1
|
Oliveira AL, de Oliveira MG, Mónica FZ, Antunes E. Methylglyoxal and Advanced Glycation End Products (AGEs): Targets for the Prevention and Treatment of Diabetes-Associated Bladder Dysfunction? Biomedicines 2024; 12:939. [PMID: 38790901 PMCID: PMC11118115 DOI: 10.3390/biomedicines12050939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
Methylglyoxal (MGO) is a highly reactive α-dicarbonyl compound formed endogenously from 3-carbon glycolytic intermediates. Methylglyoxal accumulated in plasma and urine of hyperglycemic and diabetic individuals acts as a potent peptide glycation molecule, giving rise to advanced glycation end products (AGEs) like arginine-derived hydroimidazolone (MG-H1) and carboxyethyl-lysine (CEL). Methylglyoxal-derived AGEs exert their effects mostly via activation of RAGE, a cell surface receptor that initiates multiple intracellular signaling pathways, favoring a pro-oxidant environment through NADPH oxidase activation and generation of high levels of reactive oxygen species (ROS). Diabetic bladder dysfunction is a bothersome urological complication in patients with poorly controlled diabetes mellitus and may comprise overactive bladder, urge incontinence, poor emptying, dribbling, incomplete emptying of the bladder, and urinary retention. Preclinical models of type 1 and type 2 diabetes have further confirmed the relationship between diabetes and voiding dysfunction. Interestingly, healthy mice supplemented with MGO for prolonged periods exhibit in vivo and in vitro bladder dysfunction, which is accompanied by increased AGE formation and RAGE expression, as well as by ROS overproduction in bladder tissues. Drugs reported to scavenge MGO and to inactivate AGEs like metformin, polyphenols, and alagebrium (ALT-711) have shown favorable outcomes on bladder dysfunction in diabetic obese leptin-deficient and MGO-exposed mice. Therefore, MGO, AGEs, and RAGE levels may be critically involved in the pathogenesis of bladder dysfunction in diabetic individuals. However, there are no clinical trials designed to test drugs that selectively inhibit the MGO-AGEs-RAGE signaling, aiming to reduce the manifestations of diabetes-associated bladder dysfunction. This review summarizes the current literature on the role of MGO-AGEs-RAGE-ROS axis in diabetes-associated bladder dysfunction. Drugs that directly inactivate MGO and ameliorate bladder dysfunction are also reviewed here.
Collapse
Affiliation(s)
| | | | | | - Edson Antunes
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (A.L.O.); (M.G.d.O.); (F.Z.M.)
| |
Collapse
|
2
|
Kwon J, Kim DY, Cho KJ, Hashimoto M, Matsuoka K, Kamijo T, Wang Z, Karnup S, Robertson AM, Tyagi P, Yoshimura N. Pathophysiology of Overactive Bladder and Pharmacologic Treatments Including β3-Adrenoceptor Agonists -Basic Research Perspectives. Int Neurourol J 2024; 28:12-33. [PMID: 38461853 DOI: 10.5213/inj.2448002.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/10/2024] [Indexed: 03/12/2024] Open
Abstract
Overactive bladder (OAB) is a symptom-based syndrome defined by urinary urgency, frequency, and nocturia with or without urge incontinence. The causative pathology is diverse; including bladder outlet obstruction (BOO), bladder ischemia, aging, metabolic syndrome, psychological stress, affective disorder, urinary microbiome, localized and systemic inflammatory responses, etc. Several hypotheses have been suggested as mechanisms of OAB generation; among them, neurogenic, myogenic, and urothelial mechanisms are well-known hypotheses. Also, a series of local signals called autonomous myogenic contraction, micromotion, or afferent noises, which can occur during bladder filling, may be induced by the leak of acetylcholine (ACh) or urothelial release of adenosine triphosphate (ATP). They can be transmitted to the central nervous system through afferent fibers to trigger coordinated urgency-related detrusor contractions. Antimuscarinics, commonly known to induce smooth muscle relaxation by competitive blockage of muscarinic receptors in the parasympathetic postganglionic nerve, have a minimal effect on detrusor contraction within therapeutic doses. In fact, they have a predominant role in preventing signals in the afferent nerve transmission process. β3-adrenergic receptor (AR) agonists inhibit afferent signals by predominant inhibition of mechanosensitive Aδ-fibers in the normal bladder. However, in pathologic conditions such as spinal cord injury, it seems to inhibit capsaicin-sensitive C-fibers. Particularly, mirabegron, a β3-agonist, prevents ACh release in the BOO-induced detrusor overactivity model by parasympathetic prejunctional mechanisms. A recent study also revealed that vibegron may have 2 mechanisms of action: inhibition of ACh from cholinergic efferent nerves in the detrusor and afferent inhibition via urothelial β3-AR.
Collapse
Affiliation(s)
- Joonbeom Kwon
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Leaders Urology Clinic, Daegu, Korea
| | - Duk Yoon Kim
- Department of Urology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Kang Jun Cho
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mamoru Hashimoto
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kanako Matsuoka
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tadanobu Kamijo
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sergei Karnup
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anne M Robertson
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh School of Bioengineering, Pittsburgh, PA, USA
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Feng S, Yang Y, Yu Z, Bi Y. Folic acid supplementation rescues bladder injury in fetal rats with myelomeningocele. Birth Defects Res 2023; 115:1685-1692. [PMID: 37665042 DOI: 10.1002/bdr2.2243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/02/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Bladder dysfunction has been linked to the progression of renal failure in children with neurogenic bladder (NB) dysfunction. The purpose of this study was to determine whether bladder injuries in fetal rats with myelomeningocele (MMC) may be treated with folic acid. METHODS Pregnant Sprague-Dawley rats were randomly divided into three groups. On the 10th day of gestation, pregnant rats were intragastrically injected with all-trans retinoic acid (ATRA) (60 mg/kg) to induce MMC fetal rats. The same amount of olive oil was put into the control group to create normal fetal rats. The rats in the rescue group were given folic acid (40 mg/kg) by gavage 0.5 and 12 hr after ATRA therapy. Bladders were obtained via cesarean section on embryonic day E20.5 and examined for MMC. The histology of the fetuses was examined using hematoxylin and eosin staining, and immunohistochemistry (IHC) was utilized to determine the expression of α-smooth muscle actin (α-SMA) and neuron-specific nuclear-binding protein (NeuN). Furthermore, the levels of neuromuscular development-related and apoptotic proteins were determined by western blotting. RESULTS The incidence of MMC in the model group was 60.6% (20/33) while it was much lower in the rescue group (21.4%). In comparison to the model group, the weight and crown-rump length of the fetal rats in the rescue group were significantly improved. IHC revealed that there was no significant difference in the expression of α-SMA and NeuN between the control and ATRA groups, while the expression levels decreased significantly in the MMC group. Western blot analysis showed that there was no significant difference between the model and ATRA groups, but the expression of the α-SMA protein and the β3-tubulin was much lower in the MMC group than in the control group. After the administration of folic acid, the α-SMA and β3-tubulin proteins considerably increased in the folic acid-rescued MMC group and folic acid-rescued ATRA group. Meanwhile, in the control group, the expression of cleaved caspase-3 in the bladder tissue was significantly higher, and the expression of poly (ADP-ribose) polymerase (PARP) protein was significantly lower compared to the control group. Folic acid therapy reduced cleaved caspase-3 expression while increasing PARP expression in comparison to the MMC group. CONCLUSIONS NB in MMC fetal rats is associated with the reduction of bladder nerve and smooth muscle-related protein synthesis. However, folic acid therapy can help improve these functional deficiencies. Folic acid also exhibits strong anti-apoptotic properties against NB in MMC fetal rats.
Collapse
Affiliation(s)
- Shaoguang Feng
- Department of Urology, Children's Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
- Department of Pediatric Surgery, Hangzhou Children's Hospital, Hangzhou, People's Republic of China
| | - Yicheng Yang
- Department of Urology, Children's Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Zhechen Yu
- Department of Urology, Children's Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Yunli Bi
- Department of Pediatric Urology, Children's Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
4
|
Barrese V, Wehbe Z, Linden A, McDowell S, Forrester E, Povstyan O, McCloskey KD, Greenwood IA. Key role for Kv11.1 (ether-a-go-go related gene) channels in rat bladder contractility. Physiol Rep 2023; 11:e15583. [PMID: 36750122 PMCID: PMC9904964 DOI: 10.14814/phy2.15583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 06/01/2023] Open
Abstract
In addition, to their established role in cardiac myocytes and neurons, ion channels encoded by ether-a-go-go-related genes (ERG1-3 or kcnh2,3 and 6) (kcnh2) are functionally relevant in phasic smooth muscle. The aim of the study was to determine the expression and functional impact of ERG expression products in rat urinary bladder smooth muscle using quantitative polymerase chain reaction, immunocytochemistry, whole-cell patch-clamp and isometric tension recording. kcnh2 was expressed in rat bladder, whereas kcnh6 and kcnh3 expression were negligible. Immunofluorescence for the kcnh2 expression product Kv11.1 was detected in the membrane of isolated smooth muscle cells. Potassium currents with voltage-dependent characteristics consistent with Kv11.1 channels and sensitive to the specific blocker E4031 (1 μM) were recorded from isolated detrusor smooth muscles. Disabling Kv11.1 activity with specific blockers (E4031 and dofetilide, 0.2-20 μM) augmented spontaneous contractions to a greater extent than BKCa channel blockers, enhanced carbachol-driven activity, increased nerve stimulation-mediated contractions, and impaired β-adrenoceptor-mediated inhibitory responses. These data establish for the first time that Kv11.1 channels are key determinants of contractility in rat detrusor smooth muscle.
Collapse
Affiliation(s)
- Vincenzo Barrese
- Vascular Biology Research CentreMolecular and Clinical Sciences Research Institute, St George's University of LondonLondonUK
- Department of Neuroscience, Reproductive Sciences and DentistryUniversity of Naples Federico IINaplesItaly
| | - Zena Wehbe
- Vascular Biology Research CentreMolecular and Clinical Sciences Research Institute, St George's University of LondonLondonUK
| | - Alice Linden
- Vascular Biology Research CentreMolecular and Clinical Sciences Research Institute, St George's University of LondonLondonUK
| | - Sarah McDowell
- Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Elizabeth Forrester
- Vascular Biology Research CentreMolecular and Clinical Sciences Research Institute, St George's University of LondonLondonUK
| | | | - Karen D. McCloskey
- Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Iain A. Greenwood
- Vascular Biology Research CentreMolecular and Clinical Sciences Research Institute, St George's University of LondonLondonUK
| |
Collapse
|
5
|
Molecular and Morphological Characteristics of the De-Obstructed Rat Urinary Bladder—An Update. Int J Mol Sci 2022; 23:ijms231911330. [PMID: 36232634 PMCID: PMC9569427 DOI: 10.3390/ijms231911330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
Many patients with outlet obstruction secondary to prostatic enlargement have lower urinary tract symptoms (LUTSs) and an increased frequency of micturition. The standard treatment is transurethral resection of the prostate (TURP), which alleviates obstruction and symptoms. However, after TURP, 20–40 percent of patients continue to experience LUTSs. The aim of the present study in rats was to identify the mechanisms that do not normalize after the removal of the obstruction and that could explain the persisting symptoms. We had microarray data from control, obstructed, and de-obstructed female rat bladders, which made it possible to study 14,553 mRNA expressions. We also had a bank of electron micrographs from similar detrusors. Microarrays: There were significant differences between the control and obstructed bladders for 1111 mRNAs. The obstructed and de-obstructed bladders differed significantly for 1059 mRNAs. The controls and the de-obstructed bladders differed significantly for 798 mRNAs. We observed many mRNAs that were increased in the obstructed bladder and then decreased to control levels after de-obstruction, and many mRNAs that were decreased in the obstructed bladder and then increased following de-obstruction. mRNAs that were significantly higher or lower in the de-obstructed bladder than in the control bladder were also found. Ultrastructure: The detrusor cells in the obstructed bladders had cross-sectional areas that were much larger than those in the controls. The control cells had smooth outlines and similar cross-sectional areas. The de-obstructed detrusor cells had larger cross-sectional areas than the controls, as well as corrugated surfaces. The cell areas varied, suggesting that the shrinkage of the de-obstructed cells was not even. We did not find any points of contact of the gap junction plaque type between the detrusor cells. There were abundant finger-like processes between the detrusor cells in the obstructed and in de-obstructed bladders, which were only occasionally found in the control detrusors. They are the only possible localization for gap junction channels. The de-obstructed rat bladder is not an organ with properties intermediate between those of the control and obstructed bladders. Instead, de-obstructed bladders have gene expressions, morphologies, and functional properties of the individual cells and their organization, which make them distinctly different from both control and obstructed bladders.
Collapse
|
6
|
Mora AG, Andrade DR, Janussi SC, Goncalves TT, Krikorian K, Priviero FBM, Claudino MA. Tadalafil treatment improves cardiac, renal and lower urinary tract dysfunctions in rats with heart failure. Life Sci 2022; 289:120237. [PMID: 34922942 DOI: 10.1016/j.lfs.2021.120237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 01/25/2023]
Abstract
Tadalafil, a phosphodiesterase-5 (PDE5) inhibitor, shown to exert a protection to heart failure (HF) associated damage or lower urinary tract symptoms (LUTS). Thus, we investigated the contribution of tadalafil chronic treatment in the alterations of LUTS in HF rats. Male rats were subjected to aortocaval fistula model for HF induction. Echocardiography, cystometric, renal function and redox cell balance, as well as concentration-response curves to carbachol, KCl, ATP and frequency-response curves to electrical field stimulation (EFS) were evaluated in Sham, HF, Tadalafil and HF-Tadalafil (12 weeks endpoint) groups. HF group to present increased in left-ventricle (LV) mass and in LV end-diastolic- and LV end-systolic volume, with a decreased ejection fraction. Tadalafil treatment was able to decrease in hypertrophy and improve the LV function restoring cardiac function. For micturition function (in vivo), HF animals shown an increase in basal pressure, threshold pressure, no-voiding contractions and decreased bladder capacity, being that the tadalafil treatment restored the cystometric parameters. Contractile mechanism response (in vitro) to carbachol, KCl, ATP and EFS in the detrusor muscles (DM) were increased in the HF group, when compared to Sham group. However, tadalafil treatment restored the DM hypercontractility in the HF animals. Moreover, renal function as well as the oxidative mechanism was impaired in the HF animals, and the tadalafil treatment improved all renal and oxidative parameters in HF group. Our data shown that tadalafil has potential as multi-therapeutic drug and may be used as a pharmacological strategy for the treatment of cardiovascular, renal and urinary dysfunctions associated with HF.
Collapse
Affiliation(s)
- Aline Goncalves Mora
- Laboratory of Multidisciplinary Research, São Francisco University Medical School, Bragança Paulista, SP, Brazil
| | - Douglas Rafael Andrade
- Laboratory of Multidisciplinary Research, São Francisco University Medical School, Bragança Paulista, SP, Brazil
| | - Sabrina C Janussi
- Laboratory of Multidisciplinary Research, São Francisco University Medical School, Bragança Paulista, SP, Brazil
| | - Tiago Tomazini Goncalves
- Laboratory of Multidisciplinary Research, São Francisco University Medical School, Bragança Paulista, SP, Brazil
| | - Karla Krikorian
- Laboratory of Multidisciplinary Research, São Francisco University Medical School, Bragança Paulista, SP, Brazil
| | - Fernanda B M Priviero
- Cardiovascular Translational Research Center and Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Mario Angelo Claudino
- Laboratory of Multidisciplinary Research, São Francisco University Medical School, Bragança Paulista, SP, Brazil.
| |
Collapse
|
7
|
De Rienzo G, Minafra P, Iliano E, Agrò EF, Serati M, Giammò A, Bianchi FP, Costantini E, Ditonno P, Italian Society of Urodynamics (SIUD). Evaluation of the effect of 100U of Onabotulinum toxin A on detrusor contractility in women with idiopathic OAB: A multicentre prospective study. Neurourol Urodyn 2022; 41:306-312. [PMID: 34664738 PMCID: PMC9297902 DOI: 10.1002/nau.24820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 01/22/2023]
Abstract
AIMS Intradetrusor injection of Onabotulinum Toxin A (BTX-A) is a third-line treatment for overactive bladder (OAB). Voiding dysfunction and the need for intermittent catheterization are potential complications, consequent to bladder contractility (BC) decrement. Primary aim: to evaluate BC variation after BTX-A detrusor injection in women with idiopathic OAB. METHODS A prospective multi-institutional observational study was conducted. Medical history, bladder diary, 24-h pad test, and invasive urodynamic parameters were recorded before and 4-6 weeks after BTX-A 100U administration. BC was measured as Modified Projected Isovolumetric Pressure (PIP1), that is, maximum flow rate (Qmax) + detrusor pressure at Qmax (PdetQmax). Continuous variables were expressed as median and interquartile range. We compared continuous variables using Wilcoxon test and proportions between two times with Fisher exact test. RESULTS No changes in PIP1 were observed (p > 0.05) in 45 women enrolled between January 2018 and September 2019. Median age was 54.6 years. At baseline, 91.1% had urge urinary incontinence, with 4.9 ± 2.6 daily pads used and a 24-h pad test of 205.4 ± 70.8 g. Baseline detrusor contractility was normal in all the patients. Postoperatively, an improvement in the 24-h pad test (p < 0.01), daily voids (p < 0.01), and nocturia (p < 0.01) occurred. Urodynamics pointed out a significant reduction of detrusor overactivity rate (p < 0.01) and an increase of median maximum cystometric capacity (p < 0.01). No difference was observed in median Qmax (p > 0.05), PdetQmax (p > 0.05), and PVR (p > 0.05). No patient needed postoperative catheterization. CONCLUSIONS The current series provides evidence that detrusor injection of botulinum toxin is an effective option for treating OAB, without causing voiding dysfunction and BC impairment.
Collapse
Affiliation(s)
- Gaetano De Rienzo
- Urology, Andrology, and Kidney Transplantation Unit, Department of Emergency and Organ TransplantationUniversity of Bari “Aldo Moro”BariItaly
| | | | - Ester Iliano
- Andrology and Urogynecology Clinic, Santa Maria Terni HospitalUniversity of PerugiaTerniItaly
| | | | - Maurizio Serati
- Department of Obstetrics and Gynecology, Del Ponte HospitalUniversity of InsubriaVareseItaly
| | - Alessandro Giammò
- CTO‐Spinal Cord Unit, Department of NeurourologyAOU Città della Salute e della Scienza di TorinoTurinItaly
| | | | - Elisabetta Costantini
- Andrology and Urogynecology Clinic, Santa Maria Terni HospitalUniversity of PerugiaTerniItaly
| | - Pasquale Ditonno
- Urology, Andrology, and Kidney Transplantation Unit, Department of Emergency and Organ TransplantationUniversity of Bari “Aldo Moro”BariItaly
- Urology UnitNational Cancer Institute IRCCS “Giovanni Paolo II”BariItaly
| | | |
Collapse
|
8
|
Qin C, Wang Y, Gao Y. Overactive Bladder Symptoms Within Nervous System: A Focus on Etiology. Front Physiol 2021; 12:747144. [PMID: 34955876 PMCID: PMC8703002 DOI: 10.3389/fphys.2021.747144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/16/2021] [Indexed: 12/02/2022] Open
Abstract
Overactive bladder (OAB) is a common debilitating condition characterized by urgency symptoms with detrimental effects on the quality of life and survival. The exact etiology of OAB is still enigmatic, and none of therapeutic approaches seems curative. OAB is generally regarded as a separate syndrome, whereas in clinic, OAB symptoms could be found in numerous diseases of other non-urogenital systems, particularly nervous system. The OAB symptoms in neurological diseases are often poorly recognized and inadequately treated. This review provided a comprehensive overview of recent findings related to the neurogenic OAB symptoms. Relevant neurological diseases could be mainly divided into seven kinds as follows: multiple sclerosis and related neuroinflammatory disorders, Parkinson's diseases, multiple system atrophy, spinal cord injury, dementia, peripheral neuropathy, and others. Concurrently, we also summarized the hypothetical reasonings and available animal models to elucidate the underlying mechanism of neurogenic OAB symptoms. This review highlighted the close association between OAB symptoms and neurological diseases and expanded the current knowledge of pathophysiological basis of OAB. This may increase the awareness of urological complaints in neurological disorders and inspire robust therapies with better outcomes.
Collapse
Affiliation(s)
| | | | - Yunliang Gao
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Singh I, Behera DP, T K A, Gupta S. Efficacy and safety of tamsulosin vs its combination with mirabegron in the management of lower urinary tract non-neurogenic overactive bladder symptoms (OABS) because of Benign Prostatic Enlargement (BPE)-An open label randomised controlled clinical study. Int J Clin Pract 2021; 75:e14184. [PMID: 33780106 DOI: 10.1111/ijcp.14184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 11/30/2022] Open
Abstract
PURPOSE The efficacy and safety of βeta-3 agonists (Mirabegron 50 mg) have been sparingly assessed in the published English literature. We aim to do an efficacy-safety analysis of Mirabegron-Tamsulosin combination therapy vs tamsulosin-placebo monotherapy in a select subset of medication virgin Benign Prostatic Enlargement (BPE) patients with coexisting predominant non-neurogenic overactive bladder symptoms (OABS). METHODS After prior written informed consent and IEC, 80 patients of uncomplicated BPE with coexisting non-neurogenic OABS and IPSS of >7 without contraindications to drug therapy were computer randomised/allocated to receive either[50 mg Mirabegron plus Tamsulosin 0.4 mg (Intervention arm-I)]or [Tamsulosin 0.4 mg plus capsule lactobacillus (Comparator arm-II)] once daily for 8 weeks. Efficacy was evaluated using the OABS Score (OABSS), mean change in nocturnal frequency (NF), PVR and IPSS, while safety was assessed by recording treatment emergent adverse events (TEAE). Follow-up visits were performed at second, fourth and eighth week. RESULTS Patient data in both groups were generally comparable with the exception of NF and IPSS storage sub score (IPSS-ss). Significant improvements were visualised in the eighth week primary endpoint total OABS sub score (OABSS-ss) in the combination group (P < .001).Similar significant improvements were seen with most secondary parameters such as the mean change in NF, IPSS, IPSS-ss, OABS-ss, voided volume, Qmax, and Quality of life index (QOL) (P < .001). No significant increase in PVR was observed in the Mirabegron arm and no patient developed urinary retention. The TEAE were minor, self-limiting and managed symptomatically without drug discontinuity. CONCLUSION Mirabegron can be significantly efficacious and safe in ameliorating non-neurogenic OABS induced by BPE vs placebo by initiating combination therapy from the start as opposed to the usual 'add on therapy' protocol. This combination appeared to be superior in terms of overall safety, minimal side effects, better compliance and tolerability vs Tamsulosin monotherapy in select BPE patients with predominant non-neurogenic OABS.
Collapse
Affiliation(s)
- Iqbal Singh
- Department of Surgery (Urology), University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi, India
| | - Dibya P Behera
- Department of Surgery, University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi, India
| | - Aravind T K
- Department of Surgery, University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi, India
| | - Sanjay Gupta
- Department of Surgery, University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi, India
| |
Collapse
|
10
|
Borsdorf M, Böl M, Siebert T. Influence of layer separation on the determination of stomach smooth muscle properties. Pflugers Arch 2021; 473:911-920. [PMID: 33900446 PMCID: PMC8164583 DOI: 10.1007/s00424-021-02568-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 01/29/2023]
Abstract
Uniaxial tensile experiments are a standard method to determine the contractile properties of smooth muscles. Smooth muscle strips from organs of the urogenital and gastrointestinal tract contain multiple muscle layers with different muscle fiber orientations, which are frequently not separated for the experiments. During strip activation, these muscle fibers contract in deviant orientations from the force-measuring axis, affecting the biomechanical characteristics of the tissue strips. This study aimed to investigate the influence of muscle layer separation on the determination of smooth muscle properties. Smooth muscle strips, consisting of longitudinal and circumferential muscle layers (whole-muscle strips [WMS]), and smooth muscle strips, consisting of only the circumferential muscle layer (separated layer strips [SLS]), have been prepared from the fundus of the porcine stomach. Strips were mounted with muscle fibers of the circumferential layer inline with the force-measuring axis of the uniaxial testing setup. The force-length (FLR) and force-velocity relationships (FVR) were determined through a series of isometric and isotonic contractions, respectively. Muscle layer separation revealed no changes in the FLR. However, the SLS exhibited a higher maximal shortening velocity and a lower curvature factor than WMS. During WMS activation, the transversally oriented muscle fibers of the longitudinal layer shortened, resulting in a narrowing of this layer. Expecting volume constancy of muscle tissue, this narrowing leads to a lengthening of the longitudinal layer, which counteracted the shortening of the circumferential layer during isotonic contractions. Consequently, the shortening velocities of the WMS were decreased significantly. This effect was stronger at high shortening velocities.
Collapse
Affiliation(s)
- Mischa Borsdorf
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany.
| | - Markus Böl
- Institute of Mechanics and Adaptronics, Department of Mechanical Engineering, Braunschweig University of Technology, Braunschweig, Germany
| | - Tobias Siebert
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
11
|
Malysz J, Petkov GV. Detrusor Smooth Muscle K V7 Channels: Emerging New Regulators of Urinary Bladder Function. Front Physiol 2020; 11:1004. [PMID: 33041840 PMCID: PMC7526500 DOI: 10.3389/fphys.2020.01004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/23/2020] [Indexed: 01/21/2023] Open
Abstract
Relaxation and contraction of the urinary bladder smooth muscle, also known as the detrusor smooth muscle (DSM), facilitate the micturition cycle. DSM contractility depends on cell excitability, which is established by the synchronized activity of multiple diverse ion channels. K+ channels, the largest family of channels, control DSM excitability by maintaining the resting membrane potential and shaping the action potentials that cause the phasic contractions. Among the members of the voltage-gated K+ (KV) channel superfamily, KV type 7 (KV7) channels - KV7.1-KV7.5 members encoded by KCNQ1-KCNQ5 genes - have been recently identified as functional regulators in various cell types including vascular, cardiac, and neuronal cells. Their regulatory roles in DSM, however, are just now emerging and remain to be elucidated. To address this gap, our research group has initiated the systematic investigation of human DSM KV7 channels in collaboration with clinical urologists. In this comprehensive review, we summarize the current understanding of DSM Kv7 channels and highlight recent discoveries in the field. We describe KV7 channel expression profiles at the mRNA and protein levels, and further elaborate on functional effects of KV7 channel selective modulators on DSM excitability, contractility, and intracellular Ca2+ dynamics in animal species along with in vivo studies and the limited data on human DSM. Within each topic, we highlight the main observations, current gaps in knowledge, and most pressing questions and concepts in need of resolution. We emphasize the lack of systematic studies on human DSM KV7 channels that are now actively ongoing in our laboratory.
Collapse
Affiliation(s)
- John Malysz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Georgi V. Petkov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Urology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
12
|
Serdinšek T, Lipovšek S, Leitinger G, But I, Stožer A, Dolenšek J. A Novel in situ Approach to Studying Detrusor Smooth Muscle Cells in Mice. Sci Rep 2020; 10:2685. [PMID: 32060298 PMCID: PMC7021722 DOI: 10.1038/s41598-020-59337-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/28/2020] [Indexed: 11/09/2022] Open
Abstract
The aim of our study was to develop a novel approach to investigating mouse detrusor smooth muscle cell (SMC) physiological activity, utilizing an acute tissue dissection technique and confocal calcium imaging. The bladder of a sacrificed adult female NMRI mouse was dissected. We used light and transmission electron microscopy to assess morphology of SMCs within the tissue. Calcium imaging in individual SMCs was performed using confocal microscopy during stimulation with increasing concentrations of carbamylcholine (CCh). SMCs were identified according to their morphology and calcium activity. We determined several parameters describing the SMC responses: delays to response, recruitment, relative activity, and contraction of the tissue. CCh stimulation revealed three different SMC phenotypes: spontaneously active SMCs with and without CCh-enhanced activity and SMCs with CCh-induced activity only. SMCs were recruited into an active state in response to CCh-stimulation within a narrow range (1-25 µM); causing activation of virtually all SMCs. Maximum calcium activity of SMCs was at about 25 µM, which coincided with a visible tissue contraction. Finally, we observed shorter time lags before response onsets with higher CCh concentrations. In conclusion, our novel in situ approach proved to be a robust and reproducible method to study detrusor SMC morphology and physiology.
Collapse
Affiliation(s)
- Tamara Serdinšek
- Department of General Gynaecology and Urogynaecology, Clinic for Gynaecology and Perinatology, University Medical Centre Maribor, Ljubljanska 5, 2000, Maribor, Slovenia
| | - Saša Lipovšek
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia.,Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia.,Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, University of Maribor, 2000, Maribor, Slovenia.,Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria
| | - Gerd Leitinger
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria
| | - Igor But
- Department of General Gynaecology and Urogynaecology, Clinic for Gynaecology and Perinatology, University Medical Centre Maribor, Ljubljanska 5, 2000, Maribor, Slovenia
| | - Andraž Stožer
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia.
| | - Jurij Dolenšek
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia. .,Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia.
| |
Collapse
|
13
|
Silva-Ramos M, Silva I, Faria M, Ferreirinha F, Correia-de-Sá P. Activation of Prejunctional P2x2/3 Heterotrimers by ATP Enhances the Cholinergic Tone in Obstructed Human Urinary Bladders. J Pharmacol Exp Ther 2020; 372:63-72. [PMID: 31636173 DOI: 10.1124/jpet.119.261610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to investigate the role of ATP in cholinergic neurotransmission in the urinary bladder of control men and of patients obstructed as a result of benign prostatic hyperplasia (BPH). Human detrusor samples were collected from 41 patients who submitted to transvesical prostatectomy resulting from BPH and 26 male organ donors. The release of [3H]acetylcholine ([3H]ACh) was evoked by electrical field stimulation (10 Hz, 200 pulses) in urothelium-denuded detrusor strips. Myographic recordings were performed to test detrusor strip sensitivity to ACh and ATP. Nerve-evoked [3H]ACh release was 1.5-fold higher in detrusor strips from BPH patients compared with controls. This difference was abolished after desensitization of ionotropic P2X1-3 receptors with an ATP analog, α,β-methylene ATP (30 μM, applied for 15 minutes). TNP-ATP (10 nM, a preferential P2X2/3 antagonist) and A317491 (100 nM, a selective P2X3 antagonist) were about equipotent in decreasing nerve-evoked [3H]ACh release in control detrusor strips, but the selective P2X1 receptor antagonist NF023 (3 μM) was devoid of effect. The inhibitory effect of TNP-ATP (10 nM) increased from 27% ± 9% to 43% ± 6% in detrusor strips of BPH patients, but the effect of A317491 (100 nM) [3H]ACh release unaltered (20% ± 2% vs. 24% ± 4%). The amplitude of ACh (0.1-100 μM)-induced myographic recordings decreased, whereas sensitivity to ATP (0.01-3 mM) increased in detrusor strips from BPH patients. Besides the well characterized P2X1 receptor-mediated contractile activity of ATP in pathologic human bladders, we show here for the first time that cholinergic hyperactivity in the detrusor of BPH patients is facilitated by activation of ATP-sensitive P2X2/3 heterotrimers. SIGNIFICANCE STATEMENT: Bladder outlet obstruction often leads to detrusor overactivity and reduced bladder compliance in parallel to atropine-resistant increased purinergic tone. Our data show that P2X1 purinoceptors are overexpressed in the detrusor of patients with benign prostatic hyperplasia. Besides the P2X1 receptor-mediated detrusor contractions, ATP favors nerve-evoked acetylcholine release via the activation of prejunctional P2X2/3 excitatory receptors in these patients Thus, our hypothesis is that manipulation of the purinergic tone may be therapeutically useful to counteract cholinergic overstimulation in obstructed patients.
Collapse
Affiliation(s)
- M Silva-Ramos
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal (M.S.-R., I.S., M.F., F.F., P.C.-S.); and Serviço de Urologia, Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal (M.S.-R.)
| | - I Silva
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal (M.S.-R., I.S., M.F., F.F., P.C.-S.); and Serviço de Urologia, Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal (M.S.-R.)
| | - M Faria
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal (M.S.-R., I.S., M.F., F.F., P.C.-S.); and Serviço de Urologia, Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal (M.S.-R.)
| | - F Ferreirinha
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal (M.S.-R., I.S., M.F., F.F., P.C.-S.); and Serviço de Urologia, Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal (M.S.-R.)
| | - P Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal (M.S.-R., I.S., M.F., F.F., P.C.-S.); and Serviço de Urologia, Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal (M.S.-R.)
| |
Collapse
|
14
|
Yesilyurt ZE, Erdogan BR, Karaomerlioglu I, Muderrisoglu AE, Michel MC, Arioglu-Inan E. Urinary Bladder Weight and Function in a Rat Model of Mild Hyperglycemia and Its Treatment With Dapagliflozin. Front Pharmacol 2019; 10:911. [PMID: 31474866 PMCID: PMC6706456 DOI: 10.3389/fphar.2019.00911] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/18/2019] [Indexed: 11/13/2022] Open
Abstract
Hypertrophy and dysfunction of the urinary bladder are consistently observed in animal models of type 1 and less consistently in those of type 2 diabetes. We have tested the effects of mild hyperglycemia (n = 10 per group) in a randomized, blinded study and, in a blinded pilot study, of type 2 diabetes (n = 6 per group) and its treatment with dapagliflozin (1 mg/kg per day) on weight, contraction, and relaxation of the rat bladder. Based on a combination of high-fat diet and a low dose of streptozotocin, animals in the main study reached a mean peak blood glucose level of about 300 mg/dl, which declined to 205 mg/dl at study end. This was associated with a small, if any, increase in bladder weight. In a pooled analysis of all animals of the main and the pilot study, we detected a correlation of moderate strength between blood glucose and bladder weight (r2 = 0.2013; P = 0.0003 for Pearson correlation coefficient). Neither the main nor the pilot study found evidence for an altered contractility (responses to carbachol or KCl) or relaxation (responses to isoprenaline, fenoterol, CL 316,243, or forskolin). Treatment with dapagliflozin in the absence of hyperglycemia increased diuresis in the main study by 43% relative to control and increased bladder weight by 15% in the pooled groups of both studies (post hoc analysis). We conclude that mild hyperglycemia has no major effects on bladder hypertrophy or function.
Collapse
Affiliation(s)
| | - Betül Rabia Erdogan
- Department of Pharmacology, School of Pharmacy, Ankara University, Ankara, Turkey
| | - Irem Karaomerlioglu
- Department of Pharmacology, School of Pharmacy, Ankara University, Ankara, Turkey
| | | | | | - Ebru Arioglu-Inan
- Department of Pharmacology, School of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
15
|
Gupta S, Manchanda R. A computational model of large conductance voltage and calcium activated potassium channels: implications for calcium dynamics and electrophysiology in detrusor smooth muscle cells. J Comput Neurosci 2019; 46:233-256. [PMID: 31025235 DOI: 10.1007/s10827-019-00713-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 11/25/2022]
Abstract
The large conductance voltage and calcium activated potassium (BK) channels play a crucial role in regulating the excitability of detrusor smooth muscle, which lines the wall of the urinary bladder. These channels have been widely characterized in terms of their molecular structure, pharmacology and electrophysiology. They control the repolarising and hyperpolarising phases of the action potential, thereby regulating the firing frequency and contraction profiles of the smooth muscle. Several groups have reported varied profiles of BK currents and I-V curves under similar experimental conditions. However, no single computational model has been able to reconcile these apparent discrepancies. In view of the channels' physiological importance, it is imperative to understand their mechanistic underpinnings so that a realistic model can be created. This paper presents a computational model of the BK channel, based on the Hodgkin-Huxley formalism, constructed by utilising three activation processes - membrane potential, calcium inflow from voltage-gated calcium channels on the membrane and calcium released from the ryanodine receptors present on the sarcoplasmic reticulum. In our model, we attribute the discrepant profiles to the underlying cytosolic calcium received by the channel during its activation. The model enables us to make heuristic predictions regarding the nature of the sub-membrane calcium dynamics underlying the BK channel's activation. We have employed the model to reproduce various physiological characteristics of the channel and found the simulated responses to be in accordance with the experimental findings. Additionally, we have used the model to investigate the role of this channel in electrophysiological signals, such as the action potential and spontaneous transient hyperpolarisations. Furthermore, the clinical effects of BK channel openers, mallotoxin and NS19504, were simulated for the detrusor smooth muscle cells. Our findings support the proposed application of these drugs for amelioration of the condition of overactive bladder. We thus propose a physiologically realistic BK channel model which can be integrated with other biophysical mechanisms such as ion channels, pumps and exchangers to further elucidate its micro-domain interaction with the intracellular calcium environment.
Collapse
Affiliation(s)
- Suranjana Gupta
- Computational NeuroPhysiology Lab, Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Rohit Manchanda
- Computational NeuroPhysiology Lab, Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
16
|
Alom F, Matsuyama H, Nagano H, Fujikawa S, Tanahashi Y, Unno T. Involvement of transient receptor potential melastatin 4 channels in the resting membrane potential setting and cholinergic contractile responses in mouse detrusor and ileal smooth muscles. J Vet Med Sci 2019; 81:217-228. [PMID: 30518701 PMCID: PMC6395210 DOI: 10.1292/jvms.18-0631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Here, we investigated the effects of 9-hydroxyphenanthrene (9-phenanthrol), a potent and selective transient receptor potential melastatin 4 (TRPM4) channel blocker, on the resting membrane potential and cholinergic contractile responses to elucidate the functional role of TRPM4 channels in the contractile activities of mouse detrusor and ileal longitudinal smooth muscles. We observed that, 9-phenanthrol (3-30 µM) did not significantly inhibit high K+-induced contractions in both preparations; however, 9-phenanthrol (10 µM) strongly inhibited cholinergic contractions evoked by electrical field stimulation in detrusor preparations compared to inhibitions in ileal preparations. 9-Phenanthrol (10 µM) significantly inhibited the muscarinic agonist, carbachol-induced contractile responses and slowed the maximum upstroke velocities of the contraction in detrusor preparations. However, the agent (10 µM) did not inhibit the contractions due to intracellular Ca2+ release evoked by carbachol, suggesting that the inhibitory effect of 9-phenanthrol may primarily be due to the inhibition of the membrane depolarization process incurred by TRPM4 channels. On the other hand, 9-phenanthrol (10 µM) did not affect carbachol-induced contractile responses in ileal preparations. Further, 9-phenanthrol (10 µM) significantly hyperpolarized the resting membrane potential and decreased the basal tone in both detrusor and ileal muscle preparations. Taken together, our results suggest that TRPM4 channels are constitutively active and are involved in setting of the resting membrane potential, thereby regulating the basal tone in detrusor and ileal smooth muscles. Thus, TRPM4 channels play a significant role in cholinergic signaling in detrusor, but not ileal, smooth muscles.
Collapse
Affiliation(s)
- Firoj Alom
- Department of Pathogenetic Veterinary Science, United Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hayato Matsuyama
- Department of Pathogenetic Veterinary Science, United Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hiroshi Nagano
- Department of Pathogenetic Veterinary Science, United Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Saki Fujikawa
- Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | - Yasuyuki Tanahashi
- Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | - Toshihiro Unno
- Department of Pathogenetic Veterinary Science, United Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
17
|
McCloskey KD. The detrusor-free bladder - it can still hold its water. J Physiol 2018; 597:1427-1428. [PMID: 30578677 DOI: 10.1113/jp277268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Karen D McCloskey
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| |
Collapse
|
18
|
Malde S, Fry C, Schurch B, Marcelissen T, Averbeck M, Digesu A, Sahai A. What is the exact working mechanism of botulinum toxin A and sacral nerve stimulation in the treatment of overactive bladder/detrusor overactivity? ICI-RS 2017. Neurourol Urodyn 2018; 37:S108-S116. [DOI: 10.1002/nau.23552] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 02/19/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Sachin Malde
- Department of Urology; Guy's Hospital; London United Kingdom
| | - Christopher Fry
- School of Physiology, Pharmacology & Neuroscience; University of Bristol; Bristol United Kingdom
| | - Brigitte Schurch
- Department of Clinical Neurosciences; Neuropsychology and Neurorehabilitation Service Vaudois University Hospital of Lausanne; Switzerland
| | - Tom Marcelissen
- Department of Urology; Maastricht University Medical Centre; Netherlands
| | | | - Alex Digesu
- Department of Urogynaecology; St. Mary's Hospital; United Kingdom
| | - Arun Sahai
- Department of Urology; Guy's Hospital; London United Kingdom
- King's College London; King's Health Partners; United Kingdom
| |
Collapse
|
19
|
Mahapatra C, Brain KL, Manchanda R. A biophysically constrained computational model of the action potential of mouse urinary bladder smooth muscle. PLoS One 2018; 13:e0200712. [PMID: 30048468 PMCID: PMC6061979 DOI: 10.1371/journal.pone.0200712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 07/02/2018] [Indexed: 11/19/2022] Open
Abstract
Urinary incontinence is associated with enhanced spontaneous phasic contractions of the detrusor smooth muscle (DSM). Although a complete understanding of the etiology of these spontaneous contractions is not yet established, it is suggested that the spontaneously evoked action potentials (sAPs) in DSM cells initiate and modulate the contractions. In order to further our understanding of the ionic mechanisms underlying sAP generation, we present here a biophysically detailed computational model of a single DSM cell. First, we constructed mathematical models for nine ion channels found in DSM cells based on published experimental data: two voltage gated Ca2+ ion channels, an hyperpolarization-activated ion channel, two voltage-gated K+ ion channels, three Ca2+-activated K+ ion channels and a non-specific background leak ion channel. The ion channels' kinetics were characterized in terms of maximal conductances and differential equations based on voltage or calcium-dependent activation and inactivation. All ion channel models were validated by comparing the simulated currents and current-voltage relations with those reported in experimental work. Incorporating these channels, our DSM model is capable of reproducing experimentally recorded spike-type sAPs of varying configurations, ranging from sAPs displaying after-hyperpolarizations to sAPs displaying after-depolarizations. The contributions of the principal ion channels to spike generation and configuration were also investigated as a means of mimicking the effects of selected pharmacological agents on DSM cell excitability. Additionally, the features of propagation of an AP along a length of electrically continuous smooth muscle tissue were investigated. To date, a biophysically detailed computational model does not exist for DSM cells. Our model, constrained heavily by physiological data, provides a powerful tool to investigate the ionic mechanisms underlying the genesis of DSM electrical activity, which can further shed light on certain aspects of urinary bladder function and dysfunction.
Collapse
Affiliation(s)
- Chitaranjan Mahapatra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Keith L. Brain
- School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, England, United Kingdom
| | - Rohit Manchanda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| |
Collapse
|
20
|
Clinical Efficacy of Solifenacin in the Management of Diabetes Mellitus-Associated Versus Idiopathic Overactive Bladder Symptoms: A Multicenter Prospective Study. Int Neurourol J 2018; 22:51-57. [PMID: 29609421 PMCID: PMC5885131 DOI: 10.5213/inj.1834982.491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/02/2018] [Indexed: 11/08/2022] Open
Abstract
Purpose To compare the clinical efficacy of anticholinergics for managing diabetes mellitus-associated overactive bladder (DM OAB) versus idiopathic overactive bladder (OAB) in Korean women. Methods We conducted a multicenter, prospective, parallel-group, open-label, 12-week study. Women (20–65 years old) with OAB symptoms for over 3 months were assigned to the DM OAB and idiopathic OAB groups. Changes in the Overactive Bladder Symptom Score (OABSS), urgency, urinary urgency incontinence, nocturia, daytime frequency according to a voiding diary, uroflowmetry, and postvoid residual urine volume (PVR) at the first visit (V1), week 4 (V2), and week 12 (V3) were compared. Results No significant difference was found between the baseline patient characteristics of the DM OAB and idiopathic OAB groups. Treatment with solifenacin was associated with improvements in urgency, urinary urgency incontinence, nocturia, frequency according to a voiding diary, and the total OABSS between V1 and V2 and between V1 and V3. Moreover, a significant improvement in urgency and urge incontinence was found between V2 and V3 in the DM OAB group. However, no significant changes were found in any other parameters. There were no significant differences between the DM OAB group and the idiopathic OAB group except for urgency and urge incontinence at V2 (3.71 vs. 2.28 and 0.47 vs. 0.32, respectively). Conclusions The patients who received solifenacin demonstrated improved urgency, urinary urgency incontinence, nocturia, frequency according to a voiding diary, and total OABSS. Management with solifenacin was equally effective for both DM-related OAB and idiopathic OAB.
Collapse
|
21
|
Smolar J, Horst M, Sulser T, Eberli D. Bladder regeneration through stem cell therapy. Expert Opin Biol Ther 2018; 18:525-544. [DOI: 10.1080/14712598.2018.1439013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jakub Smolar
- Department of Urology, University Hospital Zurich, Schlieren, Switzerland
| | - Maya Horst
- Department of Urology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Tulio Sulser
- Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | - Daniel Eberli
- Department of Urology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Li J, Tian Y, Guo S, Gu H, Yuan Q, Xie X. Testosterone-induced benign prostatic hyperplasia rat and dog as facile models to assess drugs targeting lower urinary tract symptoms. PLoS One 2018; 13:e0191469. [PMID: 29351556 PMCID: PMC5774778 DOI: 10.1371/journal.pone.0191469] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 01/05/2018] [Indexed: 11/18/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is an age-related disease, affecting a majority of elderly men worldwide. Medical management of BPH is an alternative to surgical treatment of this disease. Currently, α1-adrenergic receptor (α1-AR) antagonists are among the first line drugs to treat BPH by reducing the tension of urinary track and thus the obstructive symptoms in voiding. In drug development, old male dogs with spontaneous BPH are considered the golden standard of the animal models. However, old dogs (>6 years) are expensive and not all old dogs develop BPH. So it is necessary to develop more accessible animal models for drug efficacy evaluation. Here we describe the development of testosterone-induced BPH models in both rats and young adult dogs and their applications in the in vivo evaluation of α1-AR antagonist. The BPH rats and dogs induced by chronic testosterone treatment have significantly increased micturition frequency and reduced mean voided volume, very similar to the clinical symptoms of BPH patients. Silodosin, an α1-AR antagonist, significantly reduces the urinary frequency and increases the voided volume in BPH model animals in a dose-dependent manner. The results demonstrate that testosterone-induced BPH rat and dog models might provide a more efficient way to evaluate micturition behavior in anti-BPH drug studies.
Collapse
Affiliation(s)
- Jing Li
- Chinese Academy of Sciences Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (JL); (XX)
| | - Yanxin Tian
- Chinese Academy of Sciences Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shimeng Guo
- Chinese Academy of Sciences Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Haifeng Gu
- Chinese Academy of Sciences Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qianting Yuan
- Chinese Academy of Sciences Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xin Xie
- Chinese Academy of Sciences Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (JL); (XX)
| |
Collapse
|
23
|
Mónica FZ, Antunes E. Stimulators and activators of soluble guanylate cyclase for urogenital disorders. Nat Rev Urol 2017; 15:42-54. [DOI: 10.1038/nrurol.2017.181] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Pereira ML, D'ancona CAL, Rojas-Moscoso JA, Ramos ACS, Monica FZ, Antunes E. Effects of nitric oxide inhibitors in mice with bladder outlet obstruction. Int Braz J Urol 2017; 43:356-366. [PMID: 28328190 PMCID: PMC5433376 DOI: 10.1590/s1677-5538.ibju.2015.0441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 08/15/2016] [Indexed: 11/21/2022] Open
Abstract
PURPOSE To investigate the lower urinary tract changes in mice treated with L-NAME, a non-selective competitive inhibitor of nitric oxide synthase (NOS), or aminoguanidine, a competitive inhibitor of inducible nitric oxide synthase (iNOS), after 5 weeks of partial bladder outlet obstruction (BOO), in order to evaluate the role of constitutive and non-constitutive NOS in the pathogenesis of this experimental condition. MATERIALS AND METHODS C57BL6 male mice were partially obstructed and randomly allocated into 6 groups: Sham, Sham + L-NAME, Sham + aminoguanidine, BOO, BOO + L-NAME and BOO + aminoguanidine. After 5 weeks, bladder weight was obtained and cystometry and tissue bath contractile studies were performed. RESULTS BOO animals showed increase of non-voiding contractions (NVC) and bladder capacity, and also less contractile response to Carbachol and Electric Field Stimulation. Inhibition of NOS isoforms improved bladder capacity and compliance in BOO animals. L-NAME caused more NVC, prevented bladder weight gain and leaded to augmented contractile responses at muscarinic and electric stimulation. Aminoguanidine diminished NVC, but did not avoid bladder weight gain in BOO animals and did not improve contractile responses. CONCLUSION It can be hypothesized that chronic inhibition of three NOS isoforms in BOO animals leaded to worsening of bladder function, while selective inhibition of iNOS did not improve responses, what suggests that, in BOO animals, alterations are related to constitutive NOS.
Collapse
Affiliation(s)
- Marcy Lancia Pereira
- Departamento de Cirurgia, Faculdade de Ciências Médicas - UNICAMP, Campinas, SP, Brasil
| | | | | | | | - Fabiola Zakia Monica
- Departamento de Farmacologia, Faculdade de Ciências Médicas - UNICAMP, Campinas, SP, Brasil
| | - Edson Antunes
- Departamento de Farmacologia, Faculdade de Ciências Médicas - UNICAMP, Campinas, SP, Brasil
| |
Collapse
|
25
|
Hulls CM, Lentle RG, King QM, Reynolds GW, Chambers JP. Spatiotemporal analysis of spontaneous myogenic contractions in the urinary bladder of the rabbit: timing and patterns reflect reported electrophysiology. Am J Physiol Renal Physiol 2017; 313:F687-F698. [PMID: 28539334 DOI: 10.1152/ajprenal.00156.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 11/22/2022] Open
Abstract
The dynamics of propagating myogenic contractions in the wall of the resting ex vivo urinary bladder of the rabbit were characterized by spatiotemporal maps and related to cyclic variation in intravesical pressure (Pves). Patches of propagating contractions (PPCs) enlarged and involuted in near synchrony with peaks in Pves [mean 3.85 ± 0.3 cycles per minute (cpm)] and were preceded by regions of stretch. The maximum area of the bladder undergoing contraction (55.28 ± 2.65%) and the sizes of individual PPCs (42.61 ± 1.65 mm2) coincided with the peak in Pves PPCs originated and propagated within temporary patch domains (TPDs) and comprised groups of nearly synchronous cyclic propagating individual contractions (PICs). The TPDs were located principally along the vertical axis of the anterior surface of the bladder. The sites of origin of PICs within PPCs were inconsistent, consecutive contractions often propagating in opposite directions along linear maps of strain rate. Similar patterns of movement occurred in areas of the anterior bladder wall that had been stripped of mucosa. Pves varied cyclically with area of contraction and with the indices of aggregation of PPCs, indicating that they grew by peripheral enlargement and collision without annihilation. The synchronization of PICs within PPCs was sometimes lost, uncoordinated PICs then occurring irregularly (between 4 and 20 cpm) having little effect on Pves We postulate that the formation and involution of PPCs within a TPD resulted from cyclic variation in excitation that increased the incidence and distance over which component PICs propagated.
Collapse
Affiliation(s)
- C M Hulls
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| | - R G Lentle
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand;
| | - Q M King
- Division of Urology, Palmerston North Hospital, Palmerston North, New Zealand; and
| | - G W Reynolds
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| | - J P Chambers
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
26
|
Okeke K, Gravas S, Michel MC. Do β 3-adrenoceptor agonists cause urinary bladder smooth muscle relaxation by inhibiting acetylcholine release? Am J Physiol Renal Physiol 2017; 313:F859-F861. [PMID: 28515177 DOI: 10.1152/ajprenal.00215.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Katerina Okeke
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany; and.,Departmemt of Urology, University of Thessaly, Larissa, Greece
| | - Stavros Gravas
- Departmemt of Urology, University of Thessaly, Larissa, Greece
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany; and
| |
Collapse
|
27
|
Jairam R, Drossaerts J, van Koeveringe G, van Kerrebroeck P. The Impact of Duration of Complaints on Successful Outcome of Sacral Neuromodulation. Urol Int 2017; 99:51-55. [PMID: 28478446 DOI: 10.1159/000456079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/09/2017] [Indexed: 11/19/2022]
Abstract
OBJECTIVES The study aimed to evaluate whether the duration of complaints in patients with overactive bladder syndrome or non-obstructive urinary retention predicts the outcome of sacral neuromodulation (SNM). METHODS All patients that underwent a SNM test period evaluation between 2011 and 2014, were included in this study. The duration of complaints was listed in 3 categories: (a) 0-5 years, (b) 5-10 years and (c) 10 years or longer. Analyses with chi square tests were performed to evaluate whether the duration of complaints are associated with outcome of SNM. RESULTS In total, 130 patients were included. Most patients had a complaint duration of 0-5 years (n = 60). The test period was successful in 56% (n = 74) of the total group. Analyses showed that the duration of complaints is not significantly associated with outcome of SNM (p = 0.752), even when subdivided per indication, and also when possible confounders such as age at test and indication are taken into account (p = 0.720). CONCLUSION Based on the results of this study, there is no relationship between duration of complaints and SNM outcome. SNM seems to remain a feasible treatment option, despite of possible anatomical or physiological changes within the lower urinary tract.
Collapse
Affiliation(s)
- Ranjana Jairam
- Department of Urology, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | | | | | | |
Collapse
|
28
|
Isogai A, Lee K, Mitsui R, Hashitani H. Functional coupling of TRPV4 channels and BK channels in regulating spontaneous contractions of the guinea pig urinary bladder. Pflugers Arch 2016; 468:1573-85. [DOI: 10.1007/s00424-016-1863-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/06/2016] [Accepted: 07/26/2016] [Indexed: 12/13/2022]
|
29
|
Campbell PC, McDonnell B, Monaghan KP, Baysting L, Little O, McCloskey KD. Mucosal modulation of contractility in bladder strips from normal and overactive rat models and the effect of botulinum toxin A on overactive bladder strips. Neurourol Urodyn 2016; 36:1052-1060. [PMID: 27494539 DOI: 10.1002/nau.23082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/08/2016] [Indexed: 12/26/2022]
Abstract
AIMS To investigate the local, regulatory role of the mucosa on bladder strip contractility from normal and overactive bladders and to examine the effect of botulinum toxin A (BoNT-A). METHODS Bladder strips from spontaneously hyperactive rat (SHR) or normal rats (Sprague Dawley, SD) were dissected for myography as intact or mucosa-free preparations. Spontaneous, neurogenic and agonist-evoked contractions were investigated. SHR strips were incubated in BoNT-A (3 h) to assess effects on contractility. RESULTS Spontaneous contraction amplitude, force-integral or frequency were not significantly different in SHR mucosa-free strips compared with intacts. In contrast, spontaneous contraction amplitude and force-integral were smaller in SD mucosa-free strips than in intacts; frequency was not affected by the mucosa. Frequency of spontaneous contractions in SHR strips was significantly greater than in SD strips. Neurogenic contractions in mucosa-free SHR and SD strips at higher frequencies were smaller than in intact strips. The mucosa did not affect carbachol-evoked contractions in intact versus mucosa-free strips from SHR or SD bladders. BoNT-A reduced spontaneous contractions in SHR intact strips; this trend was also observed in mucosa-free strips but was not significant. Neurogenic and carbachol-evoked contractions were reduced by BoNT-A in mucosa-free but not intact strips. Depolarisation-induced contractions were smaller in BoNT-A-treated mucosa-free strips. CONCLUSIONS The mucosal layer positively modulates spontaneous contractions in strips from normal SD but not overactive SHR bladder strips. The novel finding of BoNT-A reduction of contractions in SHR mucosa-free strips indicates actions on the detrusor, independent of its classical action on neuronal SNARE complexes.
Collapse
Affiliation(s)
- Patrick C Campbell
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Bronagh McDonnell
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Kevin P Monaghan
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Lauren Baysting
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Oonagh Little
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Karen D McCloskey
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
30
|
Michel MC, Korstanje C. β3-Adrenoceptor agonists for overactive bladder syndrome: Role of translational pharmacology in a repositioning clinical drug development project. Pharmacol Ther 2016; 159:66-82. [PMID: 26808167 DOI: 10.1016/j.pharmthera.2016.01.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
β3-Adrenoceptor agonists were originally considered as a promising drug class for the treatment of obesity and/or type 2 diabetes. When these development efforts failed, they were repositioned for the treatment of the overactive bladder syndrome. Based on the example of the β3-adrenoceptor agonist mirabegron, but also taking into consideration evidence obtained with ritobegron and solabegron, we discuss challenges facing a translational pharmacology program accompanying clinical drug development for a first-in-class molecule. Challenges included generic ones such as ligand selectivity, species differences and drug target gene polymorphisms. Challenges that are more specific included changing concepts of the underlying pathophysiology of the target condition while clinical development was under way; moreover, a paucity of public domain tools for the study of the drug target and aspects of receptor agonists as drugs had to be addressed. Nonetheless, a successful first-in-class launch was accomplished. Looking back at this translational pharmacology program, we conclude that a specifically tailored and highly flexible approach is required. However, several of the lessons learned may also be applicable to translational pharmacology programs in other indications.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany.
| | - Cees Korstanje
- Department of Drug Discovery Science & Management-Europe, Astellas Pharma Europe R&D, Leiden, The Netherlands
| |
Collapse
|
31
|
Furukawa S, Sakai T, Niiya T, Miyaoka H, Miyake T, Yamamoto S, Maruyama K, Ueda T, Senba H, Todo Y, Torisu M, Minami H, Onji M, Tanigawa T, Matsuura B, Hiasa Y, Miyake Y. Microvascular complications and prevalence of urgency incontinence in Japanese patients with type 2 diabetes mellitus: The dogo study. Neurourol Urodyn 2015; 35:1024-1027. [PMID: 26352009 DOI: 10.1002/nau.22875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/18/2015] [Indexed: 12/19/2022]
Abstract
AIMS Diabetes was significantly positively associated with urgency incontinence in several epidemiological studies. We examine the association between diabetic neuropathy, which we defined based on neuropathic symptoms, the absence of the Achilles reflex, and/or abnormal vibration perception, and urgency incontinence among Japanese patients with type 2 diabetes mellitus. METHODS Study subjects were 742 Japanese patients with type 2 diabetes mellitus, aged 19-70 years, who had undergone blood tests at our institutions. A self-administered questionnaire was used to collect information on the variables under study. Urgency incontinence was defined as present when a subject answered "once a week or more" to the question: "Within one week, how often do you leak urine because you cannot defer the sudden desire to urinate ?". Diabetic neuropathy was diagnosed if the patients showed two or more of the following three characteristics: neuropathic symptoms, the absence of the Achilles reflex, and/or abnormal vibration perception. Adjustment was made for sex, age, body mass index, duration of type 2 diabetes mellitus, current smoking, hypertension, dyslipidemia, glycated hemoglobin, stroke, coronary artery disease, insulin therapy, diabetic retinopathy, diabetic nephropathy, and diabetic neuropathy. RESULTS The prevalence of urgency incontinence was 8.6%. Diabetic neuropathy was independently positively associated with urgency incontinence: the adjusted OR was 2.20 (95%CI: 1.16-4.36). Associations between diabetic retinopathy or nephropathy and the prevalence of urgency incontinence were not significant. CONCLUSIONS In Japanese patients with type 2 diabetes mellitus, only diabetic neuropathy was independently positively associated with urgency incontinence. Neurourol. Urodynam. 35:1024-1027, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shinya Furukawa
- Department of Epidemiology and Preventive Medicine, Ehime University Graduate School of Medicine, Toon, Ehime, Japan.
| | - Takenori Sakai
- Department of Internal Medicine, Yawatahama General City Hospital, Yawatahama, Ehime, Japan
| | - Tetsuji Niiya
- Department of Internal Medicine, Matsuyama Shimin Hospital, Matsuyama, Ehime, Japan
| | - Hiroaki Miyaoka
- Department of Internal Medicine, Saiseikai Matsuyama Hospital, Matsuyama, Ehime, Japan
| | - Teruki Miyake
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Shin Yamamoto
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Koutatsu Maruyama
- Department of Public Health, Juntendo University School of Medicine, Hongo, Tokyo, Japan
| | - Teruhisa Ueda
- Department of Internal Medicine, Ehime Central Hospital, Matsuyama, EHime, Japan
| | - Hidenori Senba
- Department of Epidemiology and Preventive Medicine, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- Department of Internal Medicine, Matsuyama Shimin Hospital, Matsuyama, Ehime, Japan
| | - Yasuhiko Todo
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Masamoto Torisu
- Department of Internal Medicine, Saiseikai Saijo Hospital, Saijo, Ehime, Japan
| | - Hisaka Minami
- Department of Internal Medicine, Ehime Niihama Hospital, Niihama, Ehime, Japan
| | - Morikazu Onji
- Department of Internal Medicine, Saiseikai Imabari Hospital, Imabari, Ehime, Japan
| | - Takeshi Tanigawa
- Department of Public Health, Juntendo University School of Medicine, Hongo, Tokyo, Japan
| | - Bunzo Matsuura
- Department of Lifestyle-Related Medicine and Endocrinology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Yoshihiro Miyake
- Department of Epidemiology and Preventive Medicine, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|
32
|
Abstract
The pathophysiology of OAB is complex, multifactorial and still largely unknown. Several pathophysiological mechanisms have been highlighted that may play a different role in different patient groups. There are now experimental evidences that support both the myogenic and neurogenic hypothesis, but in recent years the "integrative" hypothesis has been gaining more and more acceptance, where a disruption in the multiple interactions between different cell types (neurons, urothelium, interstitial cells, myocytes) and network functions represent a central element of lower urinary tract dysfunctions. Of utmost importance, a disorder in the urothelial sensory function and in the urothelial/suburothelial non-neural cholinergic system, favored by age and comorbidities, appears to be crucial for the development of the OAB. Neuroplastic and detrusor changes in OAB are broadly similar to those observed in bladders exposed to outlet obstruction, neuropathies, inflammation or aging, and may be driven by a common urothelial dysfunction. Several signaling substances and their receptors were found to be involved in central pathways of bidirectional communication between the different cell types in the bladder, and were shown to be modified in several animal models of OAB as well as in human models, indicating new potential therapeutic targets.
Collapse
|
33
|
Lentle RG, Reynolds GW, Janssen PW, Hulls CM, King QM, Chambers JP. Characterisation of the contractile dynamics of the resting ex vivo
urinary bladder of the pig. BJU Int 2015; 116:973-83. [DOI: 10.1111/bju.13132] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Roger G. Lentle
- Institute of Food, Nutrition and Human Health; Massey University; Palmerston North New Zealand
| | - Gordon W. Reynolds
- Institute of Food, Nutrition and Human Health; Massey University; Palmerston North New Zealand
| | - Patrick W.M. Janssen
- Institute of Food, Nutrition and Human Health; Massey University; Palmerston North New Zealand
| | - Corrin M. Hulls
- Institute of Food, Nutrition and Human Health; Massey University; Palmerston North New Zealand
| | - Quinten M. King
- Division of Urology; Palmerston North Hospital; Palmerston North New Zealand
| | - John Paul Chambers
- Institute of Veterinary, Animal and Biomedical Sciences; Massey University; Palmerston North New Zealand
| |
Collapse
|
34
|
Michel MC, Chess-Williams R, Hegde SS. Are blood vessels a target to treat lower urinary tract dysfunction? Naunyn Schmiedebergs Arch Pharmacol 2015; 388:687-94. [PMID: 26026700 DOI: 10.1007/s00210-015-1137-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 01/12/2023]
Abstract
Bladder dysfunction is common in the general population (Stewart et al. 2010) and even more so among patients seeing a physician for any reason (Goepel et al. 2002). It often manifests as lower urinary tract symptoms (LUTS), a term originally coined to describe voiding and storage symptoms in men with benign prostatic hyperplasia (BPH) but now more universally used to describe any type of voiding and storage symptoms in both sexes. Studies into possible causes of urinary bladder dysfunction have long focused on detrusor smooth muscle cells (Turner and Brading 1999). More recently, it became clear that several other types of cells and organs contribute to regulating detrusor smooth muscle function. These include the urothelium (Andersson and McCloskey 2014; Michel 2015), afferent nerves (Michel and Igawa 2015; Yoshimura et al. 2014b), and the central and autonomic nervous systems (Fowler and Griffiths 2010; Yoshimura et al. 2014a). Alterations in any of these may at least partly be responsible for detrusor dysfunction and, accordingly, be potential targets for the treatment of bladder dysfunction. As highlighted by an article in this issue of Naunyn-Schmiedeberg's Archives of Pharmacology (Bayrak et al. 2015), there is an additional suspect, the bladder vasculature. This article will discuss the currently available experimental and clinical evidence for a role of the vasculature in causing bladder dysfunction, and how existing and emerging treatments may modulate bladder function by acting on blood vessels. Due to a similarity in concept, data on prostate perfusion will also be discussed to some extent.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Pharmacology, Johannes Gutenberg Universität, Obere Zahlbacher Str. 67, 55101, Mainz, Germany,
| | | | | |
Collapse
|
35
|
Michel MC. Therapeutic modulation of urinary bladder function: multiple targets at multiple levels. Annu Rev Pharmacol Toxicol 2014; 55:269-87. [PMID: 25251997 DOI: 10.1146/annurev-pharmtox-010814-124536] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Storage dysfunction of the urinary bladder, specifically overactive bladder syndrome, is a condition that occurs frequently in the general population. Historically, pathophysiological and treatment concepts related to overactive bladder have focused on smooth muscle cells. Although these are the central effector, numerous anatomic structures are involved in their regulation, including the urothelium, afferent and efferent nerves, and the central nervous system. Each of these structures involves receptors for—and the urothelium itself also releases—many mediators. Moreover, hypoperfusion, hypertrophy, and fibrosis can affect bladder function. Established treatments such as muscarinic antagonists, β-adrenoceptor agonists, and onabotulinumtoxinA each work in part through their effects on the urothelium and afferent nerves, as do α1-adrenoceptor antagonists in the treatment of voiding dysfunction associated with benign prostatic hyperplasia; however, none of these treatments are specifically targeted to the urothelium and afferent nerves. It remains to be explored whether future treatments that specifically act at one of these structures will provide a therapeutic advantage.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, 55101 Mainz, Germany;
| |
Collapse
|
36
|
Anderson UA, Carson C, Johnston L, Joshi S, Gurney AM, McCloskey KD. Functional expression of KCNQ (Kv7) channels in guinea pig bladder smooth muscle and their contribution to spontaneous activity. Br J Pharmacol 2014; 169:1290-304. [PMID: 23586426 PMCID: PMC3746117 DOI: 10.1111/bph.12210] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 03/15/2013] [Accepted: 03/26/2013] [Indexed: 12/30/2022] Open
Abstract
Background and Purpose The aim of the study was to determine whether KCNQ channels are functionally expressed in bladder smooth muscle cells (SMC) and to investigate their physiological significance in bladder contractility. Experimental Approach KCNQ channels were examined at the genetic, protein, cellular and tissue level in guinea pig bladder smooth muscle using RT-PCR, immunofluorescence, patch-clamp electrophysiology, calcium imaging, detrusor strip myography, and a panel of KCNQ activators and inhibitors. Key Results KCNQ subtypes 1–5 are expressed in bladder detrusor smooth muscle. Detrusor strips typically displayed TTX-insensitive myogenic spontaneous contractions that were increased in amplitude by the KCNQ channel inhibitors XE991, linopirdine or chromanol 293B. Contractility was inhibited by the KCNQ channel activators flupirtine or meclofenamic acid (MFA). The frequency of Ca2+-oscillations in SMC contained within bladder tissue sheets was increased by XE991. Outward currents in dispersed bladder SMC, recorded under conditions where BK and KATP currents were minimal, were significantly reduced by XE991, linopirdine, or chromanol, and enhanced by flupirtine or MFA. XE991 depolarized the cell membrane and could evoke transient depolarizations in quiescent cells. Flupirtine (20 μM) hyperpolarized the cell membrane with a simultaneous cessation of any spontaneous electrical activity. Conclusions and Implications These novel findings reveal the role of KCNQ currents in the regulation of the resting membrane potential of detrusor SMC and their important physiological function in the control of spontaneous contractility in the guinea pig bladder.
Collapse
Affiliation(s)
- U A Anderson
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | | | | | | | | | | |
Collapse
|
37
|
Bang WJ, Lee JY, Koo KC, Hah YS, Lee DH, Cho KS. Is Type-2 Diabetes Mellitus Associated With Overactive Bladder Symptoms in Men With Lower Urinary Tract Symptoms? Urology 2014; 84:670-4. [DOI: 10.1016/j.urology.2014.05.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/06/2014] [Accepted: 05/10/2014] [Indexed: 01/19/2023]
|
38
|
Lei Q, Pan XQ, Chang S, Malkowicz SB, Guzzo TJ, Malykhina AP. Response of the human detrusor to stretch is regulated by TREK-1, a two-pore-domain (K2P) mechano-gated potassium channel. J Physiol 2014; 592:3013-30. [PMID: 24801307 DOI: 10.1113/jphysiol.2014.271718] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The mechanisms of mechanosensitivity underlying the response of the human bladder to stretch are poorly understood. Animal data suggest that stretch-activated two-pore-domain (K2P) K(+) channels play a critical role in bladder relaxation during the filling phase. The objective of this study was to characterize the expression and function of stretch-activated K2P channels in the human bladder and to clarify their physiological role in bladder mechanosensitivity. Gene and protein analysis of the K2P channels TREK-1, TREK-2 and TRAAK in the human bladder revealed that TREK-1 is the predominantly expressed member of the mechano-gated subfamily of K2P channels. Immunohistochemical labelling of bladder wall identified higher levels of expression of TREK-1 in detrusor smooth muscle cells in comparison to bladder mucosa. Functional characterization and biophysical properties of the predominantly expressed member of the K2P family, the TREK-1 channel, were evaluated by in vitro organ bath studies and the patch-clamp technique. Electrophysiological recordings from single smooth muscle cells confirmed direct activation of TREK-1 channels by mechanical stretch and negative pressure applied to the cell membrane. Inhibition of TREK-1 channels in the human detrusor significantly delayed relaxation of the stretched bladder smooth muscle strips and triggered small-amplitude spontaneous contractions. Application of negative pressure to cell-attached patches (-20 mmHg) caused a 19-fold increase in the open probability (NPo) of human TREK-1 channels. l-Methionine (1 mm), a specific TREK-1 inhibitor, dramatically decreased the NPo of TREK-1 channels from 0.045 ± 0.003 to 0.008 ± 0.001 (n = 8, P ≤ 0.01). Subsequent addition of arachidonic acid (10 μm), a channel opener, increased the open probability of methionine-inhibited unitary currents up to 0.43 ± 0.05 at 0 mV (n = 9, P ≤ 0.05). The results of our study provide direct evidence that the response of the human detrusor to mechanical stretch is regulated by activation of mechano-gated TREK-1 channels. Impaired mechanosensation and mechanotransduction associated with the changes in stretch-activated K2P channels may underlie myogenic bladder dysfunction in humans.
Collapse
Affiliation(s)
- Qi Lei
- Division of Urology, Department of Surgery, University of Pennsylvania, PA, USA
| | - Xiao-Qing Pan
- Division of Urology, Department of Surgery, University of Pennsylvania, PA, USA
| | | | - S Bruce Malkowicz
- Division of Urology, Department of Surgery, University of Pennsylvania, PA, USA
| | - Thomas J Guzzo
- Division of Urology, Department of Surgery, University of Pennsylvania, PA, USA
| | - Anna P Malykhina
- Division of Urology, Department of Surgery, University of Pennsylvania, PA, USA
| |
Collapse
|
39
|
Shen J, Zhou G, Chen H, Bi Y. Morphology of nervous lesion in the spinal cord and bladder of fetal rats with myelomeningocele at different gestational age. J Pediatr Surg 2013; 48:2446-52. [PMID: 24314185 DOI: 10.1016/j.jpedsurg.2013.08.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 08/26/2013] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To analyze the development and innervation of bladder smooth muscle and lesions of the spinal cord in fetal rats with meningomyelocele (MMC) at different gestational ages and to investigate interactions between spinal cord lesions and bladder. METHOD Each fetus was assigned to the MMC group or the normal group. Each group was further divided into three subgroups by gestational age: E16, E18, and E20 (embryonic days 16, 18, and 20, respectively). α-Actin and neurotubulin-β-III were analyzed in the bladder, and GFAP and VAChT were analyzed in the lumbosacral spinal cord by immunohistochemistry. Photographs were taken to determine the integrated optical density of each sample. RESULTS Neurotubulin-β-III was significantly lower in the MMC group than in the normal group at all fetal ages. Abundant α-actin was detected in both groups at all fetal ages. No significant difference was found between the MMC group and the normal group at any fetal age. At E16 and E18, no GFAP-positive astrocyte was detected in the MMC group or the normal group. At E20, numerous GFAP-positive astrocytes were detected in the MMC group, with significant difference from the normal group. VAChT was detected less in the MMC group than in the normal group at all fetal ages with significant differences. CONCLUSION Bladder smooth muscle of fetal MMC rat seems morphologically normal in development, while the innervation of the bladder smooth muscle is markedly decreased centrally and peripherally. Astrocytosis appears at a later embryonic stage, which could be a concern in the nerve repair of the spinal cord.
Collapse
Affiliation(s)
- Jian Shen
- Children's Hospital of Fudan University, Shanghai, PR China.
| | | | | | | |
Collapse
|
40
|
Ochodnicky P, Uvelius B, Andersson KE, Michel MC. Autonomic nervous control of the urinary bladder. Acta Physiol (Oxf) 2013; 207:16-33. [PMID: 23033838 DOI: 10.1111/apha.12010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/28/2011] [Accepted: 09/10/2012] [Indexed: 01/25/2023]
Abstract
The autonomic nervous system plays an important role in the regulation of the urinary bladder function. Under physiological circumstances, noradrenaline, acting mainly on β(3) -adrenoceptors in the detrusor and on α(1) (A) -adrenoceptors in the bladder outflow tract, promotes urine storage, whereas neuronally released acetylcholine acting mainly on M(3) receptors promotes bladder emptying. Under pathophysiological conditions, however, this system may change in several ways. Firstly, there may be plasticity at the levels of innervation and receptor expression and function. Secondly, non-neuronal acetylcholine synthesis and release from the urothelium may occur during the storage phase, leading to a concomitant exposure of detrusor smooth muscle, urothelium and afferent nerves to acetylcholine and noradrenaline. This can cause interactions between the adrenergic and cholinergic system, which have been studied mostly at the post-junctional smooth muscle level until now. The implications of such plasticity are being discussed.
Collapse
Affiliation(s)
- P. Ochodnicky
- Department of Pharmacology & Pharmacotherapy; Academic Medical Center; University of Amsterdam; Amsterdam; the Netherlands
| | - B. Uvelius
- Department of Urology; Skane University Hospital; Malmö; Sweden
| | - K.-E. Andersson
- Institute for Regenerative Medicine; Wake Forest University School of Medicine; Winston Salem; NC; USA
| | - M. C. Michel
- Department of Pharmacology; Johannes Gutenberg University; Mainz; Germany
| |
Collapse
|
41
|
McCloskey KD. Bladder interstitial cells: an updated review of current knowledge. Acta Physiol (Oxf) 2013; 207:7-15. [PMID: 23034074 DOI: 10.1111/apha.12009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 01/22/2012] [Accepted: 09/10/2012] [Indexed: 01/12/2023]
Abstract
The field of bladder research has been energized by the study of novel interstitial cells (IC) over the last decade. Several subgroups of IC are located within the bladder wall and make structural interactions with nerves and smooth muscle, indicating integration with intercellular communication and key physiological functions. Significant progress has been made in the study of bladder ICs' cellular markers, ion channels and receptor expression, electrical and calcium signalling, yet their specific functions in normal bladder filling and emptying remain elusive. There is increasing evidence that the distribution of IC is altered in bladder pathophysiologies suggesting that changes in IC may be linked with the development of bladder dysfunction. This article summarizes the current state of the art of our knowledge of IC in normal bladder and reviews the literature on IC in dysfunctional bladder.
Collapse
Affiliation(s)
- K. D. McCloskey
- Centre for Cancer Research and Cell Biology; Queen's University Belfast; Belfast; Northern Ireland; UK
| |
Collapse
|
42
|
Bladder outlet obstruction influences mRNA expression of cholinergic receptors on sensory neurons in mice. Life Sci 2012; 91:1077-81. [DOI: 10.1016/j.lfs.2012.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 04/06/2012] [Accepted: 04/30/2012] [Indexed: 11/19/2022]
|
43
|
The effect of diabetes mellitus on α1-adrenergic receptor subtypes in the bladder of rats. Urology 2012; 80:951.e9-16. [PMID: 22901825 DOI: 10.1016/j.urology.2012.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 05/22/2012] [Accepted: 06/12/2012] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To detect the possible alterations on density or sensitivity of α1-adrenergic subtypes in diabetic bladder by reverse transcriptase-polymerase chain reaction technology and in vitro studies. METHODS Experimental diabetes was induced by administration of streptozotocin with a single injection through the tail vein. Rats were divided into control and diabetic groups. Contractile responses of bladder strips from each group were obtained for postassium chloride, adenosine triphosphate, and electrical field stimulation (0.5-32 Hz) in organ bath. Electrical field stimulation responses of strips were evaluated in the presence of PPADS (nonselective P2 antagonist), atropine (cholinergic antagonist), 5 MU (α-1a-adrenergic antagonist), BMY-7378 (α-1d-adrenergic antagonist), and finally CED (α-1b-adrenergic antagonist). mRNA expression of α1-adrenergic subtypes was determined for each group. RESULTS The difference between contractile responses related to electrical field stimulation with incubation with PPADS, atropine, 5 MU, BMY-7378, and CED, respectively, was not significant in the control and diabetic groups (P > .05). The electrical field stimulation responses of strips at 0.5-2 Hz without incubation were significantly different between the control and diabetic groups (P < .05). The contractile responses of strips with PPADS + atropine + 5 MU and BMY-7378 incubations in the diabetic group were significantly lower than in the control group in all doses (P < .05), The mRNA expression of α-1a-adrenergic in the diabetic group was significantly lower than in the control group (P < .05). No change was found in the expression of mRNA of α-1b-adrenergic. CONCLUSION These results support the probability of changes in presynaptic and autonomic receptor sensitivity. We believe that α-1a-adrenergic and α-1d-adrenergic subtypes should be kept in mind in the treatment of diabetic cystopathy.
Collapse
|
44
|
Boberg L, Poljakovic M, Rahman A, Eccles R, Arner A. Role of Rho-kinase and protein kinase C during contraction of hypertrophic detrusor in mice with partial urinary bladder outlet obstruction. BJU Int 2011; 109:132-40. [DOI: 10.1111/j.1464-410x.2011.10435.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
45
|
Leiria LOS, Mónica FZT, Carvalho FDGF, Claudino MA, Franco-Penteado CF, Schenka A, Grant AD, De Nucci G, Antunes E. Functional, morphological and molecular characterization of bladder dysfunction in streptozotocin-induced diabetic mice: evidence of a role for L-type voltage-operated Ca2+ channels. Br J Pharmacol 2011; 163:1276-88. [PMID: 21391978 PMCID: PMC3144540 DOI: 10.1111/j.1476-5381.2011.01311.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 12/29/2010] [Accepted: 02/02/2011] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Diabetic cystopathy is one of the most common and incapacitating complications of diabetes mellitus. This study aimed to evaluate the functional, structural and molecular alterations of detrusor smooth muscle (DSM) in streptozotocin-induced diabetic mice, focusing on the contribution of Ca(2+) influx through L-type voltage-operated Ca(2+) channels (L-VOCC). EXPERIMENTAL APPROACH Male C57BL/6 mice were injected with streptozotocin (125 mg·kg(-1) ). Four weeks later, contractile responses to carbachol, α,β-methylene ATP, KCl, extracellular Ca(2+) and electrical-field stimulation were measured in urothelium-intact DSM strips. Cystometry and histomorphometry were performed, and mRNA expression for muscarinic M(2) /M(3) receptors, purine P2X1 receptors and L-VOCC in the bladder was determined. KEY RESULTS Diabetic mice exhibited higher bladder capacity, frequency, non-void contractions and post-void pressure. Increased bladder weight, wall thickness, bladder volume and neural tissue were observed in diabetic bladders. Carbachol, α,β-methylene ATP, KCl, extracellular Ca(2+) and electrical-field stimulation all produced greater DSM contractions in diabetic mice. The L-VOCC blocker nifedipine almost completely reversed the enhanced DSM contractions in bladders from diabetic animals. The Rho-kinase inhibitor Y27632 had no effect on the enhanced carbachol contractions in the diabetic group. Expression of mRNA for muscarinic M(3) receptors and L-VOCC were greater in the bladders of diabetic mice, whereas levels of M(2) and P2X1 receptors remained unchanged. CONCLUSIONS AND IMPLICATIONS Diabetic mice exhibit features of urinary bladder dysfunction, as characterized by overactive DSM and decreased voiding efficiency. Functional and molecular data suggest that overactive DSM in diabetes is the result of enhanced extracellular Ca(2+) influx through L-VOCC.
Collapse
MESH Headings
- Amides/pharmacology
- Animals
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/metabolism
- Calcium Chloride/pharmacology
- Carbachol/pharmacology
- Cholinergic Agonists/pharmacology
- Diabetes Mellitus, Experimental/complications
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Nifedipine/pharmacology
- Pyridines/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Muscarinic M2/genetics
- Receptor, Muscarinic M2/metabolism
- Receptor, Muscarinic M3/genetics
- Receptor, Muscarinic M3/metabolism
- Receptors, Purinergic P2X1/genetics
- Receptors, Purinergic P2X1/metabolism
- Urinary Bladder Diseases/etiology
- Urinary Bladder Diseases/pathology
- rho-Associated Kinases/metabolism
Collapse
Affiliation(s)
- L O S Leiria
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gur S, Kadowitz PJ, Hellstrom WJ. RhoA/Rho‐Kinase as a Therapeutic Target for the Male Urogenital Tract. J Sex Med 2011; 8:675-87. [DOI: 10.1111/j.1743-6109.2010.02084.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
47
|
Abstract
The study of novel interstitial cells in the tissues of the urinary tract has defined advances in the field in the last decade. These intriguing cells belong to the same family as the better known interstitial cells of Cajal (ICC) of the gastrointestinal tract, and their discovery has been interpreted to suggest that pacemaker cells may be present in the urinary tract, driving the spontaneous or myogenic activity of the neighboring smooth muscle. This scenario may be true for the urethra where ICC have been described as "loose pacemakers" providing multiple, random inputs to modulate urethral smooth muscle activity. However, there is a paucity of direct evidence available to support this hypothesis in the bladder (where the smooth muscle cells are spontaneously active) or the renal pelvis (where atypical smooth muscle cells are the pacemakers), and it now seems more likely that urinary tract ICC act as modulators of smooth muscle activity.Interestingly, the literature suggests that the role of urinary tract ICC may be more apparent in pathophysiological conditions such as the overactive bladder. Several reports have indicated that the numbers of ICC present in overactive bladder tissues are greater than those from normal tissues; moreover, the contractility of tissues from overactive bladders in vitro appears to be more sensitive to the Kit antagonist, glivec, than those from normal bladder. Future research on urinary tract ICC in the short to medium term is likely to be dynamic and exciting and will lead to increasing our understanding of the roles of these cells in both normal and dysfunctional bladder.
Collapse
Affiliation(s)
- Karen D McCloskey
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK.
| |
Collapse
|
48
|
Abstract
Overactive bladder syndrome (OAB) is a symptom-based diagnosis characterised by the presence of urinary urgency. It is highly prevalent and overlaps with the presence of bladder contractions during urine storage, which characterises the urodynamic diagnosis of detrusor overactivity. Animal models are needed to understand the pathophysiology of OAB, but the subjective nature of the symptom complex means that interpretation of the findings in animals requires caution. Because urinary urgency cannot be ascertained in animals, surrogate markers such as frequency, altered toileting areas, and non-micturition contractions have to be used instead. No model can recapitulate the subjective, objective, and related factors seen in the clinical setting. Models used include partial bladder outlet obstruction, the spontaneous hypertensive rat, the hyperlipidaemic rat, various neurological insults and some gene knock-outs. Strengths and weaknesses of these models are discussed in the context of the inherent difficulties of extrapolating subjective symptoms in animals.
Collapse
Affiliation(s)
- Brian A Parsons
- Bristol Urological Institute, Southmead Hospital, Bristol, BS10 5NB, UK.
| | | |
Collapse
|
49
|
Abstract
Muscarinic receptors comprise five cloned subtypes, encoded by five distinct genes, which correspond to pharmacologically defined receptors (M(1)-M(5)). They belong to the family of G-protein-coupled receptors and couple differentially to the G-proteins. Preferentially, the inhibitory muscarinic M(2) and M(4) receptors couple to G(i/o), whereas the excitatory muscarinic M(1), M(3), and M(5) receptors preferentially couple to G(q/11). In general, muscarinic M(1), M(3), and M(5) receptors increase intracellular calcium by mobilizing phosphoinositides that generate inositol 1,4,5-trisphosphate (InsP3) and 1,2-diacylglycerol (DAG), whereas M(2) and M(4) receptors are negatively coupled to adenylyl cyclase. Muscarinic receptors are distributed to all parts of the lower urinary tract. The clinical use of antimuscarinic drugs in the treatment of detrusor overactivity and the overactive bladder syndrome has focused interest on the muscarinic receptors not only of the detrusor, but also of other components of the bladder wall, and these have been widely studied. However, the muscarinic receptors in the urethra, prostate, and ureter, and the effects they mediate in the normal state and in different urinary tract pathologies, have so far not been well characterized. In this review, the expression of and the functional effects mediated by muscarinic receptors in the bladder, urethra, prostate, and ureters, under normal conditions and in different pathologies, are discussed.
Collapse
|
50
|
Datta SN, Roosen A, Pullen A, Popat R, Rosenbaum TP, Elneil S, Dasgupta P, Fowler CJ, Apostolidis A. Immunohistochemical expression of muscarinic receptors in the urothelium and suburothelium of neurogenic and idiopathic overactive human bladders, and changes with botulinum neurotoxin administration. J Urol 2010; 184:2578-85. [PMID: 21030043 DOI: 10.1016/j.juro.2010.07.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Indexed: 10/18/2022]
Abstract
PURPOSE To investigate the possible associations of urothelial and suburothelial muscarinic receptors with human bladder pathophysiology we examined the immunohistochemical expression of muscarinic receptors types 1, 2 and 3 in the bladder urothelium and suburothelium of patients with neurogenic or idiopathic detrusor overactivity compared with that in controls. We also examined associations with patient quantified symptoms and the effect of intradetrusor botulinum neurotoxin type A treatment. MATERIALS AND METHODS We obtained bladder biopsies from 36 patients with detrusor overactivity before, and 4 and 16 weeks after treatment with intradetrusor botulinum neurotoxin type A via flexible cystoscopy. Patients with neurogenic detrusor overactivity were injected with 300 U botulinum neurotoxin type A and those with idiopathic detrusor overactivity received 200 U. Control biopsies were taken from 7 patients during investigation for asymptomatic microscopic hematuria. We studied muscarinic receptor immunohistochemical expression using commercial antibodies to muscarinic receptors 1, 2 and 3 with results quantified by image analysis. RESULTS We noted decreased suburothelial muscarinic receptor immunoreactivity in detrusor overactivity biopsies vs controls, which were significant for muscarinic receptors 1 and 3. After successful botulinum neurotoxin treatment we noted only increased muscarinic receptor 1 and 2 immunoreactivity. Urothelial muscarinic receptor 1 and 3 immunoreactivity was increased after treatment. We identified no substantial urothelial muscarinic receptor 2 immunoreactivity. Receptor levels showed inverse correlations with patient urgency and frequency. CONCLUSIONS Decreased muscarinic receptor levels in the urothelium and suburothelium of patients with detrusor overactivity were largely restored to control levels after successful treatment with botulinum neurotoxin type A. Correlations of receptor levels with patient symptoms further support a role for urothelial and suburothelial muscarinic receptors in detrusor overactivity in humans.
Collapse
Affiliation(s)
- Soumendra N Datta
- Institute of Neurology, University College London, National Hospital for Neurology and Neurosurgery, University College London Hospital, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|