1
|
Drug-Induced Demyelinating Neuropathies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:357-369. [DOI: 10.1007/978-981-32-9636-7_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
2
|
Huang Y, Ying Z, Quan W, Xiang W, Xie D, Weng Y, Li X, Li J, Zhang X. The clinical significance of neutrophil-to-lymphocyte ratio and monocyte-to-lymphocyte ratio in Guillain–Barré syndrome. Int J Neurosci 2018; 128:729-735. [PMID: 29251087 DOI: 10.1080/00207454.2017.1418342] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Yuanyuan Huang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhaojian Ying
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weiwei Quan
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weiwei Xiang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dewei Xie
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiyun Weng
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiang Li
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jia Li
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xu Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Sriram S. Role of glial cells in innate immunity and their role in CNS demyelination. J Neuroimmunol 2011; 239:13-20. [PMID: 21907419 DOI: 10.1016/j.jneuroim.2011.08.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Revised: 08/09/2011] [Accepted: 08/16/2011] [Indexed: 12/11/2022]
Abstract
The adaptive and innate arms of the immune system are the two pillars of host defense against environmental pathogens. Multiple sclerosis (MS) is an inflammatory demyelinating disease of the CNS which is considered to be autoimmune and is thought to result from breakdown in the usual checks and balances of the adaptive immune response. The major pathological outcome of the disease is "the MS plaque" a unique feature of CNS demyelination characterized by the destruction of oligodendrocytes with loss of myelin and underlying axons. The MS plaque is not seen in other inflammatory disorders of the CNS. The prevailing opinion suggests that MS is mediated by the activation of an adaptive immune response which targets neural antigens. Currently, the role of an innate immune in the development of the lesions in MS has remained unclear. We explore the potential cellular elements of the innate immune system and in particular glial cells, which are likely candidates in inducing the specific pathological picture that is evident in MS. Activated microglia and the release of molecules which are detrimental to oligodendrocyte have been suggested as mechanisms by which innate immunity causes demyelination in MS. However a microglia/macrophage centric model does not explain the specificity of lesion development in MS. We propose that activation pathways of receptors of the innate immune system present on oligodendrocytes and astrocytes rather than microglia are central to the pathogenesis of demyelination seen in MS.
Collapse
Affiliation(s)
- Subramaniam Sriram
- Department of Neurology, Multiple Sclerosis Research Center, Vanderbilt University Medical Center, Nashville, Tennessee 37212, USA.
| |
Collapse
|
4
|
Yang Y, Wu X, Gui P, Wu J, Sheng JZ, Ling S, Braun AP, Davis GE, Davis MJ. Alpha5beta1 integrin engagement increases large conductance, Ca2+-activated K+ channel current and Ca2+ sensitivity through c-src-mediated channel phosphorylation. J Biol Chem 2009; 285:131-41. [PMID: 19887442 DOI: 10.1074/jbc.m109.033506] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Large conductance, calcium-activated K(+) (BK) channels are important regulators of cell excitability and recognized targets of intracellular kinases. BK channel modulation by tyrosine kinases, including focal adhesion kinase and c-src, suggests their potential involvement in integrin signaling. Recently, we found that fibronectin, an endogenous alpha5beta1 integrin ligand, enhances BK channel current through both Ca(2+)- and phosphorylation-dependent mechanisms in vascular smooth muscle. Here, we show that macroscopic currents from HEK 293 cells expressing murine BK channel alpha-subunits (mSlo) are acutely potentiated following alpha5beta1 integrin activation. The effect occurs in a Ca(2+)-dependent manner, 1-3 min after integrin engagement. After integrin activation, normalized conductance-voltage relations for mSlo are left-shifted at free Ca(2+) concentrations >or=1 microm. Overexpression of human c-src with mSlo, in the absence of integrin activation, leads to similar shifts in mSlo Ca(2+) sensitivity, whereas overexpression of catalytically inactive c-src blocks integrin-induced potentiation. However, neither integrin activation nor c-src overexpression potentiates current in BK channels containing a point mutation at Tyr-766. Biochemical tests confirmed the critical importance of residue Tyr-766 in integrin-induced channel phosphorylation. Thus, BK channel activity is enhanced by alpha5beta1 integrin activation, likely through an intracellular signaling pathway involving c-src phosphorylation of the channel alpha-subunit at Tyr-766. The net result is increased current amplitude, enhanced Ca(2+) sensitivity, and rate of activation of the BK channel, which would collectively promote smooth muscle hyperpolarization in response to integrin-extracellular matrix interactions.
Collapse
Affiliation(s)
- Yan Yang
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Tumor necrosis factor (TNF)-alpha plays an important role in many aspects of immune system development, immune-response regulation, and T-cell-mediated tissue injury. The evidence that TNF-alpha, released by autoreactive T cells and macrophages, may contribute to the pathogenesis of immune-mediated demyelinating neuropathies is reviewed. TNF-alpha antagonists (infliximab, etanercept, adalimumab) are indicated for the treatment of advanced inflammatory rheumatic and bowel disease, but these drugs can induce a range of autoimmune diseases that also attack the central and peripheral nervous systems. Case histories and series report on the association between anti-TNF-alpha treatment and various disorders of peripheral nerve such as Guillain-Barré syndrome, Miller Fisher syndrome, chronic inflammatory demyelinating polyneuropathy, multifocal motor neuropathy with conduction block, mononeuropathy multiplex, and axonal sensorimotor polyneuropathies. The proposed pathogeneses of TNF-alpha-associated neuropathies include both a T-cell and humoral immune attack against peripheral nerve myelin, vasculitis-induced nerve ischemia, and inhibition of signaling support for axons. Most neuropathies improve over a period of months by withdrawal of the TNF-alpha antagonist, with or without additional immune-modulating treatment. Preliminary observations suggest that TNF-alpha antagonists may be useful as an antigen-nonspecific treatment approach to immune-mediated neuropathies in patients with a poor response to, or intolerance of, standard therapies, but further studies are required.
Collapse
Affiliation(s)
- Joerg-Patrick Stübgen
- Department of Neurology and Neuroscience, Cornell University Medical College, New York Presbyterian Hospital, 525 East 68th Street, New York, NY 10065-4897, USA.
| |
Collapse
|
6
|
Kawamura N, Dyck PJB, Schmeichel AM, Engelstad JK, Low PA, Dyck PJ. Inflammatory mediators in diabetic and non-diabetic lumbosacral radiculoplexus neuropathy. Acta Neuropathol 2008; 115:231-9. [PMID: 18064475 DOI: 10.1007/s00401-007-0326-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 11/19/2007] [Accepted: 11/21/2007] [Indexed: 10/22/2022]
Abstract
Nerve microvasculitis and ischemic injury appear to be the primary and important pathogenic alterations in lumbosacral radiculoplexus neuropathy of patients with (DLRPN) and without (LRPN) diabetes mellitus (DM). Here, we examine the involvement of inflammatory mediators in DLRPN and LRPN. Paraffin sections of sural nerves from 19 patients with DLRPN, 13 patients with LRPN, and 20 disease control patients were immunostained for intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and nuclear factor kappaB (NF-kappaB). The findings were correlated with histopathology. The pathologic and immunohistochemical alterations of DLRPN and LRPN nerves were indistinguishable. The nerves of both types of LRPN had a significantly greater number of ICAM-1 positive vessels than did the controls (P < 0.01). TNF-alpha expression was seen in Schwann cells and some macrophages of DLRPN and LRPN nerves, whereas IL-6 expression was minimal. There was greater NF-kappaB immunoreactivity in vessels and endoneurial cells of DLRPN and LRPN nerves than of the controls (P < 0.001). NF-kappaB expression correlated with the number of empty nerve strands (P < 0.01) and the frequency of axonal degeneration (P < 0.05), whereas TNF-alpha expression correlated inversely with the number of empty nerve strands of teased fibers (P < 0.05). Our findings suggest that up-regulation of inflammatory mediators target different cells at different disease stages and that these mediators may be sequentially involved in an immune-mediated inflammatory process that is shared by both DLRPN and LRPN. Up-regulated inflammatory mediators may be immunotherapeutic targets in these two conditions.
Collapse
|
7
|
Boyle K, Azari MF, Cheema SS, Petratos S. TNFalpha mediates Schwann cell death by upregulating p75NTR expression without sustained activation of NFkappaB. Neurobiol Dis 2006; 20:412-27. [PMID: 15905096 DOI: 10.1016/j.nbd.2005.03.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 03/17/2005] [Accepted: 03/20/2005] [Indexed: 11/30/2022] Open
Abstract
Administration of tumour necrosis factor alpha (TNFalpha) to axotomised mouse neonatal sciatic nerves increased Schwann cell apoptosis in the distal nerve segments, 5-fold greater than axotomy alone. TNFalpha upregulated the low affinity neurotrophin receptor, p75NTR, indicative of phenotype reversion in Schwann cells. Furthermore, re-expression of p75NTR and downregulation of the pro-myelinating transcription factor, Oct 6, in Schwann cells occurred by treatment with TNFalpha, even after the maturation of these cells with brain derived neurotrophic factor (BDNF). TNFalpha treatment of Schwann cells produced only a transient activation of NFkappaB. More importantly, in NFkappaB (p65) mutant mice, axotomy increased Schwann cell apoptosis further than that seen in mice expressing NFkappaB (p65), implicating a survival role for NFkappaB. Collectively, these data suggest that TNFalpha can potentiate Schwann cell death through the modulation of their phenotype. Immature Schwann cells express a high level of p75NTR and as a consequence are susceptible to extracellular death stimuli because of the lack of sustained NFkappaB translocation.
Collapse
Affiliation(s)
- Kristy Boyle
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Post Office, The Royal Melbourne Hospital, Victoria 3050, Australia
| | | | | | | |
Collapse
|
8
|
Kuwabara S, Misawa S, Mori M, Tamura N, Kubota M, Hattori T. Long term prognosis of chronic inflammatory demyelinating polyneuropathy: a five year follow up of 38 cases. J Neurol Neurosurg Psychiatry 2006; 77:66-70. [PMID: 16361595 PMCID: PMC2117396 DOI: 10.1136/jnnp.2005.065441] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Little is known about long term prognosis and course after immune treatments in chronic inflammatory demyelinating polyneuropathy (CIDP). OBJECTIVE To study long term outcomes and prognostic factors in patients with CIDP. METHODS Clinical and electrophysiological findings, responses to immune modulating treatments, and outcomes five years after the start of treatment were reviewed in 38 CIDP patients. RESULTS Patients were treated with corticosteroids (89%), immunoglobulin infusion (45%), or plasmapheresis (34%), and 58% received combined therapy. Five years after treatment was begun, 10 (26%) of the patients had complete remission (lasting >2 years with normal nerve conduction studies), and 23 (61%) had partial remission (able to walk) with (26%) or without (34%) immune treatments. The remaining five patients (13%) still had severe disability (unable to walk) or treatment dependent relapses. Patients with complete remission more often had subacute onset, symmetrical symptoms, good response to initial corticosteroid treatment, and nerve conduction abnormalities predominant in the distal nerve terminals. In contrast, insidious onset, asymmetrical symptoms, and electrophysiological evidence of demyelination in the intermediate nerve segments were associated with refractoriness to treatment or treatment dependent relapse. CONCLUSIONS The long term prognosis of CIDP patients was generally favourable, but 39% of patients still required immune treatments and 13% had severe disabilities. Mode of onset, distribution of symptoms, and electrophysiological characteristics may be prognostic factors for predicting a favourable outcome.
Collapse
Affiliation(s)
- S Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, 260-8670, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Felts PA, Woolston AM, Fernando HB, Asquith S, Gregson NA, Mizzi OJ, Smith KJ. Inflammation and primary demyelination induced by the intraspinal injection of lipopolysaccharide. ACTA ACUST UNITED AC 2005; 128:1649-66. [PMID: 15872019 PMCID: PMC7109778 DOI: 10.1093/brain/awh516] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Inflammation is a prominent feature of several disorders characterized by primary demyelination, but it is not clear whether a relationship exists between inflammation and myelin damage. We have found that substantial demyelination results from the focal inflammatory lesion caused by the injection of lipopolysaccharide (LPS; 200 ng) directly into the rat dorsal funiculus. Within 24 h, such injections caused a focal inflammatory response consisting of a substantial number of polymorphonuclear cells and ED1-positive and inducible nitric oxide synthase (iNOS)-positive macrophages/microglia. The number of inflammatory cells was substantially reduced by day 7. OX-52-positive T-cells were less frequently observed but were present in the meninges at 8 h, reached a maximum in the dorsal funiculus at 7 days, and were rare at 14 days. The inflammation was followed by the appearance of a large lesion of primary demyelination that encompassed up to ∼75% of the cross-sectional area of the dorsal funiculus. Treatment with dexamethasone significantly reduced the number of cells expressing iNOS, but did not prevent the demyelination. By 28 days the lesions were largely remyelinated, usually by Schwann cells. These changes were not observed in control, saline-injected animals. We conclude that the intraspinal injection of LPS results in inflammation and subsequently in prominent demyelination. The mechanisms underlying the demyelination are not clear, but it is notable that it typically begins with disruption of the adaxonal myelin. Indeed, there is an early loss of myelin-associated glycoprotein within the lesion, despite the persistence of proteolipid protein. This combination is a feature of the pattern III lesion recently described in multiple sclerosis (Lucchinetti et al., 2000), and we therefore suggest that LPS-induced demyelination may serve as the first experimental model available for the study of this type of multiple sclerosis lesion.
Collapse
Affiliation(s)
- Paul A Felts
- Department of Neuroimmunology and Neuroinflammation Research Group, Guy's, King's and St Thomas' School of Medicine, King's College London, London, UK.
| | | | | | | | | | | | | |
Collapse
|
10
|
George A, Buehl A, Sommer C. Tumor necrosis factor receptor 1 and 2 proteins are differentially regulated during Wallerian degeneration of mouse sciatic nerve. Exp Neurol 2005; 192:163-6. [PMID: 15698630 DOI: 10.1016/j.expneurol.2004.11.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Revised: 10/13/2004] [Accepted: 11/04/2004] [Indexed: 11/29/2022]
Abstract
The pro-inflammatory cytokine tumor necrosis factor-alpha (TNF) is involved in injury-induced peripheral nerve pathology and in the generation of neuropathic pain. Here, we investigated local protein levels of the two known TNF receptors, TNF receptor 1 and 2 (TNFR1, TNFR2), on days 0, 1, 3, 7, 14, and 28 after unilateral crush or chronic constriction injury (CCI) of mouse sciatic nerves using enzyme-linked immunoassay. Both receptors were detectable at a low level in nerve homogenates from naive mice. After crush or CCI, TNFR1 increased by 2-fold on days 3 and day 7. Unlike TNFR1, TNFR2 was markedly upregulated already on day 1 after crush or CCI. TNFR2 increased by 7-fold on days 3 and 7, and remained elevated at a lower level until day 28 after both CCI and crush injury. These data indicate that endoneurial TNFR1 and TNFR2 proteins are differentially regulated during Wallerian degeneration.
Collapse
Affiliation(s)
- Annette George
- Neurologische Klinik der Universität, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | | | | |
Collapse
|
11
|
Boyle K, Azari MF, Profyris C, Petratos S. Molecular mechanisms in Schwann cell survival and death during peripheral nerve development, injury and disease. Neurotox Res 2005; 7:151-67. [PMID: 15639806 DOI: 10.1007/bf03033784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The mechanisms determining the fate of Schwann cells during disease and injury of the adult mammalian peripheral nervous system (PNS) are becoming defined by current advances in molecular neurobiology. It is now apparent that the molecular pathways which regulate the production of the mature myelinating Schwann cell during development may also apply to degenerative and regenerative mechanisms following PNS disease. This review outlines neurobiological responses of Schwann cells during development, injury and disease in order to define the molecular pathways which regulate these crucial events. These mechanisms have implications for our attempts to intervene pharmacologically during pathologies of the PNS.
Collapse
Affiliation(s)
- Kristy Boyle
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Australia
| | | | | | | |
Collapse
|
12
|
Vince V, Thil MA, Gérard AC, Veraart C, Delbeke J, Colin IM. Cuff electrode implantation around the sciatic nerve is associated with an upregulation of TNF-alpha and TGF-beta 1. J Neuroimmunol 2004; 159:75-86. [PMID: 15652405 DOI: 10.1016/j.jneuroim.2004.10.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 09/30/2004] [Accepted: 10/04/2004] [Indexed: 11/18/2022]
Abstract
Epineurial fibrosis, fiber loss, limited reproducibility of recordings and variability of stimulation conditions have been documented after extraneural cuff electrode implantation. These morphological and electrophysiological modifications could be due to the local release of cytokines. We report the expression of two cytokines, tumor necrosis factor-alpha (TNF-alpha) and transforming growth factor-beta1 (TGF-beta1) in the rat sciatic nerve after 'cuff' implantation for 18 h, 7 days and 1 month. Immunohistochemical and Western blot analyses showed a transient upregulation of TNF-alpha, during the first week, and a prolonged increase of TGF-beta1, over the 1-month period duration of this study. Considering the known pro-inflammatory roles of TNF-alpha and the pro-fibrotic action of TGF-beta, our results strongly suggest that these cytokines may contribute to nerve alterations occurring within the acute and sub-acute phases after cuff electrode implantation.
Collapse
Affiliation(s)
- Valérie Vince
- Experimental Morphology Laboratory, Université Catholique de Louvain, Avenue Hippocrate, 52, P.O. Box UCL-52.29, 1200 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
13
|
Latov N, Renaud S. Effector mechanisms in anti-MAG antibody-mediated and other demyelinating neuropathies. J Neurol Sci 2004; 220:127-9. [PMID: 15140620 DOI: 10.1016/j.jns.2004.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Norman Latov
- Department of Neurology and Neuroscience, Peripheral Neuropathy Center, Weill Medical College of Cornell University, New York, NY 10022, USA.
| | | |
Collapse
|
14
|
Beattie MS, Hermann GE, Rogers RC, Bresnahan JC. Cell death in models of spinal cord injury. PROGRESS IN BRAIN RESEARCH 2002; 137:37-47. [PMID: 12440358 DOI: 10.1016/s0079-6123(02)37006-7] [Citation(s) in RCA: 335] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Current treatments for acute spinal cord injury are based on animal models of human spinal cord injury (SCI). These models have shown that the initial traumatic injury to cord tissue is followed by a long period of secondary injury that includes a number of cellular and biochemical cascades. These secondary injury processes are potential targets for therapies. Continued refinement of rat and mouse models of SCI, along with more detailed analyses of the biology of the lesion in these models, points to both necrotic and apoptotic mechanisms of cell death after SCI. In this chapter, we review recent evidence for long-term apoptotic death of oligodendrocytes in long tracts undergoing Wallerian degeneration following SCI. This process appears to be related closely to activation of microglial cells. It is has been thought that microglial cells might be the source of cytotoxic cytokines, such as tumor necrosis factor-alpha (TNF-alpha), that kill oligodendrocytes. However, more recent evidence in vivo suggests that TNF-alpha by itself may not induce necrosis or apoptosis in oligodendrocytes. We review data that suggests other possible pathways for apoptosis, such as the neurotrophin receptor p75 which is expressed in both neurons and oligodendrocytes after SCI in rats and mice. In addition, it appears that microglial activation and TNF-alpha may be important in acute SCI. Ninety minutes after a moderate contusion lesion, microglia are activated and surround dying neurons. In an 'atraumatic' model of SCI, we have now shown that TNF-alpha appears to greatly potentiate cell death mediated by glutamate receptors. These studies emphasize that multiple mechanisms and interactions contribute to secondary injury after SCI. Continued study of both contusion models and other new approaches to studying these mechanisms will be needed to maximize strategies for acute and chronic therapies, and for neural repair.
Collapse
Affiliation(s)
- Michael S Beattie
- Department of Neuroscience, The Ohio State University Medical Center, 333 W. 10th Avenue, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
15
|
Popovich PG, Guan Z, McGaughy V, Fisher L, Hickey WF, Basso DM. The neuropathological and behavioral consequences of intraspinal microglial/macrophage activation. J Neuropathol Exp Neurol 2002; 61:623-33. [PMID: 12125741 DOI: 10.1093/jnen/61.7.623] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Activated microglia and macrophages (CNS macrophages) have been implicated in the secondary or "bystander" pathology (e.g. axon injury, demyelination) that accompanies traumatic or autoimmune injury to the brain and spinal cord. These cells also can provide neurotrophic support and promote axonal regeneration. Studying the divergent functional potential of CNS macrophages in trauma models is especially difficult due to the various degradative mechanisms that are initiated prior to or concomitant with microglial/macrophage activation (e.g. hemorrhage, edema, excitotoxicity, lipid peroxidation). To study the potential impact of activated CNS macrophages on the spinal cord parenchyma, we have characterized an in vivo model of non-traumatic spinal cord neuroinflammation. Specifically, focal activation of CNS macrophages was achieved using stereotaxic microinjections of zymosan. Although microinjection does not cause direct mechanical trauma, localized activation of macrophages with zymosan acts as an "inflammatory scalpel" causing tissue injury at and nearby the injection site. The present data reveal that activation of CNS macrophages in vivo can result in permanent axonal injury and demyelination. Moreover, the pathology can be graded and localized to specific white matter tracts to produce quantifiable behavioral deficits. Further development of this model will help to clarify the biological potential of microglia and macrophages and the molecular signals that control their function within the spinal cord.
Collapse
MESH Headings
- Animals
- Antigens, CD
- Antigens, Neoplasm
- Antigens, Surface
- Avian Proteins
- Axons/drug effects
- Axons/metabolism
- Axons/pathology
- Basigin
- Blood Proteins
- Chemotaxis, Leukocyte/drug effects
- Chemotaxis, Leukocyte/physiology
- Denervation/methods
- Disease Models, Animal
- Female
- Gait Disorders, Neurologic/chemically induced
- Gait Disorders, Neurologic/pathology
- Gait Disorders, Neurologic/physiopathology
- Gliosis/chemically induced
- Gliosis/pathology
- Gliosis/physiopathology
- Immunohistochemistry
- Macrophages/cytology
- Macrophages/drug effects
- Macrophages/metabolism
- Membrane Glycoproteins/metabolism
- Microglia/cytology
- Microglia/drug effects
- Microglia/metabolism
- Microinjections
- Myelin Sheath/drug effects
- Myelin Sheath/metabolism
- Myelin Sheath/pathology
- Myelitis/chemically induced
- Myelitis/pathology
- Myelitis/physiopathology
- Nerve Degeneration/chemically induced
- Nerve Degeneration/pathology
- Nerve Degeneration/physiopathology
- Nerve Fibers, Myelinated/drug effects
- Nerve Fibers, Myelinated/pathology
- Rats
- Rats, Sprague-Dawley
- Spinal Cord/drug effects
- Spinal Cord/pathology
- Spinal Cord/physiopathology
- Spinal Cord Injuries/pathology
- Spinal Cord Injuries/physiopathology
- Zymosan/pharmacology
Collapse
Affiliation(s)
- P G Popovich
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University College of Medicine & Public Health and School of Allied Medical Professions, Columbus 43210, USA
| | | | | | | | | | | |
Collapse
|
16
|
Kuwabara S, Ogawara K, Misawa S, Mori M, Hattori T. Distribution patterns of demyelination correlate with clinical profiles in chronic inflammatory demyelinating polyneuropathy. J Neurol Neurosurg Psychiatry 2002; 72:37-42. [PMID: 11784822 PMCID: PMC1737682 DOI: 10.1136/jnnp.72.1.37] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Chronic inflammatory demyelinating polyneuropathy (CIDP) is a heterogeneous disorder having a wide clinical range, and is characterised by multifocal demyelination that can involve the distal nerve terminals, intermediate nerve segments, and nerve roots. OBJECTIVE To investigate whether the distribution patterns of demyelination along the course of the nerve correlate with clinical profiles in patients with CIDP. METHODS Motor nerve conduction studies were carried out on 42 consecutive patients. According to the physiological criteria for demyelination, the presence of a demyelinative lesion was determined in the distal nerve segments (distal pattern) or intermediate nerve segments (intermediate pattern), or in both (diffuse pattern). The serum concentration of tumour necrosis factor (TNF)-alpha was measured by immunoassay. RESULTS Patients were classified as having a distal (n=10), intermediate (n=13), or diffuse (n=15) pattern, or were unclassified (n=4). Patients with the distal or diffuse pattern had common clinical features such as subacute onset, symmetric symptoms, and weakness involving proximal as well as distal muscles. Patients with the distal pattern had a good response to treatment and a monophasic remitting course, but the diffuse pattern was associated with a treatment dependent relapsing course, reflecting longer disease activity. The serum TNF-alpha concentrations increased only in the "diffuse" subgroup of patients, and this might be associated with breakdown of the blood-nerve barrier and therefore, involvement of the intermediate segments. The intermediate pattern was characterised by a chronic course, asymmetric symptoms, less severe disability, and refractoriness to treatments. CONCLUSIONS CIDP consists of subtypes with varying predilections for lesions along the course of the nerve. The distribution patterns of conduction abnormalities may be useful in the prediction of outcome of patients with CIDP.
Collapse
Affiliation(s)
- S Kuwabara
- Department of Neurology, Chiba University School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | | | | | | | | |
Collapse
|
17
|
Hermann GE, Rogers RC, Bresnahan JC, Beattie MS. Tumor necrosis factor-alpha induces cFOS and strongly potentiates glutamate-mediated cell death in the rat spinal cord. Neurobiol Dis 2001; 8:590-9. [PMID: 11493024 DOI: 10.1006/nbdi.2001.0414] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Excitotoxic cell death due to glutamate release is important in the secondary injury following CNS trauma or ischemia. Proinflammatory cytokines also play a role. Both glutamate and tumor necrosis factor-alpha (TNF(alpha)) are released immediately after spinal cord injury. Neurophysiological studies show that TNF(alpha) can potentiate the effects of glutamatergic afferent input to produce hyperactivation of brain-stem sensory neurons. Therefore, we hypothesized that TNF(alpha) might act cooperatively with glutamate to affect cell death in the spinal cord as well. Nanoinjections of either TNF(alpha) (60 pg) or kainate (KA; 32 ng) alone into the thoracic gray resulted in almost no tissue damage or cell death 90 min after injection. However, the combination of TNF(alpha) plus KA at these same doses produced a large area of tissue necrosis and neuronal cell death, an effect which was blocked by the AMPA receptor antagonist CNQX (17 ng). These results suggest that secondary injury may involve potentiation of AMPA receptor-mediated excitatory cell death by TNF(alpha).
Collapse
Affiliation(s)
- G E Hermann
- Laboratory of Autonomic Neuroscience, Department of Neuroscience, The Ohio State University Medical Center, 333 W. 10th Avenue, Columbus, Ohio 43210, USA.
| | | | | | | |
Collapse
|