1
|
Huang H, Xiong Y, Zeng J. Silencing RGS7 attenuates atrial fibrillation progression by activating the cGMP-PKG signaling pathway. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167786. [PMID: 40086518 DOI: 10.1016/j.bbadis.2025.167786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 02/05/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Atrial fibrillation (AF) is a common diagnosed heart disease that needs novel managements. This study aimed to seek potential biomarkers and underlying regulatory pathways associated with AF. METHODS Differential expressed genes (DEGs) were identified from the Gene Expression Omnibus database, followed by a protein-protein interaction (PPI) network to discover hub genes. Principal components analysis (PCA) and receiver operating characteristic (ROC) curves were performed to evaluate the ability of hub genes to discriminate between AF and control. RGS7 was selected as a key hub gene, and genes co-expressed with RGS7 were identified for functional enrichment analysis. Further in vivo and in vitro experiments were conducted to investigate the effects of silencing RGS7 on AF and the potential pathway. RESULTS We identified top 5 hub genes (RGS7, EGFR, RGS4, GNA13 and RGS11) from the PPI network. PCA showed these genes could distinguish between AF and control samples, with 100 % of the area under curve (AUC) values. Silencing RGS7 inhibited cell apoptosis, inflammation and oxidative stress, and increased mitochondrial membrane potential in angiotensin II (AngII)-treated HL-1 cells, while overexpression of RGS7 reversed the inhibitory effects of silencing RGS7 on AF. Additionally, silencing RGS7 improved cardiac function and decreased cardiac fibrosis in AF rats. The cGMP-PKG signaling pathway was screened as a potential signal transduction pathway, and silencing RGS7 increased the expression of PKG1, while KT5823 blocked the process. CONCLUSION Silencing RGS7 attenuates AF by activating the cGMP-PKG signaling pathway, which may offer directions for selecting biomarkers and regulatory pathways for AF.
Collapse
Affiliation(s)
- Hao Huang
- Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu City, PR China
| | - Yan Xiong
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of, PR China
| | - Jie Zeng
- Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu City, PR China.
| |
Collapse
|
2
|
Zhang Y, Wang H, Dai F, He K, Tuo Z, Wang J, Bi L, Chen X. A pan-cancer analysis of the oncogenic and immunological roles of RGS5 in clear cell renal cell carcinomas based on in vitro experiment validation. Hum Genomics 2025; 19:14. [PMID: 39985100 PMCID: PMC11846387 DOI: 10.1186/s40246-025-00717-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/15/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND RGS5, the first gene identified in tumor-resident pericytes, plays a crucial role in angiogenesis. However, its effects on immunology and prognosis in human cancer are still mostly unknown. This study investigates the carcinogenic and immunological roles of RGS5 through a comprehensive pan-cancer analysis. METHODS A standardized pan-cancer dataset for RGS5 was obtained from the public database. R software and relevant packages were utilized to analyze the oncogenic and immunological roles. Clinical samples and cellular experiments were conducted to validate RGS5 expression and its biological function in renal cancer. RESULTS Bioinformatics analysis revealed that RGS5 is dysregulated in a variety of human malignancies and is significantly associated with patient prognosis. Additionally, RGS5 expression is closely linked to tumor heterogeneity and stemness indicators across different cancer types. Co-expression of RGS5 with genes involved in MHC, immune activation, immunosuppressive proteins, chemokines, and chemokine receptors was observed in various tumors. High expression of RGS5 predicts a good prognosis in patients with renal cancer. In the renal cancer cohort, RGS5 expression strongly correlated with the distribution of tumor-associated fibroblasts. Silencing RGS5 expression can affect the proliferation, migration, and invasion of renal carcinoma cells. CONCLUSIONS RGS5 expression in tumors is intricately associated with various clinical features, particularly concerning tumor progression and patient prognosis.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Huming Wang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Fang Dai
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Ke He
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China
| | - Zhouting Tuo
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Jinyou Wang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.
| | - Liangkuan Bi
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China.
| | - Xin Chen
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.
| |
Collapse
|
3
|
McNeill SM, Zhao P. The roles of RGS proteins in cardiometabolic disease. Br J Pharmacol 2024; 181:2319-2337. [PMID: 36964984 DOI: 10.1111/bph.16076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/12/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the most prominent receptors on the surface of the cell and play a central role in the regulation of cardiac and metabolic functions. GPCRs transmit extracellular stimuli to the interior of the cells by activating one or more heterotrimeric G proteins. The duration and intensity of G protein-mediated signalling are tightly controlled by a large array of intracellular mediators, including the regulator of G protein signalling (RGS) proteins. RGS proteins selectively promote the GTPase activity of a subset of Gα subunits, thus serving as negative regulators in a pathway-dependent manner. In the current review, we summarise the involvement of RGS proteins in cardiometabolic function with a focus on their tissue distribution, mechanisms of action and dysregulation under various disease conditions. We also discuss the potential therapeutic applications for targeting RGS proteins in treating cardiometabolic conditions and current progress in developing RGS modulators. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Samantha M McNeill
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Peishen Zhao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (CCeMMP), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Chan KYY, Chung PY, Zhang C, Poon ENY, Leung AWK, Leung KT. R4 RGS proteins as fine tuners of immature and mature hematopoietic cell trafficking. J Leukoc Biol 2022; 112:785-797. [PMID: 35694792 DOI: 10.1002/jlb.1mr0422-475r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are the largest and most diverse group of membrane receptors. They are involved in almost every physiologic process and consequently have a pivotal role in an extensive number of pathologies, including genetic, neurologic, and immune system disorders. Indeed, the vast array of GPCRs mechanisms have led to the development of a tremendous number of drug therapies and already account for about a third of marketed drugs. These receptors mediate their downstream signals primarily via G proteins. The regulators of G-protein signaling (RGS) proteins are now in the spotlight as the critical modulatory factors of active GTP-bound Gα subunits of heterotrimeric G proteins to fine-tune the biologic responses driven by the GPCRs. Also, they possess noncanonical functions by multiple mechanisms, such as protein-protein interactions. Essential roles and impacts of these RGS proteins have been revealed in physiology, including hematopoiesis and immunity, and pathologies, including asthma, cancers, and neurologic disorders. This review focuses on the largest subfamily of R4 RGS proteins and provides a brief overview of their structures and G-proteins selectivity. With particular interest, we explore and highlight, their expression in the hematopoietic system and the regulation in the engraftment of hematopoietic stem/progenitor cells (HSPCs). Distinct expression patterns of R4 RGS proteins in the hematopoietic system and their pivotal roles in stem cell trafficking pave the way for realizing new strategies for enhancing the clinical performance of hematopoietic stem cell transplantation. Finally, we discuss the exciting future trends in drug development by targeting RGS activity and expression with small molecules inhibitors and miRNA approaches.
Collapse
Affiliation(s)
- Kathy Yuen Yee Chan
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Po Yee Chung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Chi Zhang
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ellen Ngar Yun Poon
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Alex Wing Kwan Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China.,Department of Paediatrics & Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong SAR, China
| | - Kam Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
5
|
Jang EJ, Kim YJ, Hwang HS, Yee J, Gwak HS. Associations of GNAS and RGS Gene Polymorphisms with the Risk of Ritodrine-Induced Adverse Events in Korean Women with Preterm Labor: A Cohort Study. Pharmaceutics 2022; 14:pharmaceutics14061220. [PMID: 35745791 PMCID: PMC9227008 DOI: 10.3390/pharmaceutics14061220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Ritodrine, a β2-adrenergic receptor agonist, is among most commonly prescribed tocolytic agents. This study aimed to evaluate the associations of single nucleotide polymorphisms in GNAS, RGS2, and RGS5 with the risk of ritodrine-induced adverse events (AEs) and develop a risk scoring system to identify high-risk patients. This is the prospective cohort study conducted at the Ewha Woman’s University Mokdong Hospital between January 2010 and October 2016. Pregnant women were included if they were treated with ritodrine for preterm labor with regular uterine contractions (at least 3 every 10 min) and cervical dilation. A total of 6, 3, and 5 single nucleotide polymorphisms (SNPs) of GNAS, RGS2, and RGS5 genes were genotyped and compared in patients with and without ritodrine-induced AEs. A total of 163 patients were included in this study. After adjusting confounders, GNAS rs3730168 (per-allele odds ratio (OR): 2.1; 95% confidence interval (95% CI): 1.0–4.3) and RGS2 rs1152746 (per-allele OR: 2.6, 95% CI: 1.1–6.5) were significantly associated with ritodrine-induced AEs. According to the constructed risk scoring models, patients with 0, 1, 2, 3, 4, and 5 points showed 0%, 13%, 19%, 31%, 46%, and 100% risks of AEs. This study suggested that GNAS and RGS2 polymorphisms could affect the risk of AEs in patients treated with ritodrine.
Collapse
Affiliation(s)
- Eun-Jeong Jang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea;
| | - Young-Ju Kim
- Department of Obstetrics and Gynecology, Ewha Womans University School of Medicine, Seoul 07985, Korea;
| | - Han-Sung Hwang
- Department of Obstetrics and Gynecology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Korea;
| | - Jeong Yee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea;
- Correspondence: (J.Y.); (H.-S.G.); Tel.: +82-2-3277-3052 (J.Y.); +82-2-3277-4376 (H.-S.G.); Fax: +82-2-3277-3051 (J.Y. & H.-S.G.)
| | - Hye-Sun Gwak
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea;
- Correspondence: (J.Y.); (H.-S.G.); Tel.: +82-2-3277-3052 (J.Y.); +82-2-3277-4376 (H.-S.G.); Fax: +82-2-3277-3051 (J.Y. & H.-S.G.)
| |
Collapse
|
6
|
Demirel E, Arnold C, Garg J, Jäger MA, Sticht C, Li R, Kuk H, Wettschureck N, Hecker M, Korff T. RGS5 Attenuates Baseline Activity of ERK1/2 and Promotes Growth Arrest of Vascular Smooth Muscle Cells. Cells 2021; 10:1748. [PMID: 34359918 PMCID: PMC8306326 DOI: 10.3390/cells10071748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/25/2021] [Accepted: 07/07/2021] [Indexed: 01/14/2023] Open
Abstract
The regulator of G-protein signaling 5 (RGS5) acts as an inhibitor of Gαq/11 and Gαi/o activity in vascular smooth muscle cells (VSMCs), which regulate arterial tone and blood pressure. While RGS5 has been described as a crucial determinant regulating the VSMC responses during various vascular remodeling processes, its regulatory features in resting VSMCs and its impact on their phenotype are still under debate and were subject of this study. While Rgs5 shows a variable expression in mouse arteries, neither global nor SMC-specific genetic ablation of Rgs5 affected the baseline blood pressure yet elevated the phosphorylation level of the MAP kinase ERK1/2. Comparable results were obtained with 3D cultured resting VSMCs. In contrast, overexpression of RGS5 in 2D-cultured proliferating VSMCs promoted their resting state as evidenced by microarray-based expression profiling and attenuated the activity of Akt- and MAP kinase-related signaling cascades. Moreover, RGS5 overexpression attenuated ERK1/2 phosphorylation, VSMC proliferation, and migration, which was mimicked by selectively inhibiting Gαi/o but not Gαq/11 activity. Collectively, the heterogeneous expression of Rgs5 suggests arterial blood vessel type-specific functions in mouse VSMCs. This comprises inhibition of acute agonist-induced Gαq/11/calcium release as well as the support of a resting VSMC phenotype with low ERK1/2 activity by suppressing the activity of Gαi/o.
Collapse
Affiliation(s)
- Eda Demirel
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Caroline Arnold
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Jaspal Garg
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Marius Andreas Jäger
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Carsten Sticht
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Rui Li
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Hanna Kuk
- The Ottawa Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Thomas Korff
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
7
|
Li Y, Yan H, Guo J, Han Y, Zhang C, Liu X, Du J, Tian XL. Down-regulated RGS5 by genetic variants impairs endothelial cell function and contributes to coronary artery disease. Cardiovasc Res 2021; 117:240-255. [PMID: 31605122 DOI: 10.1093/cvr/cvz268] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/22/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022] Open
Abstract
AIMS Genetic contribution to coronary artery disease (CAD) remains largely unillustrated. Although transcriptomic profiles have identified dozens of genes that are differentially expressed in normal and atherosclerotic vessels, whether those genes are genetically associated with CAD remains to be determined. Here, we combined genetic association studies, transcriptome profiles and in vitro and in vivo functional experiments to identify novel susceptibility genes for CAD. METHODS AND RESULTS Through an integrative analysis of transcriptome profiles with genome-wide association studies for CAD, we obtained 18 candidate genes and selected one representative single nucleotide polymorphism (SNP) for each gene for multi-centred validations. We identified an intragenic SNP, rs1056515 in RGS5 gene (odds ratio = 1.17, 95% confidence interval =1.10-1.24, P = 3.72 × 10-8) associated with CAD at genome-wide significance. Rare genetic variants in linkage disequilibrium with rs1056515 were identified in CAD patients leading to a decreased expression of RGS5. The decreased expression was also observed in atherosclerotic vessels and endothelial cells treated by various cardiovascular risk factors. Through siRNA knockdown and adenoviral overexpression, we further showed that RGS5 regulated endothelial inflammation, vascular remodelling, as well as canonical NF-κB signalling activation. Moreover, CXCL12, a specific downstream target of the non-canonical NF-κB pathway, was strongly affected by RGS5. However, the p100 processing, a well-documented marker for non-canonical NF-κB pathway activation, was not altered, suggesting an existence of a novel mechanism by which RGS5 regulates CXCL12. CONCLUSIONS We identified RGS5 as a novel susceptibility gene for CAD and showed that the decreased expression of RGS5 impaired endothelial cell function and functionally contributed to atherosclerosis through a variety of molecular mechanisms. How RGS5 regulates the expression of CXCL12 needs further studies.
Collapse
Affiliation(s)
- Yang Li
- Vascular Biology Laboratory, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing, China
| | - Han Yan
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, No. 5 Yiheyuan Road, Beijing, China
| | - Jian Guo
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, No. 5 Yiheyuan Road, Beijing, China
| | - Yingchun Han
- Vascular Biology Laboratory, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing, China
| | - Cuifang Zhang
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, No. 5 Yiheyuan Road, Beijing, China
| | - Xiuying Liu
- Center for Molecular Systems Biology, Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jie Du
- Vascular Biology Laboratory, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing, China
| | - Xiao-Li Tian
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, No. 5 Yiheyuan Road, Beijing, China
- Department of Human Population Genetics, A217 Life Science Building, Human Aging Research Institute and School of Life Science, Jiangxi Key Laboratory of Human Aging, Nanchang University, 999 Xuefu Road, Honggutan New District, Nanchang City, Jiangxi Province 330031, China
| |
Collapse
|
8
|
Chen Q, Swist E, Kafenzakis M, Raju J, Brooks SPJ, Scoggan KA. Fructooligosaccharides and wheat bran fed at similar fermentation levels differentially affect the expression of genes involved in transport, signaling, apoptosis, cell proliferation, and oncogenesis in the colon epithelia of healthy Fischer 344 rats. Nutr Res 2019; 69:101-113. [PMID: 31675536 DOI: 10.1016/j.nutres.2019.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/17/2019] [Accepted: 07/30/2019] [Indexed: 10/26/2022]
Abstract
The influence of the source of fermentable material (FM) on the luminal concentrations of their end products and its effects on colon cell metabolism and disease susceptibility is not well characterized. We hypothesized that total fermentation but not the source (type) of FM would be the main factor in determining cellular /molecular outcomes in the healthy colon epithelia. The main aim of this study was to elucidate the role of two different sources of FM, fructooligosaccharides (FOS) and wheat bran (WB), on the expression of genes involved in short chain fatty acid (SCFA) transport, G-protein signaling, apoptosis, cell proliferation and oncogenesis in colon epithelia of healthy rats. Male Fischer 344 rats (n = 10/group) were fed AIN-93G control (0% FM) or experimental diets containing WB (~1%, 2%, or 5% FM) or FOS (~2%, 5%, or 8% FM). Rats were killed after 6 weeks and the colon mucosa was assessed for the expression of target genes using real-time quantitative polymerase chain reaction. By comparison to the control, dose-related changes of mRNA levels were found in rats fed FOS-based diets, including: (a) upregulation of three SCFA transporters (Smct2, Mct1 and Mct4) but downregulation of Mct2, (b) upregulation of Gpr109a and downregulation of Gpr120, Gpr43, Gprc5a, Rgs2 and Rgs16, (c) upregulation of apoptosis-related genes including Bcl2, Bcl2-like 1, Bak1, Caspase 3, Caspase 8 and Caspase 9, (d) downregulation of the oncogenes and metastasis genes Ros1, Fos, Cd44, Fn1 and Plau, and (e) downregulation of several genes involved in cellular proliferation including Hbegf, Hoxb13, Cgref1, Wfdc1, Tgm3, Fgf7, Nov and Lumican. In contrast, rats fed WB-based diets resulted in dose-related upregulation of mRNA levels of Smct2, Rgs16, Gprc5a, Gpr109a, Bcl2-like 1, Caspase 8, and Fos. Additionally, different gene expression responses were observed in rats fed FOS and WB at 2% and 5% FM. Over all, these gene changes elicited by FOS and WB were independent of the expression of the tumor suppressor Tp53. These results suggest that fermentation alone is not the sole determinant of gene responses in the healthy rat colon.
Collapse
Affiliation(s)
- Qixuan Chen
- Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Eleonora Swist
- Nutrition Research Division, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Morgan Kafenzakis
- Nutrition Research Division, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Jayadev Raju
- Regulatory Toxicology Research Division, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada.
| | - Stephen P J Brooks
- Nutrition Research Division, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada.
| | - Kylie A Scoggan
- Nutrition Research Division, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada; Sector Strategies Division, Safe Environments Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Aktories K, Gierschik P, Heringdorf DMZ, Schmidt M, Schultz G, Wieland T. cAMP guided his way: a life for G protein-mediated signal transduction and molecular pharmacology-tribute to Karl H. Jakobs. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:887-911. [PMID: 31101932 DOI: 10.1007/s00210-019-01650-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022]
Abstract
Karl H. Jakobs, former editor-in-chief of Naunyn-Schmiedeberg's Archives of Pharmacology and renowned molecular pharmacologist, passed away in April 2018. In this article, his scientific achievements regarding G protein-mediated signal transduction and regulation of canonical pathways are summarized. Particularly, the discovery of inhibitory G proteins for adenylyl cyclase, methods for the analysis of receptor-G protein interactions, GTP supply by nucleoside diphosphate kinases, mechanisms in phospholipase C and phospholipase D activity regulation, as well as the development of the concept of sphingosine-1-phosphate as extra- and intracellular messenger will presented. His seminal scientific and methodological contributions are put in a general and timely perspective to display and honor his outstanding input to the current knowledge in molecular pharmacology.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert Ludwigs University, 79104, Freiburg, Germany
| | - Peter Gierschik
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89070, Ulm, Germany
| | - Dagmar Meyer Zu Heringdorf
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt am Main, Goethe University, 60590, Frankfurt am Main, Germany
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, 9713AV, Groningen, The Netherlands
| | - Günter Schultz
- Department of Pharmacology, Charité University Medical Center Berlin, Campus Benjamin Franklin, 14195, Berlin, Germany
| | - Thomas Wieland
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13 - 17, 68167, Mannheim, Germany.
| |
Collapse
|
10
|
Yazdani A, Yazdani A, Méndez Giráldez R, Aguilar D, Sartore L. A Multi-Trait Approach Identified Genetic Variants Including a Rare Mutation in RGS3 with Impact on Abnormalities of Cardiac Structure/Function. Sci Rep 2019; 9:5845. [PMID: 30971721 PMCID: PMC6458140 DOI: 10.1038/s41598-019-41362-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/05/2019] [Indexed: 01/29/2023] Open
Abstract
Heart failure is a major cause for premature death. Given the heterogeneity of the heart failure syndrome, identifying genetic determinants of cardiac function and structure may provide greater insights into heart failure. Despite progress in understanding the genetic basis of heart failure through genome wide association studies, the heritability of heart failure is not well understood. Gaining further insights into mechanisms that contribute to heart failure requires systematic approaches that go beyond single trait analysis. We integrated a Bayesian multi-trait approach and a Bayesian networks for the analysis of 10 correlated traits of cardiac structure and function measured across 3387 individuals with whole exome sequence data. While using single-trait based approaches did not find any significant genetic variant, applying the integrative Bayesian multi-trait approach, we identified 3 novel variants located in genes, RGS3, CHD3, and MRPL38 with significant impact on the cardiac traits such as left ventricular volume index, parasternal long axis interventricular septum thickness, and mean left ventricular wall thickness. Among these, the rare variant NC_000009.11:g.116346115C > A (rs144636307) in RGS3 showed pleiotropic effect on left ventricular mass index, left ventricular volume index and maximal left atrial anterior-posterior diameter while RGS3 can inhibit TGF-beta signaling associated with left ventricle dilation and systolic dysfunction.
Collapse
Affiliation(s)
- Akram Yazdani
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Climax Data Pattern, Boston, MA, USA.
| | - Azam Yazdani
- School of Medicine, Boston University, Boston, MA, USA
| | - Raúl Méndez Giráldez
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Luca Sartore
- National Institute of Statistical Science, Washington, DC, USA
| |
Collapse
|
11
|
Arnold C, Demirel E, Feldner A, Genové G, Zhang H, Sticht C, Wieland T, Hecker M, Heximer S, Korff T. Hypertension‐evoked RhoA activity in vascular smooth muscle cells requires RGS5. FASEB J 2018; 32:2021-2035. [DOI: 10.1096/fj.201700384rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Caroline Arnold
- Department of Cardiovascular Physiology, Institute of Physiology and PathophysiologyHeidelberg UniversityHeidelbergGermany
| | - Eda Demirel
- Department of Cardiovascular Physiology, Institute of Physiology and PathophysiologyHeidelberg UniversityHeidelbergGermany
| | - Anja Feldner
- Department of Cardiovascular Physiology, Institute of Physiology and PathophysiologyHeidelberg UniversityHeidelbergGermany
| | - Guillem Genové
- Center of Medical ResearchHeidelberg UniversityHeidelbergGermany
| | - Hangjun Zhang
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty MannheimHeidelberg UniversityHeidelbergGermany
| | - Carsten Sticht
- Integrated Cardiometabolic CenterKarolinska InstituteHuddingeSweden
| | - Thomas Wieland
- Department of Physiology, Heart and Stroke Richard Lewar Centre of Excellence for Cardiovascular ResearchUniversity of TorontoTorontoOntarioCanada
| | - Markus Hecker
- Department of Cardiovascular Physiology, Institute of Physiology and PathophysiologyHeidelberg UniversityHeidelbergGermany
| | - Scott Heximer
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty MannheimHeidelberg UniversityHeidelbergGermany
| | - Thomas Korff
- Department of Cardiovascular Physiology, Institute of Physiology and PathophysiologyHeidelberg UniversityHeidelbergGermany
| |
Collapse
|
12
|
Regulator of G protein signalling 14 attenuates cardiac remodelling through the MEK-ERK1/2 signalling pathway. Basic Res Cardiol 2016; 111:47. [PMID: 27298141 PMCID: PMC4906057 DOI: 10.1007/s00395-016-0566-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 06/01/2016] [Indexed: 12/02/2022]
Abstract
In the past 10 years, several publications have highlighted the role of the regulator of G protein signalling (RGS) family in multiple diseases, including cardiovascular diseases. As one of the multifunctional family members, RGS14 is involved in various biological processes, such as synaptic plasticity, cell division, and phagocytosis. However, the role of RGS14 in cardiovascular diseases remains unclear. In the present study, we used a genetic approach to examine the role of RGS14 in pathological cardiac remodelling in vivo and in vitro. We observed that RGS14 was down-regulated in human failing hearts, murine hypertrophic hearts, and isolated hypertrophic cardiomyocytes. Moreover, the extent of aortic banding-induced cardiac hypertrophy and fibrosis was exacerbated in RGS14 knockout mice, whereas RGS14 transgenic mice exhibited a significantly alleviated response to pressure overload. Furthermore, research of the underlying mechanism revealed that the RGS14-dependent rescue of cardiac remodelling was attributed to the abrogation of mitogen-activated protein kinase (MEK)–extracellular signal-regulated protein kinase (ERK) 1/2 signalling. The results showed that constitutive activation of MEK1 nullified the cardiac protection in RGS14 transgenic mice, and inhibition of MEK–ERK1/2 by U0126 reversed RGS14 deletion-related hypertrophic aggravation. These results demonstrated that RGS14 attenuated the development of cardiac remodelling through MEK–ERK1/2 signalling. RGS14 exhibited great potential as a target for the treatment of pathological cardiac remodelling.
Collapse
|
13
|
Tinker A, Finlay M, Nobles M, Opel A. The contribution of pathways initiated via the Gq\11 G-protein family to atrial fibrillation. Pharmacol Res 2016; 105:54-61. [DOI: 10.1016/j.phrs.2015.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 01/28/2023]
|
14
|
Hayashi H, Al Mamun A, Sakima M, Sato M. Activator of G-protein signaling 8 is involved in VEGF-mediated signal processing during angiogenesis. J Cell Sci 2016; 129:1210-22. [PMID: 26826188 DOI: 10.1242/jcs.181883] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/26/2016] [Indexed: 01/13/2023] Open
Abstract
Activator of G-protein signaling 8 (AGS8, also known as FNDC1) is a receptor-independent accessory protein for the Gβγ subunit, which was isolated from rat heart subjected to repetitive transient ischemia with the substantial development of collaterals. Here, we report the role of AGS8 in vessel formation by endothelial cells. Knockdown of AGS8 by small interfering RNA (siRNA) inhibited vascular endothelial growth factor (VEGF)-induced tube formation, as well as VEGF-stimulated cell growth and migration. VEGF stimulated the phosphorylation of the VEGF receptor-2 (VEGFR-2, also known as KDR), ERK1/2 and p38 MAPK; however, knockdown of AGS8 inhibited these signaling events. Signal alterations by AGS8 siRNA were associated with a decrease of cell surface VEGFR-2 and an increase of VEGFR-2 in the cytosol. Endocytosis blockers did not influence the decrease of VEGFR-2 by AGS8 siRNA, suggesting the involvement of AGS8 in VEGFR-2 trafficking to the plasma membrane. VEGFR-2 formed a complex with AGS8 in cells, and a peptide designed to disrupt AGS8-Gβγ interaction inhibited VEGF-induced tube formation. These data suggest a potential role for AGS8-Gβγ in VEGF signal processing. AGS8 might play a key role in tissue adaptation by regulating angiogenic events.
Collapse
Affiliation(s)
- Hisaki Hayashi
- Department of Physiology, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Abdullah Al Mamun
- Department of Physiology, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Miho Sakima
- Department of Physiology, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Motohiko Sato
- Department of Physiology, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| |
Collapse
|
15
|
Krishnaswamy PS, Egom EE, Moghtadaei M, Jansen HJ, Azer J, Bogachev O, Mackasey M, Robbins C, Rose RA. Altered parasympathetic nervous system regulation of the sinoatrial node in Akita diabetic mice. J Mol Cell Cardiol 2015; 82:125-35. [DOI: 10.1016/j.yjmcc.2015.02.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 02/21/2015] [Accepted: 02/26/2015] [Indexed: 11/26/2022]
|
16
|
Pak HK, Gil M, Lee Y, Lee H, Lee AN, Roh J, Park CS. Regulator of G protein signaling 1 suppresses CXCL12-mediated migration and AKT activation in RPMI 8226 human plasmacytoma cells and plasmablasts. PLoS One 2015; 10:e0124793. [PMID: 25897806 PMCID: PMC4405207 DOI: 10.1371/journal.pone.0124793] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/09/2015] [Indexed: 12/14/2022] Open
Abstract
Migration of plasma cells to the bone marrow is critical factor to humoral immunity and controlled by chemokines. Regulator of G protein signaling 1 (RGS1) is a GTPase-activating protein that controls various crucial functions such as migration. Here, we show that RGS1 controls the chemotactic migration of RPMI 8226 human plasmacytoma cells and human plasmablasts. LPS strongly increased RGS1 expression and retarded the migration of RPMI 8226 cells by suppressing CXCL12-mediated AKT activation. RGS1 knockdown by siRNA abolished the retardation of migration and AKT suppression by LPS. RGS1-dependent regulation of migration via AKT is also observed in cultured plasmablasts. We propose novel functions of RGS1 that suppress AKT activation and the migration of RPMI 8226 cells and plasmablasts in CXCL12-mediated chemotaxis.
Collapse
Affiliation(s)
- Hyo-Kyung Pak
- Cell Dysfunction Research Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Minchan Gil
- Cell Dysfunction Research Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yoonkyung Lee
- Cell Dysfunction Research Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyunji Lee
- Cell Dysfunction Research Center, University of Ulsan College of Medicine, Seoul, Korea
| | - A-Neum Lee
- Cell Dysfunction Research Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin Roh
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chan-Sik Park
- Cell Dysfunction Research Center, University of Ulsan College of Medicine, Seoul, Korea
- Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
17
|
Arnold C, Feldner A, Pfisterer L, Hödebeck M, Troidl K, Genové G, Wieland T, Hecker M, Korff T. RGS5 promotes arterial growth during arteriogenesis. EMBO Mol Med 2015; 6:1075-89. [PMID: 24972930 PMCID: PMC4154134 DOI: 10.15252/emmm.201403864] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Arteriogenesis—the growth of collateral arterioles—partially compensates for the progressive occlusion of large conductance arteries as it may occur as a consequence of coronary, cerebral or peripheral artery disease. Despite being clinically highly relevant, mechanisms driving this process remain elusive. In this context, our study revealed that abundance of regulator of G-protein signalling 5 (RGS5) is increased in vascular smooth muscle cells (SMCs) of remodelling collateral arterioles. RGS5 terminates G-protein-coupled signalling cascades which control contractile responses of SMCs. Consequently, overexpression of RGS5 blunted Gαq/11-mediated mobilization of intracellular calcium, thereby facilitating Gα12/13-mediated RhoA signalling which is crucial for arteriogenesis. Knockdown of RGS5 evoked opposite effects and thus strongly impaired collateral growth as evidenced by a blockade of RhoA activation, SMC proliferation and the inability of these cells to acquire an activated phenotype in RGS5-deficient mice after the onset of arteriogenesis. Collectively, these findings establish RGS5 as a novel determinant of arteriogenesis which shifts G-protein signalling from Gαq/11-mediated calcium-dependent contraction towards Gα12/13-mediated Rho kinase-dependent SMC activation. Subject Categories Vascular Biology & Angiogenesis
Collapse
Affiliation(s)
- Caroline Arnold
- Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Anja Feldner
- Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Larissa Pfisterer
- Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Maren Hödebeck
- Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Kerstin Troidl
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Guillem Genové
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Wieland
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Heidelberg, Mannheim, Germany
| | - Markus Hecker
- Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Thomas Korff
- Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
18
|
Memišević V, Zavaljevski N, Rajagopala SV, Kwon K, Pieper R, DeShazer D, Reifman J, Wallqvist A. Mining host-pathogen protein interactions to characterize Burkholderia mallei infectivity mechanisms. PLoS Comput Biol 2015; 11:e1004088. [PMID: 25738731 PMCID: PMC4349708 DOI: 10.1371/journal.pcbi.1004088] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/15/2014] [Indexed: 01/01/2023] Open
Abstract
Burkholderia pathogenicity relies on protein virulence factors to control and promote bacterial internalization, survival, and replication within eukaryotic host cells. We recently used yeast two-hybrid (Y2H) screening to identify a small set of novel Burkholderia proteins that were shown to attenuate disease progression in an aerosol infection animal model using the virulent Burkholderia mallei ATCC 23344 strain. Here, we performed an extended analysis of primarily nine B. mallei virulence factors and their interactions with human proteins to map out how the bacteria can influence and alter host processes and pathways. Specifically, we employed topological analyses to assess the connectivity patterns of targeted host proteins, identify modules of pathogen-interacting host proteins linked to processes promoting infectivity, and evaluate the effect of crosstalk among the identified host protein modules. Overall, our analysis showed that the targeted host proteins generally had a large number of interacting partners and interacted with other host proteins that were also targeted by B. mallei proteins. We also introduced a novel Host-Pathogen Interaction Alignment (HPIA) algorithm and used it to explore similarities between host-pathogen interactions of B. mallei, Yersinia pestis, and Salmonella enterica. We inferred putative roles of B. mallei proteins based on the roles of their aligned Y. pestis and S. enterica partners and showed that up to 73% of the predicted roles matched existing annotations. A key insight into Burkholderia pathogenicity derived from these analyses of Y2H host-pathogen interactions is the identification of eukaryotic-specific targeted cellular mechanisms, including the ubiquitination degradation system and the use of the focal adhesion pathway as a fulcrum for transmitting mechanical forces and regulatory signals. This provides the mechanisms to modulate and adapt the host-cell environment for the successful establishment of host infections and intracellular spread. Burkholderia species need to manipulate many host processes and pathways in order to establish a successful intracellular infection in eukaryotic host organisms. Burkholderia mallei uses secreted virulence factor proteins as a means to execute host-pathogen interactions and promote pathogenesis. While validated virulence factor proteins have been shown to attenuate infection in animal models, their actual roles in modifying and influencing host processes are not well understood. Here, we used host-pathogen protein-protein interactions derived from yeast two-hybrid screens to study nine known B. mallei virulence factors and map out potential virulence mechanisms. From the data, we derived both general and specific insights into Burkholderia host-pathogen infectivity pathways. We showed that B. mallei virulence factors tended to target multifunctional host proteins, proteins that interacted with each other, and host proteins with a large number of interacting partners. We also identified similarities between host-pathogen interactions of B. mallei, Yersinia pestis, and Salmonella enterica using a novel host-pathogen interactions alignment algorithm. Importantly, our data are compatible with a framework in which multiple B. mallei virulence factors broadly influence key host processes related to ubiquitin-mediated proteolysis and focal adhesion. This provides B. mallei the means to modulate and adapt the host-cell environment to advance infection.
Collapse
Affiliation(s)
- Vesna Memišević
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| | - Nela Zavaljevski
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| | | | - Keehwan Kwon
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Rembert Pieper
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - David DeShazer
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
- * E-mail:
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| |
Collapse
|
19
|
Momen A, Afroze T, Sadi AM, Khoshbin A, Zhang H, Choi J, Gu S, Zaidi SH, Heximer SP, Husain M. Enhanced proliferation and altered calcium handling in RGS2-deficient vascular smooth muscle cells. J Recept Signal Transduct Res 2014; 34:476-83. [PMID: 24846582 DOI: 10.3109/10799893.2014.920393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CONTEXT Regulator of G-protein signaling-2 (RGS2) inhibits Gq-mediated regulation of Ca(2+) signalling in vascular smooth muscle cells (VSMC). OBJECTIVE RGS2 knockout (RGS2KO) mice are hypertensive and show arteriolar remodeling. VSMC proliferation modulates intracellular Ca(2+) concentration [Ca(2+)]i. RGS2 involvement in VSMC proliferation had not been examined. METHODS Thymidine incorporation and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) conversion assays measured cell proliferation. Fura-2 ratiometric imaging quantified [Ca(2+)]i before and after UTP and thapsigargin. [(3)H]-labeled inositol was used for phosphoinositide hydrolysis. Quantitative RT-PCR and confocal immunofluorescence of select Ca(2+) transporters was performed in primary aortic VSMC. RESULTS AND DISCUSSION Platelet-derived growth factor (PDGF) increased S-phase entry and proliferation in VSMC from RGS2KO mice to a greater extent than in VSMC from wild-type (WT) controls. Consistent with differential PDGF-induced changes in Ca(2+) homeostasis, RGS2KO VSMC showed lower resting [Ca(2+)]i but higher thapsigargin-induced [Ca(2+)]i as compared with WT. RGS2KO VSMC expressed lower mRNA levels of plasma membrane Ca(2+) ATPase-4 (PMCA4) and Na(+) Ca(2+) Exchanger (NCX), but higher levels of sarco-endoplasmic reticulum Ca(2+) ATPase-2 (SERCA2). Western blot and immunofluorescence revealed similar differences in PMCA4 and SERCA2 protein, while levels of NCX protein were not reduced in RGS2KO VSMC. Consistent with decreased Ca(2+) efflux activity, (45)Ca-extrusion rates were lower in RGS2KO VSMC. These differences were reversed by the PMCA inhibitor La(3+), but not by replacing extracellular Na(+) with choline, implicating differences in the activity of PMCA and not NCX. CONCLUSION RGS2-deficient VSMC exhibit higher rates of proliferation and coordinate plasticity of Ca(2+)-handling mechanisms in response to PDGF stimulation.
Collapse
Affiliation(s)
- Abdul Momen
- Division of Experimental Therapeutics, Toronto General Research Institute , University Health Network, Toronto, Ontario , Canada and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Protection of cardiomyocytes from the hypoxia-mediated injury by a peptide targeting the activator of G-protein signaling 8. PLoS One 2014; 9:e91980. [PMID: 24632710 PMCID: PMC3954831 DOI: 10.1371/journal.pone.0091980] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/16/2014] [Indexed: 11/19/2022] Open
Abstract
Signaling via heterotrimeric G-protein is involved in the development of human diseases including ischemia-reperfusion injury of the heart. We previously identified an ischemia-inducible G-protein activator, activator of G-protein signaling 8 (AGS8), which regulates Gβγ signaling and plays a key role in the hypoxia-induced apoptosis of cardiomyocytes. Here, we attempted to intervene in the AGS8-Gβγ signaling process and protect cardiomyocytes from hypoxia-induced apoptosis with a peptide that disrupted the AGS8-Gβγ interaction. Synthesized AGS8-peptides, with amino acid sequences based on those of the Gβγ-binding domain of AGS8, successfully inhibited the association of AGS8 with Gβγ. The AGS8-peptide effectively blocked hypoxia-induced apoptosis of cardiomyocytes, as determined by DNA end-labeling and an increase in cleaved caspase-3. AGS8-peptide also inhibited the change in localization/permeability of channel protein connexin 43, which was mediated by AGS8-Gβγ under hypoxia. Small compounds that inhibit a wide range of Gβγ signals caused deleterious effects in cardiomyocytes. In contrast, AGS8-peptide did not cause cell damage under normoxia, suggesting an advantage inherent in targeted disruption of the AGS8-Gβγ signaling pathway. These data indicate a pivotal role for the interaction of AGS8 with Gβγ in hypoxia-induced apoptosis of cardiomyocytes, and suggest that targeted disruption of the AGS8-Gβγ signal provides a novel approach for protecting the myocardium against ischemic injury.
Collapse
|
21
|
Structure based energy calculation to determine the regulation of G protein signalling by RGS and RGS-G protein interaction specificity. Interdiscip Sci 2013; 4:173-82. [DOI: 10.1007/s12539-012-0130-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 03/19/2012] [Accepted: 04/12/2012] [Indexed: 01/11/2023]
|
22
|
Lee MJ, Kim DE, Zakrzewska A, Yoo YD, Kim SH, Kim ST, Seo JW, Lee YS, Dorn GW, Oh U, Kim BY, Kwon YT. Characterization of arginylation branch of N-end rule pathway in G-protein-mediated proliferation and signaling of cardiomyocytes. J Biol Chem 2012; 287:24043-52. [PMID: 22577142 DOI: 10.1074/jbc.m112.364117] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The N-end rule pathway is a proteolytic system in which destabilizing N-terminal amino acids of short lived proteins are recognized by recognition components (N-recognins) as an essential element of degrons, called N-degrons. In eukaryotes, the major way to generate N-degrons is through arginylation by ATE1 arginyl-tRNA-protein transferases, which transfer Arg from aminoacyl-tRNA to N-terminal Asp and Glu (and Cys as well in mammals). We have shown previously that ATE1-deficient mice die during embryogenesis with defects in cardiac and vascular development. Here, we characterized the arginylation-dependent N-end rule pathway in cardiomyocytes. Our results suggest that the cardiac and vascular defects in ATE1-deficient embryos are independent from each other and cell-autonomous. ATE1-deficient myocardium and cardiomyocytes therein, but not non-cardiomyocytes, showed reduced DNA synthesis and mitotic activity ~24 h before the onset of cardiac and vascular defects at embryonic day 12.5 associated with the impairment in the phospholipase C/PKC-MEK1-ERK axis of Gα(q)-mediated cardiac signaling pathways. Cardiac overexpression of Gα(q) rescued ATE1-deficient embryos from thin myocardium and ventricular septal defect but not from vascular defects, genetically dissecting vascular defects from cardiac defects. The misregulation in cardiovascular signaling can be attributed in part to the failure in hypoxia-sensitive degradation of RGS4, a GTPase-activating protein for Gα(q). This study is the first to characterize the N-end rule pathway in cardiomyocytes and reveals the role of its arginylation branch in Gα(q)-mediated signaling of cardiomyocytes in part through N-degron-based, oxygen-sensitive proteolysis of G-protein regulators.
Collapse
Affiliation(s)
- Min Jae Lee
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Yongin 446-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ang R, Opel A, Tinker A. The Role of Inhibitory G Proteins and Regulators of G Protein Signaling in the in vivo Control of Heart Rate and Predisposition to Cardiac Arrhythmias. Front Physiol 2012; 3:96. [PMID: 22783193 PMCID: PMC3390690 DOI: 10.3389/fphys.2012.00096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 03/27/2012] [Indexed: 12/17/2022] Open
Abstract
Inhibitory heterotrimeric G proteins and the control of heart rate. The activation of cell signaling pathways involving inhibitory heterotrimeric G proteins acts to slow the heart rate via modulation of ion channels. A large number of Regulators of G protein signalings (RGSs) can act as GTPase accelerating proteins to inhibitory G proteins and thus it is important to understand the network of RGS\G-protein interaction. We will review our recent findings on in vivo heart rate control in mice with global genetic deletion of various inhibitory G protein alpha subunits. We will discuss potential central and peripheral contributions to the phenotype and the controversies in the literature.
Collapse
Affiliation(s)
- Richard Ang
- Centre for Clinical Pharmacology, Division of Medicine, University College LondonLondon, UK
| | - Aaisha Opel
- Centre for Clinical Pharmacology, Division of Medicine, University College LondonLondon, UK
| | - Andrew Tinker
- William Harvey Heart Centre, Barts and The London School of Medicine and DentistryLondon, UK
| |
Collapse
|
24
|
Wolff DW, Xie Y, Deng C, Gatalica Z, Yang M, Wang B, Wang J, Lin MF, Abel PW, Tu Y. Epigenetic repression of regulator of G-protein signaling 2 promotes androgen-independent prostate cancer cell growth. Int J Cancer 2012; 130:1521-31. [PMID: 21500190 PMCID: PMC3155664 DOI: 10.1002/ijc.26138] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 04/01/2011] [Indexed: 12/28/2022]
Abstract
G-protein-coupled receptor (GPCR)-stimulated androgen-independent activation of androgen receptor (AR) contributes to acquisition of a hormone-refractory phenotype by prostate cancer. We previously reported that regulator of G-protein signaling (RGS) 2, an inhibitor of GPCRs, inhibits androgen-independent AR activation (Cao et al., Oncogene 2006;25:3719-34). Here, we show reduced RGS2 protein expression in human prostate cancer specimens compared to adjacent normal or hyperplastic tissue. Methylation-specific PCR analysis and bisulfite sequencing indicated that methylation of the CpG island in the RGS2 gene promoter correlated with RGS2 downregulation in prostate cancer. In vitro methylation of this promoter suppressed reporter gene expression in transient transfection studies, whereas reversal of this promoter methylation with 5-aza-2'-deoxycytidine (5-Aza-dC) induced RGS2 reexpression in androgen-independent prostate cancer cells and inhibited their growth under androgen-deficient conditions. Interestingly, the inhibitory effect of 5-Aza-dC was significantly reduced by an RGS2-targeted short hairpin RNA, indicating that reexpressed RGS2 contributed to this growth inhibition. Restoration of RGS2 levels by ectopic expression in androgen-independent prostate cancer cells suppressed growth of xenografts in castrated mice. Thus, RGS2 promoter hypermethylation represses its expression and unmasks a latent pathway for AR transactivation in prostate cancer cells. Targeting this reversible process may provide a new strategy for suppressing prostate cancer progression by reestablishing its androgen sensitivity.
Collapse
Affiliation(s)
- Dennis W. Wolff
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Yan Xie
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Caishu Deng
- Department of Pathology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Zoran Gatalica
- Department of Pathology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Mingjie Yang
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Bo Wang
- Department of Pathology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Jincheng Wang
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE 68178, USA
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ming-Fong Lin
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Peter W. Abel
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Yaping Tu
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE 68178, USA
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Thennes T, Mehta D. Heterotrimeric G proteins, focal adhesion kinase, and endothelial barrier function. Microvasc Res 2012; 83:31-44. [PMID: 21640127 PMCID: PMC3214251 DOI: 10.1016/j.mvr.2011.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/04/2011] [Accepted: 05/12/2011] [Indexed: 12/18/2022]
Abstract
Ligands by binding to G protein coupled receptors (GPCRs) stimulate dissociation of heterotrimeric G proteins into Gα and Gβγ subunits. Released Gα and Gβγ subunits induce discrete signaling cues that differentially regulate focal adhesion kinase (FAK) activity and endothelial barrier function. Activation of G proteins downstream of receptors such as protease activated receptor 1 (PAR1) and histamine receptors rapidly increases endothelial permeability which reverses naturally within the following 1-2 h. However, activation of G proteins coupled to the sphingosine-1-phosphate receptor 1 (S1P1) signal cues that enhance basal barrier endothelial function and restore endothelial barrier function following the increase in endothelial permeability by edemagenic agents. Intriguingly, both PAR1 and S1P1 activation stimulates FAK activity, which associates with alteration in endothelial barrier function by these agonists. In this review, we focus on the role of the G protein subunits downstream of PAR1 and S1P1 in regulating FAK activity and endothelial barrier function.
Collapse
Affiliation(s)
- Tracy Thennes
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|
26
|
Xie Z, Liu D, Liu S, Calderon L, Zhao G, Turk J, Guo Z. Identification of a cAMP-response element in the regulator of G-protein signaling-2 (RGS2) promoter as a key cis-regulatory element for RGS2 transcriptional regulation by angiotensin II in cultured vascular smooth muscles. J Biol Chem 2011; 286:44646-58. [PMID: 22057271 DOI: 10.1074/jbc.m111.265462] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mice deficient in regulator of G-protein signaling-2 (RGS2) have severe hypertension, and RGS2 genetic variations occur in hypertensive humans. A potentially important negative feedback loop in blood pressure homeostasis is that angiotensin II (Ang II) increases vascular smooth muscle cell (VSMC) RGS2 expression. We reported that Group VIA phospholipase A(2) (iPLA(2)β) is required for this response (Xie, Z., Gong, M. C., Su, W., Turk, J., and Guo, Z. (2007) J. Biol. Chem. 282, 25278-25289), but the specific molecular causes and consequences of iPLA(2)β activation are not known. Here we demonstrate that both protein kinases C (PKC) and A (PKA) participate in Ang II-induced VSMC RGS2 mRNA up-regulation, and that actions of PKC and PKA precede and follow iPLA(2)β activation, respectively. Moreover, we identified a conserved cAMP-response element (CRE) in the murine RGS2 promoter that is critical for cAMP-response element-binding protein (CREB) binding and RGS2 promoter activation. Forskolin-stimulated RGS2 mRNA up-regulation is inhibited by CREB sequestration or specific disruption of the CREB-RGS2 promoter interaction, and Ang II-induced CREB phosphorylation and nuclear localization are blocked by iPLA(2)β pharmacologic inhibition or genetic ablation. Ang II-induced intracellular cyclic AMP accumulation precedes CREB phosphorylation and is diminished by inhibiting iPLA(2), cyclooxygenase, or lipoxygenase. Moreover, three single nucleotide polymorphisms identified in hypertensive patients are located in the human RGS2 promoter CREB binding site. Point mutations corresponding to these single nucleotide polymorphisms interfere with stimulation of human RGS2 promoter activity by forskolin. Our studies thus delineate a negative feedback loop to attenuate Ang II signaling in VSMC with potential importance in blood pressure homeostasis and the pathogenesis of human essential hypertension.
Collapse
Affiliation(s)
- Zhongwen Xie
- Department of Physiology, University of Kentucky School of Medicine, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Antigny F, Norez C, Becq F, Vandebrouck C. CFTR and Ca Signaling in Cystic Fibrosis. Front Pharmacol 2011; 2:67. [PMID: 22046162 PMCID: PMC3200540 DOI: 10.3389/fphar.2011.00067] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/11/2011] [Indexed: 11/13/2022] Open
Abstract
Among the diverse physiological functions exerted by calcium signaling in living cells, its role in the regulation of protein biogenesis and trafficking remains incompletely understood. In cystic fibrosis (CF) disease the most common CF transmembrane conductance regulator (CFTR) mutation, F508del-CFTR generates a misprocessed protein that is abnormally retained in the endoplasmic reticulum (ER) compartment, rapidly degraded by the ubiquitin/proteasome pathway and hence absent at the plasma membrane of CF epithelial cells. Recent studies have demonstrated that intracellular calcium signals consequent to activation of apical G-protein-coupled receptors by different agonists are increased in CF airway epithelia. Moreover, the regulation of various intracellular calcium storage compartments, such as ER is also abnormal in CF cells. Although the molecular mechanism at the origin of this increase remains puzzling in epithelial cells, the F508del-CFTR mutation is proposed to be the onset of abnormal Ca2+ influx linking the calcium signaling to CFTR pathobiology. This article reviews the relationships between CFTR and calcium signaling in the context of the genetic disease CF.
Collapse
Affiliation(s)
- Fabrice Antigny
- Institut de Physiologie et de Biologie Cellulaires, Université de Poitiers, CNRS Poitiers, France
| | | | | | | |
Collapse
|
28
|
Abstract
Signal transduction through G-protein-coupled receptors (GPCRs) is central for the regulation of virtually all cellular functions and has been widely implicated in human disease. Regulators of G-protein signaling (RGS proteins) belong to a diverse protein family that was originally discovered for their ability to accelerate signal termination in response to GPCR stimulation, thereby reducing the amplitude and duration of GPCR effects. All RGS proteins share a common RGS domain that interacts with G protein α subunits and mediates their biological regulation of GPCR signaling. However, RGS proteins differ widely in size and the organization of their sequences flanking the RGS domain, which contain several additional functional domains that facilitate protein-protein (or protein-lipid) interactions. RGS proteins are subject to posttranslational modifications, and, in addition, their expression, activity, and subcellular localization can be dynamically regulated. Thus, there exists a wide array of mechanisms that facilitate their proper function as modulators and integrators of G-protein signaling. Several RGS proteins have been implicated in the cardiac remodeling response and heart rate regulation, and changes in RGS protein expression and/or function are believed to participate in the pathophysiology of cardiac hypertrophy, failure and arrhythmias as well as hypertension. This review is based on recent advances in our understanding of the expression pattern, regulation, and functional role of canonical RGS proteins, with a special focus on the healthy heart and the diseased heart. In addition, we discuss their potential and promise as therapeutic targets as well as strategies to modulate their expression and function.
Collapse
Affiliation(s)
- Peng Zhang
- Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown University, 1 Hoppin St, Providence, RI 02903, USA
| | | |
Collapse
|
29
|
Gunaje JJ, Bahrami AJ, Schwartz SM, Daum G, Mahoney WM. PDGF-dependent regulation of regulator of G protein signaling-5 expression and vascular smooth muscle cell functionality. Am J Physiol Cell Physiol 2011; 301:C478-89. [PMID: 21593453 DOI: 10.1152/ajpcell.00348.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regulator of G protein signaling (RGS) proteins, and notably members of the RGS-R4 subfamily, control vasocontractility by accelerating the inactivation of Gα-dependent signaling. RGS5 is the most highly and differently expressed RGS-R4 subfamily member in arterial smooth muscle. Expression of RGS5 first appears in pericytes during development of the afferent vascular tree, suggesting that RGS5 is a good candidate for a regulator of arterial contractility and, perhaps, for determining the mass of the smooth muscle coats required to regulate blood flow in the branches of the arterial tree. Consistent with this hypothesis, using cultured vascular smooth muscle cells (VSMCs), we demonstrate RGS5 overexpression inhibits G protein-coupled receptor (GPCR)-mediated hypertrophic responses. The next objective was to determine which physiological agonists directly control RGS5 expression in VSMCs. GPCR agonists failed to directly regulate RGS5 mRNA expression; however, platelet-derived growth factor (PDGF) acutely represses expression. Downregulation of RGS5 results in the induction of migration and the activation of the GPCR-mediated signaling pathways. This stimulation leads to the activation of mitogen-activated protein kinases directly downstream of receptor stimulation, and ultimately VSMC hypertrophy. These results demonstrate that RGS5 expression is a critical mediator of both VSMC contraction and potentially, arterial remodeling.
Collapse
Affiliation(s)
- Jagadambika J Gunaje
- Department of Pathology and Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
30
|
Felkin LE, Lara-Pezzi EA, Hall JL, Birks EJ, Barton PJR. Reverse Remodelling and Recovery from Heart Failure Are Associated with Complex Patterns of Gene Expression. J Cardiovasc Transl Res 2011; 4:321-31. [DOI: 10.1007/s12265-011-9267-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 02/15/2011] [Indexed: 11/30/2022]
|
31
|
Abstract
In many cases, the coexpression of GPCRs with G-proteins and/or regulators of G-protein signaling (RGS-proteins) allows a successful reconstitution of high-affinity agonist binding and functional responses. However, in some cases, coexpressed GPCRs and G-proteins interact inefficiently, resulting in weak [³⁵S]GTPγS- and steady-state GTPase assay signals. This may be, for example, caused by a rapid dissociation of the G-protein from the plasma membrane, as has been reported for Gα(s). Moreover, for a detailed characterization of GPCR/G-protein interactions, it may be required to work with a defined GPCR/G-protein stoichiometry and to avoid cross-interaction with endogenous G-proteins. Cross-talk to endogenous G-proteins has been shown to play a role in some mammalian expression systems. These problems can be addressed by the generation of GPCR-Gα fusion proteins and their expression in Sf9 insect cells. When the C-terminus of the receptor is fused to the N-terminus of the G-protein, a 1:1 stoichiometry of both proteins is achieved. In addition, the close proximity of GPCR and G-protein in fusion proteins leads to enhanced interaction efficiency, resulting in increased functional signals. This approach can also be extended to fusion proteins of GPCRs with RGS-proteins, specifically when steady-state GTP hydrolysis is used as read-out. GPCR-RGS fusion proteins optimize the interaction of RGS-proteins with coexpressed Gα subunits, since the location of the RGS-protein is close to the site of receptor-mediated G-protein activation. Moreover, in contrast to coexpression systems, GPCR-Gα and GPCR-RGS fusion proteins provide a possibility to imitate physiologically occurring interactions, for example, the precoupling of receptors and G-proteins or the formation of complexes between GPCRs, G-proteins and RGS-proteins (transducisomes). In this chapter, we describe the technique for the generation of fusion proteins and show the application of this approach for the characterization of constitutively active receptors.
Collapse
|
32
|
Abstract
The control of force production in vascular smooth muscle is critical to the normal regulation of blood flow and pressure, and altered regulation is common to diseases such as hypertension, heart failure, and ischemia. A great deal has been learned about imbalances in vasoconstrictor and vasodilator signals, e.g., angiotensin, endothelin, norepinephrine, and nitric oxide, that regulate vascular tone in normal and disease contexts. In contrast there has been limited study of how the phenotypic state of the vascular smooth muscle cell may influence the contractile response to these signaling pathways dependent upon the developmental, tissue-specific (vascular bed) or disease context. Smooth, skeletal, and cardiac muscle lineages are traditionally classified into fast or slow sublineages based on rates of contraction and relaxation, recognizing that this simple dichotomy vastly underrepresents muscle phenotypic diversity. A great deal has been learned about developmental specification of the striated muscle sublineages and their phenotypic interconversions in the mature animal under the control of mechanical load, neural input, and hormones. In contrast there has been relatively limited study of smooth muscle contractile phenotypic diversity. This is surprising given the number of diseases in which smooth muscle contractile dysfunction plays a key role. This review focuses on smooth muscle contractile phenotypic diversity in the vascular system, how it is generated, and how it may determine vascular function in developmental and disease contexts.
Collapse
Affiliation(s)
- Steven A Fisher
- Department of Medicine, and Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio 44106-7290, USA.
| |
Collapse
|
33
|
Murakami S, Suzuki S, Ishii M, Inanobe A, Kurachi Y. Cellular modelling: experiments and simulation to develop a physiological model of G-protein control of muscarinic K+ channels in mammalian atrial cells. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2010; 368:2983-3000. [PMID: 20478917 DOI: 10.1098/rsta.2010.0093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The first model of G-protein-K(ACh) channel interaction was developed 14 years ago and then expanded to include both the receptor-G-protein cycle and G-protein-K(ACh) channel interaction. The G-protein-K(ACh) channel interaction used the Monod-Wyman-Changeux allosteric model with the idea that one K(ACh) channel is composed of four subunits, each of which binds one active G-protein subunit (G(betagamma)). The receptor-G-protein cycle used a previous model to account for the steady-state relationship between K(ACh) current and intracellular guanosine-5-triphosphate at various extracellular concentrations of acetylcholine (ACh). However, simulations of the activation and deactivation of K(ACh) current upon ACh application or removal were much slower than experimental results. This clearly indicates some essential elements were absent from the model. We recently found that regulators of G-protein signalling are involved in the control of K(ACh) channel activity. They are responsible for the voltage-dependent relaxation behaviour of K(ACh) channels. Based on this finding, we have improved the receptor-G-protein cycle model to reproduce the relaxation behaviour. With this modification, the activation and deactivation of K(ACh) current in the model are much faster and now fall within physiological ranges.
Collapse
Affiliation(s)
- Shingo Murakami
- Division of Molecular and Cellular Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | |
Collapse
|
34
|
Xiao B, Zhang Y, Niu WQ, Gao PJ, Zhu DL. Haplotype-based association of regulator of G-protein signaling 5 gene polymorphisms with essential hypertension and metabolic parameters in Chinese. Clin Chem Lab Med 2010; 47:1483-8. [PMID: 19863299 DOI: 10.1515/cclm.2009.344] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND A recent genome-wide linkage study mapped blood pressure (BP)-related loci on human chromosome 1q and identified the regulator of G-protein signaling 5 (RGS5) as a candidate for regulation of BP. Thus, we assessed the relationship between RGS5 genetic polymorphisms and essential hypertension (EH) in Chinese. METHODS A total of 906 patients with EH and 894 age- and gender-matched normotensive (NT) controls were enrolled. Sixteen single nucleotide polymorphisms (SNPs) in RGS5 were genotyped. RESULTS There were no significant differences in the overall distributions of the genotypic and allelic frequencies for each SNPs between the two groups. However, in haplotype analysis, significant differences for the overall distributions were noted for four haplotypes constructed by five SNPs (rs12041294C/T, rs10917690A/G, rs10917695T/C, rs10917696T/C and rs2662774G/A), viz. H(2) (C-A-C-T-A) (p=0.038), H(5) (C-G-T-T-G) (p=0.001), H(6) (T-G-C-T-A) (p=0.021) and H(12) (T-A-T-T-G) (p=0.023). Serum concentrations of high- and low-density lipoprotein cholesterol showed significant associations with haplotypes revealed by a global test (p=0.0001 and 0.0309). CONCLUSIONS Multiple SNPs in combination in RGS5 may confer risk for hypertension. Our results also lend support for the effect of RGS5 SNPs on lipid metabolism. Further studies are warranted to find the causal SNPs in RGS5 for EH.
Collapse
Affiliation(s)
- Bing Xiao
- State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | | | | | | | | |
Collapse
|
35
|
Brinks HL, Eckhart AD. Regulation of GPCR signaling in hypertension. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1268-75. [PMID: 20060896 DOI: 10.1016/j.bbadis.2010.01.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/18/2009] [Accepted: 01/04/2010] [Indexed: 01/08/2023]
Abstract
Hypertension represents a complex, multifactorial disease and contributes to the major causes of morbidity and mortality in industrialized countries: ischemic and hypertensive heart disease, stroke, peripheral atherosclerosis and renal failure. Current pharmacological therapy of essential hypertension focuses on the regulation of vascular resistance by inhibition of hormones such as catecholamines and angiotensin II, blocking them from receptor activation. Interaction of G-protein coupled receptor kinases (GRKs) and regulator of G-protein signaling (RGS) proteins with activated G-protein coupled receptors (GPCRs) effect the phosphorylation state of the receptor leading to desensitization and can profoundly impair signaling. Defects in GPCR regulation via these modulators have severe consequences affecting GPCR-stimulated biological responses in pathological situations such as hypertension, since they fine-tune and balance the major transmitters of vessel constriction versus dilatation, thus representing valuable new targets for anti-hypertensive therapeutic strategies. Elevated levels of GRKs are associated with human hypertensive disease and are relevant modulators of blood pressure in animal models of hypertension. This implies therapeutic perspective in a disease that has a prevalence of 65million in the United States while being directly correlated with occurrence of major adverse cardiac and vascular events. Therefore, therapeutic approaches using the inhibition of GRKs to regulate GPCRs are intriguing novel targets for treatment of hypertension and heart failure.
Collapse
Affiliation(s)
- Henriette L Brinks
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|
36
|
Hendriks-Balk MC, Tjon-Atsoi M, Hajji N, Alewijnse AE, Peters SLM. LPS differentially affects vasoconstrictor responses: a potential role for RGS16? J Physiol Biochem 2009; 65:71-83. [PMID: 19588733 DOI: 10.1007/bf03165971] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The profound hypotension in septic shock patients is difficult to treat as it is accompanied by depressed constrictor responses to alpha1-adrenoceptor agonists. Bacterial lipopolysaccharide (LPS) is the main trigger for most of the cardiovascular alterations occurring in septic shock. In this study we investigated the effects of LPS exposure on vascular contractility in general and the role of Regulator of G protein Signalling (RGS) proteins in the LPS-induced vascular alterations. Exposure of rat aortic rings to various LPS concentrations (3, 10, 30 microg/ml) for 22 hours differentially affected agonist-induced contractile responses at four distinct G-protein coupled receptors (alpha1-adrenoceptors, angiotensin II, serotonin and endothelin-1 receptors). While the endothelin-1-induced contraction was unaffected by LPS pre-treatment, phenylephrine- and angiotensin II-induced contraction were significantly reduced whereas serotonin-induced contraction was significantly enhanced. Concomitantly, LPS treatment increased the RGS16 mRNA expression both in aortic rings and cultured vascular smooth muscle cells (VSMCs) but not that of RGS2, RGS3, RGS4 or RGS5. The significant increase in RGS16 mRNA expression in VSMCs by LPS was time- and concentration-dependent but independent of increased inducible NO synthase (iNOS) activity. The changes in RGS16 mRNA might contribute to the differential regulation of the contractile responses to vasoconstrictors upon LPS exposure.
Collapse
Affiliation(s)
- M C Hendriks-Balk
- Department of Pharmacology & Pharmacotherapy, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
37
|
Zhang H, Pakeerappa P, Lee HJ, Fisher SA. Induction of PDE5 and de-sensitization to endogenous NO signaling in a systemic resistance artery under altered blood flow. J Mol Cell Cardiol 2009; 47:57-65. [PMID: 19374906 PMCID: PMC2798812 DOI: 10.1016/j.yjmcc.2009.03.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 03/10/2009] [Accepted: 03/30/2009] [Indexed: 11/26/2022]
Abstract
In the classical pathway, the opposing activities of guanylyl cyclases (GC) and phosphodiesterases (PDE), and the effect of the cGMP-dependent protein kinase (cGK) on its targets, determine the biological responses to NO signaling. Here we tested the hypothesis that vascular dysfunction may be due to altered expression and activity of these effectors of NO signaling. Every other set of rat second order mesenteric resistance arteries (MA) were ligated, resulting in chronic low flow (LF) in the upstream MA1 and high flow (HF) in the adjacent MA1 without tissue ischemia. eNOS and iNOS were up-regulated in HF and LF MA1, respectively, in the sub-acute phase (four days) of vascular remodeling. The Day4 HF/LF MA1s were under increased control of NO as indicated by reduced sensitivity to the vasoconstrictor phenylephrine and its normalization with the NOS antagonist L-NAME. PDE5 mRNA and protein were also significantly up-regulated in the HF/LF MA1 with no change in sGC or PKG1, an effect that was dependent upon NO synthesis. The PDE5 inhibitor Sildenafil was several-fold more powerful in relaxing the HF/LF MA1s, and pre-treatment with Sildenafil uncovered an increased responsiveness of HF/LF MA1s to the NO donor DEA/NO. We conclude that induction of PDE5 de-sensitizes this systemic resistance artery to sustained NO signaling under chronic HF/LF. Treatment with PDE5 antagonists, in contrast to NO donors, may more specifically and effectively increase blood flow to chronically hypo-perfused tissues.
Collapse
Affiliation(s)
- Haiying Zhang
- Department of Medicine (Cardiology), Case Western Reserve School of Medicine, 4-533 Wolstein Research Bldg., 2103 Cornell Rd., Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
38
|
Jin Y, An X, Ye Z, Cully B, Wu J, Li J. RGS5, a hypoxia-inducible apoptotic stimulator in endothelial cells. J Biol Chem 2009; 284:23436-43. [PMID: 19564336 DOI: 10.1074/jbc.m109.032664] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endothelial cells rapidly respond to changes in oxygen homeostasis by regulating gene expression. Regulator of G protein signaling 5 (RGS5) is a negative regulator of G protein-mediated signaling that is strongly expressed in vessels during angiogenesis; however, the role of RGS5 in hypoxia has not been fully understood. Under hypoxic conditions, we found that the expression of RGS5, but not other RGS, was induced in human umbilical vein endothelial cells (HUVEC). RGS5 mRNA was increased when HUVEC were incubated with chemicals that stabilized hypoxia-inducible factor-1alpha (HIF-1alpha), whereas hypoxia-stimulated RGS5 promoter activity was absent in HIF-1beta(-/-) cells. Vascular endothelial growth factor (VEGF), which is regulated by HIF-1, did not appear to be involved in hypoxia-induced RGS5 expression; however, VEGF-mediated activation of p38 but not ERK1/2 was increased by RGS5. Overexpression of RGS5 in HUVEC exhibited a reduced growth rate without affecting the cell proliferation. Annexin V assay revealed that RGS5 induced apoptosis with significantly increased activation of caspase-3 and the Bax/Bcl-2 ratio. Small interfering RNA-specific for RGS5, caspase-3 inhibitor, and p38 inhibitor resulted in an attenuation of RGS5-stimulated apoptosis. Matrigel assay proved that RGS5 significantly impaired the angiogenic effect of VEGF and stimulated apoptosis in vivo. We concluded that RGS5 is a novel HIF-1-dependent, hypoxia-induced gene that is involved in the induction of endothelial apoptosis. Moreover, RGS5 antagonizes the angiogenic effect of VEGF by increasing the activation of p38 signaling, suggesting that RGS5 could be an important target for apoptotic therapy.
Collapse
Affiliation(s)
- Yi Jin
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | | | | | | | | | | |
Collapse
|
39
|
McGrath MF, de Bold AJ. Transcriptional analysis of the mammalian heart with special reference to its endocrine function. BMC Genomics 2009; 10:254. [PMID: 19486520 PMCID: PMC2694839 DOI: 10.1186/1471-2164-10-254] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 06/01/2009] [Indexed: 12/19/2022] Open
Abstract
Background Pharmacological and gene ablation studies have demonstrated the crucial role of the endocrine function of the heart as mediated by the polypeptide hormones ANF and BNP in the maintenance of cardiovascular homeostasis. The importance of these studies lies on the fact that hypertension and chronic congestive heart failure are clinical entities that may be regarded as states of relative deficiency of ANF and BNP. These hormones are produced by the atrial muscle cells (cardiocytes), which display a dual secretory/muscle phenotype. In contrast, ventricular cardiocytes display mainly a muscle phenotype. Comparatively little information is available regarding the genetic background for this important phenotypic difference with particular reference to the endocrine function of the heart. We postulated that comparison of gene expression profiles between atrial and ventricular muscles would help identify gene transcripts that underlie the phenotypic differences associated with the endocrine function of the heart. Results Comparison of gene expression profiles in the rat heart revealed a total of 1415 differentially expressed genes between the atria and ventricles based on a 1.8 fold cut-off. The identification of numerous chamber specific transcripts, such as ANF for the atria and Irx4 for the ventricles among several others, support the soundness of the GeneChip data and demonstrates that the differences in gene expression profiles observed between the atrial and ventricular tissues were not spurious in nature. Pathway analysis revealed unique expression profiles in the atria for G protein signaling that included Gαo1, Gγ2 and Gγ3, AGS1, RGS2, and RGS6 and the related K+ channels GIRK1 and GIRK4. Transcripts involved in vesicle trafficking, hormone secretion as well as mechanosensors (e.g. the potassium channel TREK-1) were identified in relationship to the synthesis, storage and secretion of hormones. Conclusion The data developed in this investigation describes for the first time data on gene expression particularly centred on the secretory function of the heart. This provides for a rational approach in the investigation of determinants of the endocrine of the heart in health and disease.
Collapse
Affiliation(s)
- Monica Forero McGrath
- Department of Cellular Molecular Medicine, Faculty of Medicine, Cardiovascular Endocrinology Laboratory, University of Ottawa Heart Institute, Ottawa, Canada.
| | | |
Collapse
|
40
|
Schneider EH, Seifert R. Histamine H(4) receptor-RGS fusion proteins expressed in Sf9 insect cells: a sensitive and reliable approach for the functional characterization of histamine H(4) receptor ligands. Biochem Pharmacol 2009; 78:607-16. [PMID: 19464266 DOI: 10.1016/j.bcp.2009.05.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 05/08/2009] [Accepted: 05/11/2009] [Indexed: 11/16/2022]
Abstract
The human histamine H(4) receptor (hH(4)R), co-expressed with Galpha(i2) and Gbeta(1)gamma(2) in Sf9 cells, is highly constitutively active. In the steady-state GTPase assay, the full agonist histamine (HA) induces only a relatively small signal (approximately 20-30%), resulting in a low signal-to background ratio. In order to improve this system for ligand screening purposes, the effects of the regulators of G-protein signaling (RGS) RGS4 and RGS19 (GAIP) were investigated. RGS4 and GAIP were fused to the C-terminus of hH(4)R or co-expressed with non-fused hH(4)R, always combined with Galpha(i2) and Gbeta(1)gamma(2). The non-fused RGS proteins did not significantly increase the relative effect of HA. With the hH(4)R-RGS4 fusion protein the absolute GTPase activities, but not the relative HA-induced signal were increased. Fusion of hH(4)R with GAIP caused a selective increase of the HA signal, resulting in an enhanced signal-to-noise ratio. A detailed characterization of the hH(4)R-GAIP fusion protein (co-expressed with Galpha(i2) and Gbeta(1)gamma(2)) and a comparison with the data obtained for the non-fused hH(4)R (co-expressed with Galpha(i2) and Gbeta(1)gamma(2)) led to the following results: (i) the relative agonist- and inverse agonist-induced signals at hH(4)R-GAIP are markedly increased. (ii) Compared to the wild-type hH(4)R, standard ligands show unaltered potencies and efficacies at hH(4)R-GAIP. (iii) Like hH(4)R, hH(4)R-GAIP shows high and NaCl-resistant constitutive activity. (iv) hH(4)R-GAIP shows the same G-protein selectivity profile as the non-fused hH(4)R. Collectively, hH(4)R-GAIP provides a sensitive test system for the characterization of hH(4)R ligands and can replace the non-fused hH(4)R in steady-state GTPase assays.
Collapse
Affiliation(s)
- Erich H Schneider
- University of Regensburg, Department of Pharmacology and Toxicology, Regensburg, Germany.
| | | |
Collapse
|
41
|
Lelonek M, Pietrucha T, Matyjaszczyk M, Goch JH. Genetic insight into syncopal tilted population with severe clinical presentation. Auton Neurosci 2009; 147:97-100. [PMID: 19243996 DOI: 10.1016/j.autneu.2009.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 01/26/2009] [Accepted: 01/28/2009] [Indexed: 11/24/2022]
Abstract
UNLABELLED An impairment of cardiovascular reflexes may be the result of functional alterations in the G proteins intracellular signaling produced by functional genes' polymorphisms. The aim was to evaluate the relationships between single nucleotide polymorphisms in genes encoding G-proteins signaling pathways and syncopal patients with severe clinical manifestation. METHODS AND RESULTS From 307 syncopal patients free from any other diseases 83 (27%) had at least one malignant episode of syncope with a significant injury as fractures. There was 1.9 malignant spells per patient. All patients were tilted and genotyped by polymerase chain reaction followed by restriction fragment length polymorphism method. 74 healthy volunteers with negative history of syncope constituted the control group were also genotyped. Following polymorphisms were detected: C393T in gene encoding the alfa-subunit of Gs-protein (GNAS1), C825T of gene for G-protein beta 3 subunit (GNB3) and C1114G for the gene of cardiac regulator of G-protein signaling (RGS2). We found an association with lower risk of malignant syncope in positive tilting patients during passive phase of the test compared to NTG-enhanced (OR 0.38; 95% CI 0.15-0.95; P=0.04). No difference between healthy controls and patients in the alleles frequency was found (P>0.05). Neither the 393T allele of GNAS1 and 825T allele of GNB3 nor 1114G allele of RGS2 was associated with enhanced risk of severe clinical manifestation (P>0.05). CONCLUSIONS The studied single nucleotide polymorphisms of genes encoding G-proteins signaling pathways seem to be not connected with the severe clinical manifestation of syncope.
Collapse
Affiliation(s)
- Malgorzata Lelonek
- Department of Cardiology, Chair of Cardiology and Cardiac Surgery, Medical University of Lodz, Poland.
| | | | | | | |
Collapse
|
42
|
Polymorphism C1114G of gene encoding the cardiac regulator of G-protein signaling 2 may be associated with number of episodes of neurally mediated syncope. Arch Med Res 2009; 40:191-5. [PMID: 19427970 DOI: 10.1016/j.arcmed.2009.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 01/14/2009] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIMS The cardiac regulator of G-protein signaling 2 (RGS2) negatively regulates G-protein-coupled receptor signaling. The C1114G polymorphism reduces RGS2 gene expression. This molecular disorder may be one of the important factors influencing progress of neurally mediated syncope. The aim of the study was to evaluate the association between C1114G RGS2 polymorphism and tilting results and number of syncope episodes in patients with no other diseases. METHODS Of 214 tilted patients (39% males, 39.7 +/- 17.1 years of age), genomic DNA was extracted from cellular blood components. C1114G RGS2 polymorphism was diagnosed by designed primers. Clinical variables and genetic traits were introduced into multivariate stepwise regression. Analysis was performed as follows: positive tilting n = 145 vs. negative n = 69, positive passive n = 49 vs. nitroglycerin (NTG)-positive n = 96, dominant vasodepressive n = 111 vs. cardioinhibition n = 34; and in number of syncope groups with cut-off >or=10 vs. <10. RESULTS No relationship was found between the studied polymorphism and outcome of tilting (p >0.05). In multivariate regression model, homozygosity G/G 1114 RGS2 was the only variable associated with a reduced number of episodes of syncope (95% CI 2.3-10.9; p = 0.04). CONCLUSIONS Our preliminary results suggest the association of G/G 1114 RGS2 genotype with the number of episodes of neurally mediated syncope. Detailed molecular mechanism of the influence of the studied polymorphism on syncopal number is probably associated with the reduced expression of RGS2 gene.
Collapse
|
43
|
Lelonek M, Pietrucha T, Matyjaszczyk M, Goch JH. A novel approach to syncopal patients: association analysis of polymorphisms in G-protein genes and tilt outcome. Europace 2009; 11:89-93. [PMID: 19088365 DOI: 10.1093/europace/eun277] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AIMS G-proteins signal transduction pathways play a basic role in cardiovascular reflexes. We hypothesized that the predisposition to reflex-mediated syncope may be associated with genetic variations in G-protein genes. The aim of this study was to evaluate the effect of three single-nucleotide polymorphisms in G-protein genes on tilting outcome in syncopal patients. METHODS AND RESULTS A total of 217 syncopal patients free from any other disease were genotyped and examined related to tilting results. Genotyping was performed by polymerase chain reaction followed by restriction fragment length polymorphism in gene encoding the Gs-protein alpha-subunit (polymorphism C393T), the G-protein beta 3 subunit--GNB3 (polymorphism C825T)--and for the cardiac regulator of G-protein signalling RGS2 (polymorphism C1114G). In multivariate logistic regression analysis, the homozygotes 825TT GNB3 (OR 0.37; 95% CI 0.14-0.97; P < 0.05) and body mass index (OR 0.87; 95% CI 0.78-0.97; P = 0.005) were independently associated with a lower chance of positive tilting results. No relationship was found between Vasovagal Syncope International Study type of syncope and the studied genotypes or the carriage of the polymorphic alleles. CONCLUSIONS An association between tilting results and C825T GNB3 polymorphism in syncopal patients was found. The syncopal homozygotes 825TT GNB3 had a significantly lower chance of syncope during tilt testing.
Collapse
Affiliation(s)
- Malgorzata Lelonek
- Department of Cardiology, Medical University of Lodz, Sterling Str. 1/3, 91-425 Lodz, Poland.
| | | | | | | |
Collapse
|
44
|
Hendriks-Balk MC, Hajji N, van Loenen PB, Michel MC, Peters SLM, Alewijnse AE. Sphingosine-1-phosphate regulates RGS2 and RGS16 mRNA expression in vascular smooth muscle cells. Eur J Pharmacol 2009; 606:25-31. [PMID: 19374869 DOI: 10.1016/j.ejphar.2009.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/19/2008] [Accepted: 01/09/2009] [Indexed: 11/28/2022]
Abstract
Regulator of G protein signalling (RGS) protein expression is altered under growth promoting conditions in vascular smooth muscle cells (VSMCs). Since sphingosine-1-phosphate (S1P) is an important growth stimulatory factor, we investigated whether stimulation of VSMCs with S1P results in alterations in mRNA expression levels of several RGS proteins and which signalling components are involved. VSMCs were stimulated with S1P and mRNA expression levels of RGS2, RGS3, RGS4, RGS5 and RGS16 were measured by real-time polymerase chain reaction. S1P caused a time-dependent up-regulation of RGS2 and RGS16 mRNA expression. FTY720-P, a S1P(1)/S1P(3-5) agonist, did not regulate RGS2 mRNA levels although it did up-regulate RGS16 mRNA expression. Pertussis toxin treatment revealed that the S1P-induced RGS16 expression was G(i/o)-dependent whereas up-regulation of RGS2 mRNA was not. Phosphatidylinositol 3-kinase, protein kinase C and mitogen-activated protein kinase kinase apparently were not involved in the S1P-induced up-regulation of both RGS proteins. The present study demonstrates that S1P induces RGS2 and RGS16 mRNA expression but uses distinct S1P receptor subtypes and signalling pathways to regulate expression of these RGS proteins.
Collapse
|
45
|
Tirziu D, Simons M. Endothelium-driven myocardial growth or nitric oxide at the crossroads. Trends Cardiovasc Med 2008; 18:299-305. [PMID: 19345317 PMCID: PMC2692333 DOI: 10.1016/j.tcm.2009.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/19/2009] [Accepted: 01/21/2009] [Indexed: 12/12/2022]
Abstract
Endothelium lining the coronary vasculature and the heart chambers is a dynamic sensor that serves a variety of functions including bidirectional communications with cardiac myocytes. Among endothelium-released factors, nitric oxide exerts multifactorial effects on various cell types in the heart and may play a role in growth of the vasculature and myocardial hypertrophy. This review summarizes new data regarding the endothelium-to-myocyte signaling focusing on its role in regulation of cardiac hypertrophy through a nitric-oxide-mediated paracrine signal.
Collapse
Affiliation(s)
- Daniela Tirziu
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
46
|
Anger T, Grebe N, Osinski D, Stelzer N, Carson W, Daniel WG, Hoeher M, Garlichs CD. Role of endogenous RGS proteins on endothelial ERK 1/2 activation. Exp Mol Pathol 2008; 85:165-73. [PMID: 18977218 DOI: 10.1016/j.yexmp.2008.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Accepted: 09/23/2008] [Indexed: 11/27/2022]
Abstract
Endothelial cells are maintaining atherosclerotic signaling mediated by Extracellular Regulated Kinases 1 and 2 (ERK). Signaling gets activated upon stimulation of G protein-coupled receptors mediated by G(q) and G(i/o) proteins subjected to regulation by RGS proteins. The goal of the study was to delineate the specificity of RGS proteins modulating induced ERK phosphorylation. We used stimulated HUVEC, silenced specifically RGS proteins and compared assessed ERK 1/2 activation with immunohistochemical stainings on atherosclerotic plaques. Increased ERK phosphorylation was detected upon stimulation with Phenylephrine (2.6+/-0.1 times over basal), Endothelin-1 (1.8+/-0.2), Dopamine (5.1+/-0.2), TNF (9.8+/-0.7) or IL-4 (3.1+/-0.3). RGS silencing increased activation of ERK 1/2: Phen (RGS3, 5), ET-1 (RGS3, 4), Dopa (RGS3), TNF (RGS2, 3, 4) or IL-4 (RGS2, 3, 4). Immunohistochemically, increased ERK activation was detected on atherosclerotic plaques. This data supports the role of RGS proteins on ERK activation in human atherosclerosis which identifies RGS proteins as new therapeutical targets.
Collapse
Affiliation(s)
- Thomas Anger
- Department for Cardiology, Friedrich-Alexander University of Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Statins stimulate RGS-regulated ERK 1/2 activation in human calcified and stenotic aortic valves. Exp Mol Pathol 2008; 85:101-11. [DOI: 10.1016/j.yexmp.2008.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 06/27/2008] [Indexed: 12/30/2022]
|
48
|
Abstract
Hypertension is a prevalent condition in the developed world and disease severity is directly correlated with additional cardiovascular complications. It is estimated that 30% of the adult population in the United States has hypertension, which is classified as a systolic blood pressure > or =140 mmHg and/or a diastolic blood pressure > or =90 mmHg. A prolonged increase in afterload ultimately leads to congestive heart failure in the majority of cases. Currently, medication designed to treat hypertension is inadequate, thus new therapies need to be explored. Blood pressure is tightly regulated by blood vessel radius, which is established by hormones and/or peptides binding to GPCRs (G-protein-coupled receptors). Catecholamines and peptide hormones, such as AngII (angiotensin II), are elevated in hypertension and, therefore, signalling by these GPCRs is increased. Their signalling is tightly controlled by a class of proteins, the GRKs (GPCR kinases). Elevated levels of either GRK2 or GRK5 in both the lymphocytes and VSM (vascular smooth muscle) are associated with human hypertension and animal models of the disease. The focus of the present review is on the role GRKs, and their regulation of GPCRs, play in high blood pressure.
Collapse
|
49
|
Cifelli C, Rose RA, Zhang H, Voigtlaender-Bolz J, Bolz SS, Backx PH, Heximer SP. RGS4 regulates parasympathetic signaling and heart rate control in the sinoatrial node. Circ Res 2008; 103:527-35. [PMID: 18658048 DOI: 10.1161/circresaha.108.180984] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heart rate is controlled by the opposing activities of sympathetic and parasympathetic inputs to pacemaker myocytes in the sinoatrial node (SAN). Parasympathetic activity on nodal myocytes is mediated by acetylcholine-dependent stimulation of M(2) muscarinic receptors and activation of Galpha(i/o) signaling. Although regulators of G protein signaling (RGS) proteins are potent inhibitors of Galpha(i/o) signaling in many tissues, the RGS protein(s) that regulate parasympathetic tone in the SAN are unknown. Our results demonstrate that RGS4 mRNA levels are higher in the SAN compared to right atrium. Conscious freely moving RGS4-null mice showed increased bradycardic responses to parasympathetic agonists compared to wild-type animals. Moreover, anesthetized RGS4-null mice had lower baseline heart rates and greater heart rate increases following atropine administration. Retrograde-perfused hearts from RGS4-null mice showed enhanced negative chronotropic responses to carbachol, whereas SAN myocytes showed greater sensitivity to carbachol-mediated reduction in the action potential firing rate. Finally, RGS4-null SAN cells showed decreased levels of G protein-coupled inward rectifying potassium (GIRK) channel desensitization and altered modulation of acetylcholine-sensitive potassium current (I(KACh)) kinetics following carbachol stimulation. Taken together, our studies establish that RGS4 plays an important role in regulating sinus rhythm by inhibiting parasympathetic signaling and I(KACh) activity.
Collapse
Affiliation(s)
- Carlo Cifelli
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | |
Collapse
|
50
|
Yao M, Huang Y, Shioi K, Hattori K, Murakami T, Sano F, Baba M, Kondo K, Nakaigawa N, Kishida T, Nagashima Y, Yamada-Okabe H, Kubota Y. A three-gene expression signature model to predict clinical outcome of clear cell renal carcinoma. Int J Cancer 2008; 123:1126-32. [PMID: 18546273 DOI: 10.1002/ijc.23641] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Renal cell carcinomas (RCCs) are morphologically and genetically heterogeneous tumors and present diverse clinical courses. We developed a scoring system using levels of gene expression to predict the outcome for clear cell RCC patients. We selected differentially expressed genes from the DNA microarray data of 27 clear cell RCCs; 16 were metastasis phenotypes and 11 were not. We compared the selected gene set with previously published data and identified 33 overlapping genes closely associated with patient outcome. We selected the 12 top-ranked genes and confirmed the level of expression using quantitative reverse transcriptase PCR. Multivariate Cox analysis revealed that 3 genes-vascular cell adhesion molecule 1 (VCAM1), endothelin receptor type B (EDNRB), and regulator of G-protein signaling 5 (RGS5)-were the most tightly associated with cancer-specific survival and that higher expression of the 3 genes correlated with better outcome. A formula for an outcome predictor was generated from integration of the measurements of the expression levels of the 3 genes. Multivariate Cox models combined with a split-sample cross-validation method in a cohort of 386 clear cell RCC patients demonstrated that the derived score for outcome prediction was an independent predictor in cancer-specific survival tests. The accuracy of the prediction of cancer death after nephrectomy was improved by the inclusion of this score in receiver operating characteristic analysis from multivariate logistic regression models, suggesting that a scoring system based on the expression levels of these 3 genes is useful in the prediction of survival for patients with clear cell RCC.
Collapse
Affiliation(s)
- Masahiro Yao
- Department of Urology and Molecular Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|