1
|
Enrich-Bengoa J, Manich G, Valente T, Sanchez-Molina P, Almolda B, Solà C, Saura J, González B, Castellano B, Perálvarez-Marín A. TRPV2: A Key Player in Myelination Disorders of the Central Nervous System. Int J Mol Sci 2022; 23:ijms23073617. [PMID: 35408977 PMCID: PMC8999035 DOI: 10.3390/ijms23073617] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 01/27/2023] Open
Abstract
Transient potential receptor vanilloid 2 (TRPV2) is widely expressed through the nervous system and specifically found in neuronal subpopulations and some glial cells. TRPV2 is known to be sensitized by methionine oxidation, which results from inflammation. Here we aim to characterize the expression and regulation of TRPV2 in myelination pathologies, such as hypomyelination and demyelination. We validated the interaction between TRPV2 and its putative interactor Opalin, an oligodendrocyte marker, in mixed glial cultures under pro- and anti-inflammatory conditions. Then, we characterized TRPV2 time-course expression in experimental animal models of hypomyelination (jimpy mice) and de-/remyelination (cuprizone intoxication and experimental autoimmune encephalomyelitis (EAE)). TRPV2 showed upregulation associated with remyelination, inflammation in cuprizone and EAE models, and downregulation in hypomyelinated jimpy mice. TRPV2 expression was altered in human samples of multiple sclerosis (MS) patients. Additionally, we analyzed the expression of methionine sulfoxide reductase A (MSRA), an enzyme that reduces oxidated methionines in TRPV2, which we found increased in inflammatory conditions. These results suggest that TRPV2 may be a key player in myelination in accordance with the recapitulation hypothesis, and that it may become an interesting clinical target in the treatment of demyelination disorders.
Collapse
Affiliation(s)
- Jennifer Enrich-Bengoa
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain;
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain; (G.M.); (T.V.); (P.S.-M.); (B.A.); (B.G.); (B.C.)
| | - Gemma Manich
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain; (G.M.); (T.V.); (P.S.-M.); (B.A.); (B.G.); (B.C.)
- Medical Histology Unit, Department of Cell Biology, Physiology and Immunology, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Tony Valente
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain; (G.M.); (T.V.); (P.S.-M.); (B.A.); (B.G.); (B.C.)
- Medical Histology Unit, Department of Cell Biology, Physiology and Immunology, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
- Research Group on Methodology, Methods, Models and Outcomes of Health and Social Sciences (M3O), Experimental Sciences and Methodological Department, Faculty of Health Sciences and Welfare, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Catalonia, Spain
| | - Paula Sanchez-Molina
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain; (G.M.); (T.V.); (P.S.-M.); (B.A.); (B.G.); (B.C.)
- Medical Histology Unit, Department of Cell Biology, Physiology and Immunology, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Beatriz Almolda
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain; (G.M.); (T.V.); (P.S.-M.); (B.A.); (B.G.); (B.C.)
- Medical Histology Unit, Department of Cell Biology, Physiology and Immunology, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Carme Solà
- Department of Cerebral Ischemia and Neurodegeneration, Institut D’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (CSIC), Institut D’Investigacions Biomèdiques August-Pi i Sunyer (IDIBAPS), 08036 Barcelona, Catalonia, Spain;
| | - Josep Saura
- Biochemistry and Molecular Biology Unit, School of Medicine, Institut D’Investigacions Biomèdiques August-Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Catalonia, Spain;
| | - Berta González
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain; (G.M.); (T.V.); (P.S.-M.); (B.A.); (B.G.); (B.C.)
- Medical Histology Unit, Department of Cell Biology, Physiology and Immunology, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Bernardo Castellano
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain; (G.M.); (T.V.); (P.S.-M.); (B.A.); (B.G.); (B.C.)
- Medical Histology Unit, Department of Cell Biology, Physiology and Immunology, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Alex Perálvarez-Marín
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain;
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain; (G.M.); (T.V.); (P.S.-M.); (B.A.); (B.G.); (B.C.)
- Correspondence: ; Tel.: +34-93-581-4504
| |
Collapse
|
2
|
Mikulka CR, Dearborn JT, Benitez BA, Strickland A, Liu L, Milbrandt J, Sands MS. Cell-autonomous expression of the acid hydrolase galactocerebrosidase. Proc Natl Acad Sci U S A 2020; 117:9032-9041. [PMID: 32253319 PMCID: PMC7183170 DOI: 10.1073/pnas.1917675117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are typically caused by a deficiency in a soluble acid hydrolase and are characterized by the accumulation of undegraded substrates in the lysosome. Determining the role of specific cell types in the pathogenesis of LSDs is a major challenge due to the secretion and subsequent uptake of lysosomal hydrolases by adjacent cells, often referred to as "cross-correction." Here we create and validate a conditional mouse model for cell-autonomous expression of galactocerebrosidase (GALC), the lysosomal enzyme deficient in Krabbe disease. We show that lysosomal membrane-tethered GALC (GALCLAMP1) retains enzyme activity, is able to cleave galactosylsphingosine, and is unable to cross-correct. Ubiquitous expression of GALCLAMP1 fully rescues the phenotype of the GALC-deficient mouse (Twitcher), and widespread deletion of GALCLAMP1 recapitulates the Twitcher phenotype. We demonstrate the utility of this model by deleting GALCLAMP1 specifically in myelinating Schwann cells in order to characterize the peripheral neuropathy seen in Krabbe disease.
Collapse
Affiliation(s)
- Christina R Mikulka
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Joshua T Dearborn
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Bruno A Benitez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Amy Strickland
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Lin Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Mark S Sands
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110;
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
3
|
Wilding AS, Patte-Mensah C, Taleb O, Brun S, Kemmel V, Mensah-Nyagan AG. Protective effect of 4-Phenylbutyrate against proteolipid protein mutation-induced endoplasmic reticulum stress and oligodendroglial cell death. Neurochem Int 2018; 118:185-194. [PMID: 29936187 DOI: 10.1016/j.neuint.2018.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 01/08/2023]
Abstract
Proteolipid protein (PLP) mutation causes oligodendrocyte degeneration and myelin disorders including Pelizaeus-Merzbacher Disease (PMD). As the pathophysiological mechanisms involved in PMD are poorly known, the development of therapies remains difficult. To elucidate the pathogenic pathways, an immortalized oligodendroglial cell line (158JP) expressing PLP mutation has been generated. Previous investigations revealed that 158JP oligodendrocytes exhibit several abnormalities including aberrant PLP insertion into the plasma membrane, cAMP, plasmalogen and cell cycle deficits. However, further clarifications of abnormal PLP-induced oligodendrocyte degeneration are required in order to identify relevant mechanisms to target for efficient protection against oligodendrocyte death. Because PLP overexpression may lead to its accumulation inside the endoplasmic reticulum (ER) and cause ER-stress, we explored whether ER-stress may pivotally determine 158JP cell survival/death. Viability assays, RT-qPCR, western blot and flow cytometry were combined to compare cell survival, ER-stress and apoptotic markers in 158JP and control (158N) oligodendrocytes. We observed a significant decreased viability/survival of 158JP compared to 158N cells. Consistently, ER-stress markers (BiP, caspase-12) increased in 158JP (+30%) compared to the controls. mRNA and protein ratios of apoptotic modulators (Bax/Bcl2) are higher in 158JP oligodendrocytes which are also more vulnerable than 158N cells to tunicamycin-induced ER-stress. Interestingly, 4-Phenylbutyrate (ER-stress inhibitor), which decreased ER-stress and apoptotic markers in 158JP cells, significantly increased their survival. Our results, which show a direct link between the viability and endogenous levels of ER-stress and apoptotic markers in 158JP cells, also suggest that 4-Phenylbutyrate-based strategy may contribute to develop effective strategies against oligodendrocyte dysfunctions/death and myelin disorders.
Collapse
Affiliation(s)
- Anne-Sophie Wilding
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, France
| | - Christine Patte-Mensah
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, France
| | - Omar Taleb
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, France
| | - Susana Brun
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, France
| | - Véronique Kemmel
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, France
| | - Ayikoe-Guy Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, France.
| |
Collapse
|
4
|
Chaban YHG, Chen Y, Hertz E, Hertz L. Severe Convulsions and Dysmyelination in Both Jimpy and Cx32/47 -/- Mice may Associate Astrocytic L-Channel Function with Myelination and Oligodendrocytic Connexins with Internodal K v Channels. Neurochem Res 2017; 42:1747-1766. [PMID: 28214987 DOI: 10.1007/s11064-017-2194-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/12/2022]
Abstract
The Jimpy mouse illustrates the importance of interactions between astrocytes and oligodendrocytes. It has a mutation in Plp coding for proteolipid protein and DM20. Its behavior is normal at birth but from the age of ~2 weeks it shows severe convulsions associated with oligodendrocyte/myelination deficits and early death. A normally occurring increase in oxygen consumption by highly elevated K+ concentrations is absent in Jimpy brain slices and cultured astrocytes, reflecting that Plp at early embryonic stages affects common precursors as also shown by the ability of conditioned medium from normal astrocytes to counteract histological abnormalities. This metabolic response is now known to reflect opening of L-channels for Ca2+. The resulting deficiency in Ca2+ entry has many consequences, including lack of K+-stimulated glycogenolysis and release of gliotransmitter ATP. Lack of purinergic stimulation compromises oligodendrocyte survival and myelination and affects connexins and K+ channels. Mice lacking the oligodendrocytic connexins Cx32 and 47 show similar neurological dysfunction as Jimpy. This possibly reflects that K+ released by intermodal axonal Kv channels is transported underneath a loosened myelin sheath instead of reaching the extracellular space via connexin-mediated transport to oligodendrocytes, followed by release and astrocytic Na+,K+-ATPase-driven uptake with subsequent Kir4.1-facilitated release and neuronal uptake.
Collapse
Affiliation(s)
| | - Ye Chen
- Henry M. Jackson Foundation, Bethesda, MD, 20817, USA
| | - Elna Hertz
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, People's Republic of China
| | - Leif Hertz
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
5
|
Hovhannisyan A, Benkner B, Biesemeier A, Schraermeyer U, Kukley M, Münch TA. Effects of the jimpy mutation on mouse retinal structure and function. J Comp Neurol 2015; 523:2788-806. [PMID: 26011242 DOI: 10.1002/cne.23818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/30/2014] [Accepted: 05/19/2015] [Indexed: 12/15/2022]
Abstract
The Jimpy mutant mouse has a point mutation in the proteolipid protein gene (plp1). The resulting misfolding of the protein leads to oligodendrocyte death, myelin destruction, and failure to produce adequately myelinated axons in the central nervous system (CNS). It is not known how the absence of normal myelination during development influences neural function. We characterized the Jimpy mouse retina to find out whether lack of myelination in the optic nerve during development has an effect on normal functioning and morphology of the retina. Optokinetic reflex measurements showed that Jimpy mice had, in general, a functional visual system. Both PLP1 antibody staining and reverse transcriptase-polymerase chain reaction for plp1 mRNA showed that plp1 is not expressed in the wild-type retina. However, in the optic nerve, plp1 is normally expressed, and consequently, in Jimpy mutant mice, myelination of axons in the optic nerve was mostly absent. Nevertheless, neither axon count nor axon ultrastructure in the optic nerve was affected. Physiological recordings of ganglion cell activity using microelectrode arrays revealed a decrease of stimulus-evoked activity at mesopic light levels. Morphological analysis of the retina did not show any significant differences in the gross morphology, such as thickness of retinal layers or cell number in the inner and outer nuclear layer. The cell bodies in the inner nuclear layer, however, were larger in the peripheral retina of Jimpy mutant mice. Antibody labeling against cell type-specific markers showed that the number of rod bipolar and horizontal cells was increased in Jimpy mice. In conclusion, whereas the Jimpy mutation has dramatic effects on the myelination of retinal ganglion cell axons, it has moderate effects on retinal morphology and function.
Collapse
Affiliation(s)
- Anahit Hovhannisyan
- Retinal Circuits and Optogenetics, Center for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany.,Neuron Glia Interactions, Center for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany
| | - Boris Benkner
- Retinal Circuits and Optogenetics, Center for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany
| | - Antje Biesemeier
- Section of Experimental Vitreoretinal Surgery, Center for Ophthalmology, 72076, Tübingen, Germany
| | - Ulrich Schraermeyer
- Section of Experimental Vitreoretinal Surgery, Center for Ophthalmology, 72076, Tübingen, Germany
| | - Maria Kukley
- Neuron Glia Interactions, Center for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany
| | - Thomas A Münch
- Retinal Circuits and Optogenetics, Center for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany
| |
Collapse
|
6
|
Laššuthová P, Žaliová M, Inoue K, Haberlová J, Sixtová K, Sakmaryová I, Paděrová K, Mazanec R, Zámečník J, Šišková D, Garbern J, Seeman P. Three new PLP1 splicing mutations demonstrate pathogenic and phenotypic diversity of Pelizaeus-Merzbacher disease. J Child Neurol 2014; 29:924-31. [PMID: 23771846 DOI: 10.1177/0883073813492387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/09/2013] [Indexed: 11/16/2022]
Abstract
Pelizaeus-Merzbacher disease is a severe X-linked disorder of central myelination caused by mutations affecting the proteolipid protein gene. We describe 3 new PLP1 splicing mutations, their effect on splicing and associated phenotypes. Mutation c.453_453+6del7insA affects the exon 3B donor splice site and disrupts the PLP1-transcript without affecting the DM20, was found in a patient with severe Pelizaeus-Merzbacher disease and in his female cousin with early-onset spastic paraparesis. Mutation c.191+1G>A causes exon 2 skipping with a frame shift, is expected to result in a functionally null allele, and was found in a patient with mild Pelizaeus-Merzbacher disease and in his aunt with late-onset spastic paraparesis. Mutation c.696+1G>A utilizes a cryptic splice site in exon 5, causes partial exon 5 skipping and in-frame deletion, and was found in an isolated patient with a severe classical Pelizaeus-Merzbacher. PLP1 splice-site mutations express a variety of disease phenotypes mediated by different molecular pathogenic mechanisms.
Collapse
Affiliation(s)
- Petra Laššuthová
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| | - Markéta Žaliová
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| | - Ken Inoue
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Jana Haberlová
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| | - Klára Sixtová
- Department of Paediatric Neurology, Thomayer's Hospital, Prague, Czech Republic
| | - Iva Sakmaryová
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| | - Kateřina Paděrová
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| | - Radim Mazanec
- Department of Neurology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| | - Josef Zámečník
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| | - Dana Šišková
- Department of Paediatric Neurology, Thomayer's Hospital, Prague, Czech Republic
| | - Jim Garbern
- Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Pavel Seeman
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| |
Collapse
|
7
|
She P, Bunpo P, Cundiff JK, Wek RC, Harris RA, Anthony TG. General control nonderepressible 2 (GCN2) kinase protects oligodendrocytes and white matter during branched-chain amino acid deficiency in mice. J Biol Chem 2013; 288:31250-60. [PMID: 24019515 DOI: 10.1074/jbc.m113.498469] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Branched-chain amino acid (BCAA) catabolism is regulated by branched-chain α-keto acid dehydrogenase, an enzyme complex that is inhibited when phosphorylated by its kinase (BDK). Loss of BDK function in mice and humans causes BCAA deficiency and epilepsy with autistic features. In response to amino acid deficiency, phosphorylation of eukaryotic initiation factor 2α (eIF2∼P) by general control nonderepressible 2 (GCN2) activates the amino acid stress response. We hypothesized that GCN2 functions to protect the brain during chronic BCAA deficiency. To test this idea, we generated mice lacking both Gcn2 and Bdk (GBDK) and examined the development of progeny. GBDK mice appeared normal at birth, but they soon stopped growing, developed severe ataxia, tremor, and anorexia, and died by postnatal day 15. BCAA levels in brain were diminished in both Bdk(-/-) and GBDK pups. Brains from Bdk(-/-) pups exhibited robust eIF2∼P and amino acid stress response induction, whereas these responses were absent in GBDK mouse brains. Instead, myelin deficiency and diminished expression of myelin basic protein were noted in GBDK brains. Genetic markers of oligodendrocytes and astrocytes were also reduced in GBDK brains in association with apoptotic cell death in white matter regions of the brain. GBDK brains further demonstrated reduced Sod2 and Cat mRNA and increased Tnfα mRNA expression. The data are consistent with the idea that loss of GCN2 during BCAA deficiency compromises glial cell defenses to oxidative and inflammatory stress. We conclude that GCN2 protects the brain from developing a lethal leukodystrophy in response to amino acid deficiencies.
Collapse
Affiliation(s)
- Pengxiang She
- From the Department of Nutritional Sciences, Rutgers, State University of New Jersey, New Brunswick, New Jersey 08901
| | | | | | | | | | | |
Collapse
|
8
|
Suzuki N, Fukushi M, Kosaki K, Doyle AD, de Vega S, Yoshizaki K, Akazawa C, Arikawa-Hirasawa E, Yamada Y. Teneurin-4 is a novel regulator of oligodendrocyte differentiation and myelination of small-diameter axons in the CNS. J Neurosci 2012; 32:11586-99. [PMID: 22915103 PMCID: PMC3442259 DOI: 10.1523/jneurosci.2045-11.2012] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Revised: 06/25/2012] [Accepted: 07/02/2012] [Indexed: 01/05/2023] Open
Abstract
Myelination is essential for proper functioning of the CNS. In this study, we have identified a mouse mutation, designated furue, which causes tremors and hypomyelination in the CNS, particularly in the spinal cord, but not in the sciatic nerve of the PNS. In the spinal cord of the furue mice, myelination of small-diameter axons was dramatically reduced, and differentiation of oligodendrocytes, the myelin-forming cells in the CNS, was inhibited. We subsequently found that the furue mutation was associated with a transgene insertion into the teneurin-4 (Ten-4, Ten-m4/Odz4) gene, encoding a transmembrane protein of unknown function. Ten-4 was strongly expressed in the spinal cord of wild-type mice and was induced during normal oligodendrocyte differentiation. In contrast, in the furue mice, the expression of Ten-4 was absent. Differentiation and cellular process formation of oligodendrocytes were inhibited in primary cell culture from the furue mice. Cell differentiation and process formation were also inhibited in the oligodendrocyte progenitor cell line CG-4 after suppression of Ten-4 expression by shRNA. Furthermore, Ten-4 positively regulated focal adhesion kinase, an essential signaling molecule for oligodendrocyte process formation and myelination of small-diameter axons. These findings suggest that Ten-4 is a novel regulator of oligodendrocyte differentiation and that it plays a critical role in the myelination of small-diameter axons in the CNS.
Collapse
MESH Headings
- 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase/genetics
- 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase/metabolism
- Adenomatous Polyposis Coli Protein/metabolism
- Age Factors
- Animals
- Animals, Newborn
- Antigens/metabolism
- Axons/metabolism
- Axons/pathology
- Axons/ultrastructure
- Brain/cytology
- Cell Differentiation/genetics
- Cell Size
- Central Nervous System/metabolism
- Central Nervous System/pathology
- Central Nervous System/physiopathology
- Demyelinating Diseases/genetics
- Focal Adhesion Kinase 1/genetics
- Focal Adhesion Kinase 1/metabolism
- Galactosylceramidase/metabolism
- Gene Expression Regulation, Developmental/genetics
- Humans
- Membrane Proteins
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Mice, Transgenic
- Microscopy, Electron, Transmission
- Myelin Basic Protein/metabolism
- Neuroglia/physiology
- Nuclear Proteins/deficiency
- Nuclear Proteins/genetics
- Oligodendroglia/cytology
- Organogenesis
- Proteoglycans/metabolism
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- Receptors, Interleukin-2/genetics
- Receptors, Interleukin-2/metabolism
- Transfection
Collapse
Affiliation(s)
- Nobuharu Suzuki
- The Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20814
- Department of Biochemistry and Biophysics, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan, and
| | - Masaya Fukushi
- The Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20814
| | - Keisuke Kosaki
- The Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20814
| | - Andrew D. Doyle
- The Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20814
| | - Susana de Vega
- The Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20814
- Research Institute for Diseases of Old Age and Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Keigo Yoshizaki
- The Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20814
| | - Chihiro Akazawa
- Department of Biochemistry and Biophysics, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan, and
| | - Eri Arikawa-Hirasawa
- Research Institute for Diseases of Old Age and Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Yoshihiko Yamada
- The Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20814
| |
Collapse
|
9
|
Lin K, Chen K, Lan K, Lee H, Lai S. Alterations of myelin proteins in inflammatory demyelination of BALB/c mice caused by Angiostrongylus cantonensis. Vet Parasitol 2010; 171:74-80. [DOI: 10.1016/j.vetpar.2010.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 03/08/2010] [Accepted: 03/08/2010] [Indexed: 11/16/2022]
|
10
|
Scattoni ML, Crawley J, Ricceri L. Ultrasonic vocalizations: a tool for behavioural phenotyping of mouse models of neurodevelopmental disorders. Neurosci Biobehav Rev 2009; 33:508-15. [PMID: 18771687 PMCID: PMC2688771 DOI: 10.1016/j.neubiorev.2008.08.003] [Citation(s) in RCA: 347] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 07/30/2008] [Accepted: 08/07/2008] [Indexed: 10/21/2022]
Abstract
In neonatal mice ultrasonic vocalizations have been studied both as an early communicative behaviour of the pup-mother dyad and as a sign of an aversive affective state. Adult mice of both sexes produce complex ultrasonic vocalization patterns in different experimental/social contexts. Vocalizations are becoming an increasingly valuable assay for behavioural phenotyping throughout the mouse life-span and alterations of the ultrasound patterns have been reported in several mouse models of neurodevelopmental disorders. Here we also show that the modulation of vocalizations by maternal cues (maternal potentiation paradigm) - originally identified and investigated in rats - can be measured in C57BL/6 mouse pups with appropriate modifications of the rat protocol and can likely be applied to mouse behavioural phenotyping. In addition we suggest that a detailed qualitative evaluation of neonatal calls together with analysis of adult mouse vocalization patterns in both sexes in social settings, may lead to a greater understanding of the communication value of vocalizations in mice. Importantly, both neonatal and adult USV altered patterns can be determined during the behavioural phenotyping of mouse models of human neurodevelopmental and neuropsychiatric disorders, starting from those in which deficits in communication are a primary symptom.
Collapse
Affiliation(s)
- Maria Luisa Scattoni
- Section of Neurotoxicology and Neuroendocrinology, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161 Rome, Italy
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD 20892-3730 USA
| | - Jacqueline Crawley
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD 20892-3730 USA
| | - Laura Ricceri
- Section of Neurotoxicology and Neuroendocrinology, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161 Rome, Italy
| |
Collapse
|
11
|
Termination of lesion-induced plasticity in the mouse barrel cortex in the absence of oligodendrocytes. Mol Cell Neurosci 2008; 39:40-9. [PMID: 18588982 DOI: 10.1016/j.mcn.2008.05.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 05/18/2008] [Accepted: 05/19/2008] [Indexed: 01/26/2023] Open
Abstract
Termination of developmental plasticity occurs at specific points in development, and the mechanisms responsible for it are not well understood. One hypothesis that has been proposed is that oligodendrocytes (OLs) play an important role. Consistent with this, we found that OLs appeared in the mouse somatosensory cortex at the end of the critical period for whisker lesion-induced barrel structural plasticity. To test this hypothesis, we used two mouse lines with defective OL differentiation: Olig1-deficient and jimpy. In Olig1-deficient mice, although OLs were totally absent, the termination of lesion-induced plasticity was not delayed. The timing was normal even when the cytoarchitectonic barrel formation was temporarily blocked by pharmacological treatment in Olig1-deficient mice. Furthermore, the termination was not delayed in jimpy mice. These results demonstrate that, even though OLs appear at the end of the critical period, OLs are not intrinsically necessary for the termination of lesion-induced plasticity. Our findings underscore a mechanistic distinction between the termination of thalamocortical axonal plasticity in the barrel cortex and that in the visual cortex, in which OL-derived Nogo-A/B was recently suggested to be essential.
Collapse
|
12
|
Cho KS, Yang L, Lu B, Ma HF, Huang X, Pekny M, Chen DF. Re-establishing the regenerative potential of central nervous system axons in postnatal mice. J Cell Sci 2005; 118:863-72. [PMID: 15731004 PMCID: PMC1351228 DOI: 10.1242/jcs.01658] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
At a certain point in development, axons in the mammalian central nervous system lose their ability to regenerate after injury. Using the optic nerve model, we show that this growth failure coincides with two developmental events: the loss of Bcl-2 expression by neurons and the maturation of astrocytes. Before postnatal day 4, when astrocytes are immature, overexpression of Bcl-2 alone supported robust and rapid optic nerve regeneration over long distances, leading to innervation of brain targets by day 4 in mice. As astrocytes matured after postnatal day 4, axonal regeneration was inhibited in mice overexpressing Bcl-2. Concurrent induction of Bcl-2 and attenuation of reactive gliosis reversed the failure of CNS axonal re-elongation in postnatal mice and led to rapid axonal regeneration over long distances and reinnervation of the brain targets by a majority of severed optic nerve fibers up to 2 weeks of age. These results suggest that an early postnatal downregulation of Bcl-2 and post-traumatic reactive gliosis are two important elements of axon regenerative failure in the CNS.
Collapse
Affiliation(s)
- Kin-Sang Cho
- Schepens Eye Research Institute, Program in Neuroscience and Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Liu Yang
- Schepens Eye Research Institute, Program in Neuroscience and Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Bin Lu
- Schepens Eye Research Institute, Program in Neuroscience and Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Hong Feng Ma
- Schepens Eye Research Institute, Program in Neuroscience and Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Xizhong Huang
- Schepens Eye Research Institute, Program in Neuroscience and Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Milos Pekny
- The Arvid Carlsson Institute for Neuroscience, Institute of Clinical Neuroscience, Sahlgrenska Academy, Göteborg University, Medicinaregatan 9A, SE-413 90 Göteborg, Sweden
- Authors for correspondence (e-mail: ; )
| | - Dong Feng Chen
- Schepens Eye Research Institute, Program in Neuroscience and Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
- Authors for correspondence (e-mail: ; )
| |
Collapse
|
13
|
Wang Y, Richter-Landsberg C, Reiser G. Expression of protease-activated receptors (PARs) in OLN-93 oligodendroglial cells and mechanism of PAR-1-induced calcium signaling. Neuroscience 2004; 126:69-82. [PMID: 15145074 DOI: 10.1016/j.neuroscience.2004.03.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2004] [Indexed: 11/30/2022]
Abstract
Protease-activated receptors (PARs) are a group of four members of the superfamily of G protein-coupled receptors that transduce cell signaling by proteolytic activity of extracellular serine proteases, such as thrombin. Possible expression and functions of PARs in oligodendrocytes, the myelin forming cells of the CNS, are still unclear. Here, the oligodendrocyte cell line OLN-93 was used to investigate the signaling of PARs. By reverse transcription-polymerase chain reaction (RT-PCR), immunostaining and Ca(2+) imaging studies, we demonstrate that OLN-93 cells functionally express PAR-1. PAR-3 seems to be expressed without apparent activity, and PAR-2 and PAR-4 cannot be detected. Short-term stimulation of the OLN-93 cells with PAR-1 agonists, such as thrombin, trypsin and PAR-1 activating peptide, dose-dependently induced a transient rise of [Ca(2+)](i). Concentration-effect curves display a sigmoidal concentration dependence. Elevation of [Ca(2+)](i) induced by PAR-1 mainly resulted from Ca(2+) release from intracellular stores. Studies on the effects of pertussis toxin (PTX), phospholipase C antagonist and 2-APB, showed that in OLN-93 cells (i). the calcium signaling cascade from PAR-1 was mediated through PTX-insensitive G proteins, (ii). activation of phospholipase C and liberation of InsP(3) were events upstream of the Ca(2+) release from the stores. In addition, the present study analyzed PAR-1 desensitization caused by exposure to thrombin, trypsin, and PAR-1 activating peptide, elucidated the influence of the protease cathepsin G on PAR-1 activation, and also characterized PAR-1 desensitization. This is the first study, which shows that OLN-93 oligodendrocytes functionally express PAR-1, and identifies the receptor coupling to mobilization of intracellular calcium. Moreover, the expression of PAR-1 was demonstrated by RT-PCR in primary oligodendrocytes from rat brain.
Collapse
Affiliation(s)
- Y Wang
- Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Institut für Neurobiochemie, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | | | | |
Collapse
|
14
|
Cannabinoids promote oligodendrocyte progenitor survival: involvement of cannabinoid receptors and phosphatidylinositol-3 kinase/Akt signaling. J Neurosci 2002. [PMID: 12427829 DOI: 10.1523/jneurosci.22-22-09742.2002] [Citation(s) in RCA: 282] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cannabinoids exert pleiotropic actions in the CNS, including the inhibition of inflammatory responses and the enhancement of neuronal survival after injury. Although cannabinoid receptors are distributed widely in brain, their presence has not been investigated previously in oligodendrocytes. This study examined the expression of cannabinoid type 1 (CB1) receptors in rat oligodendrocytes in vivo and in culture and explored their biological function. Expression of CB1 receptors by oligodendrocytes was demonstrated immunocytochemically in postnatal and in adult white matter as well as in oligodendrocyte cultures. Reverse transcription-PCR and Western blotting further confirmed the presence of CB1 receptors. Oligodendrocyte progenitors undergo apoptosis with the withdrawal of trophic support, as determined by TUNEL assay and caspase-3 activation, and both the selective CB1 agonist arachidonyl-2'-chloroethylamide/(all Z)-N-(2-cycloethyl)-5,8,11,14-eicosatetraenamide (ACEA) and the nonselective cannabinoid agonists HU210 and (+)-Win-55212-2 enhanced cell survival. To investigate intracellular signaling involved in cannabinoid protection, we focused on the phosphatidylinositol-3 kinase (PI3K)/Akt pathway. HU210, (+)-Win-55212-2, and ACEA elicited a time-dependent phosphorylation of Akt. Pertussis toxin abolished Akt activation, indicating the involvement of G(i)/G(o)-protein-coupled receptors. The CB1 receptor antagonist SR141716A partially inhibited Akt phosphorylation in response to HU210 and (+)-Win-55212-2 and abolished the effects of ACEA. Trophic support deprivation downregulated Akt activity, and cannabinoids recovered phospho-Akt levels. Inhibition of PI3K abrogated the survival action and the recovery of Akt activity in response to cannabinoids. SR141716A prevented only the protection conferred by ACEA. Nevertheless, SR141716A and the selective CB2 receptor antagonist SR144528 in combination inhibited the prosurvival action of HU210, which is in accordance with the finding of CB2 receptor expression by oligodendroglial cells. These data identify oligodendrocytes as potential targets of cannabinoid action in the CNS.
Collapse
|
15
|
Edgar JM, Anderson TJ, Dickinson PJ, Barrie JA, McCulloch MC, Nave KA, Griffiths IR. Survival of, and competition between, oligodendrocytes expressing different alleles of the Plp gene. J Cell Biol 2002; 158:719-29. [PMID: 12177040 PMCID: PMC2174021 DOI: 10.1083/jcb.200202124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutations in the X-linked Plp gene lead to dysmyelinating phenotypes and oligodendrocyte cell death. Here, we exploit the X inactivation phenomenon to show that a hierarchy exists in the influence of different mutant Plp alleles on oligodendrocyte survival. We used compound heterozygote mice to study the long-term fate of oligodendrocytes expressing either the jimpy or rumpshaker allele against a background of cells expressing a Plp-null allele. Although mutant and null oligodendrocytes were generated in equal numbers, the proportion expressing the mutant allele subsequently declined, but whereas those expressing the rumpshaker allele formed a reduced but stable population, the number of jimpy cells fell progressively. The age of decline in the jimpy cells in different regions of the CNS correlated with the temporal sequence of myelination. In compound heterozygotes expressing rumpshaker and jimpy alleles, oligodendrocytes expressing the former predominated and were more abundant than when the rumpshaker and null alleles were in competition. Thus, oligodendrocyte survival is not determined solely by cell intrinsic factors, such as the conformation of the misfolded PLP, but is influenced by neighboring cells, possibly competing for cell survival factors.
Collapse
Affiliation(s)
- J M Edgar
- Applied Neurobiology Group, Institute of Comparative Medicine, University of Glasgow, Bearsden, Glasgow G61 1QH, Scotland
| | | | | | | | | | | | | |
Collapse
|
16
|
Jenkins SM, Bennett V. Developing nodes of Ranvier are defined by ankyrin-G clustering and are independent of paranodal axoglial adhesion. Proc Natl Acad Sci U S A 2002; 99:2303-8. [PMID: 11842202 PMCID: PMC122360 DOI: 10.1073/pnas.042601799] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nodes of Ranvier are excitable regions of axonal membranes highly enriched in voltage-gated sodium channels that propagate action potentials. The mechanism of protein clustering at nodes has been a source of controversy. In this study, developmental analysis of nodes of Ranvier in optic nerve axons reveals that early node intermediates are defined by ankyrin-G. Other node components, including beta IV spectrin, voltage-gated sodium channels, and the L1 cell adhesion molecule neurofascin, are subsequently recruited to sites of ankyrin-G clustering. The role of intact paranodes in protein clustering was examined in the dysmyelinating mouse mutant jimpy. Jimpy mice do not have intact paranodal axoglial contacts, which is indicated by a complete lack of neurexin/contactin-associated protein/paranodin clustering in paranodes. In the absence of intact paranodes, ankyrin-G was still able to cluster, although fewer ankyrin clusters were seen in jimpy optic nerves than in wild-type optic nerves. Recruitment of Na(v)1.2, Na(v)1.6, beta IV spectrin, and neurofascin to sites of ankyrin-G clustering is unimpaired in jimpy mice, indicating that node formation occurs independent of intact paranodal axoglial contacts.
Collapse
Affiliation(s)
- Scott M Jenkins
- Howard Hughes Medical Institute and Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
17
|
Jacobs JR. The midline glia of Drosophila: a molecular genetic model for the developmental functions of glia. Prog Neurobiol 2000; 62:475-508. [PMID: 10869780 DOI: 10.1016/s0301-0082(00)00016-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Midline Glia of Drosophila are required for nervous system morphogenesis and midline axon guidance during embryogenesis. In origin, gene expression and function, this lineage is analogous to the floorplate of the vertebrate neural tube. The expression or function of over 50 genes, summarised here, has been linked to the Midline Glia. Like the floorplate, the cells which generate the Midline Glia lineage, the mesectoderm, are determined by the interaction of ectoderm and mesoderm during gastrulation. Determination and differentiation of the Midline Glia involves the Drosophila EGF, Notch and segment polarity signaling pathways, as well as twelve identified transcription factors. The Midline Glia lineage has two phases of cell proliferation and of programmed cell death. During embryogenesis, the EGF receptor pathway signaling and Wrapper protein both function to suppress apoptosis only in those MG which are appropriately positioned to separate and ensheath midline axonal commissures. Apoptosis during metamorphosis is regulated by the insect steroid, Ecdysone. The Midline Glia participate in both the attraction of axonal growth cones towards the midline, as well as repulsion of growth cones from the midline. Midline axon guidance requires the Drosophila orthologs of vertebrate genes expressed in the floorplate, which perform the same function. Genetic and molecular evidence of the interaction of attractive (Netrin) and repellent (Slit) signaling is reviewed and summarised in a model. The Midline Glia participate also in the generation of extracellular matrix and in trophic interactions with axons. Genetic evidence for these functions is reviewed.
Collapse
Affiliation(s)
- J R Jacobs
- Department of Biology, McMaster University, 1280 Main Street W., L8S 4K1, Hamilton, Canada.
| |
Collapse
|
18
|
Tvrdik P, Westerberg R, Silve S, Asadi A, Jakobsson A, Cannon B, Loison G, Jacobsson A. Role of a new mammalian gene family in the biosynthesis of very long chain fatty acids and sphingolipids. J Cell Biol 2000; 149:707-18. [PMID: 10791983 PMCID: PMC2174859 DOI: 10.1083/jcb.149.3.707] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whereas the physiological significance of microsomal fatty acid elongation is generally appreciated, its molecular nature is poorly understood. Here, we describe tissue-specific regulation of a novel mouse gene family encoding components implicated in the synthesis of very long chain fatty acids. The Ssc1 gene appears to be ubiquitously expressed, whereas Ssc2 and Cig30 show a restricted expression pattern. Their translation products are all integral membrane proteins with five putative transmembrane domains. By complementing the homologous yeast mutants, we found that Ssc1 could rescue normal sphingolipid synthesis in the sur4/elo3 mutant lacking the ability to synthesize cerotic acid (C(26:0)). Similarly, Cig30 reverted the phenotype of the fen1/elo2 mutant that has reduced levels of fatty acids in the C(20)-C(24) range. Further, we show that Ssc1 mRNA levels were markedly decreased in the brains of myelin-deficient mouse mutants known to have very low fatty acid chain elongation activity. Conversely, the dramatic induction of Cig30 expression during brown fat recruitment coincided with elevated elongation activity. Our results strongly implicate this new mammalian gene family in tissue-specific synthesis of very long chain fatty acids and sphingolipids.
Collapse
Affiliation(s)
- P Tvrdik
- The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Vouyiouklis DA, Barrie JA, Griffiths IR, Thomson CE. A proteolipid protein-specific pre-mRNA (Ppm-1) contains intron 3 and is up-regulated during myelination in the CNS. J Neurochem 2000; 74:940-8. [PMID: 10693924 DOI: 10.1046/j.1471-4159.2000.0740940.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Alternative splicing of the precursor for messenger RNA (pre-mRNA) is a common process utilised by higher eukaryotes to modulate gene expression. A single primary transcript may generate several proteins with distinct functions, expressed in tissue-specific, developmental patterns. This article describes an oligodendrocyte-specific pre-mRNA product of proteolipid protein gene (P/p) transcription, which is the precursor for P/p but not Dm20 mRNA in the CNS. This P/p-specific pre-mRNA (Ppm-1) includes the intact intron 3 of the P/p gene. It is first expressed during active myelination, and it localises to the nucleus of oligodendrocytes, in both normal and jimpy (jp) murine CNS. In addition to mouse, Ppm-1 is found also in rat and dog, but not toad or trout. Our work suggests that alternative splicing of the P/p gene primary transcript follows a branching pattern, resulting in the presence of at least one P/p isoform-specific pre-mRNA molecule, Ppm-1. Therefore, Dm20 mRNA may be the product of a divergent set of pre-mRNA splicing events.
Collapse
Affiliation(s)
- D A Vouyiouklis
- Department of Veterinary Clinical Studies, University of Glasgow Veterinary School, Scotland.
| | | | | | | |
Collapse
|
20
|
Dimou L, Klugmann M, Werner H, Jung M, Griffiths IR, Nave KA. Dysmyelination in mice and the proteolipid protein gene family. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 468:261-71. [PMID: 10635035 DOI: 10.1007/978-1-4615-4685-6_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- L Dimou
- Zentrum für Molekulare Biologie (ZMBH), University of Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|