1
|
Cao M, Gao Y. Mast cell stabilizers: from pathogenic roles to targeting therapies. Front Immunol 2024; 15:1418897. [PMID: 39148726 PMCID: PMC11324444 DOI: 10.3389/fimmu.2024.1418897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Mast cells (MCs) are bone-marrow-derived haematopoietic cells that are widely distributed in human tissues. When activated, they will release tryptase, histamine and other mediators that play major roles in a diverse array of diseases/disorders, including allergies, inflammation, cardiovascular diseases, autoimmune diseases, cancers and even death. The multiple pathological effects of MCs have made their stabilizers a research hotspot for the treatment of related diseases. To date, the clinically available MC stabilizers are limited. Considering the rapidly increasing incidence rate and widespread prevalence of MC-related diseases, a comprehensive reference is needed for the clinicians or researchers to identify and choose efficacious MC stabilizers. This review analyzes the mechanism of MC activation, and summarizes the progress made so far in the development of MC stabilizers. MC stabilizers are classified by the action mechanism here, including acting on cell surface receptors, disturbing signal transduction pathways and interfering exocytosis systems. Particular emphasis is placed on the clinical applications and the future development direction of MC stabilizers.
Collapse
Affiliation(s)
- Mengda Cao
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yao Gao
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Zhang T, Finn DF, Barlow JW, Walsh JJ. Mast cell stabilisers. Eur J Pharmacol 2015; 778:158-68. [PMID: 26130122 DOI: 10.1016/j.ejphar.2015.05.071] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 05/05/2015] [Accepted: 05/17/2015] [Indexed: 01/18/2023]
Abstract
Mast cells play a critical role in type 1 hypersensitivity reactions. Indeed, mast cell mediators are implicated in many different conditions including allergic rhinitis, conjunctivitis, asthma, psoriasis, mastocytosis and the progression of many different cancers. Thus, there is intense interest in the development of agents which prevent mast cell mediator release or which inhibit the actions of such mediators once released into the environment of the cell. Much progress into the design of new agents has been made since the initial discovery of the mast cell stabilising properties of khellin from Ammi visnaga and the clinical approval of cromolyn sodium. This review critically examines the progress that has been made in the intervening years from the design of new agents that target a specific signalling event in the mast cell degranulation pathway to those agents which have been developed where the precise mechanism of action remains elusive. Particular emphasis is also placed on clinically used drugs for other indications that stabilise mast cells and how this additional action may be harnessed for their clinical use in disease processes where mast cells are implicated.
Collapse
Affiliation(s)
- Tao Zhang
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Deirdre Frances Finn
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - James William Barlow
- Department of Pharmaceutical & Medicinal Chemistry, Royal College of Surgeons in Ireland, Stephens Green, Dublin 2, Ireland
| | - John Jarlath Walsh
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
3
|
Suzuki R, Scheffel J, Rivera J. New insights on the signaling and function of the high-affinity receptor for IgE. Curr Top Microbiol Immunol 2015; 388:63-90. [PMID: 25553795 DOI: 10.1007/978-3-319-13725-4_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Clustering of the high-affinity receptor for immunoglobulin E (FcεRI) through the interaction of receptor-bound immunoglobulin E (IgE) antibodies with their cognate antigen is required to couple IgE antibody production to cellular responses and physiological consequences. IgE-induced responses through FcεRI are well known to defend the host against certain infectious agents and to lead to unwanted allergic responses to normally innocuous substances. However, the cellular and/or physiological response of individuals that produce IgE antibodies may be markedly different and such antibodies (even to the same antigenic epitope) can differ in their antigen-binding affinity. How affinity variation in the interaction of FcεRI-bound IgE antibodies with antigen is interpreted into cellular responses and how the local environment may influence these responses is of interest. In this chapter, we focus on recent advances that begin to unravel how FcεRI distinguishes differences in the affinity of IgE-antigen interactions and how such discrimination along with surrounding environmental stimuli can shape the (patho) physiological response.
Collapse
Affiliation(s)
- Ryo Suzuki
- Molecular Immunology Section, Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | |
Collapse
|
4
|
Finn DF, Walsh JJ. Twenty-first century mast cell stabilizers. Br J Pharmacol 2014; 170:23-37. [PMID: 23441583 DOI: 10.1111/bph.12138] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/30/2013] [Accepted: 02/13/2013] [Indexed: 12/14/2022] Open
Abstract
Mast cell stabilizing drugs inhibit the release of allergic mediators from mast cells and are used clinically to prevent allergic reactions to common allergens. Despite the relative success of the most commonly prescribed mast cell stabilizer, disodium cromoglycate, in use for the preventative treatment of bronchial asthma, allergic conjunctivitis and vernal keratoconjunctivitis, there still remains an urgent need to design new substances that are less expensive and require less frequent dosing schedules. In this regard, recent developments towards the discovery of the next generation of mast cell stabilizing drugs has included studies on substances isolated from natural sources, biological, newly synthesized compounds and drugs licensed for other indications. The diversity of natural products evaluated range from simple phenols, alkaloids, terpenes to simple amino acids. While in some cases their precise mode of action remains unknown it has nevertheless sparked interest in the development of synthetic derivatives with improved pharmacological properties. Within the purely synthetic class of inhibitors, particular attention has been devoted to the inhibition of important signalling molecules including spleen TK and JAK3. The statin class of cholesterol-lowering drugs as well as nilotinib, a TK inhibitor, are just some examples of clinically used drugs that have been evaluated for their anti-allergic properties. Here, we examine each approach under investigation, summarize the test data generated and offer suggestions for further preclinical evaluation before their therapeutic potential can be realized.
Collapse
Affiliation(s)
- D F Finn
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland
| | | |
Collapse
|
5
|
Gao Z, Li M, Wu J, Zhang S. Interplay between invertebrate C3a with vertebrate macrophages: functional characterization of immune activities of amphioxus C3a. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1249-1259. [PMID: 23954696 DOI: 10.1016/j.fsi.2013.07.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 06/02/2023]
Abstract
Our current knowledge of the structure and function of C3a comes from the study of vertebrate C3a anaphylatoxins, virtually nothing is known about the structure and function of C3a molecules in invertebrates. Here we demonstrated that C3a from the invertebrate chordate Branchiostoma japonicum, BjC3a, was similar to vertebrate C3a possessing potential antibacterial activity, as revealed by sequence analysis and computational modeling. The antibacterial activity of BjC3a was definitely confirmed by both antibacterial assay and TEM observation showing that recombinant BjC3a was directly bactericidal. Additionally, recombinant BjC3a, like vertebrate C3a, was capable of inducing sea bass macrophage migration and enhancing macrophage phagocytosis and respiratory burst response. Moreover, recombinant BjC3a-desArg (generated by removal of the C-terminal arginine), like mammalian C3a-desArg, retained the immunological activities of BjC3a such as antibacterial and respiratory burst-stimulating activities, indicating that the immunological functions of C3a-desArg were conserved throughout chordate evolution. Altogether, our findings show that invertebrate (amphioxus) BjC3a is able to interact with vertebrate (sea bass) macrophages and mediate immune activities, suggesting the emergence of the inflammatory pathway of the complement system similar to that of vertebrates in the basal chordate amphioxus.
Collapse
Affiliation(s)
- Zhan Gao
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | | | | | | |
Collapse
|
6
|
León G, Herrera M, Segura Á, Villalta M, Vargas M, Gutiérrez JM. Pathogenic mechanisms underlying adverse reactions induced by intravenous administration of snake antivenoms. Toxicon 2013; 76:63-76. [PMID: 24055551 DOI: 10.1016/j.toxicon.2013.09.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 09/01/2013] [Accepted: 09/11/2013] [Indexed: 11/28/2022]
Abstract
Snake antivenoms are formulations of immunoglobulins, or immunoglobulin fragments, purified from the plasma of animals immunized with snake venoms. Their therapeutic success lies in their ability to mitigate the progress of toxic effects induced by snake venom components, when administered intravenously. However, due to diverse factors, such as deficient manufacturing practices, physicochemical characteristics of formulations, or inherent properties of heterologous immunoglobulins, antivenoms can induce undesirable adverse reactions. Based on the time lapse between antivenom administration and the onset of clinical manifestations, the World Health Organization has classified these adverse reactions as: 1 - Early reactions, if they occur within the first hours after antivenom infusion, or 2 - late reactions, when occurring between 5 and 20 days after treatment. While all late reactions are mediated by IgM or IgG antibodies raised in the patient against antivenom proteins, and the consequent formation of immune complexes, several mechanisms may be responsible for the early reactions, such as pyrogenic reactions, IgE-mediated reactions, or non IgE-mediated reactions. This work reviews the hypotheses that have been proposed to explain the mechanisms involved in these adverse reactions to antivenoms. The understanding of these pathogenic mechanisms is necessary for the development of safer products and for the improvement of snakebite envenomation treatment.
Collapse
Affiliation(s)
- Guillermo León
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| | | | | | | | | | | |
Collapse
|
7
|
Peterfy H, Toth G, Pecht I, Erdei A. C3a-derived peptide binds to the type I Fc R and inhibits proximal-coupling signal processes and cytokine secretion by mast cells. Int Immunol 2008; 20:1239-45. [DOI: 10.1093/intimm/dxn083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Andrásfalvy M, Péterfy H, Tóth G, Matkó J, Abramson J, Kerekes K, Vámosi G, Pecht I, Erdei A. The beta subunit of the type I Fcepsilon receptor is a target for peptides inhibiting IgE-mediated secretory response of mast cells. THE JOURNAL OF IMMUNOLOGY 2005; 175:2801-6. [PMID: 16116165 DOI: 10.4049/jimmunol.175.5.2801] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Peptides originally derived from complement component C3a were earlier shown to inhibit the type I FcepsilonR (FcepsilonRI)-mediated degranulation of mucosal type mast cells. In the present study, we show that C3a7, a peptide with a natural sequence, and its modified derivative, C3a9, are powerful inhibitors of the above response of both serosal and mucosal type mastocytes. We demonstrate that these peptides inhibit FcepsilonRI-induced membrane proximal events, suppress phosphorylation of the FcepsilonRI beta subunit, the protein tyrosine kinase Lyn, as well as the transient rise in free cytosolic Ca2+ level. The late phase of cellular response was also inhibited, as demonstrated by the reduced TNF-alpha secretion. Experiments using two independent methods provided evidence that the interaction site of complement-derived peptides is the FcepsilonRI beta-chain. This was further supported by fluorescence confocal microscopic colocalization and resonance energy transfer measurements. Taken together, these results suggest the presence of distinct "activating" and "inhibitory" motifs in the C3a sequence. Response to both is in balance under physiologic conditions. Furthermore, present data predict that such inhibitory peptides may serve as potent agents for future therapeutic intervention.
Collapse
|
9
|
Baelder R, Fuchs B, Bautsch W, Zwirner J, Köhl J, Hoymann HG, Glaab T, Erpenbeck V, Krug N, Braun A. Pharmacological targeting of anaphylatoxin receptors during the effector phase of allergic asthma suppresses airway hyperresponsiveness and airway inflammation. THE JOURNAL OF IMMUNOLOGY 2005; 174:783-9. [PMID: 15634899 DOI: 10.4049/jimmunol.174.2.783] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Airway hyperresponsiveness and airway inflammation are hallmarks of allergic asthma, the etiology of which is crucially linked to the presence of Th2 cytokines. A role for the complement anaphylatoxins C3a and C5a in allergic asthma was suggested, as deficiencies of the C3a receptor (C3aR) and of complement factor C5 modulate airway hyperresponsiveness, airway inflammation, and Th2 cytokine levels. However, such models do not allow differentiation of effects on the sensitization phase and the effector phase of the allergic response, respectively. In this study, we determined the role of the anaphylatoxins on the effector phase of asthma by pharmacological targeting of the anaphylatoxin receptors. C3aR and C5a receptor (C5aR) signaling was blocked using the nonpeptidic C3aR antagonist SB290157 and the neutralizing C5aR mAb 20/70 in a murine model of Aspergillus fumigatus extract induced pulmonary allergy. Airway hyperresponsiveness was substantially improved after C5aR blockade but not after C3aR blockade. Airway inflammation was significantly reduced in mice treated with the C3aR antagonist or the anti-C5aR mAb, as demonstrated by reduced numbers of neutrophils and eosinophils in bronchoalveolar lavage fluid. Of note, C5aR but not C3aR inhibition reduced lymphocyte numbers in bronchoalveolar lavage fluid. Cytokine levels of IL-5 and IL-13 in bronchoalveolar lavage fluid were not altered by C3aR or C5aR blockade. However, blockade of both anaphylatoxin receptors markedly reduced IL-4 levels. These data suggest an important and exclusive role for C5aR signaling on the development of airway hyperresponsiveness during pulmonary allergen challenge, whereas both anaphylatoxins contribute to airway inflammation and IL-4 production.
Collapse
Affiliation(s)
- Ralf Baelder
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pinto MR, Chinnici CM, Kimura Y, Melillo D, Marino R, Spruce LA, De Santis R, Parrinello N, Lambris JD. CiC3-1a-mediated chemotaxis in the deuterostome invertebrate Ciona intestinalis (Urochordata). THE JOURNAL OF IMMUNOLOGY 2004; 171:5521-8. [PMID: 14607959 DOI: 10.4049/jimmunol.171.10.5521] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Deuterostome invertebrates possess complement genes, and in limited instances complement-mediated functions have been reported in these organisms. However, the organization of the complement pathway(s), as well as the functions exerted by the cloned gene products, are largely unknown. To address the issue of the presence of an inflammatory pathway in ascidians, we expressed in Escherichia coli the fragment of Ciona intestinalis C3-1 corresponding to mammalian complement C3a (rCiC3-1a) and assessed its chemotactic activity on C. intestinalis hemocytes. We found that the migration of C. intestinalis hemocytes toward rCiC3-1a was dose dependent, peaking at 500 nM, and was specific for CiC3-1a, being inhibited by an anti-rCiC3-1a-specific Ab. As is true for mammalian C3a, the chemotactic activity of C. intestinalis C3-1a was localized to the C terminus, because a peptide representing the 18 C-terminal amino acids (CiC3-1a(59-76)) also promoted hemocyte chemotaxis. Furthermore, the CiC3-1a terminal Arg was not crucial for chemotactic activity, because the desArg peptide (CiC3-1a(59-75)) retained most of the directional hemocyte migration activity. The CiC3-1a-mediated chemotaxis was inhibited by pretreatment of cells with pertussis toxin, suggesting that the receptor molecule mediating the chemotactic effect is G(i) protein coupled. Immunohistochemical analysis with anti-rCiC3-1a-specific Ab and in situ hybridization experiments with a riboprobe corresponding to the 3'-terminal sequence of CiC3-1, performed on tunic sections of LPS-injected animals, showed that a majority of the infiltrating labeled hemocytes were granular amebocytes and compartment cells. Our findings indicate that CiC3-1a mediates chemotaxis of C. intestinalis hemocytes, thus suggesting an important role for this molecule in inflammatory processes.
Collapse
|
11
|
Andrásfalvy M, Prechl J, Hardy T, Erdei A, Bajtay Z. Mucosal type mast cells express complement receptor type 2 (CD21). Immunol Lett 2002; 82:29-34. [PMID: 12008031 DOI: 10.1016/s0165-2478(02)00015-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fragments of complement component C3 generated upon activation of the cascade play an important role in the induction and regulation of immune responses. Receptors interacting with various fragments of this versatile complement protein are expressed on a wide variety of cell types, including lymphocytes, macrophages, dendritic cells, follicular dendritic cells, granulocytes, erythrocytes and consequently, C3-products may influence several biological functions at different sites of the body, where complement activation occurs. Regarding the expression of various C3-receptors on mast cells, mainly rodent serosal type mastocytes have been investigated so far. It has been known for a long time that C3a triggers the release of mediators of immediate type hypersensitivity via binding to serosal-type cells. Complement receptor type 1 (CR1/CD35) and type 2 (CR2/CD21) interacting with the larger activation products, such as C3b and C3d, have so far been shown on serosal type mast cells only. In this study, the expression of CR1/2 on mucosal type mast cells is demonstrated. Using mouse CR1/2 specific single chain antibodies and the natural ligand C3d in cytofluorimetric measurements, we show that the rat mucosal mast cell line RBL-2H3 and mouse bone marrow-derived mast cells (BMMC) express CD21. RT-PCR experiments carried out with mouse CR1 and CR2 specific primers show CD21, but not CD35 specific products in BMMC. It is also demonstrated that, in contrast to serosal type mast cells, mucosal mastocytes do not express CD19. In an attempt to reveal the possible function of CR2 on mucosal type mast cells, the effect of receptor-clustering was tested regarding degranulation, Ca-response and IL-6 production, but no CR2-mediated change was detected in any of these processes.
Collapse
MESH Headings
- Animals
- Antigens, CD19/analysis
- Bone Marrow Cells/immunology
- Calcium/metabolism
- Cell Degranulation
- Cell Differentiation
- Cells, Cultured
- Immunity, Mucosal
- Interleukin-6/biosynthesis
- Mast Cells/immunology
- Mice
- Mice, Inbred BALB C
- Proto-Oncogene Proteins c-kit/analysis
- RNA, Messenger/biosynthesis
- Rats
- Receptor Aggregation
- Receptors, Complement/analysis
- Receptors, Complement 3d/biosynthesis
- Receptors, Complement 3d/genetics
- Receptors, Complement 3d/physiology
- Transcription, Genetic
- Tumor Cells, Cultured
Collapse
|
12
|
Tokura Y, Röcken M, Clark RA, Haliasos E, Takigawa M, Sinha AA. What are the most promising strategies for the therapeutic immunomodulation of allergic diseases? Exp Dermatol 2001; 10:128-37; discussion 138-40. [PMID: 11260252 DOI: 10.1034/j.1600-0625.2001.010002128.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Specific immunotherapy and other immunomodulatory strategies have long been a stronghold in the management of allergic diseases. In particular, "immunodeviation-therapy" or "vaccination for allergies", i.e. the redirection of Th2-type immune responses towards a Th1-response pattern, has become an ever more popular concept. The present feature of CONTROVERSIES complements our previous discussion of atopy (Röcken et al., Exp Dermatol 7: 97--104, 1998), and is dedicated to a critical analysis of the general problems and limitations one faces with the main immunomodulatory strategies traditionally considered in this context. We also explore alternative approaches that appear promising in order to achieve both a more effective and/or a more specific immunotherapy of allergic diseases. Given that the mast cell remains a key protagonist in the pathogenesis of allergic diseases finally, this feature examines how innovative, more selectively mast cell-targeted strategies may be developed for the management of allergic diseases.
Collapse
Affiliation(s)
- Y Tokura
- Department of Dermatology, Hamamatsu University School of Medicine, Japan.
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
C3-fragments generated upon complement activation play an important role in the formation and regulation of immune responses. Receptors interacting with various activation fragments of this versatile complement component are expressed on a wide variety of cell types, such as lymphocytes, macrophages, dendritic cells, follicular dendritic cells, granulocytes, erythrocytes, consequently C3-products may influence several biological functions at different sites of the body, where complement activation takes place. In the last decade, genes, protein structure and functions played by murine complement receptors CR1 and CR2 (mCR1/2) have been deciphered. In this review, we wish to relate these properties, and fit it into the context of events following in vivo complement activation. We separately address the roles played by murine mCR1/2 as BCR coreceptor and as BCR independent structure, and propose a mchanism for the utilization of antigen-C3d conjugates bound on B cells. Finally, we raise some of the questions that remain to be elucidated in order to get a more precise picture of the functions of mCR1/2.
Collapse
Affiliation(s)
- J Prechl
- Department of Immunology, Eötvös Loránd University, Jávorra Sándor u.14, Göd, Hungary
| | | |
Collapse
|