1
|
Gager GM, Eyileten C, Postula M, Gasecka A, Jarosz-Popek J, Gelbenegger G, Jilma B, Lang I, Siller-Matula J. Association Between the Expression of MicroRNA-125b and Survival in Patients With Acute Coronary Syndrome and Coronary Multivessel Disease. Front Cardiovasc Med 2022; 9:948006. [PMID: 35872885 PMCID: PMC9304571 DOI: 10.3389/fcvm.2022.948006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMicroRNAs (miRNA, miR) have an undeniable physiological and pathophysiological significance and act as promising novel biomarkers. The aim of the study was to investigate blood-derived miRNAs and their association with long-term all-cause mortality in patients with multivessel disease (MVD) suffering from acute coronary syndrome (ACS).Materials and MethodsThis study was an observational prospective study, which included 90 patients with MVD and ACS. Expression of miR-125a, miR-125b, and miR-223 was analysed by polymerase chain reaction (PCR). Patients were followed-up for a median of 7.5 years. All-cause mortality was considered as the primary endpoint. Adjusted Cox-regression analysis was performed for prediction of events.ResultsElevated expression of miR-125b (>4.6) at the time-point of ACS was associated with increased long-term all-cause mortality (adjusted [adj.] hazard ratio [HR] = 11.26, 95% confidence interval [95% CI]: 1.15–110.38; p = 0.038). The receiver operating characteristic (ROC) analysis showed a satisfactory c-statistics for miR-125b for the prediction of long-term all-cause mortality (area under the curve [AUC] = 0.76, 95% CI: 0.61–0.91; p = 0.034; the negative predictive value of 98%). Kaplan–Meier time to event analysis confirmed an early separation of the survival curves between patients with high vs low expression of miR-125b (p = 0.003). An increased expression of miR-125a and miR-223 was found in patients with non-ST-segment elevation ACS (NSTE-ACS) as compared to those with ST-segment elevation myocardial infarction (STEMI) (p = 0.043 and p = 0.049, respectively) with no difference in the expression of miR-125b between the type of ACS.ConclusionIn this hypothesis generating study, lower values of miR-125b were related to improved long-term survival in patients with ACS and MVD. Larger studies are needed to investigate whether miR-125b can be used as a suitable predictor for long-term all-cause mortality.
Collapse
Affiliation(s)
- Gloria M. Gager
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Warsaw, Poland
- Genomics Core Facility, Center of New Technologies (CeNT), University of Warsaw, Warsaw, Poland
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Gasecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Jarosz-Popek
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Georg Gelbenegger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Irene Lang
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Jolanta Siller-Matula
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Warsaw, Poland
- *Correspondence: Jolanta Siller-Matula,
| |
Collapse
|
2
|
Sheemar A, Soni D, Takkar B, Basu S, Venkatesh P. Inflammatory mediators in diabetic retinopathy: Deriving clinicopathological correlations for potential targeted therapy. Indian J Ophthalmol 2021; 69:3035-3049. [PMID: 34708739 PMCID: PMC8725076 DOI: 10.4103/ijo.ijo_1326_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/10/2021] [Accepted: 09/27/2021] [Indexed: 11/22/2022] Open
Abstract
The role of inflammation in diabetic retinopathy (DR) is well-established and dysregulation of a large number of inflammatory mediators is known. These include cytokines, chemokines, growth factors, mediators of proteogenesis, and pro-apoptotic molecules. This para-inflammation as a response is not directed to a particular pathogen or antigen but is rather directed toward the by-products of the diabetic milieu. The inflammatory mediators take part in cascades that result in cellular level responses like neurodegeneration, pericyte loss, leakage, capillary drop out, neovascularization, etc. There are multiple overlaps between the inflammatory pathways occurring within the diabetic retina due to a large number of mediators, their varied sources, and cross-interactions. This makes understanding the role of inflammation in clinical manifestations of DR difficult. Currently, mediator-based therapy for DR is being evaluated for interventions that target a specific step of the inflammatory cascade. We reviewed the role of inflammation in DR and derived a simplified clinicopathological correlation between the sources and stimuli of inflammation, the inflammatory mediators and pathways, and the clinical manifestations of DR. By doing so, we deliberate mediator-specific therapy for DR. The cross-interactions between inflammatory mediators and the molecular cycles influencing the inflammatory cascades are crucial challenges to such an approach. Future research should be directed to assess the feasibility of the pathology-based therapy for DR.
Collapse
Affiliation(s)
- Abhishek Sheemar
- Department of Ophthalmology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Deepak Soni
- Department of Ophthalmology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Brijesh Takkar
- Smt. Kanuri Santhamma Center for Vitreoretinal Diseases, L V Prasad Eye Institute, Hyderabad, India
- Indian Health Outcomes, Public Health and Economics Research (IHOPE) Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Soumyava Basu
- Uveitis Service, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Pradeep Venkatesh
- Dr.R.P.Centre for Ophthalmic Sciences, All India Institute of Medical Science, New Delhi, India
| |
Collapse
|
3
|
Kim MH, Kim D, Sung JH. A Gut-Brain Axis-on-a-Chip for studying transport across epithelial and endothelial barriers. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.06.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Zhang Q, Yang M, Xiao Y, Han Y, Yang S, Sun L. Towards Better Drug Repositioning: Targeted Immunoinflammatory Therapy for Diabetic Nephropathy. Curr Med Chem 2021; 28:1003-1024. [PMID: 31701843 DOI: 10.2174/0929867326666191108160643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 11/22/2022]
Abstract
Diabetic nephropathy (DN) is one of the most common and important microvascular complications of diabetes mellitus (DM). The main clinical features of DN are proteinuria and a progressive decline in renal function, which are associated with structural and functional changes in the kidney. The pathogenesis of DN is multifactorial, including genetic, metabolic, and haemodynamic factors, which can trigger a sequence of events. Controlling metabolic risks such as hyperglycaemia, hypertension, and dyslipidaemia is not enough to slow the progression of DN. Recent studies emphasized immunoinflammation as a critical pathogenic factor in the progression of DN. Therefore, targeting inflammation is considered a potential and novel treatment strategy for DN. In this review, we will briefly introduce the inflammatory process of DN and discuss the anti-inflammatory effects of antidiabetic drugs when treating DN.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shikun Yang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Involvement of Cytokines in the Pathogenesis of Diabetic Macular Edema. Int J Mol Sci 2021; 22:ijms22073427. [PMID: 33810434 PMCID: PMC8036935 DOI: 10.3390/ijms22073427] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic macular edema (DME) is a critical complication of diabetic retinopathy, a condition that arises from the breakdown of the blood–retinal barrier and the consequent increase in vascular permeability. Over the years, attempts have been made to treat DME by various approaches, including laser photocoagulation, steroid triamcinolone acetonide, and vitrectomy. However, treatment was unsatisfactory until research identified vascular endothelial growth factor (VEGF) as a factor in the pathogenesis of DME. Intraocular anti-VEGF agents show good efficacy in DME. Nevertheless, in some patients the condition recurs or becomes resistant to treatment, suggesting that other factors may be involved. Because inflammation and retinal hypoxia are seen in DME, research has examined the potential role of cytokines and other inflammatory mediators. In this review, we provide an overview of this research and describe feedback mechanisms that may represent a target for novel treatments.
Collapse
|
6
|
Shabani S. A mechanistic view on the neurotoxic effects of air pollution on central nervous system: risk for autism and neurodegenerative diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6349-6373. [PMID: 33398761 DOI: 10.1007/s11356-020-11620-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Many reports have shown a strong association between exposure to neurotoxic air pollutants like heavy metal and particulate matter (PM) as an active participant and neurological disorders. While the effects of these toxic pollutants on cardiopulmonary morbidity have principally been studied, growing evidence has shown that exposure to polluted air is associated with memory impairment, communication deficits, and anxiety/depression among all ages. So, these toxic pollutants in the environment increase the risk of neurodegenerative disease, ischemia, and autism spectrum disorders (ASD). The precise mechanisms in which air pollutants lead to communicative inability, social inability, and declined cognition have remained unknown. Various animal model studies show that amyloid precursor protein (APP), processing, oxidant/antioxidant balance, and inflammation pathways change following the exposure to constituents of polluted air. In the present review study, we collect the probable molecular mechanisms of deleterious CNS effects in response to various air pollutants.
Collapse
Affiliation(s)
- Sahreh Shabani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
7
|
Venkat P, Ning R, Zacharek A, Culmone L, Liang L, Landschoot-Ward J, Chopp M. Treatment with an Angiopoietin-1 mimetic peptide promotes neurological recovery after stroke in diabetic rats. CNS Neurosci Ther 2020; 27:48-59. [PMID: 33346402 PMCID: PMC7804913 DOI: 10.1111/cns.13541] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
Aim Vasculotide (VT), an angiopoietin‐1 mimetic peptide, exerts neuroprotective effects in type one diabetic (T1DM) rats subjected to ischemic stroke. In this study, we investigated whether delayed VT treatment improves long‐term neurological outcome after stroke in T1DM rats. Methods Male Wistar rats were induced with T1DM, subjected to middle cerebral artery occlusion (MCAo) model of stroke, and treated with PBS (control), 2 µg/kg VT, 3 µg/kg VT, or 5.5 µg/kg VT. VT treatment was initiated at 24 h after stroke and administered daily (i.p) for 14 days. We evaluated neurological function, lesion volume, vascular and white matter remodeling, and inflammation in the ischemic brain. In vitro, we evaluated the effects of VT on endothelial cell capillary tube formation and inflammatory responses of primary cortical neurons (PCN) and macrophages. Results Treatment of T1DM‐stroke with 3 µg/kg VT but not 2 µg/kg or 5.5 µg/kg significantly improves neurological function and decreases infarct volume and cell death compared to control T1DM‐stroke rats. Thus, 3 µg/kg VT dose was employed in all subsequent in vivo analysis. VT treatment significantly increases axon and myelin density, decreases demyelination, decreases white matter injury, increases number of oligodendrocytes, and increases vascular density in the ischemic border zone of T1DM stroke rats. VT treatment significantly decreases MMP9 expression and decreases the number of M1 macrophages in the ischemic brain of T1DM‐stroke rats. In vitro, VT treatment significantly decreases endothelial cell death and decreases MCP‐1, endothelin‐1, and VEGF expression under high glucose (HG) and ischemic conditions and significantly increases capillary tube formation under HG conditions when compared to non‐treated control group. VT treatment significantly decreases inflammatory factor expression such as MMP9 and MCP‐1 in macrophages subjected to LPS activation and significantly decreases IL‐1β and MMP9 expression in PCN subjected to ischemia under HG conditions. Conclusion Delayed VT treatment (24 h after stroke) significantly improves neurological function, promotes vascular and white matter remodeling, and decreases inflammation in the ischemic brain after stroke in T1DM rats.
Collapse
Affiliation(s)
- Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Ruizhuo Ning
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Lauren Culmone
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Linlin Liang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | | | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA.,Department of Physics, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
8
|
Cytokines and Pathogenesis of Central Retinal Vein Occlusion. J Clin Med 2020; 9:jcm9113457. [PMID: 33121094 PMCID: PMC7692731 DOI: 10.3390/jcm9113457] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/23/2022] Open
Abstract
Central retinal vein occlusion (CRVO) causes macular edema and subsequent vision loss and is common in people with diseases such as arteriosclerosis and hypertension. Various treatments for CRVO-associated macular edema have been trialed, including laser photocoagulation, with unsatisfactory results. However, when the important pathogenic role of vascular endothelial growth factor (VEGF) in macular edema was identified, the treatment of CRVO was revolutionized by anti-VEGF therapy. However, despite the success of intraocular injection of anti-VEGF agents in many patients with CRVO, some patients continue to suffer from refractory or recurring edema. In addition, the expression of inflammatory cytokines increases over time, causing more severe inflammation and a condition that is increasingly resistant to anti-VEGF therapy. This indicates that the pathogenesis of macular edema in CRVO is more complex than originally thought and may involve factors or cytokines associated with inflammation and ischemia other than VEGF. CRVO is also associated with leukocyte abnormalities and a gradual reduction in retinal blood flow velocity, which increase the likelihood of it developing from the nonischemic type into the more severe ischemic type; in turn, this results in excessive VEGF expression and subsequent neovascular glaucoma. Here, we review the role of different factors and cytokines involved in CRVO pathogenesis and propose a mechanism that holds promise for the development of novel therapies.
Collapse
|
9
|
Cytokines and the Pathogenesis of Macular Edema in Branch Retinal Vein Occlusion. J Ophthalmol 2019; 2019:5185128. [PMID: 31191997 PMCID: PMC6525954 DOI: 10.1155/2019/5185128] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/19/2019] [Accepted: 04/08/2019] [Indexed: 11/18/2022] Open
Abstract
Branch retinal vein occlusion (BRVO) is a very common retinal vascular problem in patients with lifestyle-related diseases, such as hypertension and arteriosclerosis. In patients with BRVO, development of macular edema is the main cause of visual impairment. BRVO is still a controversial condition in many respects. Over the years, various methods such as laser photocoagulation have been tried to treat macular edema associated with BRVO, but the results were not satisfactory. After vascular endothelial growth factor (VEGF) was found to have an important role in the pathogenesis of macular edema in BRVO patients, treatment of this condition was revolutionized by development of anti-VEGF therapy. Although macular edema improves dramatically following intraocular injection of anti-VEGF agents, repeated recurrence and resistance of edema is a major problem in some BRVO patients. This suggests that factors or cytokines other than VEGF may be associated with inflammation and retinal hypoxia in BRVO and that the pathogenesis of macular edema is complicated. The present review assesses the role of various factors and cytokines in the pathogenesis of macular edema associated with BRVO. We present a mechanism that is not only plausible but should also be useful for developing new therapeutic strategies.
Collapse
|
10
|
Bergandi L, Giuggia B, Alovisi M, Comba A, Silvagno F, Maule M, Aldieri E, Scotti N, Scacciatella P, Conrotto F, Berutti E, Pasqualini D. Endothelial Dysfunction Marker Variation in Young Adults with Chronic Apical Periodontitis before and after Endodontic Treatment. J Endod 2019; 45:500-506. [PMID: 30910354 DOI: 10.1016/j.joen.2019.01.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Cardiovascular diseases are the leading cause of mortality worldwide. Apical periodontitis (AP) has been associated with an increased risk of cardiovascular diseases. A correlation has been shown between chronic AP and endothelial dysfunction (ED), but there is no evidence to indicate ED improves after endodontic treatment in patients with periapical lesions. The aim of this study was to investigate vascular and molecular markers of early ED before and after root canal treatment in young adults with chronic AP. METHODS Twenty control subjects and 21 patients with AP were assessed at baseline. The AP patients were also evaluated 2 and 12 months post-treatment. Endothelial flow reserve was assessed via an endothelial function test, and enzyme-linked immunosorbent assays were used to evaluate plasma levels of proinflammatory cytokines interleukin (IL)-1, IL-6, and tumor necrosis factor alpha; vasoconstrictor ED marker endothelin (ET)-1; circulating endothelial adhesion markers intercellular adhesion molecule 1 (ICAM-1)/CD54 and soluble vascular cellular adhesion molecule (sVCAM)-1/CD106; soluble CD14; and the endothelial leukocyte adhesion molecule (E-selectin). RESULTS AP was associated with increased serum levels of ET-1, ICAM-1, E-selectin, IL-1, and sCD14, suggesting early vascular ED, with no macroscopic evidence of a reduction in endothelial flow reserve. Root canal treatment ameliorated inflammation and early ED, lowering plasma levels of IL-1, sCD14, ET-1, ICAM-1/CD54, and E-selectin to those of control subjects. CONCLUSIONS Our findings suggest that AP may drive early vascular ED and that the endodontic therapy of AP ameliorates early ED.
Collapse
Affiliation(s)
| | - Beatrice Giuggia
- Department of Surgical Sciences, Dental School, University of Turin, Turin, Italy
| | - Mario Alovisi
- Department of Surgical Sciences, Dental School, University of Turin, Turin, Italy
| | - Allegra Comba
- Department of Surgical Sciences, Dental School, University of Turin, Turin, Italy
| | | | - Milena Maule
- Department of Medical Sciences, Division of Cardiology, Città della Salute e della Scienza di Torino, Turin, Italy
| | | | - Nicola Scotti
- Department of Surgical Sciences, Dental School, University of Turin, Turin, Italy
| | - Paolo Scacciatella
- Department of Medical Sciences, Cancer Epidemiology Unit, University of Turin, Turin, Italy
| | - Federico Conrotto
- Department of Medical Sciences, Cancer Epidemiology Unit, University of Turin, Turin, Italy
| | - Elio Berutti
- Department of Surgical Sciences, Dental School, University of Turin, Turin, Italy
| | - Damiano Pasqualini
- Department of Surgical Sciences, Dental School, University of Turin, Turin, Italy.
| |
Collapse
|
11
|
Chen IC, Lin YT, Huang JS, Wu BN, Hsu JH, Tan MS, Dai ZK. Decreased Ambient Oxygen Tension Alters the Expression of Endothelin-1, iNOS and cGMP in Rat Alveolar Macrophages. Int J Med Sci 2019; 16:443-449. [PMID: 30911278 PMCID: PMC6428981 DOI: 10.7150/ijms.28353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/28/2018] [Indexed: 01/20/2023] Open
Abstract
Background: Hypoxia plays an important role in the vascular tone of pulmonary circulation via the vasculature and parenchymal tissue. Endothelin-1 (ET-1), a potent vasoconstrictive peptide, plays a role in inflammation in mononuclear cells. Nitric oxide synthase (NOS), which generates nitric oxide (NO)/cyclic 3', 5'-monophosphate (cGMP), is coexpressed with ET-1 in many cell types. The aim of this study was to assess whether hypoxia induces the production of ET-1 and associated expression of NOS, NO/cGMP and chemokines in rat alveolar macrophages (AMs). Methods: NR8383 cells were cultured under hypoxic (1% oxygen) conditions for 0, 2, 4, 8 and 12 hours. Levels of ET-1, inducible NOS (iNOS), phosphorylated iNOS (p-iNOS), nitrite/nitrate (NOx), cGMP and monocyte chemoattractant protein-1 (MCP-1) were measured. Results: ET-1, p-iNOS, NOx, and cGMP increased significantly in AMs after 4 hours of hypoxia (p < 0.05). ET-1 and MCP-1 mRNA increased after 8 hours (p < 0.05). The protein expression of ET-1, MCP-1, and p-iNOS increased in a time-dependent manner, while iNOS expression decreased with time. Conclusions: The changes in ET-1, p-iNOS, and the NO/cGMP pathway in AMs may help elucidate the mechanisms in the hypoxic lung. Understanding changes in the endothelin axis in hypoxic AMs is a crucial first step to unravel its role in pulmonary circulation.
Collapse
Affiliation(s)
- I-Chen Chen
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Tsai Lin
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Jhy-Shrian Huang
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Bin-Nan Wu
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jong-Hau Hsu
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mian-Shin Tan
- Department of Biomedical Science and Environmental Biology, College of Life Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zen-Kong Dai
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
12
|
Abstract
Endothelins were discovered more than thirty years ago as potent vasoactive compounds. Beyond their well-documented cardiovascular properties, however, the contributions of the endothelin pathway have been demonstrated in several neuroinflammatory processes and the peptides have been reported as clinically relevant biomarkers in neurodegenerative diseases. Several studies report that endothelin-1 significantly contributes to the progression of neuroinflammatory processes, particularly during infections in the central nervous system (CNS), and is associated with a loss of endothelial integrity at the blood brain barrier level. Because of the paucity of clinical trials with endothelin-1 antagonists in several infectious and non-infectious neuroinflammatory diseases, it remains an open question whether the 21 amino acid peptide is a mediator/modulator rather than a biomarker of the progression of neurodegeneration. This review focuses on the potential roles of endothelins in the pathology of neuroinflammatory processes, including infectious diseases of viral, bacterial or parasitic origin in which the synthesis of endothelins or its pharmacology have been investigated from the cell to the bedside in several cases, as well as in non-infectious inflammatory processes such as neurodegenerative disorders like Alzheimers Disease or central nervous system vasculitis.
Collapse
|
13
|
Dube S, Matam T, Yen J, Mang HE, Dagher PC, Hato T, Sutton TA. Endothelial STAT3 Modulates Protective Mechanisms in a Mouse Ischemia-Reperfusion Model of Acute Kidney Injury. J Immunol Res 2017; 2017:4609502. [PMID: 29181415 PMCID: PMC5664346 DOI: 10.1155/2017/4609502] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/29/2017] [Indexed: 01/24/2023] Open
Abstract
STAT3 is a transcriptional regulator that plays an important role in coordinating inflammation and immunity. In addition, there is a growing appreciation of the role STAT3 signaling plays in response to organ injury following diverse insults. Acute kidney injury (AKI) from ischemia-reperfusion injury is a common clinical entity with devastating consequences, and the recognition that endothelial alterations contribute to kidney dysfunction in this setting is of growing interest. Consequently, we used a mouse with a genetic deletion of Stat3 restricted to the endothelium to examine the role of STAT3 signaling in the pathophysiology of ischemic AKI. In a mouse model of ischemic AKI, the loss of endothelial STAT3 signaling significantly exacerbated kidney dysfunction, morphologic injury, and proximal tubular oxidative stress. The increased severity of ischemic AKI was associated with more robust endothelial-leukocyte adhesion and increased tissue accumulation of F4/80+ macrophages. Moreover, important proximal tubular adaptive mechanisms to injury were diminished in association with decreased tissue mRNA levels of the epithelial cell survival cytokine IL-22. In aggregate, these findings suggest that the endothelial STAT3 signaling plays an important role in limiting kidney dysfunction in ischemic AKI and that selective pharmacologic activation of endothelial STAT3 signaling could serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Shataakshi Dube
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tejasvi Matam
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jessica Yen
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Henry E. Mang
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Pierre C. Dagher
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Takashi Hato
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Timothy A. Sutton
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
14
|
Lee NY, Kim MH, Park CK. Visual Field Progression is Associated with Systemic Concentration of Macrophage Chemoattractant Protein-1 in Normal-Tension Glaucoma. Curr Eye Res 2017; 42:1002-1006. [PMID: 28306361 DOI: 10.1080/02713683.2016.1276193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE To investigate the associations between endothelin-1 (ET-1) and macrophage chemoattractant protein-1 (MCP-1) levels and visual field (VF) progression in normal-tension glaucoma (NTG). METHODS We conducted a prospective, longitudinal study in 71 patients with NTG. Blood samples from all subjects were assayed for ET-1 and MCP-1 concentrations, and baseline ophthalmic examinations, including the VF, were performed. Baseline data were compared with follow-up data over 3 years. RESULTS After 3 years of follow-up, 14 of the 71 patients showed VF progression, and the systemic MCP-1 level was significantly associated with VF progression (r = 0.318, p = 0.007). Multiple regression analysis showed that VF progression was significantly associated with MCP-1 (odds ratio, OR = 1.021, 95% CI = 1.003-1.040; p = 0.020) and optic disc hemorrhage (ODH; OR = 1.573; 95% CI = 1.140-2.170; p = 0.023). CONCLUSIONS Systemic MCP-1 levels were associated with VF progression in patients with NTG.
Collapse
Affiliation(s)
- Na Young Lee
- a College of Medicine , The Catholic University of Korea , Seoul , Korea.,b Department of Ophthalmology , Incheon St. Mary's Hospital , Incheon , Korea
| | - Min Hee Kim
- a College of Medicine , The Catholic University of Korea , Seoul , Korea.,c Department of Ophthalmology , Yeouido St. Mary's Hospital , Seoul , Korea
| | - Chan Kee Park
- a College of Medicine , The Catholic University of Korea , Seoul , Korea.,d Department of Ophthalmology , Seoul St. Mary's Hospital , Seoul , Korea
| |
Collapse
|
15
|
Mayer D, Oevermann A, Seuberlich T, Vandevelde M, Casanova-Nakayama A, Selimovic-Hamza S, Forterre F, Henke D. Endothelin-1 Immunoreactivity and its Association with Intramedullary Hemorrhage and Myelomalacia in Naturally Occurring Disk Extrusion in Dogs. J Vet Intern Med 2016; 30:1099-111. [PMID: 27353293 PMCID: PMC5094511 DOI: 10.1111/jvim.14364] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 03/04/2016] [Accepted: 05/23/2016] [Indexed: 01/28/2023] Open
Abstract
Background The pathophysiology of ascending/descending myelomalacia (ADMM) after canine intervertebral disk (IVD) extrusion remains poorly understood. Vasoactive molecules might contribute. Hypothesis/Objectives To investigate the immunoreactivity of endothelin‐1 (ET‐1) in the uninjured and injured spinal cord of dogs and its potential association with intramedullary hemorrhage and extension of myelomalacia. Animals Eleven normal control and 34 dogs with thoracolumbar IVD extrusion. Methods Spinal cord tissue of dogs retrospectively selected from our histopathologic database was examined histologically at the level of the extrusion (center) and in segments remote from the center. Endothelin‐1 immunoreactivity was examined immunohistochemically and by in situ hybridization. Associations between the immunoreactivity for ET‐1 and the severity of intramedullary hemorrhage or the extension of myelomalacia were examined. Results Endothelin‐1 was expressed by astrocytes, macrophages, and neurons and only rarely by endothelial cells in all dogs. At the center, ET‐1 immunoreactivity was significantly higher in astrocytes (median score 4.02) and lower in neurons (3.21) than in control dogs (3.0 and 4.54) (P < .001; P = .004) irrespective of the grade of hemorrhage or myelomalacia. In both astrocytes and neurons, there was a higher ET‐1 immunoreactivity in spinal cord regions remote from the center (4.58 and 4.15) than in the center itself (P = .013; P = .001). ET‐1 mRNA was present in nearly all neurons with variable intensity, but not in astrocytes. Conclusion and Clinical Importance Enhanced ET‐1 immunoreactivity over multiple spinal cord segments after IVD extrusion might play a role in the pathogenesis of ADMM. More effective quantitative techniques are required.
Collapse
Affiliation(s)
- D Mayer
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Division of Clinical Neurology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - A Oevermann
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - T Seuberlich
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - M Vandevelde
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Division of Clinical Neurology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - A Casanova-Nakayama
- Centre for Fish and Wildlife Health, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - S Selimovic-Hamza
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - F Forterre
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Division of Small Animal Surgery, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - D Henke
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Division of Clinical Neurology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
16
|
Karshikoff B, Lekander M, Soop A, Lindstedt F, Ingvar M, Kosek E, Olgart Höglund C, Axelsson J. Modality and sex differences in pain sensitivity during human endotoxemia. Brain Behav Immun 2015; 46:35-43. [PMID: 25486090 DOI: 10.1016/j.bbi.2014.11.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 11/27/2022] Open
Abstract
Systemic inflammation can induce pain hypersensitivity in animal and human experimental models, and has been proposed to be central in clinical pain conditions. Women are overrepresented in many chronic pain conditions, but experimental studies on sex differences in pain regulation during systemic inflammation are still scarce. In two randomized and double blind placebo controlled experiments, we used low doses of lipopolysaccharide (LPS) as an experimental model of systemic inflammation. The first study employed 0.8ng/kg LPS in a within-subject design of 8 individuals (1 woman), and the second study 0.6ng/kg LPS in a between-subject design of 52 participants (29 women). We investigated the effect on (a) pressure, heat, and cold pain thresholds, (b) suprathreshold noxious heat and cold sensitivity, and (c) conditioned pain modulation (CPM), and differences between men and women. LPS induced significantly lower pressure pain thresholds as compared to placebo (mean change with the 0.8ng/kg dose being -64±30kPa P=.04; with the 0.6ng/kg dose -58±55kPa, P<.01, compared to before injection), whereas heat and cold pain thresholds remained unaffected (P's>.70). Suprathreshold noxious pain was not affected by LPS in men (P's⩾.15). However, LPS made women rated suprathreshold noxious heat stimuli as more painful (P=.01), and showed a tendency to rate noxious cold pain as more painful (P=.06) as compared to placebo. Furthermore, LPS impaired conditioned pain modulation, a measure of endogenous pain inhibition, but this effect was also restricted to women (P<.01, for men P=.27). Pain sensitivity correlated positively with plasma IL-6 and IL-8 levels. The results show that inflammation more strongly affects deep pain, rather than cutaneous pain, and suggest that women's pain perception and modulation is more sensitive to immune activation than men's.
Collapse
Affiliation(s)
- B Karshikoff
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - M Lekander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden; Stress Research Institute, Stockholm University, Stockholm, Sweden
| | - A Soop
- Department of Anesthesiology and Intensive Care, Karolinska University Hospital Huddinge, Stockholm, Sweden; Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - F Lindstedt
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - M Ingvar
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - E Kosek
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - C Olgart Höglund
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - J Axelsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden; Stress Research Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
17
|
Kosek E, Altawil R, Kadetoff D, Finn A, Westman M, Le Maître E, Andersson M, Jensen-Urstad M, Lampa J. Evidence of different mediators of central inflammation in dysfunctional and inflammatory pain--interleukin-8 in fibromyalgia and interleukin-1 β in rheumatoid arthritis. J Neuroimmunol 2015; 280:49-55. [PMID: 25773155 PMCID: PMC4372266 DOI: 10.1016/j.jneuroim.2015.02.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 02/15/2015] [Accepted: 02/17/2015] [Indexed: 01/14/2023]
Abstract
The purpose of this study was to relate central inflammation to autonomic activity (heart rate variability (HRV)) in patients with rheumatoid arthritis (RA) and fibromyalgia (FM). RA patients had reduced parasympathetic activity and FM patients had increased sympathetic activity compared to healthy controls. Comparisons between RA and FM showed higher cerebrospinal fluid (CSF) interleukin (IL)-1β inversely correlated to parasympathetic activity in RA. The FM patients had higher concentrations of CSF IL-8, IL-1Ra, IL-4 and IL-10, but none of these cytokines correlated with HRV. In conclusion, we found different profiles of central cytokines, i.e., elevated IL-1β in inflammatory pain (RA) and elevated IL-8 in dysfunctional pain (FM).
Collapse
Affiliation(s)
- Eva Kosek
- Osher Center for Integrative Medicine, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
| | - Reem Altawil
- Department of Medicine, Unit of Rheumatology, CMM, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Diana Kadetoff
- Osher Center for Integrative Medicine, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Anja Finn
- Department of Physiology and Pharmacology, Karolinska Insitute, Stockholm, Sweden
| | - Marie Westman
- Department of Medicine, Unit of Rheumatology, CMM, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Erwan Le Maître
- Department of Medicine, Unit of Rheumatology, CMM, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Andersson
- Department of Clinical Neuroscience, Neuroimmunology Unit, CMM, Karolinska Institute, Stockholm, Sweden
| | - Mats Jensen-Urstad
- Department of Medicine, Unit of Cardiology, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jon Lampa
- Department of Medicine, Unit of Rheumatology, CMM, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
18
|
Guo L, Li B, Miao JJ, Yun Y, Li GK, Sang N. Seasonal Variation in Air Particulate Matter (PM10) Exposure-Induced Ischemia-Like Injuries in the Rat Brain. Chem Res Toxicol 2014; 28:431-9. [DOI: 10.1021/tx500392n] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Lin Guo
- College of Environment and
Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Ben Li
- College of Environment and
Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Juan-juan Miao
- College of Environment and
Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Yang Yun
- College of Environment and
Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Guang-ke Li
- College of Environment and
Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Nan Sang
- College of Environment and
Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| |
Collapse
|
19
|
Endothelin-1 and its role in the pathogenesis of infectious diseases. Life Sci 2014; 118:110-9. [PMID: 24780317 DOI: 10.1016/j.lfs.2014.04.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/08/2014] [Accepted: 04/15/2014] [Indexed: 12/12/2022]
Abstract
Endothelins are potent regulators of vascular tone, which also have mitogenic, apoptotic, and immunomodulatory properties (Rubanyi and Polokoff, 1994; Kedzierski and Yanagisawa, 2001; Bagnato et al., 2011). Three isoforms of endothelin have been identified to date, with endothelin-1 (ET-1) being the best studied. ET-1 is classically considered a potent vasoconstrictor. However, in addition to the effects of ET-1 on vascular smooth muscle cells, the peptide is increasingly recognized as a pro-inflammatory cytokine (Teder and Noble, 2000; Sessa et al., 1991). ET-1 causes platelet aggregation and plays a role in the increased expression of leukocyte adhesion molecules, the synthesis of inflammatory mediators contributing to vascular dysfunction. High levels of ET-1 are found in alveolar macrophages, leukocytes (Sessa et al., 1991) and fibroblasts (Gu et al., 1991). Clinical and experimental data indicate that ET-1 is involved in the pathogenesis of sepsis (Tschaikowsky et al., 2000; Goto et al., 2012), viral and bacterial pneumonia (Schuetz et al., 2008; Samransamruajkit et al., 2002), Rickettsia conorii infections (Davi et al., 1995), Chagas disease (Petkova et al., 2000, 2001), and severe malaria (Dai et al., 2012; Machado et al., 2006; Wenisch et al., 1996a; Dietmann et al., 2008). In this minireview, we will discuss the role of endothelin in the pathogenesis of infectious processes.
Collapse
|
20
|
Hsieh WT, Yeh WL, Cheng RY, Lin C, Tsai CF, Huang BR, Wu CYJ, Lin HY, Huang SS, Lu DY. Exogenous endothelin-1 induces cell migration and matrix metalloproteinase expression in U251 human glioblastoma multiforme. J Neurooncol 2014; 118:257-269. [PMID: 24756349 DOI: 10.1007/s11060-014-1442-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal type of primary brain tumor characterized by its rapid infiltration to surrounding tissues during the early stages. The fast spreading of GBM obscures the initiation of the tumor mass making the treatment outcome undesirable. Endothelin-1 is known as a secretory protein presented in various types of brain cells, which has been indicated as a factor for cancer pathology. The aim of the present study was to investigate the molecular mechanism of cell migration in GBM. We found that various malignant glioma cells expressed higher amounts of endothelin-1, ETA, and ETB receptors than nonmalignant human astrocytes. The application of endothelin-1 enhanced the migratory activity in human U251 glioma cells corresponding to increased expression of matrix metalloproteinase (MMP)-9 and MMP-13. The endothelin-1-induced cell migration was attenuated by MMP-9 and MMP-13 inhibitors and inhibitors of mitogen-activated protein (MAP) kinase and PI3 kinase/Akt. Furthermore, the elevated levels of phosphate c-Jun accumulation in the nucleus and activator protein-1 (AP-1)-DNA binding activity were also found in endothelin-1 treated glioma cells. In migration-prone sublines, cells with greater migration ability showed higher endothelin-1, ETB receptor, and MMP expressions. These results indicate that endothelin-1 activates MAP kinase and AP-1 signaling, resulting in enhanced MMP-9 and MMP-13 expressions and cell migration in GBM.
Collapse
Affiliation(s)
- Wen-Tsong Hsieh
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Lan Yeh
- Department of Cell and Tissue Engineering and Department of Medical Research, Changhua Christian Hospital, Changhua, Taiwan
| | - Ruo-Yuo Cheng
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chingju Lin
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Cheng-Fang Tsai
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Bor-Ren Huang
- Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Caren Yu-Ju Wu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Hsiao-Yun Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Shiang-Suo Huang
- Department of Pharmacology and Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Dah-Yuu Lu
- Graduate Institute of Neural and Cognitive Sciences, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan.
| |
Collapse
|
21
|
Zhang J, Yang W, Hu B, Wu W, Fallon MB. Endothelin-1 activation of the endothelin B receptor modulates pulmonary endothelial CX3CL1 and contributes to pulmonary angiogenesis in experimental hepatopulmonary syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1706-14. [PMID: 24731444 DOI: 10.1016/j.ajpath.2014.02.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/29/2014] [Accepted: 02/11/2014] [Indexed: 02/06/2023]
Abstract
Hepatic production and release of endothelin-1 (ET-1) binding to endothelin B (ETB) receptors, overexpressed in the lung microvasculature, is associated with accumulation of pro-angiogenic monocytes and vascular remodeling in experimental hepatopulmonary syndrome (HPS) after common bile duct ligation (CBDL). We have recently found that lung vascular monocyte adhesion and angiogenesis in HPS involve interaction of endothelial C-X3-C motif ligand 1 (CX3CL1) with monocyte CX3C chemokine receptor 1 (CX3CR1), although whether ET-1/ETB receptor activation influences these events is unknown. Our aim was to define if ET-1/ETB receptor activation modulates CX3CL1/CX3CR1 signaling and lung angiogenesis in experimental HPS. A selective ETB receptor antagonist, BQ788, was given for 2 weeks to 1-week CBDL rats. ET-1 (±BQ788) was given to cultured rat pulmonary microvascular endothelial cells overexpressing ETB receptors. BQ788 treatment significantly decreased lung angiogenesis, monocyte accumulation, and CX3CL1 levels after CBDL. ET-1 treatment significantly induced CX3CL1 production in lung microvascular endothelial cells, which was blocked by inhibitors of Ca(2+) and mitogen-activated protein kinase (MEK)/ERK pathways. ET-1-induced ERK activation was Ca(2+) independent. ET-1 administration also increased endothelial tube formation in vitro, which was inhibited by BQ788 or by blocking Ca(2+) and MEK/ERK activation. CX3CR1 neutralizing antibody partially inhibited ET-1 effects on tube formation. These findings identify a novel mechanistic interaction between the ET-1/ETB receptor axis and CX3CL1/CX3CR1 in mediating pulmonary angiogenesis and vascular monocyte accumulation in experimental HPS.
Collapse
Affiliation(s)
- Junlan Zhang
- Division of Gastroenterology, Hepatology, and Nutrition, the Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Wenli Yang
- Division of Gastroenterology, Hepatology, and Nutrition, the Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Bingqian Hu
- Division of Gastroenterology, Hepatology, and Nutrition, the Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Wei Wu
- Division of Gastroenterology, Hepatology, and Nutrition, the Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Michael B Fallon
- Division of Gastroenterology, Hepatology, and Nutrition, the Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas.
| |
Collapse
|
22
|
Lin CC, Hsieh HL, Chi PL, Yang CC, Hsiao LD, Yang CM. Upregulation of COX-2/PGE2 by ET-1 mediated through Ca2+-dependent signals in mouse brain microvascular endothelial cells. Mol Neurobiol 2013; 49:1256-69. [PMID: 24287977 DOI: 10.1007/s12035-013-8597-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/15/2013] [Indexed: 12/14/2022]
Abstract
Endothelin-1 (ET-1), a proinflammatory mediator, is elevated in the regions of several brain inflammatory disorders, implying that ET-1 may contribute to inflammatory responses. The deleterious effects of ET-1 on brain endothelial cells may aggravate brain inflammation mediated through the upregulation of cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) system. However, the signaling mechanisms underlying ET-1-induced COX-2 expression in mouse brain microvascular endothelial cells (bEnd.3 cells) remain unclear. Herein, we investigated the effects of Ca2+-dependent protein kinases on ET-1-induced COX-2 expression and PGE2 release in bEnd.3 cells. The data obtained with Western blotting, reverse transcription PCR, and intracellular Ca2+ analyses showed that ET-1-induced COX-2 expression was mediated through phosphatidylinositol-phospholipase C (PI-PLC) and phosphatidylcholine-phospholipase C (PC-PLC)/Ca2+-dependent activation of protein kinase C-alpha (PKC-α) and calmodulin kinase II (CaMKII) cascades. Next, we demonstrated that ET-1 stimulated intracellular Ca2+ increase, phoshorylation of PKC-α, CaMKII, and mitogen-activated protein kinases (MAPKs) (ERK1/2, p38 MAPK, and JNK1/2) and then activated the activating transcription factor 2 (ATF2)/activator protein 1 (AP-1) via Gq/i protein-coupled ETB receptors. Moreover, the data of chromatin immunoprecipitation and promoter reporter assay demonstrated that the activated ATF2/AP-1 and p300 bound to its corresponding binding sites within COX-2 promoter, thereby turning on COX-2 gene transcription. Finally, upregulation of COX-2 by ET-1 promoted PGE2 biosynthesis and release in these cells. Taken together, these results demonstrate that in bEnd.3 cells, Ca2+-dependent PKC-α and CaMKII linking to MAPKs, ATF2/AP-1, and p300 cascade is essential for ET-1-induced COX-2 upregulation. Understanding the mechanisms of COX-2/PGE2 system upregulated by ET-1 on brain microvascular endothelial cells may provide rational therapeutic interventions for brain injury and inflammatory diseases.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo, and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | | | | | | | | | | |
Collapse
|
23
|
Lin CC, Hsieh HL, Shih RH, Chi PL, Cheng SE, Yang CM. Up-regulation of COX-2/PGE2 by endothelin-1 via MAPK-dependent NF-κB pathway in mouse brain microvascular endothelial cells. Cell Commun Signal 2013; 11:8. [PMID: 23343326 PMCID: PMC3560266 DOI: 10.1186/1478-811x-11-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 01/18/2013] [Indexed: 12/17/2022] Open
Abstract
Background Endothelin-1 (ET-1) is a proinflammatory mediator and elevated in the regions of several brain injury and inflammatory diseases. The deleterious effects of ET-1 on endothelial cells may aggravate brain inflammation mediated through the regulation of cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) system in various cell types. However, the signaling mechanisms underlying ET-1-induced COX-2 expression in brain microvascular endothelial cells remain unclear. Herein we investigated the effects of ET-1 in COX-2 regulation in mouse brain microvascular endothelial (bEnd.3) cells. Results The data obtained with Western blotting, RT-PCR, and immunofluorescent staining analyses showed that ET-1-induced COX-2 expression was mediated through an ETB-dependent transcriptional activation. Engagement of Gi- and Gq-protein-coupled ETB receptors by ET-1 led to phosphorylation of ERK1/2, p38 MAPK, and JNK1/2 and then activated transcription factor NF-κB. Moreover, the data of chromatin immunoprecipitation (ChIP) and promoter reporter assay demonstrated that the activated NF-κB was translocated into nucleus and bound to its corresponding binding sites in COX-2 promoter, thereby turning on COX-2 gene transcription. Finally, up-regulation of COX-2 by ET-1 promoted PGE2 release in these cells. Conclusions These results suggested that in mouse bEnd.3 cells, activation of NF-κB by ETB-dependent MAPK cascades is essential for ET-1-induced up-regulation of COX-2/PGE2 system. Understanding the mechanisms of COX-2 expression and PGE2 release regulated by ET-1/ETB system on brain microvascular endothelial cells may provide rationally therapeutic interventions for brain injury or inflammatory diseases.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Pharmacology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road Kwei-San, Tao-Yuan, Taiwan.
| | | | | | | | | | | |
Collapse
|
24
|
Harati R, Villégier AS, Banks WA, Mabondzo A. Susceptibility of juvenile and adult blood-brain barrier to endothelin-1: regulation of P-glycoprotein and breast cancer resistance protein expression and transport activity. J Neuroinflammation 2012; 9:273. [PMID: 23253775 PMCID: PMC3547749 DOI: 10.1186/1742-2094-9-273] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/07/2012] [Indexed: 12/12/2022] Open
Abstract
Background P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) play a critical role in keeping neurotoxic substances from entering the brain. We and others have previously reported an impact of inflammation on the regulation of adult blood–brain barrier (BBB) efflux transporters. However, studies in children have not been done. From the pediatric clinical perspective, it is important to understand how the central nervous system (CNS) and BBB drug efflux transporters differ in childhood from those of adults under normal and inflammatory conditions. Therefore, we examined and compared the regulation of P-gp and BCRP expression and transport activity in young and adult BBB and investigated the molecular mechanisms underlying inflammatory responses. Methods Rats at postnatal day (P) P21 and P84, corresponding to the juvenile and adult stages of human brain maturation, respectively, were treated with endothelin-1 (ET-1) given by the intracerebroventricular (icv) route. Twenty-four hours later, we measured P-gp and BCRP protein expression in isolated brain capillary by immunoblotting as well as by transport activity in vivo by measuring the unbound drug partitioning coefficient of the brain (Kp,uu,brain) of known efflux transporter substrates administered intravenously. Glial activation was measured by immunohistochemistry. The release of cytokines/chemokines (interleukins-1α, 1-β (IL-1β), -6 (IL-6), -10 (IL-10), monocyte chemoattractant protein (MCP-1/CCL2), fractalkine and tissue inhibitor of metalloproteinases-1 (TIMP-1)) were simultaneously measured in brain and serum samples using the Agilent Technology cytokine microarray. Results We found that juvenile and adult BBBs exhibited similar P-gp and BCRP transport activities in the normal physiological conditions. However, long-term exposure of the juvenile brain to low-dose of ET-1 did not change BBB P-gp transport activity but tended to decrease BCRP transport activity in the juvenile brain, while a significant increase of the activity of both transporters was evidenced at the BBB in the adult brain. Moreover, juvenile and adult brain showed differences in their expression profiles of cytokines and chemokines mediated by ET-1. Conclusions BBB transporter activity during neuroinflammation differs between the juvenile and adult brains. These findings emphasize the importance of considering differential P-gp and BCRP transport regulation mechanisms between adult and juvenile BBB in the context of neuroinflammation.
Collapse
Affiliation(s)
- Rania Harati
- CEA, Direction des Sciences du Vivant, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
25
|
Zhu N, Li H, Han M, Guo L, Chen L, Yun Y, Guo Z, Li G, Sang N. Environmental nitrogen dioxide (NO2) exposure influences development and progression of ischemic stroke. Toxicol Lett 2012; 214:120-30. [DOI: 10.1016/j.toxlet.2012.08.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/21/2012] [Accepted: 08/22/2012] [Indexed: 10/27/2022]
|
26
|
Lee NY, Park HYL, Park CK, Ahn MD. Analysis of systemic endothelin-1, matrix metalloproteinase-9, macrophage chemoattractant protein-1, and high-sensitivity C-reactive protein in normal-tension glaucoma. Curr Eye Res 2012; 37:1121-6. [PMID: 22966842 DOI: 10.3109/02713683.2012.725798] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate the roles of vascular dysregulation and inflammation in normal-tension glaucoma (NTG), we determined the plasma levels of endothelin-1 (ET-1), matrix metalloproteinase-9 (MMP-9), macrophage chemoattractant protein-1 (MCP-1), and high-sensitivity C-reactive protein (hs-CRP). MATERIALS AND METHODS Forty-five patients with NTG and age-matched 35 healthy controls were enrolled in this study. Blood samples from all subjects were assayed for ET-1, MMP-9, MCP-1, and hs-CRP concentrations and other systemic factors. RESULTS There were no significant differences in hemoglobin, hematocrit, RBC count, WBC count, platelet count, fasting glucose, HbA1c, total cholesterol, triglyceride, LDL, and HDL between the NTG and control groups. The systemic levels of ET-1 and MCP-1 were significantly higher in the NTG group than in the control group (p = 0.05 and 0.02, respectively). The MMP-9 and hs-CRP levels were not significantly different between the NTG and control groups. CONCLUSIONS After excluding patients with cardiovascular and other systemic diseases, plasma ET-1 and MCP-1 levels were elevated in patients with NTG. The MMP-9 and hs-CRP levels were not significantly different in NTG. Increased ET-1 and MCP-1 levels suggest that ischemia/inflammation may play a role in the pathogenesis of NTG.
Collapse
Affiliation(s)
- Na Young Lee
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | |
Collapse
|
27
|
Hsieh HL, Lin CC, Chan HJ, Yang CM, Yang CM. c-Src-dependent EGF receptor transactivation contributes to ET-1-induced COX-2 expression in brain microvascular endothelial cells. J Neuroinflammation 2012; 9:152. [PMID: 22747786 PMCID: PMC3410791 DOI: 10.1186/1742-2094-9-152] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 07/02/2012] [Indexed: 02/02/2023] Open
Abstract
Background Endothelin-1 (ET-1) is elevated and participates in the regulation of several brain inflammatory disorders. The deleterious effects of ET-1 on endothelial cells may aggravate brain inflammation mediated through the upregulation of cyclooxygenase-2 (COX-2) gene expression. However, the signaling mechanisms underlying ET-1-induced COX-2 expression in brain microvascular endothelial cells remain unclear. Objective The goal of this study was to examine whether ET-1-induced COX-2 expression and prostaglandin E2 (PGE2) release were mediated through a c-Src-dependent transactivation of epidermal growth factor receptor (EGFR) pathway in brain microvascular endothelial cells (bEnd.3 cells). Methods The expression of COX-2 induced by ET-1 was evaluated by Western blotting and RT-PCR analysis. The COX-2 regulatory signaling pathways were investigated by pretreatment with pharmacological inhibitors, short hairpin RNA (shRNA) or small interfering RNA (siRNA) transfection, chromatin immunoprecipitation (ChIP), and promoter activity reporter assays. Finally, we determined the PGE2 level as a marker of functional activity of COX-2 expression. Results First, the data showed that ET-1-induced COX-2 expression was mediated through a c-Src-dependent transactivation of EGFR/PI3K/Akt cascade. Next, we demonstrated that ET-1 stimulated activation (phosphorylation) of c-Src/EGFR/Akt/MAPKs (ERK1/2, p38 MAPK, and JNK1/2) and then activated the c-Jun/activator protein 1 (AP-1) via Gq/i protein-coupled ETB receptors. The activated c-Jun/AP-1 bound to its corresponding binding sites within COX-2 promoter, thereby turning on COX-2 gene transcription. Ultimately, upregulation of COX-2 by ET-1 promoted PGE2 biosynthesis and release in bEnd.3 cells. Conclusions These results demonstrate that in bEnd.3 cells, c-Src-dependent transactivation of EGFR/PI3K/Akt and MAPKs linking to c-Jun/AP-1 cascade is essential for ET-1-induced COX-2 upregulation. Understanding the mechanisms of COX-2 expression and PGE2 release regulated by ET-1/ETB system on brain microvascular endothelial cells may provide rational therapeutic interventions for brain injury and inflammatory diseases.
Collapse
Affiliation(s)
- Hsi-Lung Hsieh
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| | | | | | | | | |
Collapse
|
28
|
Wang HH, Hsieh HL, Yang CM. Nitric oxide production by endothelin-1 enhances astrocytic migration via the tyrosine nitration of matrix metalloproteinase-9. J Cell Physiol 2011; 226:2244-56. [PMID: 21660948 DOI: 10.1002/jcp.22560] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The deleterious effects of endothelin-1 (ET-1) in the central nervous system (CNS) include disturbance of water homeostasis and blood-brain barrier (BBB) integrity. In the CNS, ischemic injury elicits ET-1 release from astrocytes, behaving through G-protein coupled ET receptors. These considerations raise the question of whether ET-1 influences cellular functions of astrocytes, the major cell type that provides structural and functional support for neurons. Uncontrolled nitric oxide (NO) production has been implicated in sterile brain insults, neuroinflammation, and neurodegenerative diseases, which involve astrocyte activation and neuronal death. However, the detailed mechanisms of ET-1 action related to NO release on rat brain astrocytes (RBA-1) remain unknown. In this study, we demonstrate that exposure of astrocytes to ET-1 results in the inducible nitric oxide synthase (iNOS) up-regulation, NO production, and matrix metalloproteinase-9 (MMP-9) activation in astrocytes. The data obtained with Western blot, reverse transcription-PCR (RT-PCR), and immunofluorescent staining analyses showed that ET-1-induced iNOS expression and NO production were mediated through an ET(B)-dependent transcriptional activation. Engagement of G(i/o)--and G(q) -coupled ET(B) receptors by ET-1 led to activation of c-Src-dependent phosphoinositide 3-kinase (PI3K)/Akt and p42/p44 mitogen-activated protein kinase (MAPK) and then activated transcription factor nuclear factor-κB (NF-κB). The activated NF-κB was translocated into nucleus and thereby promoted iNOS gene transcription. Ultimately, NO production stimulated by ET-1 enhanced the migration of astrocytes through the tyrosine nitration of MMP-9. Taken together, these results suggested that in astrocytes, activation of NF-κB by ET(B)-dependent c-Src, PI3K/Akt, and p42/p44 MAPK signalings is necessary for ET-1-induced iNOS gene up-regulation.
Collapse
Affiliation(s)
- Hui-Hsin Wang
- Department of Pharmacology, Chang Gung University, Tao-Yuan, Taiwan
| | | | | |
Collapse
|
29
|
Reijerkerk A, Lakeman KAM, Drexhage JAR, van Het Hof B, van Wijck Y, van der Pol SMA, Kooij G, Geerts D, de Vries HE. Brain endothelial barrier passage by monocytes is controlled by the endothelin system. J Neurochem 2011; 121:730-7. [PMID: 21777246 DOI: 10.1111/j.1471-4159.2011.07393.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Homeostasis of the brain is dependent on the blood-brain barrier (BBB). This barrier tightly regulates the exchange of essential nutrients and limits the free flow of immune cells into the CNS. Perturbations of BBB function and the loss of its immune quiescence are hallmarks of a variety of brain diseases, including multiple sclerosis (MS), vascular dementia, and stroke. In particular, diapedesis of monocytes and subsequent trafficking of monocyte-derived macrophages into the brain are key mediators of demyelination and axonal damage in MS. Endothelin-1 (ET-1) is considered as a potent pro-inflammatory peptide and has been implicated in the development of cardiovascular diseases. Here, we studied the role of different components of the endothelin system, i.e., ET-1, its type B receptor (ET(B)) and endothelin-converting enzyme-1 (ECE-1) in monocyte diapedesis of a human brain endothelial cell barrier. Our pharmacological inhibitory and specific gene knockdown studies point to a regulatory function of these proteins in transendothelial passage of monocytes. Results from this study suggest that the endothelin system is a putative target within the brain for anti-inflammatory treatment in neurological diseases.
Collapse
Affiliation(s)
- Arie Reijerkerk
- Blood-brain barrier Research Group, Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Saleh MA, Boesen EI, Pollock JS, Savin VJ, Pollock DM. Endothelin receptor A-specific stimulation of glomerular inflammation and injury in a streptozotocin-induced rat model of diabetes. Diabetologia 2011; 54:979-88. [PMID: 21191784 PMCID: PMC3804244 DOI: 10.1007/s00125-010-2021-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 11/29/2010] [Indexed: 10/18/2022]
Abstract
AIMS/HYPOTHESIS Activation of endothelin receptor-A (ET(A)) increases glomerular permeability to albumin (P(alb)) and elevates pro-inflammatory markers in hyperglycaemic rats. METHODS Male Sprague-Dawley rats were given streptozotocin (n = 32) or saline (sham; n = 32). Half of the animals in each group received the ET(A)-selective antagonist, ABT-627 (atrasentan; orally), beginning immediately after hyperglycaemia was confirmed. Glomeruli were isolated by sieving techniques and P(alb) determined from the change in glomerular volume induced by oncotic gradients of albumin. Glomerular nephrin levels were assessed by immunofluorescence, whereas urinary nephrin was measured by immunoassay. RESULTS At 3 and 6 weeks after streptozotocin injection, proteinuria was significantly increased compared with sham controls and significantly reduced by ABT-627 treatment. P(alb) was also increased at 3 and 6 weeks post-streptozotocin. ABT-627 had no effect on P(alb) or protein excretion in sham control rats. In glomeruli isolated from hyperglycaemic rats, incubation with BQ-123, a selective ET(A) antagonist, reduced P(alb), whereas BQ-788, a selective endothelin receptor-B antagonist had no effect (n = 6 rats per group, 5-8 glomeruli per rat). Glomerular and plasma content of soluble intercellular adhesion molecule-1 and monocyte chemoattractant protein-1 were significantly increased 6 weeks after streptozotocin (ELISA). ABT-627 attenuated these increases. After 6 weeks of hyperglycaemia, glomerular nephrin content was decreased with a concurrent increase in urinary nephrin excretion. ABT-627 prevented glomerular nephrin loss in hyperglycaemic rats (n = 5-8 rats per group; eight groups). CONCLUSIONS/INTERPRETATION These observations support the hypothesis that endothelin-1, via the ET(A) receptor, directly increases P(alb), possibly via nephrin loss, as well as early inflammation in the hyperglycaemic rat.
Collapse
Affiliation(s)
- M A Saleh
- Vascular Biology Center, Medical College of Georgia, 1459 Laney Walker Blvd, Augusta, GA 30907-2500, USA
| | | | | | | | | |
Collapse
|
31
|
Melzi R, Mercalli A, Sordi V, Cantarelli E, Nano R, Maffi P, Sitia G, Guidotti LG, Secchi A, Bonifacio E, Piemonti L. Role of CCL2/MCP-1 in islet transplantation. Cell Transplant 2010; 19:1031-46. [PMID: 20546673 DOI: 10.3727/096368910x514639] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
High levels of donor-derived CCL2 have been associated with poor islet allograft outcome in patients with type 1 diabetes. The aim of our work was to determine whether CCL2 secreted by the islet has independent proinflammatory effects that influence engraftment and graft acceptance. Both in mice and humans CCL2 is significantly positively associated with other cytokines/chemokines, in particular with the highly released "proinflammatory" IL-6 and CXCL8 or CXCL1. Transplantation of CCL2-/- islets into syngenic recipients did not improve the transplant function. Transplantation of islets into CCL2-/- syngenic recipients led to a significant improvement of transplant function and partial abrogation of local hepatic inflammation. When evaluated in human islets CCL2 release was strongly related to the immediate local inflammatory response in the liver and impacted short-term human islet function dependently by the induced inflammatory response and independently by the immunosuppressive therapy. The data showed that islet CCL2 release is a sign of "inflamed" islets without having a direct role in graft failure. On the other hand, a causal effect for developing detrimental proinflammatory conditions after transplant was proved for recipient CCL2. Strategies to selectively decrease recipient, but not donor, CCL2 release may increase the success of islet transplantation.
Collapse
Affiliation(s)
- Raffaella Melzi
- Beta Cell Biology Unit, Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wang HH, Hsieh HL, Wu CY, Yang CM. Endothelin-1 enhances cell migration via matrix metalloproteinase-9 up-regulation in brain astrocytes. J Neurochem 2010; 113:1133-49. [PMID: 20345768 DOI: 10.1111/j.1471-4159.2010.06680.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The bioactivity of endothelin-1 (ET-1) has been suggested in the development of CNS diseases, including disturbance of water homeostasis and blood-brain barrier integrity. Recent studies suggest that hypoxic/ischemic injury of the brain induces release of ET-1, behaving through a G-protein coupled ET receptor family. The deleterious effects of ET-1 on astrocytes may aggravate brain inflammation. Increased plasma levels of matrix metalloproteinases (MMPs), in particular MMP-9, have been observed in patients with neuroinflammatory disorders. However, the detailed mechanisms underlying ET-1-induced MMP-9 expression remain unknown. In this study, the data obtained with zymographic, western blotting, real-time PCR, and immunofluorescent staining analyses showed that ET-1-induced MMP-9 expression was mediated through an ET(B)-dependent transcriptional activation. Engagement of G(i/o)- and G(q)-coupled ET(B) receptor by ET-1 led to activation of p42/p44 MAPK and then activated transcription factors including Ets-like kinase, nuclear factor-kappa B, and activator protein-1 (c-Jun/c-Fos). These activated transcription factors translocated into nucleus and bound to their corresponding binding sites in MMP-9 promoter, thereby turning on MMP-9 gene transcription. Eventually, up-regulation of MMP-9 by ET-1 enhanced the migration of astrocytes. Taken together, these results suggested that in astrocytes, activation of Ets-like kinase, nuclear factor-kappa B, and activator protein-1 by ET(B)-dependent p42/p44 MAPK signaling is necessary for ET-1-induced MMP-9 gene up-regulation. Understanding the mechanisms of MMP-9 expression and functional changes regulated by ET-1/ET(B) system on astrocytes may provide rational therapeutic interventions for brain injury associated with increased MMP-9 expression.
Collapse
Affiliation(s)
- Hui-Hsin Wang
- Department of Pharmacology, Chang Gung University, Tao-Yuan, Taiwan
| | | | | | | |
Collapse
|
33
|
Sang N, Yun Y, Li H, Hou L, Han M, Li G. SO2 Inhalation Contributes to the Development and Progression of Ischemic Stroke in the Brain. Toxicol Sci 2010; 114:226-36. [DOI: 10.1093/toxsci/kfq010] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Regulation of CCL2 and CCL3 expression in human brain endothelial cells by cytokines and lipopolysaccharide. J Neuroinflammation 2010; 7:1. [PMID: 20047691 PMCID: PMC2819252 DOI: 10.1186/1742-2094-7-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 01/04/2010] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Chemokines are emerging as important mediators of CNS inflammation capable of activating leukocyte integrins and directing the migration of leukocyte subsets to sites of antigenic challenge. In this study we investigated the expression, release and binding of CCL2 (MCP-1) and CCL3 (MIP-1alpha) in an in vitro model of the human blood-brain barrier. METHODS The kinetics of expression and cytokine upregulation and release of the beta-chemokines CCL2 and CCL3 were studied by immunocytochemistry and enzyme-linked immunosorbent assay in primary cultures of human brain microvessel endothelial cells (HBMEC). In addition, the differential binding of these chemokines to the basal and apical endothelial cell surfaces was assessed by immunoelectron microscopy. RESULTS Untreated HBMEC synthesize and release low levels of CCL2. CCL3 is minimally expressed, but not released by resting HBMEC. Treatment with TNF-alpha, IL-1beta, LPS and a combination of TNF-alpha and IFN-gamma, but not IFN-gamma alone, significantly upregulated the expression and release of both chemokines in a time-dependent manner. The released CCL2 and CCL3 bound to the apical and basal endothelial surfaces, respectively. This distribution was reversed in cytokine-activated HBMEC resulting in a predominantly basal localization of CCL2 and apical distribution of CCL3. CONCLUSIONS Since cerebral endothelial cells are the first resident CNS cells to contact circulating leukocytes, expression, release and presentation of CCL2 and CCL3 on cerebral endothelium suggests an important role for these chemokines in regulating the trafficking of inflammatory cells across the BBB in CNS inflammation.
Collapse
|
35
|
Peterlana D, Puccetti A, Caramaschi P, Biasi D, Beri R, Simeoni S, Corrocher R, Lunardi C. Endothelin‐1 serum levels correlate with MCP‐1 but not with homocysteine plasma concentration in patients with systemic sclerosis. Scand J Rheumatol 2009; 35:133-7. [PMID: 16641048 DOI: 10.1080/03009740500385584] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES To determine whether homocysteine (Hcy) plasma levels are correlated with molecules indicative of endothelial cell and fibroblast activation, including endothelin-1 (ET-1) and monocyte chemoattractant protein-1 and -3 (MCP-1, MCP-3), in patients with systemic sclerosis (SSc). METHODS Eighty-two patients were enrolled in this study; the control group included 75 age- and sex-matched subjects. Plasma Hcy was determined by high-performance liquid chromatography; folic acid, and vitamin B(12) plasma levels were determined by a chemiluminescence method. ET-1, MCP-1, and MCP-3 were determined by enzyme-linked immunosorbent assay (ELISA). Analysis of the 677C-->T mutation in the methylenetetrahydrofolate reductase (MTHFR) gene was performed by polymerase chain reaction (PCR) and digestion with the enzyme HinfI. RESULTS Hcy levels were lower in patients whereas ET-1 was significantly higher in patients and correlated with MCP-1. Stratification of the patients on the basis of Hcy levels was not associated with any statistical difference in the concentration of ET-1, MCP-1, and MCP-3. Patients with diffuse disease presented the highest levels of ET-1 and MCP-1. The distribution of the MTHFR genotypes was not different in patients and controls. CONCLUSIONS In SSc, Hcy plasma concentration does not influence ET-1, MCP-1, or MCP-3 levels. On the contrary, ET-1, a marker of vascular activation, correlates with MCP-1, a chemokine involved in the fibrotic process of SSc.
Collapse
Affiliation(s)
- D Peterlana
- Department of Clinical and Experimental Medicine, Section of Internal Medicine, University of Verona, Verona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Petrov T. Amelioration of hypoperfusion after traumatic brain injury by in vivo endothelin-1 knockout. Can J Physiol Pharmacol 2009; 87:379-86. [PMID: 19448736 DOI: 10.1139/y09-022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelin 1 (ET-1) is one of the most powerful vasoconstrictors in the brain. Its expression is upregulated after traumatic brain injury (TBI) and is a major factor in the ensuing hypoperfusion. Attenuation of ET-1 effects has been mainly achieved by blockade of its receptors. The result of a direct blockade of ET-1 mRNA synthesis is not known. We used the Marmarou's model to inflict injury to male Sprague-Dawley rats injected with antisense ET-1 oligodeoxynucleotides (ODNs) before injury. Laser Doppler flowmetry in noninjured rats (2 groups, i.e., untreated and animals that received cODNs) revealed a constant cerebral blood flow of approximately 14 mL.min-1.100 g-1, whereas the values from injured animals pretreated with control ODNs (cODNs) or from animals subjected to TBI alone were approximately 8.0 mL.min-1.100 g-1 during the 18-48 h time period post-TBI. After antisense ET-1 ODNs pretreatment, however, cerebral blood flow in injured animals was approximately 17 mL.min-1.100 g-1 during the 6-48 h time period. Antisense ET-1 ODNs-treated animals also had 19%-29% larger microvessel cross-sectional area and approximately one-third less ET-1 immunoreactivity in the 50-75% range after injury than did cODNs-treated animals after TBI. The results indicate that this direct in vivo approach is an effective therapeutic intervention for the restoration of cerebral blood flow after TBI.
Collapse
Affiliation(s)
- Theodor Petrov
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA.
| |
Collapse
|
37
|
Sutcliffe AM, Clarke DL, Bradbury DA, Corbett LM, Patel JA, Knox AJ. Transcriptional regulation of monocyte chemotactic protein-1 release by endothelin-1 in human airway smooth muscle cells involves NF-kappaB and AP-1. Br J Pharmacol 2009; 157:436-50. [PMID: 19371341 DOI: 10.1111/j.1476-5381.2009.00143.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Endothelin-1 (ET-1) is implicated in airway inflammation in asthma, but the mechanisms of its effects are poorly understood. We studied the effect of ET-1 on expression of the chemokine, monocyte chemotactic protein-1 (MCP-1), in primary cultures of human airway smooth muscle cells. EXPERIMENTAL APPROACH MCP-1 release was measured by elisa. Pharmacological antagonists/inhibitors, reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting were used to study ET receptors and kinase cascades. Transcriptional regulation was studied by real-time RT-PCR, transient transfection studies and chromatin immunoprecipitation assay. Major findings were confirmed in cells from three donors and mechanistic studies in cells from one donor. KEY RESULTS ET-1 increased MCP-1 release through an ET(A) and ET(B) receptor-dependent mechanism. ET-1 increased MCP-1 mRNA levels but not mRNA stability suggesting it was acting transcriptionally. ET-1 increased the activity of an MCP-1 promoter-reporter construct. Serial deletions of the MCP-1 promoter mapped ET-1 effects to a region between -213 and -128 base pairs upstream of the translation start codon, containing consensus sequences for activator protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB). ET-1 promoted binding of AP-1 c-Jun subunit and NF-kappaB p65 subunit to the MCP-1 promoter. Blocking the inhibitor of kappaB kinase-2 with 2-[(aminocarbonyl)amino]-5-[4-fluorophenyl]-3-thiophenecarboxamide (TPCA-1) decreased ET-1-stimulated MCP-1 production. p38 and p44/p42 mitogen-activated protein kinases were involved in upstream signalling. CONCLUSIONS AND IMPLICATIONS ET-1 regulated MCP-1 transcriptionally, via NF-kappaB and AP-1. The upstream signalling involved ET(A), ET(B) receptors, p38 and p44/p42 mitogen-activated protein kinases. These may be targets for novel asthma therapies.
Collapse
Affiliation(s)
- Amy M Sutcliffe
- Nottingham Respiratory Biomedical Research Unit, University of Nottingham, City Hospital, Nottingham NG5 1PB, UK
| | | | | | | | | | | |
Collapse
|
38
|
Quinn K, Henriques M, Parker T, Slutsky AS, Zhang H. Human neutrophil peptides: a novel potential mediator of inflammatory cardiovascular diseases. Am J Physiol Heart Circ Physiol 2008; 295:H1817-24. [PMID: 18805897 DOI: 10.1152/ajpheart.00472.2008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The traditional view of atherosclerosis has recently been expanded from a predominantly lipid retentive disease to a coupling of inflammatory mechanisms and dyslipidemia. Studies have suggested a novel role for polymorphonuclear neutrophil (PMN)-dominant inflammation in the development of atherosclerosis. Human neutrophil peptides (HNPs), also known as alpha-defensins, are secreted and released from PMN granules upon activation and are conventionally involved in microbial killing. Current evidence suggests an important immunomodulative role for these peptides. HNP levels are markedly increased in inflammatory diseases including sepsis and acute coronary syndromes. They have been found within the intima of human atherosclerotic arteries, and their deposition in the skin correlates with the severity of coronary artery diseases. HNPs form complexes with LDL in solution and increase LDL binding to the endothelial surface. HNPs have also been shown to contribute to endothelial dysfunction, lipid metabolism disorder, and the inhibition of fibrinolysis. Given the emerging relationship between PMN-dominant inflammation and atherosclerosis, HNPs may serve as a link between them and as a biological marker and potential therapeutic target in cardiovascular diseases including coronary artery diseases and acute coronary syndromes.
Collapse
Affiliation(s)
- Kieran Quinn
- The Keenan Research Centre in the Li Ka Shing Knowledge Institute of Saint Michael's Hospital, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
39
|
Ogliari AC, Caldara R, Socci C, Sordi V, Cagni N, Moretti MP, Dell'acqua A, Mercalli A, Scavini M, Secchi A, Bonifacio E, Bosi E, Piemonti L. High levels of donor CCL2/MCP-1 predict graft-related complications and poor graft survival after kidney-pancreas transplantation. Am J Transplant 2008; 8:1303-11. [PMID: 18444915 DOI: 10.1111/j.1600-6143.2008.02240.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this study we analyzed the role of CCL2, a member of the chemokine family, in early graft damage. Using simultaneous kidney-pancreas transplantation (SPK) as a model, we showed that brain death significantly increases circulating CCL2 levels in humans. We found that in such situations, high donor CCL2 levels (measured before organ recovery and at the onset of cold preservation) correlate with increased postreperfusion release of CCL2 by both the graft and recipient throughout the week following transplantation (n = 28). In a retrospective study of 77 SPK recipients, we found a significant negative association between high donor levels of CCL2 and graft survival. Decreased survival in these patients is related to early posttransplant complications, including a higher incidence of pancreas thrombosis and delayed kidney function. Taken together our data indicate that high CCL2 levels in the donor serum predict both an increase in graft/recipient CCL2 production and poor graft survival. This suggests that the severity of the inflammatory response induced by brain death influences the posttransplant inflammatory response, independent of subsequent ischemia and reperfusion.
Collapse
Affiliation(s)
- A C Ogliari
- Lab of Experimental Surgery, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Solini A, Santini E, Madec S, Cuccato S, Ferrannini E. Effects of endothelin-1 on fibroblasts from type 2 diabetic patients: Possible role in wound healing and tissue repair. Growth Factors 2007; 25:392-9. [PMID: 18365870 DOI: 10.1080/08977190801892341] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Endothelin-1 (ET-1) promotes the contractile ability of fibroblasts, essential for wound closure and reconstitution of the dermis. Wound healing is impaired in type 2 diabetic patients (D). We compared the effect of ET-1 on proliferative transforming growth factor (TGFbeta(1)) expression, fibronectin and laminin release), differentiative [alpha-smooth muscle actin (alpha-SMA) expression] and inflammatory [monocyte chemo-attractant protein (MCP-1) and interleukin-6 (IL-6) expression] responses in skin fibroblasts of healthy subjects (C) and D, testing the relative role of ET(A) and ET(B) receptors in mediating these responses. ET-1 did not influence TGFbeta(1), fibronectin or laminin production. alpha-SMA was more abundant and more stimulated in D, as well as MCP-1 and IL-6 expression and release. These effects were prevented by BMS-182874, selective antagonist of ET(A), more abundant than ET(B) in both cell strains and whose expression rose more in D than C upon stimulation with ET-1. This peculiar pattern of responses to ET-1, presumably acquired during the chronic in vivo exposure to hyperglycemia along the natural history of the disease, may partially explain the increased susceptibility of D to chronic ulcerations.
Collapse
Affiliation(s)
- Anna Solini
- Department of Internal Medicine, University of Pisa, Pisa, Italy.
| | | | | | | | | |
Collapse
|
41
|
Hauck EF, Hoffmann JF, Heimann A, Kempski O. EndothelinA receptor antagonist BSF-208075 causes immune modulation and neuroprotection after stroke in gerbils. Brain Res 2007; 1157:138-45. [PMID: 17506996 DOI: 10.1016/j.brainres.2007.04.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 03/12/2007] [Accepted: 04/19/2007] [Indexed: 11/21/2022]
Abstract
UNLABELLED Leukocytes contribute to the ischemia-reperfusion injury. Recent studies suggested endothelins could be important mediators for leukocyte activation in stroke. We tested if the endothelinA receptor antagonist BSF-208075 (ambrisentan) could reduce an ischemic lesion by modulation of leukocyte-endothelium interactions. Twenty-four gerbils underwent either a sham operation (n=6) or 15 min of bilateral carotid artery occlusion resulting in global cerebral ischemia. Ischemic animals received normal saline (n=6), 5 mg/kg BSF-208075 (n=6) or 30 mg/kg (n=6) administered intravenously at 10 min of reperfusion. Leukocytes rolling or adhering to endothelium were counted by intravital microscopy in parietal subsurface venules through a closed cranial window. BSF-208075 dose-dependently reduced postischemic leukocytes rolling (7.3+/-2.3 vs. 3.3+/-1.4 vs. 0.7+/-0.7 [n/100 microm/min]; p<0.05) and adhering (5.3+/-1.4 vs. 2.7+/-1.6 vs. 1.3+/-0.5 [n/100 microm/min]; p<0.05). Cerebral blood flow was not significantly changed by BSF-208075. Cortical neurons [n/mm2] in an area corresponding to the in vivo microscopy were dose-dependently preserved 7 days after ischemia (2456+/-687 vs. 3254+/-245 vs. 3780+/-168; p<0.05). CONCLUSION Endothelins mediate leukocyte activation in ischemic stroke. The endothelinA receptor antagonist BSF-208075 administered during reperfusion reduces the postischemic leukocyte activation and causes neuroprotection.
Collapse
Affiliation(s)
- Erik F Hauck
- Division of Neurosurgery, University of Texas Medical Branch, Galveston, USA
| | | | | | | |
Collapse
|
42
|
Verma S, Nakaoke R, Dohgu S, Banks WA. Release of cytokines by brain endothelial cells: A polarized response to lipopolysaccharide. Brain Behav Immun 2006; 20:449-55. [PMID: 16309883 DOI: 10.1016/j.bbi.2005.10.005] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 09/30/2005] [Accepted: 10/13/2005] [Indexed: 12/31/2022] Open
Abstract
Brain endothelial cells (BECs) comprise the blood-brain barrier (BBB) and are an active part of the neuroimmune system, responding to and transporting cytokines. BECs also have the ability to secrete neuroimmune substances, including cytokines. A unique feature of the BEC is its polarization, with its luminal (blood-facing) and abluminal (brain-facing) cell membranes differing in their lipid, receptor, and transporter compositions. This polarization could have functional consequences for neuroimmune communication. We postulated (i) that cytokine secretion from the luminal or abluminal membranes could differ under baseline or stimulated conditions and (ii) that an immune challenge from one side of the BBB could result in cytokine release from the other. We used an in vitro BBB model of mouse BECs cultured as monolayers to investigate cytokine secretion into luminal and abluminal chambers. Our major findings in these studies were: (i) the first demonstration that interleukin (IL)-1alpha, IL-10, and granulocyte-macrophage colony-stimulating factor are secreted from BECs and confirmation of the secretions of IL-6 and tumor necrosis factor-alpha, (ii) that constitutive and lipopolysaccharide (LPS)-stimulated secretion of cytokines is polarized in favor of luminal secretion, and (iii) that response to neuroimmune stimulation is also polarized as exemplified by the finding that abluminal LPS more robustly induced secretion of IL-6 than did luminal LPS. Overall, these findings support the BBB as an important source of cytokines. Furthermore, the BBB can respond to immune challenges received from one side of the neuroimmune axis by releasing cytokines into the other.
Collapse
Affiliation(s)
- Sulekha Verma
- Geriatrics Research Educational and Clinical Center, Veterans Affairs Medical Center, St. Louis, MO, USA
| | | | | | | |
Collapse
|
43
|
Milan J, Charalambous C, Elhag R, Chen TC, Li W, Guan S, Hofman FM, Zidovetzki R. Multiple signaling pathways are involved in endothelin-1-induced brain endothelial cell migration. Am J Physiol Cell Physiol 2006; 291:C155-64. [PMID: 16452160 DOI: 10.1152/ajpcell.00239.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have observed that the vasoactive peptide endothelin-1 is a potent inducer of migration of primary human brain-derived microvascular endothelial cells. By blocking signal transduction pathways with specific inhibitors, and using dominant negative mutant infections, we have demonstrated that multiple pathways are involved in endothelin-1-induced migration. Absolutely required for migration are protein tyrosine kinase Src, Ras, protein kinase C (PKC), phosphatidylinositol 3-kinase, ERK, and JNK; partial requirements were exhibited by cAMP-activated protein kinase and p38 kinase. Partial elucidation of the signal transduction sequences showed that the MAPKs ERK, JNK, and p38 are positioned downstream of both PKC and cAMP-activated protein kinase in the signal transduction scheme. The results show that human brain endothelial cell migration has distinct characteristics, different from cells derived from other vascular beds, or from other species, often used as model systems. Furthermore, the results indicate that endothelin-1, secreted by many tumors, is an important contributor to tumor-produced proangiogenic microenvironment. This growth factor has been associated with increased microvessel density in tumors and is responsible for endothelial cell proliferation, migration, invasion, and tubule formation. Because many signal transduction pathways investigated in this study are potential or current targets for anti-angiogenesis therapy, these results are of critical importance for designing physiological antiangiogenic protocols.
Collapse
Affiliation(s)
- Johanna Milan
- Department of Cell Biology and Neuroscience, University of California, Riverside, 92521, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Wu CY, Kaur C, Lu J, Cao Q, Guo CH, Zhou Y, Sivakumar V, Ling EA. Transient expression of endothelins in the amoeboid microglial cells in the developing rat brain. Glia 2006; 54:513-25. [PMID: 16897776 DOI: 10.1002/glia.20402] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Amoeboid microglial cells (AMC) which transiently exist in the corpus callosum in the postnatal rat brain expressed endothelins (ETs), specifically endothelin-1 (ET-1) and ET3 as revealed by real time RT-PCR. ET immunoreactive AMC occurred in large numbers at birth, but were progressively reduced with age and were undetected in 14 days. In rats subjected to hypoxia exposure, ET immunoexpression in AMC was reduced but the incidence of apoptotic cells was not increased when compared with the control suggesting that this was due to its downregulation that may help regulate the constriction of blood vessels bearing ET-A receptor. AMC were endowed ET-B receptor indicating that ET released by the cells may also act via an autocrine manner. In microglia activated by lipopolysaccharide (LPS), ET-1 mNA expression coupled with that of monocyte chemoattractant protein (MCP-1) and stromal derived factor-1 (SDF-1) was markedly increased; ET-3 mRNA, however, remained unaffected. AMC exposed to oxygen glucose deprivation (OGD) in vitro resulted in increase in both ET-1 and ET-3 mRNA expression. It is suggested that the downregulated ETs expression in vivo of AMC subjected to hypoxia as opposed to its upregulated expression in vitro may be due to the complexity of the brain tissue. Furthermore, the differential ET-1 and ET-3 mRNA expression in LPS and OGD treatments may be due to different signaling pathways independently regulating the two isoforms. The present novel finding has added microglia as a new cellular source of ET that may take part in multiple functions including regulating vascular constriction and chemokines release.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Brain/embryology
- Brain/growth & development
- Brain/ultrastructure
- Cell Differentiation/physiology
- Cell Movement/physiology
- Cells, Cultured
- Down-Regulation/physiology
- Endothelin-1/genetics
- Endothelin-1/metabolism
- Endothelin-3/genetics
- Endothelin-3/metabolism
- Endothelins/genetics
- Endothelins/metabolism
- Female
- Gene Expression Regulation, Developmental/physiology
- Hypoxia-Ischemia, Brain/genetics
- Hypoxia-Ischemia, Brain/metabolism
- Hypoxia-Ischemia, Brain/physiopathology
- Male
- Microcirculation/embryology
- Microcirculation/growth & development
- Microcirculation/metabolism
- Microglia/metabolism
- Microglia/ultrastructure
- Microscopy, Electron, Transmission
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Endothelin/metabolism
- Vasoconstriction/physiology
Collapse
Affiliation(s)
- Chun-Yun Wu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Yang LL, Arab S, Liu P, Stewart DJ, Husain M. The role of endothelin-1 in myocarditis and inflammatory cardiomyopathy: old lessons and new insights. Can J Physiol Pharmacol 2005; 83:47-62. [PMID: 15759050 DOI: 10.1139/y05-002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Endothelin-1 has emerged as an important participant in the pathophysiology of a variety of cardiovascular diseases, where it may act on endocrine, paracrine and autocrine bases. Here we review its regulated biosynthesis, receptor-mediated signaling, and functional consequences in the heart, with particular emphasis on cardiac development and disease. Exploring published data employing molecular genetic mouse models of endothelin dysregulation, we highlight its heretofore underappreciated role as a pro-inflammatory cytokine. We also present novel micro-array data from one such mouse model, which implicate the specific downstream pathways that may mediate endothelin-1's effects.Key words: endothelin-1, cardiac development, inflammation, transgenic mice, gene expression profiling.
Collapse
Affiliation(s)
- Li L Yang
- Heart and Stroke Richard Lewar Centre of Excellence, University of Toronto, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
46
|
Ni CW, Wang DL, Lien SC, Cheng JJ, Chao YJ, Hsieh HJ. Activation of PKC-epsilon and ERK1/2 participates in shear-induced endothelial MCP-1 expression that is repressed by nitric oxide. J Cell Physiol 2003; 195:428-34. [PMID: 12704652 DOI: 10.1002/jcp.10259] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Vascular endothelial cells (ECs) continuously experience hemodynamic shear stress generated from blood flow. Previous studies have demonstrated that shear stress modulates monocyte chemotactic protein-1 (MCP-1) expression in ECs. This study explored the roles of protein kinase C (PKC), extracellular signal-regulated protein kinase (ERK1/2), and nitric oxide (NO) in sheared-induced MCP-1 expression in ECs. The activation of PKC-alpha and PKC-epsilon isoforms was observed in ECs exposed to shear stress. The use of an inhibitor (calphostin C) to PKC-alpha and PKC-epsilon decreased ERK1/2 activation and MCP-1 induction by shear, whereas an inhibitor (Go6976) to PKC-alpha did not affect ERK1/2 activation or MCP-1 induction. Inhibition of ERK1/2 activation by PD98059 blocked MCP-1 induction. Transfection of ECs with an antisense to PKC-epsilon abolished the shear inducibility of MCP-1 promoter. These results demonstrate that PKC-epsilon and ERK1/2 participate in shear-induced MCP-1 expression. We also examined the regulatory role of NO in MCP-1 expression. An NO donor (NOC18) suppressed shear-induced activation of PKC-epsilon and ERK1/2, and also repressed MCP-1 induction. Consistently, overexpression of endothelial nitric oxide synthase (eNOS) to enhance the endogenous generation of NO in ECs decreased the activation of PKC-epsilon and ERK1/2, and also inhibited MCP-1 expression. Taken together, these findings suggest that PKC-epsilon and ERK1/2 are critical in the signaling pathway(s) leading to the MCP-1 expression induced by shear stress. Additionally, this study indicates that NO, by repressing PKC-epsilon activity and ERK pathway activation, attenuates shear-induced MCP-1 expression.
Collapse
Affiliation(s)
- Chih-Wen Ni
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
47
|
Petrov T, Steiner J, Braun B, Rafols JA. Sources of endothelin-1 in hippocampus and cortex following traumatic brain injury. Neuroscience 2003; 115:275-83. [PMID: 12401340 DOI: 10.1016/s0306-4522(02)00345-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endothelin 1 (ET-1) exerts normally a powerful vasoconstrictor role in the control of the brain microcirculation. In altered states, such as following traumatic brain injury (TBI), it may contribute to the development of ischemia and/or secondary cell injury. Because little is known of ET-1's cellular compartmentalization and its association to vulnerable neurons after TBI, we assessed its expression (both mRNA and protein) in cerebral cortex and hippocampus using correlative in situ hybridization and immunocytochemical techniques.Sprague-Dawley male rats were killed at 4, 24 or 48 h after TBI (450 g from 2 m, Marmarou's model). Semiquantitative analysis of our in situ hybridization results indicated a 2.5- and a 2.0-fold increase in ET-1 mRNA content in the hippocampus and cortex respectively which persisted up to 48 h post TBI. At 4 and 24 h after TBI enzyme-linked immunosorbent assay showed a tendency for increased ET-1 synthesis. In animals subjected to TBI, qualitative immunocytochemical analysis revealed a shift in ET-1 expression from astrocytes (in control animals) to endothelial cells, macrophages and neurons. Astrocytes and macrophages were identified unequivocally by using double immunofluorescence revealing ET-1 and glial fibrillary acidic protein or ED-1, respectively, the markers being specific for these cellular types. While this redistribution was most prominent at 4 and 24 h post TBI, at 48 h the endothelial cells remained strongly ET-1 immunopositive. The results suggest that cellular types which in the intact animal synthesize little or no ET-1 provide novel sources of the peptide after TBI. These sources may contribute to the sustained cerebrovascular hypoperfusion observed post TBI.
Collapse
Affiliation(s)
- Th Petrov
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
48
|
Suga SI, Yasui N, Yoshihara F, Horio T, Kawano Y, Kangawa K, Johnson RJ. Endothelin a receptor blockade and endothelin B receptor blockade improve hypokalemic nephropathy by different mechanisms. J Am Soc Nephrol 2003; 14:397-406. [PMID: 12538740 DOI: 10.1097/01.asn.0000046062.85721.ac] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Hypokalemia causes renal tubulointerstitial injury with an elevation in renal endothelin-1 (ET-1). It was hypothesized that hypokalemic tubulointerstitial injury is ameliorated by the blockade of ET-A receptors (ETA), whereas ET-B receptor (ETB) antagonism may exacerbate the injury, because ETB is thought to mediate vasodilation. Rats were fed a K(+)-deficient diet alone (LC) or with an ETA-selective antagonist ABT-627 (LA) or an ETB-selective antagonist A-192621 (LB) for 8 wk. Control rats were on a normal K(+) diet alone or with the ETA-selective or ETB-selective antagonists. The severity of hypokalemia was not significantly different among LA, LB, and LC. LC developed tubulointerstitial injury with an elevation of renal preproET-1 mRNA level. There was an increase in tubular osteopontin expression, macrophage infiltration, collagen accumulation, and tubular cell hyperplasia. ETA blockade significantly ameliorated all parameters for renal injury in the cortex without suppressing local ET-1 and ETA expression. By contrast, ETB blockade significantly reduced local ET-1 and ETA expression and improved the injury to a similar extent in the cortex. In the medulla, ETA or ETB blockade only partially blocked renal injury. ETA blockade did not affect BP in normokalemic or hypokalemic rats. ETB blockade induced a BP elevation with a decrease in urinary Na(+) excretion in normokalemic but not in hypokalemic rats. These results indicate that ET-1 can mediate hypokalemic renal injury in two different ways: by directly stimulating ETA and by locally promoting endogenous ET-1 production via ETB. Thus, ETA as well as ETB blockade may be renoprotective in hypokalemic nephropathy.
Collapse
Affiliation(s)
- Shin-Ichi Suga
- National Cardiovascular Center Research Institute, Department of Medicine, National Cardiovascular Center, Suita, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|