1
|
Leonard S, Benfante R. Unanswered questions in the regulation and function of the duplicated α7 nicotinic receptor gene CHRFAM7A. Pharmacol Res 2023; 192:106783. [PMID: 37164281 DOI: 10.1016/j.phrs.2023.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023]
Abstract
The α7 nicotinic receptor (α7 nAChR) is an important entry point for Ca2+ into the cell, which has broad and important effects on gene expression and function. The gene (CHRNA7), mapping to chromosome (15q14), has been genetically linked to a large number of diseases, many of which involve defects in cognition. While numerous mutations in CHRNA7 are associated with mental illness and inflammation, an important control point may be the function of a recently discovered partial duplication CHRNA7, CHRFAM7A, that negatively regulates the function of the α7 receptor, through the formation of heteropentamers; other functions cannot be excluded. The deregulation of this human specific gene (CHRFAM7A) has been linked to neurodevelopmental, neurodegenerative, and inflammatory disorders and has important copy number variations. Much effort is being made to understand its function and regulation both in healthy and pathological conditions. However, many questions remain to be answered regarding its functional role, its regulation, and its role in the etiogenesis of neurological and inflammatory disorders. Missing knowledge on the pharmacology of the heteroreceptor has limited the discovery of new molecules capable of modulating its activity. Here we review the state of the art on the role of CHRFAM7A, highlighting unanswered questions to be addressed. A possible therapeutic approach based on genome editing protocols is also discussed.
Collapse
Affiliation(s)
- Sherry Leonard
- Department of Psychiatry - University of Colorado Anschutz, Aurora, Colorado, USA
| | - Roberta Benfante
- CNR - Institute of Neuroscience, Vedano al Lambro (MB), Italy; Dept. Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy; NeuroMI - Milan Center for Neuroscience, University of Milano Bicocca, Milan, Italy.
| |
Collapse
|
2
|
Broide RS, Winzer-Serhan UH, Chen Y, Leslie FM. Distribution of α7 Nicotinic Acetylcholine Receptor Subunit mRNA in the Developing Mouse. Front Neuroanat 2019; 13:76. [PMID: 31447654 PMCID: PMC6691102 DOI: 10.3389/fnana.2019.00076] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/12/2019] [Indexed: 01/10/2023] Open
Abstract
Homomeric α7 nicotinic acetylcholine receptors (nAChRs) are abundantly expressed in the central and peripheral nervous system (CNS and PNS, respectively), and spinal cord. In addition, expression and functional responses have been reported in non-neuronal tissue. In the nervous system, α7 nAChR subunit expression appears early during embryonic development and is often transiently upregulated, but little is known about their prenatal expression outside of the nervous system. For understanding potential short-term and long-term effects of gestational nicotine exposure, it is important to know the temporal and spatial expression of α7 nAChRs throughout the body. To that end, we studied the expression of α7 nAChR subunit mRNA using highly sensitive isotopic in situ hybridization in embryonic and neonatal whole-body mouse sections starting at gestational day 13. The results revealed expression of α7 mRNA as early as embryonic day 13 in the PNS, including dorsal root ganglia, parasympathetic and sympathetic ganglia, with the strongest expression in the superior cervical ganglion, and low to moderate levels were detected in brain and spinal cord, respectively, which rapidly increased in intensity with embryonic age. In addition, robust α7 mRNA expression was detected in the adrenal medulla, and low to moderate expression in selected peripheral tissues during embryonic development, potentially related to cells derived from the neural crest. Little or no mRNA expression was detected in thymus or spleen, sites of immune cell maturation. The results suggest that prenatal nicotine exposure could potentially affect the nervous system with limited effects in non-neural tissues.
Collapse
Affiliation(s)
- Ron S Broide
- Department of Pharmacology, University of California, Irvine, Irvine, CA, United States
| | - Ursula H Winzer-Serhan
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, United States
| | - Yling Chen
- Department of Pharmacology, University of California, Irvine, Irvine, CA, United States
| | - Frances M Leslie
- Department of Pharmacology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
3
|
Wilking JA, Stitzel JA. Natural genetic variability of the neuronal nicotinic acetylcholine receptor subunit genes in mice: Consequences and confounds. Neuropharmacology 2015; 96:205-12. [PMID: 25498233 PMCID: PMC4461559 DOI: 10.1016/j.neuropharm.2014.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/11/2014] [Accepted: 11/27/2014] [Indexed: 01/15/2023]
Abstract
Recent human genetic studies have identified genetic variants in multiple nicotinic acetylcholine receptor (nAChR) subunit genes that are associated with risk for nicotine dependence and other smoking-related measures. Genetic variability also exists in the nAChR subunit genes in mice. Most studies on mouse nAChR subunit gene variability to date have focused on Chrna4, the gene that encodes the α4 nAChR subunit and Chrna7, the gene that encodes the α7 nAChR subunit. However, genetic variability exists for all nAChR genes in mice. In this review, we will describe what is known about nAChR subunit gene polymorphisms in mice and how it relates to variability in nAChR expression and function in brain. The relationship between nAChR genetic variability in mice and the effects of nicotine on several behavioral and physiological measures also will be discussed. In addition, an overview of the contribution of other genetic variation to nicotine sensitivity in mice will be provided. Finally, the potential for natural genetic variability to confound and/or modify the results of studies that utilize genetically engineered mice will be considered. As an example of the ability of a natural genetic variant to modify the effect of an engineered mutation, data will be presented that demonstrate that the effect of Chrna5 deletion on oral nicotine intake is dependent upon naturally occurring variant alleles of Chrna4. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.
Collapse
Affiliation(s)
- Jennifer A Wilking
- Institute for Behavioral Genetics, USA; Department of Integrative Physiology, UCB447, Boulder, CO, 80309, USA
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, USA; Department of Integrative Physiology, UCB447, Boulder, CO, 80309, USA.
| |
Collapse
|
4
|
Cheng Q, Yakel JL. The effect of α7 nicotinic receptor activation on glutamatergic transmission in the hippocampus. Biochem Pharmacol 2015. [PMID: 26212541 DOI: 10.1016/j.bcp.2015.07.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are expressed widely in the CNS, and mediate both synaptic and perisynaptic activities of endogenous cholinergic inputs and pharmacological actions of exogenous compounds (e.g., nicotine and choline). Behavioral studies indicate that nicotine improves such cognitive functions as learning and memory, however the cellular mechanism of these actions remains elusive. With help from newly developed biosensors and optogenetic tools, recent studies provide new insights on signaling mechanisms involved in the activation of nAChRs. Here we will review α7 nAChR's action in the tri-synaptic pathway in the hippocampus. The effects of α7 nAChR activation via either exogenous compounds or endogenous cholinergic innervation are detailed for spontaneous and evoked glutamatergic synaptic transmission and synaptic plasticity, as well as the underlying signaling mechanisms. In summary, α7 nAChRs trigger intracellular calcium rise and calcium-dependent signaling pathways to enhance glutamate release and induce glutamatergic synaptic plasticity.
Collapse
Affiliation(s)
- Qing Cheng
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Jerrel L Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| |
Collapse
|
5
|
Stevens KE, Choo KS, Stitzel JA, Marks MJ, Adams CE. Long-term improvements in sensory inhibition with gestational choline supplementation linked to α7 nicotinic receptors through studies in Chrna7 null mutation mice. Brain Res 2014; 1552:26-33. [PMID: 24462939 DOI: 10.1016/j.brainres.2014.01.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/18/2013] [Accepted: 01/15/2014] [Indexed: 11/26/2022]
Abstract
Perinatal choline supplementation has produced several benefits in rodent models, from improved learning and memory to protection from the behavioral effects of fetal alcohol exposure. We have shown that supplemented choline through gestation and lactation produces long-term improvement in deficient sensory inhibition in DBA/2 mice which models a similar deficit in schizophrenia patients. The present study extends that research by feeding normal or supplemented choline diets to DBA/2 mice carrying the null mutation for the α7 nicotinic receptor gene (Chrna7). DBA/2 mice heterozygotic for Chrna7 were bred together. Dams were placed on supplemented (5 gm/kg diet) or normal (1.1 gm/kg diet) choline at mating and remained on the specific diet until offspring weaning. Thereafter, offspring were fed standard rodent chow. Adult offspring were assessed for sensory inhibition. Brains were obtained to ascertain hippocampal α7 nicotinic receptor levels. Choline-supplemented mice heterozygotic or null-mutant for Chrna7 failed to show improvement in sensory inhibition. Only wildtype choline-supplemented mice showed improvement with the effect solely through a decrease in test amplitude. This supports the hypothesis that gestational-choline supplementation is acting through the α7 nicotinic receptor to improve sensory inhibition. Although there was a significant gene-dose-related change in hippocampal α7 receptor numbers, binding studies did not reveal any choline-dose-related change in binding in any hippocampal region, the interaction being driven by a significant genotype main effect (wildtype>heterozygote>null mutant). These data parallel a human study wherein the offspring of pregnant women receiving choline supplementation during gestation, showed better sensory inhibition than offspring of women on placebo.
Collapse
Affiliation(s)
- Karen E Stevens
- Medical Research Service, Veterans Affairs Medical Center, Denver, CO, USA; Department of Psychiatry, University of Colorado, Anchutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, USA.
| | - Kevin S Choo
- Medical Research Service, Veterans Affairs Medical Center, Denver, CO, USA
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
| | - Michael J Marks
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
| | - Catherine E Adams
- Medical Research Service, Veterans Affairs Medical Center, Denver, CO, USA; Department of Psychiatry, University of Colorado, Anchutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, USA
| |
Collapse
|
6
|
Iaccarino HF, Suckow RF, Xie S, Bucci DJ. The effect of transient increases in kynurenic acid and quinolinic acid levels early in life on behavior in adulthood: Implications for schizophrenia. Schizophr Res 2013; 150:392-7. [PMID: 24091034 PMCID: PMC3844520 DOI: 10.1016/j.schres.2013.09.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/06/2013] [Accepted: 09/11/2013] [Indexed: 10/26/2022]
Abstract
Kynurenic acid is a tryptophan metabolite that is synthesized and released in the brain by astrocytes and acts as an antagonist of nicotinic acetylcholine receptors and N-methyl-d-aspartate glutamate receptors, both of which are critically involved in cognition as well as neural plasticity and brain development. The concentration of kynurenic acid is increased in the brains of persons with schizophrenia and this increase has been implicated in the cognitive and social impairments associated with the disease. In addition, growing evidence suggests that the increase in kynurenic acid may begin early in life. For example, exposure to influenza A virus during development results in a transient increase in kynurenic acid concentration that could disrupt normal brain development and lead to cognitive deficits later in life. Changes in kynurenic acid may thus provide a link between developmental exposure to viruses and the increased risk of subsequently developing schizophrenia. To test this, we mimicked the effects of influenza A exposure by treating rats with kynurenine, the precursor of kynurenic acid, on postnatal days 7-10. We observed a transient increase in both kynurenic acid and quinolinic acid during treatment. When rats were subsequently behaviorally tested as adults, those previously treated with kynurenine exhibited decreased social behavior and locomotor activity. In contrast, attentional function and fear conditioning were not affected. Together with other recent findings, these data have several implications for understanding how viral-induced changes in tryptophan metabolism during development may contribute to schizophrenia-related symptoms later in life.
Collapse
Affiliation(s)
- Hannah F. Iaccarino
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755
| | | | - Shan Xie
- Nathan Kline Institute, Orangeburg, New York 10962
| | - David J. Bucci
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755
| |
Collapse
|
7
|
Morley BJ, Mervis RF. Dendritic spine alterations in the hippocampus and parietal cortex of alpha7 nicotinic acetylcholine receptor knockout mice. Neuroscience 2012; 233:54-63. [PMID: 23270857 DOI: 10.1016/j.neuroscience.2012.12.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 12/19/2022]
Abstract
The α7 nicotinic acetylcholine receptor (nAChR) is involved in higher cognitive and memory functions, and is associated with the etiology of neurological diseases involving cognitive decline, including Alzheimer's disease (AD). We hypothesized that spine changes in the α7 knockout might help to explain the behavioral deficits observed in α7 knockout mice and prodromal hippocampal changes in AD. We quantified several measures of dendritic morphology in the CA1 region of the mouse hippocampus in Golgi-stained material from wildtype and α7 knockout mice at P24. The most significant difference was a 64% increase in thin (L-type) dendritic spines on the CA1 basilar tree in knockout mice (p<.05). There were small decreases in the number of in N-type (-15%), M-type (-14%) and D-type (-4%) spine densities. The CA1 basilar dendritic tree of knockout mice had significantly less branching in the regions near the soma in comparison with wildtype animals (p<.01), but not in the more distal branching. Changes in the configuration of CA1 basilar dendritic spines have been observed in a number of experimental paradigms, suggesting that basilar dendritic spines are highly plastic. One component of cognitive dysfunction may be through α7-modulated GABAergic interneurons synapsing on CA1 basal dendrites.
Collapse
Affiliation(s)
- B J Morley
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, NE 68131, USA.
| | | |
Collapse
|
8
|
Canastar A, Logel J, Graw S, Finlay-Schultz J, Osborne C, Palionyte M, Drebing C, Plehaty M, Wilson L, Eyeson R, Leonard S. Promoter methylation and tissue-specific transcription of the α7 nicotinic receptor gene, CHRNA7. J Mol Neurosci 2011; 47:389-400. [PMID: 22052086 DOI: 10.1007/s12031-011-9663-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 10/11/2011] [Indexed: 01/08/2023]
Abstract
The α7 nicotinic acetylcholine receptor is known to regulate a wide variety of developmental and secretory functions in neural and non-neural tissues. The mechanisms that regulate its transcription in these varied tissues are not well understood. Epigenetic processes may play a role in the tissue-specific regulation of mRNA expression from the α7 nicotinic receptor subunit gene, CHRNA7. Promoter methylation was correlated with CHRNA7 mRNA expression in various tissue types and the role of DNA methylation in regulating transcription from the gene was tested by using DNA methyltransferase (DNMT1) inhibitors and methyl donors. CHRNA7 mRNA expression was silenced in SH-EP1 cells and bisulfite sequencing PCR revealed the CHRNA7 proximal promoter was hypermethylated. The proximal promoter was hypomethylated in the cell lines HeLa, SH-SY5Y, and SK-N-BE which express varying levels of CHRNA7 mRNA. Expression of CHRNA7 mRNA was present in SH-EP1 cells after treatment with the methylation inhibitor, 5-aza-2-deoxycytidine (5-Aza-CdR), and increased in SH-EP1 and HeLa cells using another methylation inhibitor, zebularine (ZEB). Transcription from the CHRNA7 promoter in HeLa cells was increased when the methyl donor methionine (MET) was absent from the media. Using methylation-sensitive restriction enzyme analysis (MSRE), there was a strong inverse correlation between CHRNA7 mRNA levels and promoter DNA methylation across several human tissue types. The results support a role for DNA methylation of the proximal promoter in regulation of CHRNA7 transcription.
Collapse
Affiliation(s)
- Andrew Canastar
- Department of Psychiatry, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Miwa JM, Freedman R, Lester HA. Neural systems governed by nicotinic acetylcholine receptors: emerging hypotheses. Neuron 2011; 70:20-33. [PMID: 21482353 PMCID: PMC4418790 DOI: 10.1016/j.neuron.2011.03.014] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2011] [Indexed: 11/21/2022]
Abstract
Cholinergic neurons and nicotinic acetylcholine receptors (nAChRs) in the brain participate in diverse functions: reward, learning and memory, mood, sensory processing, pain, and neuroprotection. Nicotinic systems also have well-known roles in drug abuse. Here, we review recent insights into nicotinic function, linking exogenous and endogenous manipulations of nAChRs to alterations in synapses, circuits, and behavior. We also discuss how these contemporary advances can motivate attempts to exploit nicotinic systems therapeutically in Parkinson's disease, cognitive decline, epilepsy, and schizophrenia.
Collapse
Affiliation(s)
- Julie M. Miwa
- Division of Biology, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Robert Freedman
- Department of Psychiatry and Pharmacology, University of Colorado Denver VA, 13001 F-546, Aurora, CO 80045, USA
| | - Henry A. Lester
- Division of Biology, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
10
|
Ross RG, Stevens KE, Proctor WR, Leonard S, Kisley MA, Hunter SK, Freedman R, Adams CE. Research review: Cholinergic mechanisms, early brain development, and risk for schizophrenia. J Child Psychol Psychiatry 2010; 51:535-49. [PMID: 19925602 PMCID: PMC2862788 DOI: 10.1111/j.1469-7610.2009.02187.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The onset of diagnostic symptomology for neuropsychiatric diseases is often the end result of a decades-long process of aberrant brain development. Identification of novel treatment strategies aimed at normalizing early brain development and preventing mental illness should be a major therapeutic goal. However, there are few models for how this goal might be achieved. This review uses the development of a psychophysiological correlate of attentional deficits in schizophrenia to propose a developmental model with translational primary prevention implications. Review of genetic and neurobiological studies suggests that an early interaction between alpha7 nicotinic receptor density and choline availability may contribute to the development of schizophrenia-associated attentional deficits. Therapeutic implications, including perinatal dietary choline supplementation, are discussed.
Collapse
Affiliation(s)
- Randal G Ross
- Department of Psychiatry, University of Colorado Denver, Aurora, CO, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Freedman R, Goldowitz D. Studies on the hippocampal formation: From basic development to clinical applications: Studies on schizophrenia. Prog Neurobiol 2009; 90:263-75. [PMID: 19853005 DOI: 10.1016/j.pneurobio.2009.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2008] [Revised: 07/31/2009] [Accepted: 10/09/2009] [Indexed: 10/20/2022]
Abstract
The hippocampal formation plays a critical role in cognitive function. The developmental events that shape the hippocampal formation are continuing to be elucidated and their implications for brain function are emerging as well as applying those advances to interventions that have important possibilities for the treatment of brain dysfunction. The story told in this chapter is about the use of the in oculo transplant method to illuminate intrinsic and extrinsic features that underlie the development of the dentate gyrus and adjacent hippocampus and the role of one molecule in the hippocampus and schizophrenia. Schizophrenia, originally conceptualized as a dysfunction in dopaminergic neurotransmission, is now known to involve multiple neuronal systems. Dysfunction of hippocampal neurons is emerging as one of its signature pathological features. Basic insights into the development and function of hippocampal interneurons form the basis of a new treatment initiative for this illness. Evidence for the role of the alpha 7-nicotinic acetylcholine receptor in the development and function of these neurons in rodents has led to human trials of nicotinic agonists for cognitive dysfunction in schizophrenia and the possibility of improving hippocampal development in children at risk for schizophrenia by perinatal supplementation with choline, which can act as an alpha 7-nicotinic acetylcholine receptor agonist.
Collapse
Affiliation(s)
- Robert Freedman
- Dept Psychiatry, University of Colorado at Denver and Health Sciences Center, 13001 E. 17th Pl., Campus Box F546, Aurora, CO 800045, USA
| | | |
Collapse
|
12
|
Brooks NP, Mexal S, Stitzel JA. Chrna7 genotype is linked with alpha7 nicotinic receptor expression but not alpha7 RNA levels. Brain Res 2009; 1263:1-9. [PMID: 19368846 DOI: 10.1016/j.brainres.2009.01.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 01/14/2009] [Accepted: 01/17/2009] [Indexed: 10/21/2022]
Abstract
Studies using the radio-labeled nicotinic receptor antagonist [(125)I]-alpha-bungarotoxin, which binds to alpha7 subunit containing nicotinic receptors, have demonstrated that mouse strains vary considerably in the number of alpha7-containing nicotinic receptors in brain. In addition, brain region specific differences in alpha-bungarotoxin binding between the mouse strains C3H/Ibg and DBA/2 have been linked to polymorphisms in Chrna7, the gene that encodes the alpha7 subunit. In the studies described here, we evaluated whether the relationship between Chrna7 genotype and individual differences in alpha-bungarotoxin binding levels in adult brain might be due to an effect of Chrna7 genotype on alpha7 RNA levels. Quantitative autoradiography of coronal brain slices from F2 mice derived from the parental strains C3H/Ibg and DBA/2 demonstrate that Chrna7 genotype is not linked to alpha7 RNA levels. In contrast, quantitative autoradiography confirmed the linkage of Chrna7 genotype with alpha-bungarotoxin binding levels in hippocampus, striatum, and more precisely defined areas within these brain regions where Chrna7 genotype is associated with the level of alpha-bungarotoxin binding. The fact that Chrna7 genotype is linked to individual differences in alpha-bungarotoxin binding, but not alpha7 RNA levels, suggests that the observed linkage between Chrna7 genotype and alpha-bungarotoxin levels may be due to genetic influences on the post-transcriptional regulation of alpha7 nicotinic receptor expression.
Collapse
Affiliation(s)
- Nathanial P Brooks
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO 80303, USA
| | | | | |
Collapse
|
13
|
Stevens KE, Adams CE, Yonchek J, Hickel C, Danielson J, Kisley MA. Permanent improvement in deficient sensory inhibition in DBA/2 mice with increased perinatal choline. Psychopharmacology (Berl) 2008; 198:413-20. [PMID: 18446322 DOI: 10.1007/s00213-008-1170-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 04/01/2008] [Indexed: 10/22/2022]
Abstract
RATIONALE Schizophrenia patients and certain inbred mouse strains (i.e., DBA/2) show deficient sensory inhibition which has been linked to reduced numbers of hippocampal alpha7 nicotinic receptors and to underlying polymorphisms in the promoter region for the alpha7 gene. Increasing maternal dietary choline, a selective alpha7 agonist, during gestation has been shown to produce long-term changes in adult offspring behavior (i.e., improved learning and memory in rats). OBJECTIVES The objective of this study is to improve sensory inhibition in DBA/2 mice through maternal choline supplementation. MATERIALS AND METHODS DBA/2 dams were placed on normal (1.1 g/kg) or supplemented (5 g/kg) choline diet throughout gestation and lactation. Offspring were placed on normal diet at weaning and were assessed for sensory inhibition parameters at adulthood. Evoked EEG responses to identical paired auditory stimuli were compared. At the end of the study, the brains were collected for autoradiographic assessment of hippocampal levels of alpha-bungarotoxin binding to visualize alpha7 nicotinic receptors. RESULTS Offspring mice which were choline supplemented during gestation showed significantly improved sensory inhibition compared to mice gestated on the normal choline diet. The improvement was produced by a significant reduction in the response to the second stimulus, demonstrating improved inhibition to that stimulus. There was a concurrent increase in alpha7 receptor numbers in both the CA1 and dentate gyrus regions of the hippocampus suggesting that this increase may be responsible for the improved inhibition. CONCLUSIONS These data show that gestational choline supplementation produces permanent improvement in a deficit associated with schizophrenia and may have implications for human prenatal nutrition.
Collapse
Affiliation(s)
- Karen E Stevens
- Medical Research, Veterans Affairs Medical Center, 1055 Clermont Avenue, Denver, CO 80220, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Lv J, Mao C, Zhu L, Zhang H, Pengpeng H, Xu F, Liu Y, Zhang L, Xu Z. The effect of prenatal nicotine on expression of nicotine receptor subunits in the fetal brain. Neurotoxicology 2008; 29:722-6. [PMID: 18541304 DOI: 10.1016/j.neuro.2008.04.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 04/19/2008] [Accepted: 04/19/2008] [Indexed: 11/25/2022]
Abstract
Previous studies have suggested that prenatal exposure to nicotine is associated with abnormal development in fetuses, including fetal brain damage. The present study determined the effect of maternal administration of nicotine during different gestational periods on brain nicotine receptor subunits in fetal rats. Subcutaneous injections of nicotine in maternal rats from the early and middle gestation decreased fetal blood PO2, increased fetal blood PCO2 and hemoglobin, and decreased fetal brain weight. The nicotinic acetylcholine receptor (nAChRs) mRNA abundance in the fetal brain was significantly changed by prenatal treatment with nicotine during pregnancy. Fetal alpha2, alpha4, alpha7, and beta2 units were significantly increased in the brain by prenatal exposure to nicotine in rat fetuses. However, the expression of mRNA of fetal brain alpha3, alpha5, beta3, and beta4 units were not changed. The results showed that prenatal nicotine can change the development of both alpha and beta subunits of nAChRs in the fetal brain at gene level in association with restriction of fetal brain growth and in utero hypoxia.
Collapse
Affiliation(s)
- Juanxiu Lv
- Perinatal Research Laboratory, Soochow University School of Medicine, Suzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Adams CE, Yonchek JC, Zheng L, Collins AC, Stevens KE. Altered hippocampal circuit function in C3H alpha7 null mutant heterozygous mice. Brain Res 2007; 1194:138-45. [PMID: 18199426 DOI: 10.1016/j.brainres.2007.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 11/30/2007] [Accepted: 12/03/2007] [Indexed: 11/24/2022]
Abstract
The alpha7 subtype of nicotinic receptor is highly expressed in the hippocampus where it is purported to modulate release of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). The alpha7 receptor-mediated release of GABA is thought to contribute to hippocampal inhibition (gating) of response to repetitive auditory stimulation. This hypothesis is supported by observations of hippocampal auditory gating deficits in mouse strains with low levels of hippocampal alpha7 receptors compared to strains with high levels of hippocampal alpha7 receptors. The difficulty with comparisons between mouse strains, however, is that different strains have different genetic backgrounds. Thus, the observed interstrain differences in hippocampal auditory gating might result from factors other than interstrain variations in the density of hippocampal alpha7 receptors. To address this issue, hippocampal binding of the alpha7 receptor-selective antagonist alpha-bungarotoxin as well as hippocampal auditory gating characteristics were compared in C3H wild type and C3H alpha7 receptor null mutant heterozygous mice. The C3H alpha7 heterozygous mice exhibited significant reductions in hippocampal alpha7 receptor levels and abnormal hippocampal auditory gating compared to the C3H wild type mice. In addition, a general increase in CA3 pyramidal neuron responsivity was observed in the heterozygous mice compared to the wild type mice. These data suggest that decreasing hippocampal alpha7 receptor density results in a profound alteration in hippocampal circuit function.
Collapse
Affiliation(s)
- C E Adams
- Medical Research, Veterans Affairs Medical Center, Denver, CO 80220, USA.
| | | | | | | | | |
Collapse
|
16
|
Mexal S, Jenkins PM, Lautner MA, Iacob E, Crouch EL, Stitzel JA. alpha7 nicotinic receptor gene promoter polymorphisms in inbred mice affect expression in a cell type-specific fashion. J Biol Chem 2007; 282:13220-7. [PMID: 17360707 DOI: 10.1074/jbc.m610694200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inbred mouse strains display significant differences in their levels of brain alpha7 nicotinic acetylcholine receptor (alpha7 nAChR) expression, as measured by binding of the alpha7-selective antagonist alpha-bungarotoxin. Variations in alpha-bungarotoxin binding have been shown to correlate with an animal's sensitivity to nicotine-induced seizures and sensory gating. In two inbred mouse strains, C3H/2Ibg (C3H) and DBA/2Ibg (DBA/2), the inter-strain binding differences are linked to a restriction length polymorphism in the alpha7 nAChR gene, Chrna7. Despite this finding, the molecular mechanism(s) through which genetic variability in Chrna7 may contribute to alpha7 nAChR expression differences remains unknown. However, studies of the human alpha7 nAChR gene (CHRNA7) previously have demonstrated that CHRNA7 promoter polymorphisms are associated with differences in promoter activity as well as differences in sensory processing. In the present study, a 947-base pair region of the Chrna7 promoter was cloned from both the C3H and DBA/2 inbred mouse strains in an attempt to identify polymorphisms that may underlie alpha7 nAChR differential expression. Sequence analysis of these fragments identified 14 single nucleotide polymorphisms (SNPs). A combination of two of these SNPs affects promoter activity in an in vitro luciferase reporter assay. These results suggest a mechanism through which the Chrna7 promoter genotype may influence interstrain variations in alpha7 nAChR expression.
Collapse
Affiliation(s)
- Sharon Mexal
- Institute for Behavioral Genetics and Department of Integrative Physiology, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | | | | | |
Collapse
|
17
|
Huang LZ, Winzer-Serhan UH. Chronic neonatal nicotine upregulates heteromeric nicotinic acetylcholine receptor binding without change in subunit mRNA expression. Brain Res 2006; 1113:94-109. [PMID: 16942759 DOI: 10.1016/j.brainres.2006.06.084] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 06/23/2006] [Accepted: 06/27/2006] [Indexed: 11/22/2022]
Abstract
Smoking during pregnancy chronically exposes the fetus to nicotine resulting in long-term behavioral and cognitive deficits. Nicotine binds to neuronal nicotinic acetylcholine receptors (nAChRs), pentameric ligand-gated ion channels widely expressed in the nervous system. Chronic nicotine upregulates high-affinity nAChRs in animals and smokers. Here we determined if chronic nicotine treatment during a developmental period corresponding to the human third trimester regulates nAChR expression. Rat pups were intubated orally three times per day with or without nicotine (6 mg/kg/day) from postnatal day 1 to 8. Subunit mRNA expression was assessed by in situ hybridization. Expression of heteromeric and homomeric nAChR receptor was evaluated by autoradiography using (125)I-epibatidine and (125)I-alphabungarotoxin, respectively. nAChR expression was analyzed in cortex, hippocampus, thalamus and medial habenula from autoradiograms using computer assisted image analysis. Nicotine induced significant upregulation of heteromeric but not homomeric nAChRs in hippocampus, cortex and thalamus without changes in subunit mRNA expression. No effect of chronic nicotine on receptor expression was detected in the medial habenula, suggesting that nicotine's effect was mainly on alpha4beta2-type heteromeric nAChRs. The nicotine-induced upregulation was reversed after nicotine withdrawal. Receptor blockade by DHbetaE, an antagonist for heteromeric alpha4/beta2 nAChRs, did not prevent upregulation but increased expression to a similar degree as nicotine. Combination of both drugs had a cumulative effect. Thus, although transient, intermittent nicotine exposure as seen in smoking mothers is sufficient to upregulate heteromeric nAChRs during a critical period of brain development and could contribute to the behavioral deficits found in children whose mother smoked.
Collapse
Affiliation(s)
- L Z Huang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University System, Health Sciences Center, 369 Reynolds Medical Bldg., College Station, TX 77843-1114, USA
| | | |
Collapse
|
18
|
Adams CE, Yonchek JC, Stitzel JA. Development of hippocampal alpha7 nicotinic receptors in C3H and DBA/2 congenic mice. Brain Res 2006; 1122:27-35. [PMID: 17010324 DOI: 10.1016/j.brainres.2006.08.113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 08/24/2006] [Accepted: 08/31/2006] [Indexed: 02/04/2023]
Abstract
The time course and pattern of development of hippocampal alpha7 nicotinic acetylcholine receptors is discernibly different in C3H and DBA/2 mice. In C3H mice, the alpha7 receptor is initially expressed on embryonic day 13, exhibits an increase in density in area CA1 perinatally and is characterized by a dense, diffuse band of alpha-bungarotoxin binding at the CA3/CA1 border in the adult. In contrast, the alpha7 receptor is initially expressed on embryonic day 16 in DBA/2 mice, does not exhibit a transient perinatal increase in binding density in area CA1 and is characterized by alpha-bungarotoxin binding to numerous Nissl-stained structures in CA1 lacunosum/moleculare in the adult. Currently, it is not known whether these developmental differences occur solely as a result of the different alleles of the alpha7 receptor gene (Chrna7) expressed by the two strains or whether strain-specific background factors also play a role. The present study qualitatively examines this question by comparing alpha7 receptor development in congenic mice in which the DBA/2 allele of Chrna7 has been introgressed onto a C3H genetic background and, conversely, the C3H allele of Chrna7 has been introgressed onto a DBA/2 genetic background. The data suggest that hippocampal alpha7 receptor development is controlled predominantly by a region of mouse chromosome 7 that contains the strain-specific Chrna7 allele.
Collapse
Affiliation(s)
- Catherine E Adams
- Department of Psychiatry, Veterans Affairs Medical Center, Denver, CO 80220, and University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA.
| | | | | |
Collapse
|
19
|
Picard F, Bruel D, Servent D, Saba W, Fruchart-Gaillard C, Schöllhorn-Peyronneau MA, Roumenov D, Brodtkorb E, Zuberi S, Gambardella A, Steinborn B, Hufnagel A, Valette H, Bottlaender M. Alteration of the in vivo nicotinic receptor density in ADNFLE patients: a PET study. ACTA ACUST UNITED AC 2006; 129:2047-60. [PMID: 16815873 DOI: 10.1093/brain/awl156] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are involved in a familial form of frontal lobe epilepsy, autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). In several ADNFLE families, mutations were identified in the nAChR alpha4 or beta2 subunit, which together compose the main cerebral nAChR. Electrophysiological assessment using in vitro expression systems indicated a gain of function of the mutant receptors. However the precise mechanisms by which they contribute to the pathogenesis of a focal epilepsy remain obscure, especially since alpha4beta2 nAChRs are known to be widely distributed within the entire brain. PET study using [18F]-F-A-85380, a high affinity agonist at the alpha4beta2 nAChRs, allows the determination of the regional distribution and density of the nAChRs in healthy volunteers and in ADNFLE patients, thus offering a unique opportunity to investigate some in vivo consequences of the molecular defect. We have assessed nAChR distribution in eight non-smoking ADNFLE patients (from five families) bearing an identified mutation in nAChRs and in seven age-matched non-smoking healthy volunteers using PET and [(18)F]-F-A-85380. Parametric images of volume of distribution (Vd) were generated as the ratio of tissue to plasma radioactivities. The images showed a clear difference in the pattern of the nAChR density in the brains of the patients compared to the healthy volunteers. Vd values revealed a significant increase (between 12 and 21%, P < 0.05) in the ADNFLE patients in the mesencephalon, the pons and the cerebellum when compared to control subjects. Statistical parametric mapping (SPM) was then used to better analyse subtle regional differences. This analysis confirmed clear regional differences between patients and controls: patients had increased nAChR density in the epithalamus, ventral mesencephalon and cerebellum, but decreased nAChR density in the right dorsolateral prefrontal region. In five patients who underwent an additional [(18)F]-fluorodeoxyglucose (FDG) PET experiment, hypometabolism was observed in the neighbouring area of the right orbitofrontal cortex. The demonstration of a regional nAChR density decrease in the prefrontal cortex, despite the known distribution of these receptors throughout the cerebral cortex, is consistent with a focal epilepsy involving the frontal lobe. We also propose that the nAChR density increase in mesencephalon is involved in the pathophysiology of ADNFLE through the role of brainstem ascending cholinergic systems in arousal.
Collapse
Affiliation(s)
- F Picard
- Department of Neurology, University Hospital and Medical School of Geneva, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Freedman R, Ross R, Leonard S, Myles-Worsley M, Adams CE, Waldo M, Tregellas J, Martin L, Olincy A, Tanabe J, Kisley MA, Hunter S, Stevens KE. Early biomarkers of psychosis. DIALOGUES IN CLINICAL NEUROSCIENCE 2006. [PMID: 16060593 PMCID: PMC3181722 DOI: 10.31887/dcns.2005.7.1/frreedman] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biological traits that are predictive of the later development of psychosis have not yet been identified. The complex, multidetermined nature of schizophrenia and other psychoses makes it unlikely that any single biomarker will be both sensitive and specific enough to unambiguously identify individuals who will later become psychotic. However, current genetic research has begun to identify genes associated with schizophrenia, some of which have phenotypes that appear early in life. While these phenotypes have low predictive power for identifying individuals who will become psychotic, they do serve as biomarkers for pathophysiological processes that can become the targets of prevention strategies. Examples are given from work on the role of the alpha(T)nicotinic receptor and its gene CHRNA7 on chromosome 15 in the neurobiology and genetic transmission of schizophrenia.
Collapse
Affiliation(s)
- Robert Freedman
- Department of Psychiatry C-268-71, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Keller JJ, Keller AB, Bowers BJ, Wehner JM. Performance of alpha7 nicotinic receptor null mutants is impaired in appetitive learning measured in a signaled nose poke task. Behav Brain Res 2005; 162:143-52. [PMID: 15922075 DOI: 10.1016/j.bbr.2005.03.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 03/11/2005] [Accepted: 03/16/2005] [Indexed: 11/25/2022]
Abstract
Wild-type and mutant mice lacking expression of alpha5, alpha7, beta2, beta3, or beta4 neuronal nicotinic cholinergic receptors (nAChRs) were compared on a signaled nose poke task, a multi-phased task used to measure appetitive learning and impulsivity. In the early phases of training, mutants of all nicotinic lines did not differ compared to wild types in the days to reach criterion when mice were required to nose poke for a sucrose reward on FR1 or FR3 schedules, or in their ability to respond to an auditory clicker to receive a sucrose reward. However, mutants lacking alpha7 nAChRs, but not lines lacking other nAChRs, showed impairments when task difficulty was increased such that an auditory stimulus was presented on a variable schedule and mice were required to withhold their responses until the presentation of the auditory cue to obtain a reward. alpha7 mutants were impaired compared to wild types in appetitive learning as measured by the percentage of conditioned responses but overcame their deficits with extensive training for 10 days. However, when efficiency ratios were used to measure impulsivity, alpha7 mutants exhibited lower efficiency ratios even after 10 days of training. These results support a role of the alpha7 nicotinic receptor in mediating appetitive learning and suggest a potential role for the alpha7 nAChRs in the regulation of behavioral disinhibition.
Collapse
Affiliation(s)
- Jason J Keller
- Institute for Behavioral Genetics, University of Colorado, 447 UCB, Boulder, CO 80309, USA
| | | | | | | |
Collapse
|
22
|
Wielgus JJ, Corbin Downey L, Ewald KW, Hatley ME, Wilson KC, Yeilding RH. Exposure to low concentrations of nicotine during cranial nerve development inhibits apoptosis and causes cellular hypertrophy in the ventral oculomotor nuclei of the chick embryo. Brain Res 2004; 1000:123-33. [PMID: 15053960 DOI: 10.1016/j.brainres.2003.11.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2003] [Indexed: 10/26/2022]
Abstract
Maternal cigarette use during pregnancy is associated with increased incidence of neural impairments in offspring, but nicotine's unique contribution to any neuropathology remains unclear, and nicotine's neurodevelopmental effects assessed in animal models vary with concentration. During ontogenesis, the chick oculomotor complex (OMN) is regulated by central nervous system (CNS) afferent-derived and target-derived trophic factors, allowing assessment of nicotine's potential interference in receptor-mediated CNS trophic phenomena, unconfounded by myriad other compounds in cigarette smoke. In the current study, 100 ng nicotine applied daily in ovo to yolk during embryonic days (E) 1-7 mimicked maternal plasma nicotine concentrations during fetal cranial nerve development. Nicotine-treated embryos exhibited a 15% decrease in whole body weight and 7% decrease in brain weight at E16. However, at E16, nicotine-treated embryos had 37% and 15% increases in the combined ventromedial+lateral (v) OMN motoneuron density and soma area, respectively, effects not observed in the optic tectum, in which nicotine cholinergic receptor expression is delayed until E8-12. Incorporation of tritiated thymidine into whole brain DNA demonstrated that the nicotine treatment did not cause increased rates of whole brain mitosis, suggesting that the dosage regimen did not elicit a cytotoxic, wound-healing, response of differentiating cells. As determined by DNA fragment-labeling assay during the normal period of cell death, vOMN apoptosis occurs maximally on E11 during a normal period of declining cell density, and a dose-response study demonstrated 78% E11 vOMN apoptotic suppression at approximately 0.30 microM cumulative yolk nicotine with an inhibition threshold between 0.10 and 0.20 microM. These results suggest that plasma nicotine concentrations resulting from tobacco use or nicotine replacement therapy (NRT) are sufficient to inhibit motoneuron apoptosis and enhance neuronal growth.
Collapse
Affiliation(s)
- John J Wielgus
- Department of Biology, Washington and Lee University, Science Center Howe Hall 317, Lexington, VA 24450, USA.
| | | | | | | | | | | |
Collapse
|