method, several alternatives or congeners of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), including 6:2 chlorinated polyfluoroalkyl ether sulfonate (6:2 Cl-PFESA), Ag-PFOA, K-PFOA, Na-PFOA and ammonium pentadecafluorooctanoate (APFO), were further screened, and their capabilities in inducing kallikrein-like activities were identified. The ex vivo assay newly-developed in the present study would be promising in high-throughput screening of the hematological effects of emerging chemicals of concern.
Collapse
Affiliation(s)
- Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuzhu Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhendong Sun
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Yurou Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Maier C, Schadock I, Haber PK, Wysocki J, Ye M, Kanwar Y, Flask CA, Yu X, Hoit BD, Adams GN, Schmaier AH, Bader M, Batlle D. Prolylcarboxypeptidase deficiency is associated with increased blood pressure, glomerular lesions, and cardiac dysfunction independent of altered circulating and cardiac angiotensin II. J Mol Med (Berl) 2017; 95:473-486. [PMID: 28160049 DOI: 10.1007/s00109-017-1513-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/20/2016] [Accepted: 01/20/2017] [Indexed: 12/28/2022]
Abstract
Prolylcarboxypeptidase (PRCP) is a carboxypeptidase that cleaves angiotensin II (AngII) forming Ang(1-7). The impact of genetic PRCP deficiency on AngII metabolism, blood pressure (BP), kidney histology, and cardiac phenotype was investigated in two lines of PRCP-deficient mice: KST302 derived in C57BL/6 background and GST090 derived in FVB/N background. The GST090 line had increased mean arterial pressure (MAP) (113.7 ± 2.07 vs. WT 105.0 ± 1.23 mmHg; p < 0.01) and left ventricular hypertrophy (LVH) (ratio of diastolic left ventricular posterior wall dimension to left ventricular diameter 0.239 ± 0.0163 vs. WT 0.193 ± 0.0049; p < 0.05). Mice in the KST302 line also had mild hypertension and LVH. Cardiac defects, increased glomerular size, and glomerular mesangial expansion were also observed. After infusion of AngII to mice in the KST302 line, both MAP and LVH increased, but the constitutive differences between the gene trap mice and controls were no longer observed. Plasma and cardiac AngII and Ang(1-7) were not significantly different between PRCP-deficient mice and controls. Thus, PRCP deficiency is associated with elevated blood pressure and cardiac alterations including LVH and cardiac defects independently of systemic or cardiac AngII and Ang(1-7). An ex vivo assay showed that recombinant PRCP, unlike recombinant ACE2, did not degrade AngII to form Ang(1-7) in plasma at pH 7.4. PRCP was localized in α-intercalated cells of the kidney collecting tubule. The low pH prevailing at this site and the acidic pH preference of PRCP suggest a role of this enzyme in regulating AngII degradation in the collecting tubule where this peptide increases sodium reabsorption and therfore BP. However, there are other potential mechanisms for increased BP in this model that need to be considered as well. PRCP converts AngII to Ang(1-7) but only at an acidic pH. Global PRCP deficiency causes heart and kidney alterations and a moderate rise in BP. PRCP is abundant in the kidney collecting tubules, where the prevailing pH is low. In collecting tubules, PRCP deficiency could result in impaired AngII degradation. Increased AngII at this nephron site stimulates Na reabsorption and increases BP. KEY MESSAGE Prolylcarboxypeptidase (PRCP) converts AngII to Ang (1-7) but only at an acidic pH. Global PRCP deficiency causes heart and kidney alterations and a moderate rise in BP. PRCP is abundant in the kidney collecting tubules, where the prevailing pH is low. In collecting tubules, PRCP deficiency could result in impaired AngII degradation. Increased AngII at this nephron site stimulates Na reabsorption and increases BP.
Collapse
Affiliation(s)
- Christoph Maier
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ines Schadock
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Philipp K Haber
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Wysocki
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Minghao Ye
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yashpal Kanwar
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christopher A Flask
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Xin Yu
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Brian D Hoit
- Department of Medicine, Division of Cardiology, University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, OH, USA
| | - Gregory N Adams
- Department of Medicine, Division of Hematology and Oncology, University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, OH, USA
| | - Alvin H Schmaier
- Department of Medicine, Division of Hematology and Oncology, University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, OH, USA
| | - Michael Bader
- Charité-Universitätsmedizin Berlin, Berlin, Germany.,Max Delbrück Center for Molecular Medicine, Berlin, Germany.,National Institute of Science and Technology in Nanobiopharmaceutics, Federal University of Minas Gerais, Belo Horizonte, Brazil.,German Center for Cardiovascular Research (DZHK), Berlin site, Berlin, Germany
| | - Daniel Batlle
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
4
|
The initiation and effects of plasma contact activation: an overview. Int J Hematol 2016; 105:235-243. [PMID: 27848184 DOI: 10.1007/s12185-016-2132-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022]
Abstract
The plasma contact system sits atop the intrinsic coagulation cascade and plasma kallikrein-kinin pathway, and in vivo its activation contributes, respectively, to coagulation and inflammation mainly via two downstream pathways. This system has been widely investigated, its activation mechanisms by negatively charged surfaces and the interactions within its components, factor XII, prekallikrein and high molecular weight kininogen are well understood at the biochemical level. However, as most of the activators that have been discovered by in vitro experiments are exogenous, the physiological activators and roles of the contact system have remained unclear and controversial. In the last two decades, several physiological activators have been identified, and a better understanding of its roles and its connection with other signaling pathways has been obtained from in vivo studies. In this article, we present an overview of the contact pathway with a focus on the activation mechanisms, natural stimuli, possible physiological roles, potential risks of its excessive activation, remaining questions and future prospects.
Collapse
|
5
|
|
6
|
MAKIN JOSEPHG, NARAYANAN SRINI. A HYBRID-SYSTEM MODEL OF THE COAGULATION CASCADE: SIMULATION, SENSITIVITY, AND VALIDATION. J Bioinform Comput Biol 2013; 11:1342004. [DOI: 10.1142/s0219720013420043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The process of human blood clotting involves a complex interaction of continuous-time/continuous-state processes and discrete-event/discrete-state phenomena, where the former comprise the various chemical rate equations and the latter comprise both threshold-limited behaviors and binary states (presence/absence of a chemical). Whereas previous blood-clotting models used only continuous dynamics and perforce addressed only portions of the coagulation cascade, we capture both continuous and discrete aspects by modeling it as a hybrid dynamical system. The model was implemented as a hybrid Petri net, a graphical modeling language that extends ordinary Petri nets to cover continuous quantities and continuous-time flows. The primary focus is simulation: (1) fidelity to the clinical data in terms of clotting-factor concentrations and elapsed time; (2) reproduction of known clotting pathologies; and (3) fine-grained predictions which may be used to refine clinical understanding of blood clotting. Next we examine sensitivity to rate-constant perturbation. Finally, we propose a method for titrating between reliance on the model and on prior clinical knowledge. For simplicity, we confine these last two analyses to a critical purely-continuous subsystem of the model.
Collapse
Affiliation(s)
- JOSEPH G. MAKIN
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, USA
- International Computer Science Institute, Berkeley, CA 94720, USA
| | - SRINI NARAYANAN
- International Computer Science Institute, Division of Cognitive Science and Institute of Cognitive and Brain Sciences, University of California, 1947 Center Street, Suite 600, Berkeley, CA 94704, USA
| |
Collapse
|
7
|
Safdar H, Cleuren ACA, Cheung KL, Gonzalez FJ, Vos HL, Inoue Y, Reitsma PH, van Vlijmen BJM. Regulation of the F11, Klkb1, Cyp4v3 gene cluster in livers of metabolically challenged mice. PLoS One 2013; 8:e74637. [PMID: 24066149 PMCID: PMC3774739 DOI: 10.1371/journal.pone.0074637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 08/05/2013] [Indexed: 01/01/2023] Open
Abstract
Single nucleotide polymorphisms (SNPs) in a 4q35.2 locus that harbors the coagulation factor XI (F11), prekallikrein (KLKB1), and a cytochrome P450 family member (CYP4V2) genes are associated with deep venous thrombosis (DVT). These SNPs exert their effect on DVT by modifying the circulating levels of FXI. However, SNPs associated with DVT were not necessarily all in F11, but also in KLKB1 and CYP4V2. Here, we searched for evidence for common regulatory elements within the 4q35.2 locus, outside the F11 gene, that might control FXI plasma levels and/or DVT risk. To this end, we investigated the regulation of the orthologous mouse gene cluster under several metabolic conditions that impact mouse hepatic F11 transcription. In livers of mice in which HNF4α, a key transcription factor controlling F11, was ablated, or reduced by siRNA, a strong decrease in hepatic F11 transcript levels was observed that correlated with Cyp4v3 (mouse orthologue of CYP4V2), but not by Klkb1 levels. Estrogens induced hepatic F11 and Cyp4v3, but not Klkb1 transcript levels, whereas thyroid hormone strongly induced hepatic F11 transcript levels, and reduced Cyp4v3, leaving Klkb1 levels unaffected. Mice fed a high-fat diet also had elevated F11 transcription, markedly paralleled by an induction of Klkb1 and Cyp4v3 expression. We conclude that within the mouse F11, Klkb1, Cyp4v3 gene cluster, F11 and Cyp4v3 frequently display striking parallel transcriptional responses suggesting the presence of shared regulatory elements.
Collapse
Affiliation(s)
- Huma Safdar
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| | - Audrey C. A. Cleuren
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands
| | - Ka Lei Cheung
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank J. Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Hans L. Vos
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands
| | - Yusuke Inoue
- Department of Chemistry and Chemical Biology, Graduate School of Engineering, Gunma University, Kiryu, Gunma, Japan
| | - Pieter H. Reitsma
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands
| | - Bart J. M. van Vlijmen
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
8
|
|
9
|
Lewis D, Chan D, Pinheiro D, Armitage‐Chan E, Garden O. The immunopathology of sepsis: pathogen recognition, systemic inflammation, the compensatory anti-inflammatory response, and regulatory T cells. J Vet Intern Med 2012; 26:457-82. [PMID: 22428780 PMCID: PMC7166777 DOI: 10.1111/j.1939-1676.2012.00905.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 11/28/2011] [Accepted: 02/07/2012] [Indexed: 02/06/2023] Open
Abstract
Sepsis, the systemic inflammatory response to infection, represents the major cause of death in critically ill veterinary patients. Whereas important advances in our understanding of the pathophysiology of this syndrome have been made, much remains to be elucidated. There is general agreement on the key interaction between pathogen-associated molecular patterns and cells of the innate immune system, and the amplification of the host response generated by pro-inflammatory cytokines. More recently, the concept of immunoparalysis in sepsis has also been advanced, together with an increasing recognition of the interplay between regulatory T cells and the innate immune response. However, the heterogeneous nature of this syndrome and the difficulty of modeling it in vitro or in vivo has both frustrated the advancement of new therapies and emphasized the continuing importance of patient-based clinical research in this area of human and veterinary medicine.
Collapse
Affiliation(s)
- D.H. Lewis
- Department of Veterinary Clinical SciencesThe Royal Veterinary CollegeHatfield CampusHertfordshire,UK (Lewis, Chan, Garden)
- Present address:
Langford Veterinary ServicesSmall Animal HospitalLangford HouseLangfordBristol, BS40 5DUUK
| | - D.L. Chan
- Department of Veterinary Clinical SciencesThe Royal Veterinary CollegeHatfield CampusHertfordshire,UK (Lewis, Chan, Garden)
| | - D. Pinheiro
- Regulatory T Cell LaboratoryThe Royal Veterinary CollegeCamden Campus, LondonNW1 OTUUK (Pinheiro, Garden)
| | - E. Armitage‐Chan
- Davies Veterinary SpecialistsManor Farm Business ParkHertfordshireSG5 3HR, UK (Armitage‐Chan)
| | - O.A. Garden
- Department of Veterinary Clinical SciencesThe Royal Veterinary CollegeHatfield CampusHertfordshire,UK (Lewis, Chan, Garden)
- Regulatory T Cell LaboratoryThe Royal Veterinary CollegeCamden Campus, LondonNW1 OTUUK (Pinheiro, Garden)
| |
Collapse
|
10
|
Dellalibera-Joviliano R, Reis ML, Donadi EA. The Kinin System in Patients with Systemic Lupus Erythematosus Exhibiting Mucocutaneous Lesions: A Clinical Study. Scand J Immunol 2010; 71:292-7. [DOI: 10.1111/j.1365-3083.2010.02373.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Lázaro I, Carmona F, Reverter JC, Cervera R, Tassies D, Balasch J. Antiphospholipid antibodies may impair factor XIIa-dependent activation of fibrinolysis in pregnancy: in vitro evidence with human endothelial cells in culture and monoclonal anticardiolipin antibodies. Am J Obstet Gynecol 2009; 201:87.e1-6. [PMID: 19427615 DOI: 10.1016/j.ajog.2009.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 01/11/2009] [Accepted: 03/06/2009] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The purpose of this study was to analyze the in vitro activation of the contact complex with the use of human umbilical vein endothelial cells (HUVEC) in culture and monoclonal anticardiolipin antibodies (MaCL). STUDY DESIGN Cultured HUVECs were incubated with pooled plasma from third-trimester pregnant women with the addition (20 mg/mL) of MaCL with anti-beta-2 glycoprotein I activity that was obtained from patients with antiphospholipid syndrome (APS), MaCL from an individual without APS, or from a control patient with immunoglobulin M without aCL activity. Supernatants were evaluated. Activated factors XII and VII, prothrombin-fragment 1 + 2, urokinase-type plasminogen activator (UPA), and differentiating 2 chain UPA were determined. RESULTS In the cultured HUVEC supernatants, the addition of MaCL increased activated factor VII and prothrombin-fragment 1 + 2, did not modify UPA, and decreased activated factor XII and differentiating 2 chain UPA, in comparison with samples with control immunoglobulin M added. The MaCL without APS activity did not change any parameter that was evaluated. CONCLUSION MaCL with anti-beta-2 activity that was obtained from patients with APS may interfere in the activation of the contact complex during pregnancy.
Collapse
Affiliation(s)
- Isabel Lázaro
- Faculty of Medicine, Institut Clínic of Ginecology, Obstetrics and Neonatology, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Lilla JN, Joshi RV, Craik CS, Werb Z. Active plasma kallikrein localizes to mast cells and regulates epithelial cell apoptosis, adipocyte differentiation, and stromal remodeling during mammary gland involution. J Biol Chem 2009; 284:13792-13803. [PMID: 19297327 DOI: 10.1074/jbc.m900508200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plasminogen cascade of serine proteases directs both development and tumorigenesis in the mammary gland. Plasminogen can be activated to plasmin by urokinase-type plasminogen activator (uPA), tissue-type plasminogen activator (tPA), and plasma kallikrein (PKal). The dominant plasminogen activator for mammary involution is PKal, a serine protease that participates in the contact activation system of blood coagulation. We observed that the prekallikrein gene (Klkb1) is expressed highly in the mammary gland during stromal remodeling periods including puberty and postlactational involution. We used a variant of ecotin (ecotin-PKal), a macromolecular inhibitor of serine proteases engineered to be highly specific for active PKal, to demonstrate that inhibition of PKal with ecotin-PKal delays alveolar apoptosis, adipocyte replenishment, and stromal remodeling in the involuting mammary gland, producing a phenotype resembling that resulting from plasminogen deficiency. Using biotinylated ecotin-PKal, we localized active PKal to connective tissue-type mast cells in the mammary gland. Taken together, these results implicate PKal as an effector of the plasminogen cascade during mammary development.
Collapse
Affiliation(s)
- Jennifer N Lilla
- Department of Anatomy, University of California, San Francisco, California 94143-0452
| | - Ravi V Joshi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143-2280
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143-2280
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, California 94143-0452.
| |
Collapse
|
13
|
Tubek S, Grzanka P, Tubek I. Role of zinc in hemostasis: a review. Biol Trace Elem Res 2008; 121:1-8. [PMID: 17968515 DOI: 10.1007/s12011-007-8038-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 10/01/2007] [Indexed: 10/22/2022]
Abstract
Zinc is a multi-functional element that is found in almost 300 enzymes where it performs catalytic, co-catalytic, and/or structural functions. In 1982, Gordon et al. (Am J Clin Ntr 35:849-857, 1982) found that a low zinc diet caused poor platelet aggregation and increased bleeding tendency in adult males. This fact drew interest to the role of zinc in blood clotting. It has been shown that hyperzincemia predisposes to increased coagulability, and hypozincemia to poor platelet aggregation and increased bleeding time. The blood clotting disturbances can be regressed by appropriate zinc intake management. Considering the importance of zinc as an essential element, its participation in regulation of the equilibrium between pro- and anti-thrombotic factors originating in platelets and endothelium prompted further investigations.
Collapse
Affiliation(s)
- Sławomir Tubek
- Faculty of Physical Education and Physiotherapy, Institute of Technology, Opole, Prószkowska Street 76, 45-758, Opole, Poland.
| | | | | |
Collapse
|
14
|
Davis GE, Saunders WB. Molecular balance of capillary tube formation versus regression in wound repair: role of matrix metalloproteinases and their inhibitors. J Investig Dermatol Symp Proc 2006; 11:44-56. [PMID: 17069010 DOI: 10.1038/sj.jidsymp.5650008] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In this review, we discuss the identification of distinct matrix metalloproteinases (MMPs) and their inhibitors that differentially control the processes of capillary tube formation (morphogenesis) versus capillary tube regression in three-dimensional (3D) collagen matrices. This work directly relates to both granulation tissue formation and regression during wound repair. The membrane metalloproteinase, MT1-MMP (MMP-14), is required for endothelial cell (EC) tube formation using in vitro assays that mimic vasculogenesis or angiogenic sprouting in 3D collagen matrices. These events are markedly blocked by small interfering RNA (siRNA) suppression of MT1-MMP in ECs or by addition of tissue inhibitor of metalloproteinases (TIMPs)-2,-3, and -4 but not TIMP-1. In contrast, MMP-1 and MMP-10 are strongly induced during EC tube formation to regulate the process of tube regression (following activation by serine proteases) rather than formation. TIMP-1, which selectively inhibits soluble MMPs, blocks tube regression by inhibiting MMP-1 and MMP-10 while having no influence on EC tube formation. siRNA suppression of MMP-1 and MMP-10 markedly blocks tube regression without affecting tube formation. Furthermore, we discuss that pericyte-induced stabilization of EC tube networks in our model system appears to occur through EC-derived TIMP-2 and pericyte-derived TIMP-3 to block both the capillary tube formation and regression pathways.
Collapse
Affiliation(s)
- George E Davis
- Department of Pathology, Texas A&M University System Health Science Center, College Station, Texas 77843-1114, USA.
| | | |
Collapse
|
15
|
Rosatelli TB, Roselino AM, Dellalibera-Joviliano R, Reis ML, Donadi EA. Increased activity of plasma and tissue kallikreins, plasma kininase II and salivary kallikrein in pemphigus foliaceus (fogo selvagem). Br J Dermatol 2005; 152:650-7. [PMID: 15840094 DOI: 10.1111/j.1365-2133.2005.06427.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Pemphigus foliaceus (PF) is an autoimmune blistering disease of unknown aetiology, which is endemic in Brazil. Although the pathogenesis of PF is still unknown, proteins of the contact system have been implicated. OBJECTIVES As the components of the kinin system may interact with those of the contact system, in this study we evaluated the plasma levels of high-molecular-weight kininogen (HK) and low-molecular-weight kininogen (LK), and the activity of plasma kallikrein, tissue kallikrein and kininase II in plasma of patients with PF presenting with Nikolsky's sign. As kidneys and salivary glands are relevant sources of tissue kallikrein for plasma, we also evaluated urinary/salivary kallikrein and urinary kininase II activities. METHODS Fifteen patients and 15 age- and sex-matched controls were studied. Kininogen levels were determined by enzyme-linked immunosorbent assay, and the activities of kallikreins and kininase II were determined using selective chromogenic substrates. RESULTS Compared with controls, plasma HK levels were decreased (P = 0.031), whereas the activities of plasma kallikrein, tissue kallikrein and kininase II in plasma, and the activity of salivary kallikrein, were increased in patients (P < 0.001 for each comparison). Plasma levels of LK and the activities of urinary kallikrein and urinary kininase II were not significantly different from controls. CONCLUSIONS Diminished levels of HK associated with increased activities of plasma kallikrein and kininase II indicate that the kinin system is activated at the systemic level in PF. As active plasma kallikreins may act on some proteins of the contact system, it is possible that the enzyme may contribute to blister formation. The further observation of an increased tissue kallikrein activity at the systemic and saliva levels may be interpreted as a systemic reflex of skin inflammation. Whether the activation of the kinin system is a cause or a consequence of blister formation needs further clarification.
Collapse
Affiliation(s)
- T B Rosatelli
- Dermatology, Department of Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, 14049-900, Ribeirão Preto, SP, Brazil
| | | | | | | | | |
Collapse
|
16
|
Joseph K, Kaplan AP. Formation of Bradykinin: A Major Contributor to the Innate Inflammatory Response. Adv Immunol 2005; 86:159-208. [PMID: 15705422 DOI: 10.1016/s0065-2776(04)86005-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The plasma kinin-forming cascade can be activated by contact with negatively charged macromolecules leading to binding and autoactivation of factor XII, activation of prekallikrein to kallikrein by factor XIIa, and cleavage of high molecular weight kininogen (HK) by kallikrein to release the vasoactive peptide bradykinin. Once kallikrein formation begins, there is rapid cleavage of unactivated factor XII to factor XIIa, and this positive feedback is favored kinetically over factor XII autoactivation. Examples of surface initiators that can function in this fashion are endotoxin, sulfated mucopolysaccharides, and aggregated Abeta protein. Physiological activation appears to occur along the surface of endothelial cells both by the aforementioned contact-initiated reactions as well as bypass pathways that are independent of factor XII. Factor XII binds primarily to cell surface u-PAR (urokinase plasminogen activator receptor); HK binds to gC1qR via its light chain (domain 5) and to cytokeratin 1 by its heavy chain (domain 3) and, to a lesser degree, by its light chain. Prekallikrein circulates bound to HK (as does coagulation factor XI), and prekallikrein is thereby brought to the surface as HK binds. All cell-binding reactions are dependent on zinc ion. Endothelial cells (HUVECs) have bimolecular complexes of u-PAR-cytokeratin 1 and gC1qR-cytokeratin 1 at the cell surface plus free gC1qR, which is present in substantial molar excess. Factor XII appears to interact primarily with the u-PAR-cytokeratin 1 complex, whereas HK binds primarily to the gC1qR-cytokeratin 1 complex and to free gC1qR. Release of endothelial cell heat shock protein 90 (Hsp90) or the enzyme prolylcarboxypeptidase leads to activation of the bradykinin-forming cascade by activating the prekallikrein-HK complex. In contrast to factor XIIa, neither will activate prekallikrein in the absence of HK, both reactions require zinc ion, and the stoichiometry suggests interaction of one molecule of Hsp90 (for example) with one molecule of prekallikrein-HK complex. The presence of factor XII, however, leads to a marked augmentation in reaction rate via the kallikrein feedback as well as to a change to classic enzyme-substrate kinetics. The circumstances in which activation is initiated by factor XII autoactivation or by these factor XII bypasses are yet to be defined. The pathologic conditions in which bradykinin generation appears important include hereditary and acquired C1 inhibitor deficiency, cough and angioedema due to ACE inhibitors, endotoxin shock, with contributions to conditions as diverse as Alzheimer's disease, stroke, control of blood pressure, and allergic diseases.
Collapse
Affiliation(s)
- Kusumam Joseph
- Division of Pulmonary/Critical Care Medicine and Allergy/Clinical Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
17
|
Malavazi-Piza KC, Araújo MS, Godinho RO, Tanaka AS. Effect of invertebrate serine proteinase inhibitors on carrageenan-induced pleural exudation and bradykinin release. Int Immunopharmacol 2004; 4:1401-8. [PMID: 15313437 DOI: 10.1016/j.intimp.2004.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Revised: 03/08/2004] [Accepted: 06/07/2004] [Indexed: 01/30/2023]
Abstract
The carrageenan model of pleurisy is described as temporal plasma exudation (1-5 h) with extensive neutrophil infiltration and release of proteinases into the pleural cavity. The aim of this work was to study the effects of serine proteinase inhibitors on the inflammatory process induced by administration of carrageenan to the rat pleural cavity and on release of kinins in pleural exudate. Pleurisy was induced by injecting carrageenan and serine proteinase inhibitors simultaneously into the pleural cavity. The proteinase inhibitors used were: aprotinin, a plasma kallikrein inhibitor; recombinant leech derived tryptase inhibitor-2PL (LDTI-2PL), a plasmin inhibitor; Boophilus microplus trypsin inhibitors (BmTIs); trypsin; plasma kallikrein; plasmin and neutrophil elastase inhibitors; and a synthetic neutrophil elastase inhibitor (EIsynt). Administration of carrageenan with LDTI-2PL and BmTIs induced a marked increase in exudation (143% and 201%) and leukocyte migration (288% and 408%), respectively, when compared to the control group. Pleural exudate from LDTI-2PL and BmTIs plus carrageenan-treated rats showed a significant increase in plasma kallikrein-like activity, measured by chromogenic substrate hydrolysis. The specific inhibition of enzymatic activity with aprotinin confirmed that 50% of S2302 hydrolysis was produced by plasma kallikrein-like enzymes. Kinin release was increased by 97% and 103% in exudates from LDTI-2PL and BmTIs plus carrageenan-treated rats, respectively. Considering that the plasmin inhibitors LDTI-2PL and BmTIs increased exudation, leukocyte migration and bradykinin release, our results suggest an anti-inflammatory role for plasmin in the pleurisy model.
Collapse
Affiliation(s)
- Kelly C Malavazi-Piza
- Departamento de Bioquímica, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua 3 de Maio 100, 04044-020, São Paulo, SP, Brazil.
| | | | | | | |
Collapse
|
18
|
Agostoni A, Aygören-Pürsün E, Binkley KE, Blanch A, Bork K, Bouillet L, Bucher C, Castaldo AJ, Cicardi M, Davis AE, De Carolis C, Drouet C, Duponchel C, Farkas H, Fáy K, Fekete B, Fischer B, Fontana L, Füst G, Giacomelli R, Gröner A, Hack CE, Harmat G, Jakenfelds J, Juers M, Kalmár L, Kaposi PN, Karádi I, Kitzinger A, Kollár T, Kreuz W, Lakatos P, Longhurst HJ, Lopez-Trascasa M, Martinez-Saguer I, Monnier N, Nagy I, Németh E, Nielsen EW, Nuijens JH, O'grady C, Pappalardo E, Penna V, Perricone C, Perricone R, Rauch U, Roche O, Rusicke E, Späth PJ, Szendei G, Takács E, Tordai A, Truedsson L, Varga L, Visy B, Williams K, Zanichelli A, Zingale L. Hereditary and acquired angioedema: problems and progress: proceedings of the third C1 esterase inhibitor deficiency workshop and beyond. J Allergy Clin Immunol 2004; 114:S51-131. [PMID: 15356535 PMCID: PMC7119155 DOI: 10.1016/j.jaci.2004.06.047] [Citation(s) in RCA: 440] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Revised: 06/24/2004] [Accepted: 06/24/2004] [Indexed: 01/13/2023]
Abstract
Hereditary angioedema (HAE), a rare but life-threatening condition, manifests as acute attacks of facial, laryngeal, genital, or peripheral swelling or abdominal pain secondary to intra-abdominal edema. Resulting from mutations affecting C1 esterase inhibitor (C1-INH), inhibitor of the first complement system component, attacks are not histamine-mediated and do not respond to antihistamines or corticosteroids. Low awareness and resemblance to other disorders often delay diagnosis; despite availability of C1-INH replacement in some countries, no approved, safe acute attack therapy exists in the United States. The biennial C1 Esterase Inhibitor Deficiency Workshops resulted from a European initiative for better knowledge and treatment of HAE and related diseases. This supplement contains work presented at the third workshop and expanded content toward a definitive picture of angioedema in the absence of allergy. Most notably, it includes cumulative genetic investigations; multinational laboratory diagnosis recommendations; current pathogenesis hypotheses; suggested prophylaxis and acute attack treatment, including home treatment; future treatment options; and analysis of patient subpopulations, including pediatric patients and patients whose angioedema worsened during pregnancy or hormone administration. Causes and management of acquired angioedema and a new type of angioedema with normal C1-INH are also discussed. Collaborative patient and physician efforts, crucial in rare diseases, are emphasized. This supplement seeks to raise awareness and aid diagnosis of HAE, optimize treatment for all patients, and provide a platform for further research in this rare, partially understood disorder.
Collapse
Key Words
- aae
- acquired angioedema
- angioedema
- c1 esterase inhibitor
- c1-inh
- hae
- hane
- hano
- hereditary angioedema
- hereditary angioneurotic edema
- angioneurotic edema
- chemically induced angioedema
- human serping1 protein
- aae, acquired angioedema
- aaee, (italian) voluntary association for the study, therapy, and fight against hereditary angioedema
- ace, angiotensin-converting enzyme
- app, aminopeptidase p
- at2, angiotensin ii
- b19v, parvovirus b19
- bmd, bone mineral density
- bvdv, bovine viral diarrhea virus
- c1, first component of the complement cascade
- c1-inh, c1 esterase inhibitor
- c1nh, murine c1 esterase inhibitor gene
- c1nh, human c1 esterase inhibitor gene
- c2, second component of the complement cascade
- c3, third component of the complement cascade
- c4, fourth component of the complement cascade
- c5, fifth component of the complement cascade
- ccm, chemical cleavage of mismatches
- ch50, total hemolytic complement, 50% cell lysis
- cmax, maximum concentration
- cpmp, committee for proprietary medicinal products
- cpv, canine parvovirus
- dhplc, denaturing hplc
- ff, (ovarian) follicular fluid
- ffp, fresh frozen plasma
- hae, hereditary angioedema
- hae-i, hereditary angioedema type i
- hae-ii, hereditary angioedema type ii
- haea, us hae association
- hav, hepatitis a virus
- hbsag, hepatitis b surface antigen
- hbv, hepatitis b virus
- hcv, hepatitis c virus
- hk, high molecular weight kininogen
- hrt, hormone replacement therapy
- huvs, hypocomplementemic urticaria-vasculitis syndrome
- lh, luteinizing hormone
- masp, mannose-binding protein associated serine protease
- mbl, mannan-binding lectin
- mfo, multifollicular ovary
- mgus, monoclonal gammopathies of undetermined significance
- mr, molecular mass
- nat, nucleic acid amplification technique
- nep, neutral endopeptidase
- oc, oral contraceptive
- omim, online mendelian inheritance in man (database)
- pco, polycystic ovary
- pct, primary care trust
- prehaeat, novel methods for predicting, preventing, and treating attacks in patients with hereditary angioedema
- prv, pseudorabies virus
- rhc1-inh, recombinant human c1 esterase inhibitor
- rtpa, recombinant tissue-type plasminogen activator
- shbg, sex hormone binding globulin
- ssca, single-stranded conformational analysis
- tpa, tissue-type plasminogen activator
- uk, united kingdom
Collapse
|
19
|
Katori M, Majima M. The renal kallikrein-kinin system: its role as a safety valve for excess sodium intake, and its attenuation as a possible etiologic factor in salt-sensitive hypertension. Crit Rev Clin Lab Sci 2003; 40:43-115. [PMID: 12627748 DOI: 10.1080/713609329] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The distal tubules of the kidney express the full set of the components of the kallikrein-kinin system, which works independently from the plasma kallikrein-kinin system. Studies on the role of the renal kallikrein-kinin system, using congenitally kininogen-deficient Brown-Norway Katholiek rats and also bradykinin B2 receptor knockout mice, revealed that this system starts to function and to induce natriuresis and diuresis when sodium accumulates in the body as a result of excess sodium intake or aldosterone release, for example, by angiotensin II. Thus, it can be hypothesized that the system works as a safety valve for sodium accumulation. The large numbers of studies on hypertensive animal models and on essential hypertensive patients, particularly those with salt sensitivity, indicate a tendency toward the reduced excretion of urinary kallikrein, although this reduction is modified by potassium intake and impaired renal function. We hypothesize that the reduced excretion of the renal kallikrein may be attributable to a genetic defect of factor(s) in renal kallikrein secretion process and may cause salt-sensitive hypertension after salt intake.
Collapse
Affiliation(s)
- Makoto Katori
- Department of Pharmacology, Kitasato University School of Medicine, Kitasato 1-15-1, Sagamihara, Kanagawa, 228-8555, Japan.
| | | |
Collapse
|
20
|
Abstract
OBJECTIVES To review the literature for conditions, diseases, and disorders that affect activity of the contact factors, and further to review the literature for evidence that less than normal activity of any of the contact factors may be associated with thrombophilia. DATA SOURCES MEDLINE search for English-language articles published from 1988 to 2001 and pertinent references contained therein, as well as search of references in recent relevant articles and reviews. STUDY SELECTION Relevant clinical and laboratory information was extracted from selected articles. Meta-analysis was not feasible because of heterogeneity of reports. DATA EXTRACTION AND SYNTHESIS Evidence for association of altered levels of the contact factors and thrombophilia was sought. A wide variety of disorders is associated with decreased activity of the contact factors; chief among these disorders are liver disease, hepatic immaturity of newborns, the antiphospholipid syndrome, and, for factor XII, being of Asian descent. These disorders are more common than homozygous deficiency. The few series and case reports of thrombophilic events in patients homozygous for deficiency of contact factors are not persuasive enough to support causality. The apparent association between levels consistent with heterozygosity (40%-60% of normal) of any of the contact factors (but especially factor XII) in persons with antiphospholipid antibodies appears to be due to falsely decreased in vitro activity levels of these factors, which are normal on antigenic testing. The apparent association with thrombosis is better explained by the antiphospholipid syndrome than by the modest reduction of the levels of contact factors. CONCLUSIONS Presently, it is not recommended to measure activity of contact factors during routine evaluation of patients who have suffered venous or arterial thromboembolism or acute coronary syndromes.
Collapse
Affiliation(s)
- Craig S Kitchens
- Division of Hematology/Oncology, Department of Medicine, University of Florida, Gainesville, USA.
| |
Collapse
|
21
|
Szabo S, Letsch R, Ehlers R, Walter T, Kazmaier S, Helber U, Hoffmeister HM. Absence of paradoxical thrombin activation by fibrin-specific thrombolytics in acute myocardial infarction: comparison of single-bolus tenecteplase and front-loaded alteplase. Thromb Res 2002; 106:113-9. [PMID: 12182909 DOI: 10.1016/s0049-3848(02)00084-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Thrombolytic therapy in patients with acute myocardial infarction is hampered by bleeding complications and procoagulant effects favoring early reocclusion. TNK-tPA was shown in vitro to have considerable fibrin specificity. We investigated the effects of tenecteplase (TNK-tPA) and alteplase (rt-PA) on the haemostasis and fibrinolytic system. METHODS AND RESULTS We enrolled 30 patients with AMI into the study. Twenty patients received front-loaded rt-PA up to 100 mg; 10 patients were given TNK-tPA in a single bolus up to 50 mg. All patients received aspirin and intravenous heparin. During the first 2 days, the following parameters were repetitively determined: thrombin-antithrombin III complexes (TAT), antithrombin III (ATIII), prothrombin fragment F 1 + 2 (F 1 + 2), kallikrein-like activity (KK), activated factor XII (FXIIa), plasmin alpha 2-antiplasmin complexes (PAP), fibrinogen, D-dimers (DD), tissue-type plasminogen activator (t-PA). A total of 75 healthy persons served as control group. TAT increased significantly after rt-PA but not after TNK-tPA (3 h: 38.1 +/- 29.4 versus 10.5 +/- 4.2 microg/l; p < 0.01), indicating paradoxical thrombin activation. F 1 + 2 increased transiently after rt-PA but not after TNK-tPA. Fibrinogen was significantly lower after rt-PA versus TNK-tPA (3 h: 163 +/- 27 versus 380 +/- 54 mg/dl; p < 0.05). KK activities in the rt-PA group were significantly (p < 0.01) increased over 48 h versus TNK-tPA. PAP and D-dimers were lower over the time course of 48 h in the tenecteplase group versus rt-PA. CONCLUSIONS This study indicates that tenecteplase has higher fibrin specificity not only in vitro but also in vivo versus alteplase. TNK-tPA consecutively has no paradoxical systemic procoagulant effect due to the lower extent of activation of the kallikrein-factor XII system than alteplase.
Collapse
Affiliation(s)
- Sebastian Szabo
- Medizinische Klinik II, Städtisches Klinikum Solingen, Gotenstr 1, 42653 Solingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Rheumatoid arthritis is a chronic multi-system disease of unknown aetiology. The current hypothesis is that an unknown antigen triggers an autoimmune response in a genetically susceptible individual. The predominant pathological change is that of an inflammatory synovitis, characterised by cellular infiltrates and angiogenesis, with subsequent bone and cartilage destruction. These pathological changes are as a result of the activation of a variety of cells, inflammatory mediators, and effector molecules. The pro-inflammatory kinins and cytokines appear to play a central role in the pathogenesis of rheumatoid arthritis. Sufficient evidence exists that establishes a key role for the kallikrein-kinin cascade in inflamed joints. In addition, there appears to be an inter-relationship between cytokines and kinins in the inflammatory process. Kinins induce the release of cytokines, and cytokines have been shown to augment the effects of kinins. This may lead to an enhancement and perpetuation of the inflammatory process. In this review, we report a first study, correlating markers of disease with the kallikrein-kinin cascade and with cytokines.
Collapse
Affiliation(s)
- Bilkish Cassim
- Department of Rheumatology, Nelson R. Mandela School of Medicine, University of Natal, Private Bag 7, Congella 4013, South Africa
| | | | | |
Collapse
|