1
|
Mao X, Rao G, Li G, Chen S. Insights into Extrachromosomal DNA in Cancer: Biogenesis, Methodologies, Functions, and Therapeutic Potential. Adv Biol (Weinh) 2025; 9:e2400433. [PMID: 39945006 DOI: 10.1002/adbi.202400433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/01/2025] [Indexed: 03/17/2025]
Abstract
Originating from, but independent of, linear chromosomes, extrachromosomal DNA (ecDNA) exists in a more active state of transcription and autonomous replication. It plays a crucial role in the development of malignancies and therapy resistance. Since its discovery in eukaryotic cells more than half a century ago, the biological characteristics and functions of ecDNA have remained unclear due to limitations in detection methods. However, recent advancements in research tools have transformed ecDNA research. It is believed that ecDNA exhibits greater activity in the abnormal amplification of oncogenes, thereby driving cancer progression through their overexpression. Notably, compared to linear DNA, ecDNA can also function as a genomic element with regulatory roles, including both trans- and cis-acting functions. Its critical roles in tumorigenesis, evolution, progression, and drug resistance in malignant tumors are increasingly recognized. This review provides a comprehensive summary of the evolutionary context of ecDNA and highlights significant progress in understanding its biological functions and potential applications as a therapeutic target in malignant tumors.
Collapse
Affiliation(s)
- Xudong Mao
- Department of Urology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, P. R. China
| | - Guocheng Rao
- Department of Endocrinology & Metabolism, Daepartment of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610000, P. R. China
| | - Gonghui Li
- Department of Urology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, P. R. China
| | - Shihan Chen
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, P. R. China
| |
Collapse
|
2
|
Hawley RG, Hawley TS. CRISPR-Cas9-Mediated Bioluminescent Tagging of Endogenous Proteins by Fluorescent Protein-Assisted Cell Sorting. Methods Mol Biol 2024; 2779:273-286. [PMID: 38526790 DOI: 10.1007/978-1-0716-3738-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Oncogenic fusion genes are attractive therapeutic targets because of their tumor-specific expression and central "driver" roles in various human cancers. However, oncogenic fusions involving transcription factors such as PAX3-FOXO1 in alveolar fusion gene-positive rhabdomyosarcoma (FP-RMS) have been difficult to inhibit due to the apparent lack of tractable drug-like binding sites comparable to that recognized by Gleevec (imatinib mesylate) on the BCR-ABL1 tyrosine kinase fusion protein. Toward the identification of novel small molecules that selectively target PAX3-FOXO1, we used CRISPR-Cas9-mediated knock-in to append the pro-luminescent HiBiT tag onto the carboxy terminus of the endogenous PAX3-FOXO1 fusion protein in two human FP-RMS cell lines (RH4 and SCMC). HiBiT is an 11-amino acid peptide derived from the NanoLuc luciferase that produces a luminescence signal which is ~100-fold brighter than firefly or Renilla luciferases through high-affinity binding to a complementary NanoLuc peptide fragment called LgBiT. To facilitate single-cell clonal isolation of knock-ins, the homology-directed repair template encoding HiBiT was followed by a P2A self-cleaving peptide for coexpression of an mCherry fluorescent protein as a fluorescence-activated cell sorter (FACS)-selectable marker. HiBiT tagging thus allows highly sensitive luminescence detection of endogenous PAX3-FOXO1 levels permitting quantitative high-throughput screening of large compound libraries for the discovery of PAX3-FOXO1 inhibitors and degraders.
Collapse
Affiliation(s)
- Robert G Hawley
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA.
| | | |
Collapse
|
3
|
Abbou S, Klega K, Tsuji J, Tanhaemami M, Hall D, Barkauskas DA, Krailo MD, Cibulskis C, Nag A, Thorner AR, Pollock S, Imamovic-Tuco A, Shern JF, DuBois SG, Venkatramani R, Hawkins DS, Crompton BD. Circulating Tumor DNA Is Prognostic in Intermediate-Risk Rhabdomyosarcoma: A Report From the Children's Oncology Group. J Clin Oncol 2023; 41:2382-2393. [PMID: 36724417 PMCID: PMC10150913 DOI: 10.1200/jco.22.00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 02/03/2023] Open
Abstract
PURPOSE Novel biomarkers are needed to differentiate outcomes in intermediate-risk rhabdomyosarcoma (IR RMS). We sought to evaluate strategies for identifying circulating tumor DNA (ctDNA) in IR RMS and to determine whether ctDNA detection before therapy is associated with outcome. PATIENTS AND METHODS Pretreatment serum and tumor samples were available from 124 patients with newly diagnosed IR RMS from the Children's Oncology Group biorepository, including 75 patients with fusion-negative rhabdomyosarcoma (FN-RMS) and 49 with fusion-positive rhabdomyosarcoma (FP-RMS) disease. We used ultralow passage whole-genome sequencing to detect copy number alterations and a new custom sequencing assay, Rhabdo-Seq, to detect rearrangements and single-nucleotide variants. RESULTS We found that ultralow passage whole-genome sequencing was a method applicable to ctDNA detection in all patients with FN-RMS and that ctDNA was detectable in 13 of 75 serum samples (17%). However, the use of Rhabdo-Seq in FN-RMS samples also identified single-nucleotide variants, such as MYOD1L122R, previously associated with prognosis. Identification of pathognomonic translocations between PAX3 or PAX7 and FOXO1 by Rhabdo-Seq was the best method for measuring ctDNA in FP-RMS and detected ctDNA in 27 of 49 cases (55%). Patients with FN-RMS with detectable ctDNA at diagnosis had significantly worse outcomes than patients without detectable ctDNA (event-free survival, 33.3% v 68.9%; P = .0028; overall survival, 33.3% v 83.2%; P < .0001) as did patients with FP-RMS (event-free survival, 37% v 70%; P = .045; overall survival, 39.2% v 75%; P = .023). In multivariable analysis, ctDNA was independently associated with worse prognosis in FN-RMS but not in the smaller FP-RMS cohort. CONCLUSION Our study demonstrates that baseline ctDNA detection is feasible and is prognostic in IR RMS.
Collapse
Affiliation(s)
- Samuel Abbou
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
- Children and Adolescent Oncology Department, INSERM U1015, Paris-Saclay University, Villejuif, France
| | - Kelly Klega
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
| | - Junko Tsuji
- Broad Institute of Harvard and MIT, Cambridge, MA
| | | | - David Hall
- QuadW-COG Childhood Sarcoma Biostatistics and Annotation Office, Children's Oncology Group, Monrovia, CA
| | - Donald A. Barkauskas
- QuadW-COG Childhood Sarcoma Biostatistics and Annotation Office, Children's Oncology Group, Monrovia, CA
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Mark D. Krailo
- QuadW-COG Childhood Sarcoma Biostatistics and Annotation Office, Children's Oncology Group, Monrovia, CA
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | | | - Anwesha Nag
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
| | - Aaron R. Thorner
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
| | | | - Alma Imamovic-Tuco
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Jack F. Shern
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Institutes of Health, Bethesda, MD
- Pediatric Oncology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD
| | - Steven G. DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
| | - Rajkumar Venkatramani
- Division of Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX
| | | | - Brian D. Crompton
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| |
Collapse
|
4
|
HER Tyrosine Kinase Family and Rhabdomyosarcoma: Role in Onset and Targeted Therapy. Cells 2021; 10:cells10071808. [PMID: 34359977 PMCID: PMC8305095 DOI: 10.3390/cells10071808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/29/2022] Open
Abstract
Rhabdomyosarcomas (RMS) are tumors of the skeletal muscle lineage. Two main features allow for distinction between subtypes: morphology and presence/absence of a translocation between the PAX3 (or PAX7) and FOXO1 genes. The two main subtypes are fusion-positive alveolar RMS (ARMS) and fusion-negative embryonal RMS (ERMS). This review will focus on the role of receptor tyrosine kinases of the human epidermal growth factor receptor (EGFR) family that is comprised EGFR itself, HER2, HER3 and HER4 in RMS onset and the potential therapeutic targeting of receptor tyrosine kinases. EGFR is highly expressed by ERMS tumors and cell lines, in some cases contributing to tumor growth. If not mutated, HER2 is not directly involved in control of RMS cell growth but can be expressed at significant levels. A minority of ERMS carries a HER2 mutation with driving activity on tumor growth. HER3 is frequently overexpressed by RMS and can play a role in the residual myogenic differentiation ability and in resistance to signaling-directed therapy. HER family members could be exploited for therapeutic approaches in two ways: blocking the HER member (playing a driving role for tumor growth with antibodies or inhibitors) and targeting expressed HER members to vehiculate toxins or immune effectors.
Collapse
|
5
|
Hinson ARP, Jones R, Crose LES, Belyea BC, Barr FG, Linardic CM. Human rhabdomyosarcoma cell lines for rhabdomyosarcoma research: utility and pitfalls. Front Oncol 2013; 3:183. [PMID: 23882450 PMCID: PMC3713458 DOI: 10.3389/fonc.2013.00183] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 06/27/2013] [Indexed: 12/24/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood and adolescence. Despite intergroup clinical trials conducted in Europe and North America, outcomes for high risk patients with this disease have not significantly improved in the last several decades, and survival of metastatic or relapsed disease remains extremely poor. Accrual into new clinical trials is slow and difficult, so in vitro cell-line research and in vivo xenograft models present an attractive alternative for preclinical research for this cancer type. Currently, 30 commonly used human RMS cell lines exist, with differing origins, karyotypes, histologies, and methods of validation. Selecting an appropriate cell line for RMS research has important implications for outcomes. There are also potential pitfalls in using certain cell lines including contamination with murine stromal cells, cross-contamination between cell lines, discordance between the cell line and its associated original tumor, imposter cell lines, and nomenclature errors that result in the circulation of two or more presumed unique cell lines that are actually from the same origin. These pitfalls can be avoided by testing for species-specific isoenzymes, microarray analysis, assays for subtype-specific fusion products, and short tandem repeat analysis.
Collapse
Affiliation(s)
- Ashley R P Hinson
- Department of Pediatrics, Duke University Medical Center , Durham, NC , USA
| | | | | | | | | | | |
Collapse
|
6
|
Sokolowski E, Turina CB, Kikuchi K, Langenau DM, Keller C. Proof-of-concept rare cancers in drug development: the case for rhabdomyosarcoma. Oncogene 2013; 33:1877-89. [PMID: 23665679 DOI: 10.1038/onc.2013.129] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 02/22/2013] [Accepted: 02/27/2013] [Indexed: 12/14/2022]
Abstract
Rare diseases typically affect fewer than 200,000 patients annually, yet because thousands of rare diseases exist, the cumulative impact is millions of patients worldwide. Every form of childhood cancer qualifies as a rare disease-including the childhood muscle cancer, rhabdomyosarcoma (RMS). The next few years promise to be an exceptionally good era of opportunity for public-private collaboration for rare and childhood cancers. Not only do certain governmental regulation advantages exist, but these advantages are being made permanent with special incentives for pediatric orphan drug-product development. Coupled with a growing understanding of sarcoma tumor biology, synergy with pharmaceutical muscle disease drug-development programs, and emerging publically available preclinical and clinical tools, the outlook for academic-community-industry partnerships in RMS drug development looks promising.
Collapse
Affiliation(s)
- E Sokolowski
- Department of Student Affairs, Oregon State University, Corvallis, OR, USA
| | - C B Turina
- 1] Department of Student Affairs, Oregon State University, Corvallis, OR, USA [2] Pediatric Cancer Biology Program, Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, USA
| | - K Kikuchi
- Pediatric Cancer Biology Program, Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, USA
| | - D M Langenau
- 1] Division of Molecular Pathology and Cancer Center, Massachusetts General Hospital, Boston, MA, USA [2] Harvard Medical School and Harvard Stem Cell Institute, Boston, MA, USA
| | - C Keller
- Pediatric Cancer Biology Program, Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
7
|
Rapa E, Hill SK, Morten KJ, Potter M, Mitchell C. The over-expression of cell migratory genes in alveolar rhabdomyosarcoma could contribute to metastatic spread. Clin Exp Metastasis 2012; 29:419-29. [PMID: 22415709 DOI: 10.1007/s10585-012-9460-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 02/16/2012] [Indexed: 12/01/2022]
Abstract
Alveolar (ARMS) and Embryonal (ERMS) rhabdomyosarcoma differ in their response to current treatments. The ARMS subtype has a less favourable prognosis and often presents with widespread metastases, while the less metastatic ERMS has a 5 year survival rate of more than 80 %. In this study we investigate gene expression differences that could contribute to the high frequency of metastasis in ARMS. Microarray analysis identified significant differences in DNA repair, cell cycle and cell migration between the two RMS subtypes. Two genes up regulated in ARMS and involved in cell migration; the engulfment and cell motility gene 1 (ELMO1) and NEL-like 1 gene (NELL1) were selected for further investigation. Over-expression of ELMO1 significantly increased cell invasion from 24.70 ± 7% to 93 ± 5.4% in primary myoblasts and from 29.43 ± 2.1% to 87.33 ± 4.1% in the ERMS cell line RD. siRNA knockout of ELMO1 in the ARMS cell line RH30 significantly reduced cell invasion from 88.2 ± 3.8% to 35.2 ± 2.5%. Over-expression of NELL1 significantly increased myoblast invasion from 23.6 ± 6.9% to 100 ± 0.1%, but had no effect on invasion of the ERMS cell line RD. These findings suggest that ELMO1 may play a key role in ARMS metastasis. NELL1 increased invasion in primary myoblasts, but other factors required for it to enhance motility were not present in the RD ERMS cell line. Impairing ELMO1 function by pharmacological or siRNA knockdown could be a highly effective approach to reduce the metastatic spread of RMS.
Collapse
Affiliation(s)
- Elizabeth Rapa
- Department of Obstetrics & Gynaecology, University of Oxford, The Women's Centre, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | |
Collapse
|
8
|
Storlazzi CT, Lonoce A, Guastadisegni MC, Trombetta D, D'Addabbo P, Daniele G, L'Abbate A, Macchia G, Surace C, Kok K, Ullmann R, Purgato S, Palumbo O, Carella M, Ambros PF, Rocchi M. Gene amplification as double minutes or homogeneously staining regions in solid tumors: origin and structure. Genome Res 2010; 20:1198-206. [PMID: 20631050 DOI: 10.1101/gr.106252.110] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Double minutes (dmin) and homogeneously staining regions (hsr) are the cytogenetic hallmarks of genomic amplification in cancer. Different mechanisms have been proposed to explain their genesis. Recently, our group showed that the MYC-containing dmin in leukemia cases arise by excision and amplification (episome model). In the present paper we investigated 10 cell lines from solid tumors showing MYCN amplification as dmin or hsr. Particularly revealing results were provided by the two subclones of the neuroblastoma cell line STA-NB-10, one showing dmin-only and the second hsr-only amplification. Both subclones showed a deletion, at 2p24.3, whose extension matched the amplicon extension. Additionally, the amplicon structure of the dmin and hsr forms was identical. This strongly argues that the episome model, already demonstrated in leukemias, applies to solid tumors as well, and that dmin and hsr are two faces of the same coin. The organization of the duplicated segments varied from very simple (no apparent changes from the normal sequence) to very complex. MYCN was always overexpressed (significantly overexpressed in three cases). The fusion junctions, always mediated by nonhomologous end joining, occasionally juxtaposed truncated genes in the same transcriptional orientation. Fusion transcripts involving NBAS (also known as NAG), FAM49A, BC035112 (also known as NCRNA00276), and SMC6 genes were indeed detected, although their role in the context of the tumor is not clear.
Collapse
|
9
|
Möller E, Isaksson M, Mandahl N, Mertens F, Panagopoulos I. Comparison of the proximal promoter regions of the PAX3 and PAX7 genes. ACTA ACUST UNITED AC 2007; 178:114-9. [PMID: 17954266 DOI: 10.1016/j.cancergencyto.2007.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 06/07/2007] [Indexed: 10/22/2022]
Abstract
Translocations t(2;13)(q35;q14) and t(1;13)(p36;q14), which fuse PAX3 and PAX7, respectively, to FOXO1A, characterize alveolar rhabdomyosarcoma. Previous studies have suggested that the expression of PAX7-FOXO1A is copy-number dependent, but that of PAX3-FOXO1A is not, which may be due to a weaker PAX7 than PAX3 promoter. The aim of the present study was to compare the transcriptional activities of the PAX3 and PAX7 proximal promoter regions, using the dual-luciferase reporter assay with three vector systems in eight cell lines. The PAX3 promoter was found to have higher transcriptional activity than that of PAX7 irrespective of the vector system or cell line used. These findings are consistent with the idea that an amplification event is required for the PAX7-FOXO1A chimeric transcript to reach a critical expression level.
Collapse
Affiliation(s)
- Emely Möller
- Department of Clinical Genetics, Lund University Hospital, Getingevägen 4, 221 85, Lund, Sweden.
| | | | | | | | | |
Collapse
|
10
|
Akalin I, Kutlay NY, Ilhan O, Tukun A. Novel chromosomal translocations in multiple myeloma: t(13;16)(q14;q24) and t(1;15)(q10;q26). Int J Lab Hematol 2007; 29:215-20. [PMID: 17474900 DOI: 10.1111/j.1751-553x.2006.00837.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multiple myeloma (MM) is a malignant plasma cell disorder that involves multiple genetic abnormalities. Chimeric transcription factors, created by gene fusion as a result of chromosomal translocations, have been implicated in the pathogenesis of the disease. Here, we report the conventional cytogenetic analysis of a MM patient that showed a complex set of novel chromosomal rearrangements, including t(13;16)(q14;q24) and t(1;15)(q10;q26). This is probably the result of fusion of previously known genes, and would contribute to prognostic significance of the disease.
Collapse
MESH Headings
- Chromosomes, Human, Pair 1/genetics
- Chromosomes, Human, Pair 13/genetics
- Chromosomes, Human, Pair 15/genetics
- Chromosomes, Human, Pair 16/genetics
- Humans
- In Situ Hybridization, Fluorescence
- Male
- Middle Aged
- Multiple Myeloma/genetics
- Translocation, Genetic/genetics
Collapse
Affiliation(s)
- I Akalin
- Department of Medical Genetics, Faculty of Medicine, Ankara University, Sihhiye, Ankara, Turkey.
| | | | | | | |
Collapse
|
11
|
AKALIN I, KUTLAY NY, ILHAN O, TUKUN A. Novel chromosomal translocations in multiple myeloma: t(13;16)(q14;q24) and t(1;15)(q10;q26). Int J Lab Hematol 2007. [DOI: 10.1111/j.1365-2257.2006.00837.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Goldstein M, Meller I, Issakov J, Orr-Urtreger A. Novel genes implicated in embryonal, alveolar, and pleomorphic rhabdomyosarcoma: a cytogenetic and molecular analysis of primary tumors. Neoplasia 2006; 8:332-43. [PMID: 16790082 PMCID: PMC1592451 DOI: 10.1593/neo.05829] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Rhabdomyosarcoma, the most common pediatric soft tissue sarcoma, likely results from deregulation of the skeletal myogenesis program. Although associations between PAX3, PAX7, FOXO1A, and RMS tumorigenesis are well recognized, the entire spectrum of genetic factors underlying RMS development and progression is unclear. Using a combined approach of spectral karyotyping, array-based comparative genomic hybridization (CGH), and expression analysis, we examined 10 primary RMS tumors, including embryonal, alveolar, and the rare adult pleomorphic variant, to explore the involvement of different genes and genetic pathways in RMS tumorigenesis. A complete karyotype established for each tumor revealed a high aneuploidy level, mostly tetraploidy, with double minutes and additional structural aberrations. Quantitative expression analysis detected the overexpression of the AURKA gene in all tumors tested, suggesting a role for this mitotic regulator in the aneuploidy and chromosomal instability observed in RMS. Array-based CGH analysis in primary RMS tumors detected copy number changes of genes involved in multiple genetic pathways, including transcription factors such as MYC-related gene from lung cancer and the cytoskeleton and cell adhesion-encoding genes laminin gamma-2 and p21-activated kinase-1. Our data suggest the involvement of genes encoding cell adhesion, cytoskeletal signaling, and transcriptional and cell cycle components in RMS tumorigenesis.
Collapse
Affiliation(s)
- Myriam Goldstein
- Genetic Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Isaac Meller
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- The National Unit of Orthopedic Oncology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Josephine Issakov
- Pathology Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Avi Orr-Urtreger
- Genetic Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
13
|
Nishio J, Althof PA, Bailey JM, Zhou M, Neff JR, Barr FG, Parham DM, Teot L, Qualman SJ, Bridge JA. Use of a novel FISH assay on paraffin-embedded tissues as an adjunct to diagnosis of alveolar rhabdomyosarcoma. J Transl Med 2006; 86:547-56. [PMID: 16607381 DOI: 10.1038/labinvest.3700416] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A valuable diagnostic adjunct and important prognostic parameter in alveolar rhabdomyosarcoma (ARMS) is the identification of translocations t(2;13)(q35;q14) and t(1;13)(p36;q14), and the associated PAX3-FKHR and PAX7-FKHR fusion transcripts, respectively. Most RMS fusion gene type studies have been based on reverse transcriptase-polymerase chain reaction (RT-PCR) detection of the fusion transcript, a technique limited by RNA quality and failure of devised primer sets to detect unusual variants. As an alternative approach, we developed a fluorescence in situ hybridization (FISH) assay that can: (1) distinguish between the two most common ARMS-associated fusion genes; (2) identify potential unusual variant translocations; (3) assess histologic components in mixed alveolar/embryonal RMS; and (4) be performed on paraffinized tissue. FISH analyses of 75 specimens (40 ARMS, 16 ERMS, 8 mixed ARMS/ERMS, and 11 non-RMS tumors) using selected cosmid clone, bacterial, P1-derived, and yeast artificial chromosome probe sets were successful in all but two cases. Among specimens with informative results for both FISH and RT-PCR or standard karyotyping, PAX/FKHR classification results were concordant in 94.6% (53/56). The three discordant cases included one exhibiting a t(2;13) by FISH that was subsequently confirmed by repeat RT-PCR, a second showing a rearrangement of the PAX3 locus only (consistent with the presence of a PAX3 variant translocation), and a third revealing a t(2;13) by FISH that lacked this translocation cytogenetically. Both alveolar and embryonal components of the mixed ARMS/ERMS subtype were negative for PAX3, PAX7, and FKHR rearrangements, a surprising finding confirmed by RT-PCR and/or conventional karyotyping. These data demonstrate that FISH with newly designed probe sets is a reliable and highly specific method of detecting t(1;13) and t(2;13) in routinely processed tissue and may be useful in differentiating ARMS from other small round cell tumors. The findings also suggest that FISH may be a more sensitive assay than RT-PCR in some settings, capable of revealing variant translocations.
Collapse
MESH Headings
- Biological Assay
- Chromosome Banding
- Chromosomes, Human, Pair 13
- Chromosomes, Human, Pair 2
- Cytogenetic Analysis
- Databases, Factual
- Humans
- In Situ Hybridization, Fluorescence
- Karyotyping
- Oncogene Proteins, Fusion
- Paraffin Embedding
- Reverse Transcriptase Polymerase Chain Reaction
- Rhabdomyosarcoma, Alveolar/diagnosis
- Rhabdomyosarcoma, Alveolar/genetics
- Rhabdomyosarcoma, Alveolar/pathology
- Sensitivity and Specificity
- Translocation, Genetic
Collapse
Affiliation(s)
- Jun Nishio
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, 68198-3135, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Cerveira N, Torres L, Ribeiro FR, Henrique R, Pinto A, Bizarro S, Ferreira AM, Lopes C, Teixeira MR. Multimodal genetic diagnosis of solid variant alveolar rhabdomyosarcoma. ACTA ACUST UNITED AC 2006; 163:138-43. [PMID: 16337856 DOI: 10.1016/j.cancergencyto.2005.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 06/27/2005] [Accepted: 06/28/2005] [Indexed: 11/26/2022]
Abstract
The most common types of rhabdomyosarcoma (RMS) are alveolar RMS (ARMS), which are characterized by the specific translocation t(2;13)(q35;q14) or its rarer variant, t(1;13)(p36;q14), producing the fusion genes PAX3-FKHR and PAX7-FKHR, respectively, and embryonal RMS (ERMS), which is characterized by multiple numeric chromosome changes. A solid variant of ARMS that is morphologically indistinguishable from ERMS has been described recently. We present two cases with an initial histopathologic diagnosis of ERMS in which the combined findings by cytogenetic, reverse-transcriptase polymerase chain reaction (RT-PCR), and comparative genomic hybridization (CGH) analyses demonstrate that both tumors were in fact the solid variant of ARMS. The cytogenetic analysis of patient 1 revealed a t(2;13)(q35;q14) and the RT-PCR study detected the corresponding PAX3-FKHR chimeric transcript. In patient 2, the cytogenetic finding of multiple trisomies was compatible with the initial histopathologic diagnosis of ERMS, but the finding of a PAX7-FKHR fusion transcript by RT-PCR pointed to the diagnosis of ARMS. Interestingly, the CGH findings of this case reconciled the molecular and cytogenetic data by detecting, in addition to the trisomies, amplification of chromosomal bands 1p36 and 13q14, where the PAX7 and FKHR genes are located, respectively. Our data indicate that this multimodal genetic analysis could be important for the differential diagnosis of these tumors. Furthermore, our findings and previous studies indicate that there are no apparent genetic differences between solid variant and typical ARMS.
Collapse
MESH Headings
- Base Sequence
- Child, Preschool
- Chromosome Banding
- Chromosomes, Human, Pair 1
- Chromosomes, Human, Pair 13
- Chromosomes, Human, Pair 2
- DNA Primers
- Forkhead Box Protein O1
- Forkhead Transcription Factors/genetics
- Humans
- Karyotyping
- Male
- Nucleic Acid Hybridization
- PAX3 Transcription Factor
- PAX7 Transcription Factor/genetics
- Paired Box Transcription Factors/genetics
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Rhabdomyosarcoma, Alveolar/diagnosis
- Rhabdomyosarcoma, Alveolar/genetics
- Translocation, Genetic
Collapse
Affiliation(s)
- Nuno Cerveira
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rao VK, Wangsa D, Robey RW, Huff L, Honjo Y, Hung J, Knutsen T, Ried T, Bates SE. Characterization of ABCG2 gene amplification manifesting as extrachromosomal DNA in mitoxantrone-selected SF295 human glioblastoma cells. ACTA ACUST UNITED AC 2005; 160:126-33. [PMID: 15993268 DOI: 10.1016/j.cancergencyto.2004.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Revised: 11/26/2004] [Accepted: 12/02/2004] [Indexed: 11/20/2022]
Abstract
The human ABCG2 gene, located on chromosome 4, encodes an ATP-binding cassette half-transporter that has been shown to confer resistance to chemotherapeutic agents. Relatively little is known about the mechanisms controlling expression of ABCG2. In previous studies, we had shown that overexpression of ABCG2 can result from rearrangement or gene amplification involving chromosome 4. To better characterize the mechanisms of ABCG2 overexpression, SF295 glioblastoma cells were exposed to increasing amounts of mitoxantrone to generate the SF295 MX50, MX100, MX250, and MX500 sublines, maintained in mitoxantrone concentrations ranging from 50 to 500 nmol/L. Northern blot analysis confirmed overexpression of ABCG2 mRNA, and immunoblot analysis demonstrated increased protein expression in the selected cell lines. Efflux of BODIPY-prazosin confirmed a functional protein. ABCG2 gene amplification was observed in all resistant sublines, as determined by Southern blot analysis. Fluorescence in situ hybridization (FISH) revealed amplification of ABCG2 via double minute chromosomes (dmins) detected in metaphase chromosome spreads in the SF295 MX50 and MX100 sublines. At higher levels of drug selection, in the MX250 and MX500 sublines, fewer dmins were observed but homogeneously staining regions (hsr) were visible with FISH analysis, revealing reintegration of the ABCG2 gene into multiple chromosomes. Spectral karyotyping (SKY) demonstrated multiple clonal and nonclonal rearrangements of chromosome 4, including hsrs. These results suggest that amplification of ABCG2 occurred initially in the form of dmins, followed by chromosomal reintegration of the amplicon at multiple sites. This occurred with increasing drug-selection pressure, generating a more stable genotype.
Collapse
Affiliation(s)
- V Koneti Rao
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 12C103, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Martínez-Ramírez A, Rodríguez-Perales S, Meléndez B, Martínez-Delgado B, Urioste M, Cigudosa JC, Benítez J. Characterization of the A673 cell line (Ewing tumor) by molecular cytogenetic techniques. CANCER GENETICS AND CYTOGENETICS 2003; 141:138-42. [PMID: 12606131 DOI: 10.1016/s0165-4608(02)00670-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The A673 cell line was established from a patient with a primary rhabdomyosarcoma (RMS), which is referred to in the literature either as a Ewing tumor (ET) or as RMS. Although the two tumoral types are associated with specific and well-characterized translocations, no cytogenetic report on this cell line has been published. We characterized the A673 cell line using a combination of spectral karyotyping (SKY), fluorescence in situ hybridization (FISH), and reverse transcriptase polymerase chain reaction (RT-PCR), which revealed the presence of a complex karyotype and a translocation involving chromosomes 11 and 22 and the fusion of EWS and FLI1 genes, both events being specific to ET. Neither cytogenetics nor molecular alterations specific to RMS were found.
Collapse
Affiliation(s)
- A Martínez-Ramírez
- Department of Human Genetics, Molecular Pathology Program, Spanish National Cancer Center (CNIO), Instituto de Salud Carlos III, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
17
|
Senger C, Diaz L, Katzenstein H, Chou PM. Pathologic quiz case: Ovarian mass in a 2-year-old girl presenting with pleural effusions. Arch Pathol Lab Med 2003; 127:e56-9. [PMID: 12562302 DOI: 10.5858/2003-127-e56-pqcomi] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Christof Senger
- Department of Pathology, Children's Memorial Hospital, Chicago, Ill 60614, USA
| | | | | | | |
Collapse
|