1
|
Balduit A, Agostinis C, Bulla R. Beyond the Norm: The emerging interplay of complement system and extracellular matrix in the tumor microenvironment. Semin Immunol 2025; 77:101929. [PMID: 39793258 DOI: 10.1016/j.smim.2025.101929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
Ground-breaking awareness has been reached about the intricate and dynamic connection between developing tumors and the host immune system. Being a powerful arm of innate immunity and a functional bridge with adaptive immunity, the complement system (C) has also emerged as a pivotal player in the tumor microenvironment (TME). Its "double-edged sword" role in cancer can find an explanation in the controversial relationship between C capability to mediate tumor cell cytolysis or, conversely, to sustain chronic inflammation and tumor progression by enhancing cell invasion, angiogenesis, and metastasis to distant organs. However, comprehensive knowledge about the actual role of C in cancer progression is impaired by several limitations of the currently available studies. In the current review, we aim to bring a fresh eye to the controversial role of C in cancer by analyzing the interplay between C and extracellular matrix (ECM) components as potential orchestrators of the TME. The interaction of C components with specific ECM components can determine C activation or inhibition and promote specific non-canonical functions, which can, in the tumor context, favor or limit progression based on the cancer setting. An in-depth and tumor-specific characterization of TME composition in terms of C components and ECM proteins could be essential to determine their potential interactions and become a key element for improving drug development, prognosis, and therapy response prediction in solid tumors.
Collapse
Affiliation(s)
- Andrea Balduit
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Chiara Agostinis
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
2
|
Ahn EH, Park JB. Molecular Mechanisms of Alzheimer's Disease Induced by Amyloid-β and Tau Phosphorylation Along with RhoA Activity: Perspective of RhoA/Rho-Associated Protein Kinase Inhibitors for Neuronal Therapy. Cells 2025; 14:89. [PMID: 39851517 PMCID: PMC11764136 DOI: 10.3390/cells14020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
Amyloid-β peptide (Aβ) is a critical cause of Alzheimer's disease (AD). It is generated from amyloid precursor protein (APP) through cleavages by β-secretase and γ-secretase. γ-Secretase, which includes presenilin, is regulated by several stimuli. Tau protein has also been identified as a significant factor in AD. In particular, Tau phosphorylation is crucial for neuronal impairment, as phosphorylated Tau detaches from microtubules, leading to the formation of neurofibrillary tangles and the destabilization of the microtubule structure. This instability in microtubules damages axons and dendrites, resulting in neuronal impairment. Notably, Aβ is linked to Tau phosphorylation. Another crucial factor in AD is neuroinflammation, primarily occurring in the microglia. Microglia possess several receptors that bind with Aβ, triggering the expression and release of an inflammatory factor, although their main physiological function is to phagocytose debris and pathogens in the brain. NF-κB activation plays a major role in neuroinflammation. Additionally, the production of reactive oxygen species (ROS) in the microglia contributes to this neuroinflammation. In microglia, superoxide is produced through NADPH oxidase, specifically NOX2. Rho GTPases play an essential role in regulating various cellular processes, including cytoskeletal rearrangement, morphology changes, migration, and transcription. The typical function of Rho GTPases involves regulating actin filament formation. Neurons, with their complex processes and synapse connections, rely on cytoskeletal dynamics for structural support. Other brain cells, such as astrocytes, microglia, and oligodendrocytes, also depend on specific cytoskeletal structures to maintain their unique cellular architectures. Thus, the aberrant regulation of Rho GTPases activity can disrupt actin filaments, leading to altered cell morphology, including changes in neuronal processes and synapses, and potentially contributing to brain diseases such as AD.
Collapse
Affiliation(s)
- Eun Hee Ahn
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea;
- Department of Neurology, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea
- ELMED Co., Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea
| |
Collapse
|
3
|
Cui Y, Rolova T, Fagerholm SC. The role of integrins in brain health and neurodegenerative diseases. Eur J Cell Biol 2024; 103:151441. [PMID: 39002282 DOI: 10.1016/j.ejcb.2024.151441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024] Open
Abstract
Integrins are heterodimeric membrane proteins expressed on the surface of most cells. They mediate adhesion and signaling processes relevant for a wealth of physiological processes, including nervous system development and function. Interestingly, integrins are also recognized therapeutic targets for inflammatory diseases, such as multiple sclerosis. Here, we discuss the role of integrins in brain development and function, as well as in neurodegenerative diseases affecting the brain (Alzheimer's disease, multiple sclerosis, stroke). Furthermore, we discuss therapeutic targeting of these adhesion receptors in inflammatory diseases of the brain.
Collapse
Affiliation(s)
- Yunhao Cui
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
| | - Taisia Rolova
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki 00290, Finland
| | - Susanna C Fagerholm
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland.
| |
Collapse
|
4
|
Sándor N, Schneider AE, Matola AT, Barbai VH, Bencze D, Hammad HH, Papp A, Kövesdi D, Uzonyi B, Józsi M. The human factor H protein family - an update. Front Immunol 2024; 15:1135490. [PMID: 38410512 PMCID: PMC10894998 DOI: 10.3389/fimmu.2024.1135490] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
Complement is an ancient and complex network of the immune system and, as such, it plays vital physiological roles, but it is also involved in numerous pathological processes. The proper regulation of the complement system is important to allow its sufficient and targeted activity without deleterious side-effects. Factor H is a major complement regulator, and together with its splice variant factor H-like protein 1 and the five human factor H-related (FHR) proteins, they have been linked to various diseases. The role of factor H in inhibiting complement activation is well studied, but the function of the FHRs is less characterized. Current evidence supports the main role of the FHRs as enhancers of complement activation and opsonization, i.e., counter-balancing the inhibitory effect of factor H. FHRs emerge as soluble pattern recognition molecules and positive regulators of the complement system. In addition, factor H and some of the FHR proteins were shown to modulate the activity of immune cells, a non-canonical function outside the complement cascade. Recent efforts have intensified to study factor H and the FHRs and develop new tools for the distinction, quantification and functional characterization of members of this protein family. Here, we provide an update and overview on the versatile roles of factor H family proteins, what we know about their biological functions in healthy conditions and in diseases.
Collapse
Affiliation(s)
- Noémi Sándor
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | | | | | - Veronika H. Barbai
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dániel Bencze
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Hani Hashim Hammad
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Alexandra Papp
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dorottya Kövesdi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | - Barbara Uzonyi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | - Mihály Józsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| |
Collapse
|
5
|
Ni J, Xie Z, Quan Z, Meng J, Qing H. How brain 'cleaners' fail: Mechanisms and therapeutic value of microglial phagocytosis in Alzheimer's disease. Glia 2024; 72:227-244. [PMID: 37650384 DOI: 10.1002/glia.24465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/10/2023] [Accepted: 08/19/2023] [Indexed: 09/01/2023]
Abstract
Microglia are the resident phagocytes of the brain, where they primarily function in the clearance of dead cells and the removal of un- or misfolded proteins. The impaired activity of receptors or proteins involved in phagocytosis can result in enhanced inflammation and neurodegeneration. RNA-seq and genome-wide association studies have linked multiple phagocytosis-related genes to neurodegenerative diseases, while the knockout of such genes has been demonstrated to exert protective effects against neurodegeneration in animal models. The failure of microglial phagocytosis influences AD-linked pathologies, including amyloid β accumulation, tau propagation, neuroinflammation, and infection. However, a precise understanding of microglia-mediated phagocytosis in Alzheimer's disease (AD) is still lacking. In this review, we summarize current knowledge of the molecular mechanisms involved in microglial phagocytosis in AD across a wide range of pre-clinical, post-mortem, ex vivo, and clinical studies and review the current limitations regarding the detection of microglia phagocytosis in AD. Finally, we discuss the rationale of targeting microglial phagocytosis as a therapeutic strategy for preventing AD or slowing its progression.
Collapse
Affiliation(s)
- Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhen Xie
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jie Meng
- Department of Geriatrics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
6
|
Microglia in Alzheimer’s Disease: A Favorable Cellular Target to Ameliorate Alzheimer’s Pathogenesis. Mediators Inflamm 2022; 2022:6052932. [PMID: 35693110 PMCID: PMC9184163 DOI: 10.1155/2022/6052932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
Microglial cells serve as molecular sensors of the brain that play a role in physiological and pathological conditions. Under normal physiology, microglia are primarily responsible for regulating central nervous system homeostasis through the phagocytic clearance of redundant protein aggregates, apoptotic cells, damaged neurons, and synapses. Furthermore, microglial cells can promote and mitigate amyloid β phagocytosis and tau phosphorylation. Dysregulation of the microglial programming alters cellular morphology, molecular signaling, and secretory inflammatory molecules that contribute to various neurodegenerative disorders especially Alzheimer’s disease (AD). Furthermore, microglia are considered primary sources of inflammatory molecules and can induce or regulate a broad spectrum of cellular responses. Interestingly, in AD, microglia play a double-edged role in disease progression; for instance, the detrimental microglial effects increase in AD while microglial beneficiary mechanisms are jeopardized. Depending on the disease stages, microglial cells are expressed differently, which may open new avenues for AD therapy. However, the disease-related role of microglial cells and their receptors in the AD brain remain unclear. Therefore, this review represents the role of microglial cells and their involvement in AD pathogenesis.
Collapse
|
7
|
Uddin MS, Kabir MT, Jalouli M, Rahman MA, Jeandet P, Behl T, Alexiou A, Albadrani GM, Abdel-Daim MM, Perveen A, Ashraf GM. Neuroinflammatory Signaling in the Pathogenesis of Alzheimer's Disease. Curr Neuropharmacol 2021; 20:126-146. [PMID: 34525932 PMCID: PMC9199559 DOI: 10.2174/1570159x19666210826130210] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 11/22/2022] Open
Abstract
Alzheimer’s disease (AD) is a chronic neurodegenerative disease characterized by the formation of intracellular neurofibrillary tangles (NFTs) and extracellular amyloid plaques. Growing evidence has suggested that AD pathogenesis is not only limited to the neuronal compartment but also strongly interacts with immunological processes in the brain. On the other hand, aggregated and misfolded proteins can bind with pattern recognition receptors located on astroglia and microglia and can, in turn, induce an innate immune response, characterized by the release of inflammatory mediators, ultimately playing a role in both the severity and the progression of the disease. It has been reported by genome-wide analysis that several genes which elevate the risk for sporadic AD encode for factors controlling the inflammatory response and glial clearance of misfolded proteins. Obesity and systemic inflammation are examples of external factors which may interfere with the immunological mechanisms of the brain and can induce disease progression. In this review, we discussed the mechanisms and essential role of inflammatory signaling pathways in AD pathogenesis. Indeed, interfering with immune processes and modulation of risk factors may lead to future therapeutic or preventive AD approaches.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka. Bangladesh
| | | | - Maroua Jalouli
- College of Science, King Saud University, P.O. Box 2455, Riyadh 11451. Saudi Arabia
| | - Md Ataur Rahman
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul. Korea
| | - Philippe Jeandet
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2. France
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, 2770 Hebersham. Australia
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474. Saudi Arabia
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522. Egypt
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur. India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah. Saudi Arabia
| |
Collapse
|
8
|
The complement cascade in the regulation of neuroinflammation, nociceptive sensitization, and pain. J Biol Chem 2021; 297:101085. [PMID: 34411562 PMCID: PMC8446806 DOI: 10.1016/j.jbc.2021.101085] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 01/13/2023] Open
Abstract
The complement cascade is a key component of the innate immune system that is rapidly recruited through a cascade of enzymatic reactions to enable the recognition and clearance of pathogens and promote tissue repair. Despite its well-understood role in immunology, recent studies have highlighted new and unexpected roles of the complement cascade in neuroimmune interaction and in the regulation of neuronal processes during development, aging, and in disease states. Complement signaling is particularly important in directing neuronal responses to tissue injury, neurotrauma, and nerve lesions. Under physiological conditions, complement-dependent changes in neuronal excitability, synaptic strength, and neurite remodeling promote nerve regeneration, tissue repair, and healing. However, in a variety of pathologies, dysregulation of the complement cascade leads to chronic inflammation, persistent pain, and neural dysfunction. This review describes recent advances in our understanding of the multifaceted cross-communication that takes place between the complement system and neurons. In particular, we focus on the molecular and cellular mechanisms through which complement signaling regulates neuronal excitability and synaptic plasticity in the nociceptive pathways involved in pain processing in both health and disease. Finally, we discuss the future of this rapidly growing field and what we believe to be the significant knowledge gaps that need to be addressed.
Collapse
|
9
|
Rather MA, Khan A, Alshahrani S, Rashid H, Qadri M, Rashid S, Alsaffar RM, Kamal MA, Rehman MU. Inflammation and Alzheimer's Disease: Mechanisms and Therapeutic Implications by Natural Products. Mediators Inflamm 2021; 2021:9982954. [PMID: 34381308 PMCID: PMC8352708 DOI: 10.1155/2021/9982954] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/24/2021] [Accepted: 07/10/2021] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with no clear causative event making the disease difficult to diagnose and treat. The pathological hallmarks of AD include amyloid plaques, neurofibrillary tangles, and widespread neuronal loss. Amyloid-beta has been extensively studied and targeted to develop an effective disease-modifying therapy, but the success rate in clinical practice is minimal. Recently, neuroinflammation has been focused on as the event in AD progression to be targeted for therapies. Various mechanistic pathways including cytokines and chemokines, complement system, oxidative stress, and cyclooxygenase pathways are linked to neuroinflammation in the AD brain. Many cells including microglia, astrocytes, and oligodendrocytes work together to protect the brain from injury. This review is focused to better understand the AD inflammatory and immunoregulatory processes to develop novel anti-inflammatory drugs to slow down the progression of AD.
Collapse
Affiliation(s)
- Mashoque Ahmad Rather
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, Tamil Nadu 608002, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Hina Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Marwa Qadri
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy Girls Section, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Rana M. Alsaffar
- Department of Pharmacology & Toxicology, College of Pharmacy Girls Section, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
Ma SX, Seo BA, Kim D, Xiong Y, Kwon SH, Brahmachari S, Kim S, Kam TI, Nirujogi RS, Kwon SH, Dawson VL, Dawson TM, Pandey A, Na CH, Ko HS. Complement and Coagulation Cascades are Potentially Involved in Dopaminergic Neurodegeneration in α-Synuclein-Based Mouse Models of Parkinson's Disease. J Proteome Res 2021; 20:3428-3443. [PMID: 34061533 PMCID: PMC8628316 DOI: 10.1021/acs.jproteome.0c01002] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder that results in motor dysfunction and, eventually, cognitive impairment. α-Synuclein protein is known as a central protein to the pathophysiology of PD, but the underlying pathological mechanism still remains to be elucidated. In an effort to understand how α-synuclein underlies the pathology of PD, various PD mouse models with α-synuclein overexpression have been developed. However, systemic analysis of the brain proteome of those mouse models is lacking. In this study, we established two mouse models of PD by injecting α-synuclein preformed fibrils (PFF) or by inducing overexpression of human A53T α-synuclein to investigate common pathways in the two different types of the PD mouse models. For more accurate quantification of mouse brain proteome, the proteins were quantified using the method of stable isotope labeling with amino acids in mammals . We identified a total of 8355 proteins from the two mouse models; ∼6800 and ∼7200 proteins from α-synuclein PFF-injected mice and human A53T α-synuclein transgenic mice, respectively. Through pathway analysis of the differentially expressed proteins common to both PD mouse models, it was discovered that the complement and coagulation cascade pathways were enriched in the PD mice compared to control animals. Notably, a validation study demonstrated that complement component 3 (C3)-positive astrocytes were increased in the ventral midbrain of the intrastriatal α-synuclein PFF-injected mice and C3 secreted from astrocytes could induce the degeneration of dopaminergic neurons. This is the first study that highlights the significance of the complement and coagulation pathways in the pathogenesis of PD through proteome analyses with two sophisticated mouse models of PD.
Collapse
Affiliation(s)
- Shi-Xun Ma
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Bo Am Seo
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Donghoon Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Pharmacology, Peripheral Neuropathy Research Center, Dong-A University College of Medicine, Busan 49201, South Korea
| | - Yulan Xiong
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Seung-Hwan Kwon
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Saurav Brahmachari
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Sangjune Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Raja Sekhar Nirujogi
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Sang Ho Kwon
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Adrienne Helis Malvin Medical Research Foundation, New Orleans 70130, Louisiana, United States
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Adrienne Helis Malvin Medical Research Foundation, New Orleans 70130, Louisiana, United States
- Diana Helis Henry Medical Research Foundation, New Orleans 70130, Louisiana, United States
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Laboratory Medicine and Pathology, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Chan Hyun Na
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Han Seok Ko
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Adrienne Helis Malvin Medical Research Foundation, New Orleans 70130, Louisiana, United States
- Diana Helis Henry Medical Research Foundation, New Orleans 70130, Louisiana, United States
| |
Collapse
|
11
|
Firdaus Z, Singh TD. An Insight in Pathophysiological Mechanism of Alzheimer's Disease and its Management Using Plant Natural Products. Mini Rev Med Chem 2021; 21:35-57. [PMID: 32744972 DOI: 10.2174/1389557520666200730155928] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is an age-associated nervous system disorder and a leading cause of dementia worldwide. Clinically, it is described by cognitive impairment and pathophysiologically by deposition of amyloid plaques and neurofibrillary tangles in the brain and neurodegeneration. This article reviews the pathophysiology, course of neuronal degeneration, and the various possible hypothesis of AD progression. These hypotheses include amyloid cascade, tau hyperphosphorylation, cholinergic disruption, metal dysregulation, vascular dysfunction, oxidative stress, and neuroinflammation. There is an exponential increase in the occurrence of AD in the recent few years that indicate an urgent need to develop some effective treatment. Currently, only 2 classes of drugs are available for AD treatment, namely acetylcholinesterase inhibitor and NMDA receptor antagonist. Since AD is a complex neurological disorder and these drugs use a single target approach, alternatives are needed due to limited effectiveness and unpleasant side-effects of these drugs. Currently, plants have been used for drug development research especially because of their multiple sites of action and fewer side effects. Uses of some herbs and phytoconstituents for the management of neuronal disorders like AD have been documented in this article. Phytochemical screening of these plants shows the presence of many beneficial constituents like flavonoids, triterpenes, alkaloids, sterols, polyphenols, and tannins. These compounds show a wide array of pharmacological activities, such as anti-amyloidogenic, anticholinesterase, and antioxidants. This article summarizes the present understanding of AD progression and gathers biochemical evidence from various works on natural products that can be useful in the management of this disease.
Collapse
Affiliation(s)
- Zeba Firdaus
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi - 221005, India
| | - Tryambak Deo Singh
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi - 221005, India
| |
Collapse
|
12
|
Analysis of the role of Purα in the pathogenesis of Alzheimer's disease based on RNA-seq and ChIP-seq. Sci Rep 2021; 11:12178. [PMID: 34108502 PMCID: PMC8190037 DOI: 10.1038/s41598-021-90982-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/19/2021] [Indexed: 11/18/2022] Open
Abstract
Purine rich element binding protein A (Purα), encoded by the Purα gene, is an important transcriptional regulator that binds to DNA and RNA and is involved in processes such as DNA replication and RNA translation. Purα also plays an important role in the nervous system. To identify the function of Pura, we performed RNA sequence (RNA-seq) analysis of Purɑ-KO mouse hippocampal neuron cell line (HT22) to analyze the effect of Purα deletion on neuronal expression profiles. And combined with ChIP-seq analysis to explore the mechanism of Purα on gene regulation. In the end, totaly 656 differentially expressed genes between HT22 and Purα-KO HT22 cells have been found, which include 7 Alzheimer’s disease (AD)-related genes and 5 Aβ clearance related genes. 47 genes were regulated by Purα directly, the evidence based on CHIP-seq, which include Insr, Mapt, Vldlr, Jag1, etc. Our study provides the important informations of Purα in neuro-development. The possible regulative effects of Purα on AD-related genes consist inthe direct and indirect pathways of Purα in the pathogenesis of AD.
Collapse
|
13
|
Morgan BP, Gommerman JL, Ramaglia V. An "Outside-In" and "Inside-Out" Consideration of Complement in the Multiple Sclerosis Brain: Lessons From Development and Neurodegenerative Diseases. Front Cell Neurosci 2021; 14:600656. [PMID: 33488361 PMCID: PMC7817777 DOI: 10.3389/fncel.2020.600656] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
The last 15 years have seen an explosion of new findings on the role of complement, a major arm of the immune system, in the central nervous system (CNS) compartment including contributions to cell migration, elimination of synapse during development, aberrant synapse pruning in neurologic disorders, damage to nerve cells in autoimmune diseases, and traumatic injury. Activation of the complement system in multiple sclerosis (MS) is typically thought to occur as part of a primary (auto)immune response from the periphery (the outside) against CNS antigens (the inside). However, evidence of local complement production from CNS-resident cells, intracellular complement functions, and the more recently discovered role of early complement components in shaping synaptic circuits in the absence of inflammation opens up the possibility that complement-related sequelae may start and finish within the brain itself. In this review, the complement system will be introduced, followed by evidence that implicates complement in shaping the developing, adult, and normal aging CNS as well as its contribution to pathology in neurodegenerative conditions. Discussion of data supporting "outside-in" vs. "inside-out" roles of complement in MS will be presented, concluded by thoughts on potential approaches to therapies targeting specific elements of the complement system.
Collapse
Affiliation(s)
- B. Paul Morgan
- UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, United Kingdom
| | | | - Valeria Ramaglia
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Yuan C, Aierken A, Xie Z, Li N, Zhao J, Qing H. The age-related microglial transformation in Alzheimer's disease pathogenesis. Neurobiol Aging 2020; 92:82-91. [PMID: 32408056 DOI: 10.1016/j.neurobiolaging.2020.03.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/11/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022]
Abstract
Neuroinflammatory responses mediated by microglia, the resident immune cells of the central nervous system, have long been a subject of study in the field of Alzheimer's disease (AD). Microglia express a wide range of receptors that act as molecular sensors, through which they can fulfill their various functions. In this review, we first analyzed the changes in the expression levels of microglial membrane receptors SR-A, TREM2, CD36, CD33, and CR3 in aging and AD and described the different roles of these receptors in amyloid-beta clearance and inflammatory responses. Two classical hallmarks of AD are extracellular amyloid-beta deposits and intracellular aggregated phosphorylated tau. In AD, microglia reaction was initially thought to be triggered by amyloid deposits. New evidence showed it also associated with increased phosphorylation of tau. However, which first appeared and induced activated microglia is not clear. Then we summarized diverse opinions on it. Besides, as AD is tightly linked to aging, and microglia changes dramatically on aging, yet the relative impacts of both aging and microglia are less frequently considered, so at last, we discussed the roles of aging microglia in AD. We hope to provide a reference for subsequent research.
Collapse
Affiliation(s)
- Chunxu Yuan
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biological Sciences, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ailikemu Aierken
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biological Sciences, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhen Xie
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biological Sciences, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Nuomin Li
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biological Sciences, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Juan Zhao
- School of Materials Science and Engineering, Department of Materials Processing Engineering, Beijing Institute of Technology, Beijing, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biological Sciences, School of Life Science, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
15
|
Tenner AJ. Complement-Mediated Events in Alzheimer's Disease: Mechanisms and Potential Therapeutic Targets. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:306-315. [PMID: 31907273 PMCID: PMC6951444 DOI: 10.4049/jimmunol.1901068] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022]
Abstract
An estimated 5.7 million Americans suffer from Alzheimer's disease in the United States, with no disease-modifying treatments to prevent or treat cognitive deficits associated with the disease. Genome-wide association studies suggest that an enhancement of clearance mechanisms and/or promotion of an anti-inflammatory response may slow or prevent disease progression. Increasing awareness of distinct roles of complement components in normal brain development and function and in neurodegenerative disorders align with complement-mediated responses, and thus, thorough understanding of these molecular pathways is needed to facilitate successful therapeutic design. Both beneficial and detrimental effects of C1q as well as contributions to local inflammation by C5a-C5aR1 signaling in brain highlight the need for precision of therapeutic design. The potential benefit of β-amyloid clearance from the circulation via CR1-mediated mechanisms is also reviewed. Therapies that suppress inflammation while preserving protective effects of complement could be tested now to slow the progression of this debilitating disease.
Collapse
Affiliation(s)
- Andrea J Tenner
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697;
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697;
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697; and
- Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA 92697
| |
Collapse
|
16
|
Osborne AJ, Nan R, Miller A, Bhatt JS, Gor J, Perkins SJ. Two distinct conformations of factor H regulate discrete complement-binding functions in the fluid phase and at cell surfaces. J Biol Chem 2018; 293:17166-17187. [PMID: 30217822 PMCID: PMC6222095 DOI: 10.1074/jbc.ra118.004767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/10/2018] [Indexed: 11/06/2022] Open
Abstract
Factor H (FH) is the major regulator of C3b in the alternative pathway of the complement system in immunity. FH comprises 20 short complement regulator (SCR) domains, including eight glycans, and its Y402H polymorphism predisposes those who carry it to age-related macular degeneration. To better understand FH complement binding and self-association, we have studied the solution structures of both the His-402 and Tyr-402 FH allotypes. Analytical ultracentrifugation revealed that up to 12% of both FH allotypes self-associate, and this was confirmed by small-angle X-ray scattering (SAXS), MS, and surface plasmon resonance analyses. SAXS showed that monomeric FH has a radius of gyration (Rg ) of 7.2-7.8 nm and a length of 25 nm. Starting from known structures for the SCR domains and glycans, the SAXS data were fitted using Monte Carlo methods to determine atomistic structures of monomeric FH. The analysis of 29,715 physically realistic but randomized FH conformations resulted in 100 similar best-fit FH structures for each allotype. Two distinct molecular structures resulted that showed either an extended N-terminal domain arrangement with a folded-back C terminus or an extended C terminus and a folded-back N terminus. These two structures are the most accurate to date for glycosylated full-length FH. To clarify FH functional roles in host protection, crystal structures for the FH complexes with C3b and C3dg revealed that the extended N-terminal conformation accounted for C3b fluid-phase regulation, the extended C-terminal conformation accounted for C3d binding, and both conformations accounted for bivalent FH binding to glycosaminoglycans on the target cell surface.
Collapse
Affiliation(s)
- Amy J Osborne
- From the Department of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Ruodan Nan
- From the Department of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Ami Miller
- From the Department of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Jayesh S Bhatt
- From the Department of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Jayesh Gor
- From the Department of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Stephen J Perkins
- From the Department of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
17
|
Hutter-Schmid B, Humpel C. Primary mouse brain pericytes isolated from transgenic Alzheimer mice spontaneously differentiate into a CD11b + microglial-like cell type in vitro. Exp Gerontol 2018; 112:30-37. [PMID: 30099090 DOI: 10.1016/j.exger.2018.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/01/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is characterized by amyloid-β plaques, tau pathology and vascular impairment including pericyte damage. Pericytes are perivascular cells of the blood-brain barrier and can differentiate into different cell types in vitro including microglia. The aim of the present study is to explore if primary mouse brain pericytes isolated and cultured from transgenic AD (APP_SweDI) mice can differentiate into CD11b+ (integrin alpha M) microglia in vitro. We show that primary pericytes (passage 5) isolated from wildtype C57BL6 mice differentiated into CD11b+ microglia (Type B, >90%), when exposed to a differentiation factor mix of FGF-2, cAMP and fibronectin. This differentiation was time-dependent and seen as a large 80 kDa CD11b fragment (days 1-8) and a smaller 50 kDA CD11b fragment (>4 days). These pericytes did not differentiate into neurons, astroglia or oligodendroglia. However, pericytes isolated from transgenic AD mice differentiated into CD11b+ microglia (Type A, <10%) without addition of exogenous differentiation factors, displayed moderate Iba1+ immunostaining and phagocytic activity, but were still positive for PDGFRβ. In conclusion, we show for the first time that primary mouse pericytes from AD mice have the potential to spontanously differentiate in vitro into a CD11b+ microglial-like (Type A) cell type, but we do not provide evidence that these pericytic microglia display a full active microglial cell.
Collapse
Affiliation(s)
- Bianca Hutter-Schmid
- Laboratory of Psychiatry and Exp. Alzheimer's Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University of Innsbruck, Austria
| | - Christian Humpel
- Laboratory of Psychiatry and Exp. Alzheimer's Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University of Innsbruck, Austria.
| |
Collapse
|
18
|
Platelet Proteomic Analysis Revealed Differential Pattern of Cytoskeletal- and Immune-Related Proteins at Early Stages of Alzheimer’s Disease. Mol Neurobiol 2018; 55:8815-8825. [DOI: 10.1007/s12035-018-1039-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/23/2018] [Indexed: 12/15/2022]
|
19
|
Van Dam D, Vermeiren Y, Dekker AD, Naudé PJW, Deyn PPD. Neuropsychiatric Disturbances in Alzheimer's Disease: What Have We Learned from Neuropathological Studies? Curr Alzheimer Res 2017; 13:1145-64. [PMID: 27137218 PMCID: PMC5070416 DOI: 10.2174/1567205013666160502123607] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/04/2016] [Accepted: 04/27/2016] [Indexed: 12/16/2022]
Abstract
Neuropsychiatric symptoms (NPS) are an integral part of the dementia syndrome and were therefore recently included in the core diagnostic criteria of dementia. The near universal prevalence of NPS in Alzheimer's disease (AD), combined with their disabling effects on patients and caregivers, is contrasted by the fact that few effective and safe treatments exist, which is in part to be attributed to our incomplete understanding of the neurobiology of NPS. In this review, we describe the pathological alterations typical for AD, including spreading and evolution of burden, effect on the molecular and cellular integrity, functional consequences and atrophy of NPS-relevant brain regions and circuits in correlation with specific NPS assessments. It is thereby clearly established that NPS are fundamental expressions of the underlying neurodegenerative brain disease and not simply reflect the patients' secondary response to their illness. Neuropathological studies, moreover, include a majority of end-stage patient samples, which may not correctly represent the pathophysiological environment responsible for particular NPS that may already be present in an early stage, or even prior to AD diagnosis. The burdensome nature and high prevalence of NPS, in combination with the absence of effective and safe pharmacotherapies, provide a strong incentive to continue neuropathological and neurochemical, as well as imaging and other relevant approaches to further improve our apprehension of the neurobiology of NPS.
Collapse
Affiliation(s)
| | | | | | | | - Peter P De Deyn
- Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, and, Faculty of Medical and Health Care Sciences, University of Antwerp, Universiteitsplein 1, BE-2610 Wilrijk (Antwerp), Belgium
| |
Collapse
|
20
|
Amyloid-beta neurotoxicity and clearance are both regulated by glial group II metabotropic glutamate receptors. Neuropharmacology 2017; 123:274-286. [DOI: 10.1016/j.neuropharm.2017.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 11/20/2022]
|
21
|
Redox Imbalance and Viral Infections in Neurodegenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6547248. [PMID: 27110325 PMCID: PMC4826696 DOI: 10.1155/2016/6547248] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/07/2016] [Accepted: 03/10/2016] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS) are essential molecules for many physiological functions and act as second messengers in a large variety of tissues. An imbalance in the production and elimination of ROS is associated with human diseases including neurodegenerative disorders. In the last years the notion that neurodegenerative diseases are accompanied by chronic viral infections, which may result in an increase of neurodegenerative diseases progression, emerged. It is known in literature that enhanced viral infection risk, observed during neurodegeneration, is partly due to the increase of ROS accumulation in brain cells. However, the molecular mechanisms of viral infection, occurring during the progression of neurodegeneration, remain unclear. In this review, we discuss the recent knowledge regarding the role of influenza, herpes simplex virus type-1, and retroviruses infection in ROS/RNS-mediated Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS).
Collapse
|
22
|
CFH Variants Affect Structural and Functional Brain Changes and Genetic Risk of Alzheimer's Disease. Neuropsychopharmacology 2016; 41:1034-45. [PMID: 26243271 PMCID: PMC4748428 DOI: 10.1038/npp.2015.232] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/08/2015] [Accepted: 07/18/2015] [Indexed: 02/05/2023]
Abstract
The immune response is highly active in Alzheimer's disease (AD). Identification of genetic risk contributed by immune genes to AD may provide essential insight for the prognosis, diagnosis, and treatment of this neurodegenerative disease. In this study, we performed a genetic screening for AD-related top immune genes identified in Europeans in a Chinese cohort, followed by a multiple-stage study focusing on Complement Factor H (CFH) gene. Effects of the risk SNPs on AD-related neuroimaging endophenotypes were evaluated through magnetic resonance imaging scan, and the effects on AD cerebrospinal fluid biomarkers (CSF) and CFH expression changes were measured in aged and AD brain tissues and AD cellular models. Our results showed that the AD-associated top immune genes reported in Europeans (CR1, CD33, CLU, and TREML2) have weak effects in Chinese, whereas CFH showed strong effects. In particular, rs1061170 (P(meta)=5.0 × 10(-4)) and rs800292 (P(meta)=1.3 × 10(-5)) showed robust associations with AD, which were confirmed in multiple world-wide sample sets (4317 cases and 16 795 controls). Rs1061170 (P=2.5 × 10(-3)) and rs800292 (P=4.7 × 10(-4)) risk-allele carriers have an increased entorhinal thickness in their young age and a higher atrophy rate as the disease progresses. Rs800292 risk-allele carriers have higher CSF tau and Aβ levels and severe cognitive decline. CFH expression level, which was affected by the risk-alleles, was increased in AD brains and cellular models. These comprehensive analyses suggested that CFH is an important immune factor in AD and affects multiple pathological changes in early life and during disease progress.
Collapse
|
23
|
Hu WT, Watts KD, Tailor P, Nguyen TP, Howell JC, Lee RC, Seyfried NT, Gearing M, Hales CM, Levey AI, Lah JJ, Lee EK. CSF complement 3 and factor H are staging biomarkers in Alzheimer's disease. Acta Neuropathol Commun 2016; 4:14. [PMID: 26887322 PMCID: PMC4758165 DOI: 10.1186/s40478-016-0277-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 01/06/2023] Open
Abstract
Introduction CSF levels of established Alzheimer’s disease (AD) biomarkers remain stable despite disease progression, and non-amyloid non-tau biomarkers have the potential of informing disease stage and progression. We previously identified complement 3 (C3) to be decreased in AD dementia, but this change was not found by others in earlier AD stages. We hypothesized that levels of C3 and associated factor H (FH) can potentially distinguish between mild cognitive impairment (MCI) and dementia stages of AD, but we also found their levels to be influenced by age and disease status. Results We developed a biochemical/bioinformatics pipeline to optimize the handling of complex interactions between variables in validating biochemical markers of disease. We used data from the Alzheimer’s Disease Neuro-imaging Initiative (ADNI, n = 230) to build parallel machine learning models, and objectively tested the models in a test cohort (n = 73) of MCI and mild AD patients independently recruited from Emory University. Whereas models incorporating age, gender, APOE ε4 status, and CSF amyloid and tau levels failed to reliably distinguish between MCI and mild AD in ADNI, introduction of CSF C3 and FH levels reproducibly improved the distinction between the two AD stages in ADNI (p < 0.05) and the Emory cohort (p = 0.014). Within each AD stage, the final model also distinguished between fast vs. slower decliners (p < 0.001 for MCI, p = 0.007 for mild AD), with lower C3 and FH levels associated with more advanced disease and faster progression. Conclusions We propose that CSF C3 and FH alterations may reflect stage-associated biomarker changes in AD, and can complement clinician diagnosis in diagnosing and staging AD using the publically available ADNI database as reference. Electronic supplementary material The online version of this article (doi:10.1186/s40478-016-0277-8) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Williams MA, McKay GJ, Carson R, Craig D, Silvestri G, Passmore P. Age-Related Macular Degeneration-Associated Genes in Alzheimer Disease. Am J Geriatr Psychiatry 2015; 23:1290-1296. [PMID: 26419733 DOI: 10.1016/j.jagp.2015.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 05/20/2015] [Accepted: 06/08/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Given the clinical and pathological similarities between age-related macular degeneration (AMD) and Alzheimer disease (AD), to assess whether AMD-associated single nucleotide polymorphisms (SNPs), including those from complement-related genes, are associated with AD. DESIGN A case-control association study-type design. SETTING A UK tertiary care dementia clinic. PARTICIPANTS 322 cognitively normal participants and 258 cases with a clinical diagnosis of AD. MEASUREMENTS Polymorphisms in the following genes were studied: CFH, ARMS2, C2/CFB, C3, CFI/PLA2G12a, SERPING1, TLR3, TLR4, CRP, APOE, and TOMM40. Haplotypes were analysed for CFH, TOMM40, and APOE. Univariate analysis was performed for each genetic change and case-comparator status, and then correction for multiple testing performed. RESULTS The presence of an ε4 APOE allele was significantly associated with AD. No association was evident between CFH SNPs or haplotypes, or other AMD-associated SNPs tested, and AD. The exceptions were TOMM40 SNPs, which were associated with AD even after correction for multiple comparisons. The associations disappeared, however, when entered into a regression model including APOE genotypes. CONCLUSIONS The results for most SNPs tested, as well as CFH haplotypes, are novel. The functional effects of abnormal complement activity in AD's pathogenesis may be contradictory, but methodological reasons may underlie the lack of association-for example, genetic changes other than SNPs being involved.
Collapse
Affiliation(s)
| | - Gareth J McKay
- Centre for Public Health, Queen's University of Belfast, UK
| | - Robyn Carson
- Centre for Public Health, Queen's University of Belfast, UK
| | - David Craig
- Centre for Public Health, Queen's University of Belfast, UK
| | - Giuliana Silvestri
- Centre for Experimental Medicine (GS), Queen's University of Belfast, UK
| | - Peter Passmore
- Centre for Public Health, Queen's University of Belfast, UK
| |
Collapse
|
25
|
Clark SJ, Bishop PN. Role of Factor H and Related Proteins in Regulating Complement Activation in the Macula, and Relevance to Age-Related Macular Degeneration. J Clin Med 2015; 4:18-31. [PMID: 25729613 PMCID: PMC4340553 DOI: 10.3390/jcm4010018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The recent revolution in age-related macular degeneration (AMD) genetics has demonstrated that genetic alterations affecting the alternative pathway of the complement cascade have a major influence on AMD risk. One of the two most important genetic loci is on chromosome 1 and contains genes encoding complement factor H (FH) and the factor H related proteins (FHR proteins). In macular tissue, especially Bruch’s membrane, relatively high levels of a truncated splice variant of FH called factor H-like protein 1 (FHL-1) are present. Here we discuss how genetic variations may alter the amounts, or by altering their protein sequences, the functions of these proteins. In particular, the common Y402H polymorphism affects the ability of FHL-1 and FH to localize to Bruch’s membrane and the inner choroid because it alters the ability of these complement regulators to bind heparan sulphate (HS) in these structures. In addition, there is an age-related loss of HS from Bruch’s membrane. We hypothesize that a combination of poor binding of the 402H variants of FHL-1 and FH to Bruch’s membrane, combined with a decrease in binding due to age-related HS loss, eventually results in insufficient FHL-1 and FH binding to Bruch’s membrane. This could result in complement activation, inflammation and thereby predispose to AMD.
Collapse
Affiliation(s)
- Simon J. Clark
- Centre for Hearing & Vision Research, Institute of Human Development, AV Hill Building, University of Manchester, Oxford Road, Manchester M13 9PL, UK; E-Mail:
- Centre for Advanced Discovery and Experimental Therapeutics, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Paul N. Bishop
- Centre for Hearing & Vision Research, Institute of Human Development, AV Hill Building, University of Manchester, Oxford Road, Manchester M13 9PL, UK; E-Mail:
- Centre for Advanced Discovery and Experimental Therapeutics, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
- Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WH, UK
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-(0)-161-275-5755
| |
Collapse
|
26
|
Uchida K, Shan L, Suzuki H, Tabuse Y, Nishimura Y, Hirokawa Y, Mizukami K, Akatsu H, Meno K, Asada T. Amyloid-β sequester proteins as blood-based biomarkers of cognitive decline. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2015; 1:270-80. [PMID: 27239510 PMCID: PMC4876892 DOI: 10.1016/j.dadm.2015.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Introduction There are no blood-based biomarkers for cognitive decline in aging, or mild cognitive impairment (MCI) and Alzheimer's disease (AD). Cumulative evidence suggests that apolipoproteins, complement system, and transthyretin are involved in AD pathogenesis by sequestration of amyloid β. However, there is no clinical study to assess the utility of “sequester proteins” in risk assessment and/or diagnosis of MCI and AD. Methods Serum levels of sequester proteins and their clinical potential in cognitive decline assessment were analyzed by longitudinal and cross-sectional studies using independent cohorts and were confirmed by a prospective study. Results A combination of apolipoprotein A1, complement C3, and transthyretin achieved an area under the curve of 0.89 (sensitivity 91% and specificity 80%) in MCI versus healthy controls and also discriminated individuals with mild cognitive decline from healthy controls. Discussion A set of sequester proteins could be blood-based biomarkers for assessment of early stages of cognitive decline.
Collapse
Affiliation(s)
- Kazuhiko Uchida
- Department of Molecular Biological Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Tsukuba Industrial Liaison and Cooperative Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Corresponding author. Tel.: +81-29-853-3210; Fax: +81-50-3730-7456.
| | - Liu Shan
- Department of Molecular Biological Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Neuropsychiatry, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hideaki Suzuki
- Tsukuba Industrial Liaison and Cooperative Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Research Division, MCBI. Inc., Ibaraki, Japan
| | - Yo Tabuse
- Tsukuba Industrial Liaison and Cooperative Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Research Division, MCBI. Inc., Ibaraki, Japan
| | - Yoshinori Nishimura
- Tsukuba Industrial Liaison and Cooperative Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Research Division, MCBI. Inc., Ibaraki, Japan
| | | | - Katsuyoshi Mizukami
- Department of Neuropsychiatry, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | - Kohji Meno
- Tsukuba Industrial Liaison and Cooperative Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Research Division, MCBI. Inc., Ibaraki, Japan
| | - Takashi Asada
- Department of Neuropsychiatry, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
27
|
Deleidi M, Jäggle M, Rubino G. Immune aging, dysmetabolism, and inflammation in neurological diseases. Front Neurosci 2015; 9:172. [PMID: 26089771 PMCID: PMC4453474 DOI: 10.3389/fnins.2015.00172] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/28/2015] [Indexed: 12/17/2022] Open
Abstract
As we age, the immune system undergoes a process of senescence accompanied by the increased production of proinflammatory cytokines, a chronic subclinical condition named as “inflammaging”. Emerging evidence from human and experimental models suggest that immune senescence also affects the central nervous system and promotes neuronal dysfunction, especially within susceptible neuronal populations. In this review we discuss the potential role of immune aging, inflammation and metabolic derangement in neurological diseases. The discovery of novel therapeutic strategies targeting age-linked inflammation may promote healthy brain aging and the treatment of neurodegenerative as well as neuropsychiatric disorders.
Collapse
Affiliation(s)
- Michela Deleidi
- Department of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Hertie Institute for Clinical Brain Research, University of Tübingen Tübingen, Germany
| | - Madeline Jäggle
- Department of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Hertie Institute for Clinical Brain Research, University of Tübingen Tübingen, Germany
| | - Graziella Rubino
- Department of Internal Medicine II, Center for Medical Research, University of Tübingen Tübingen, Germany
| |
Collapse
|
28
|
Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K, Frautschy SA, Finsen B, Brown GC, Verkhratsky A, Yamanaka K, Koistinaho J, Latz E, Halle A, Petzold GC, Town T, Morgan D, Shinohara ML, Perry VH, Holmes C, Bazan NG, Brooks DJ, Hunot S, Joseph B, Deigendesch N, Garaschuk O, Boddeke E, Dinarello CA, Breitner JC, Cole GM, Golenbock DT, Kummer MP. Neuroinflammation in Alzheimer's disease. Lancet Neurol 2015; 14:388-405. [PMID: 25792098 DOI: 10.1016/s1474-4422(15)70016-5] [Citation(s) in RCA: 4166] [Impact Index Per Article: 416.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increasing evidence suggests that Alzheimer's disease pathogenesis is not restricted to the neuronal compartment, but includes strong interactions with immunological mechanisms in the brain. Misfolded and aggregated proteins bind to pattern recognition receptors on microglia and astroglia, and trigger an innate immune response characterised by release of inflammatory mediators, which contribute to disease progression and severity. Genome-wide analysis suggests that several genes that increase the risk for sporadic Alzheimer's disease encode factors that regulate glial clearance of misfolded proteins and the inflammatory reaction. External factors, including systemic inflammation and obesity, are likely to interfere with immunological processes of the brain and further promote disease progression. Modulation of risk factors and targeting of these immune mechanisms could lead to future therapeutic or preventive strategies for Alzheimer's disease.
Collapse
Affiliation(s)
- Michael T Heneka
- Department of Neurology, University Hospital Bonn, University of Bonn, Bonn, Germany; German Center for Neurodegnerative Diseases (DZNE), Bonn, Germany.
| | - Monica J Carson
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California, Riverside, CA, USA
| | - Joseph El Khoury
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Gary E Landreth
- Alzheimer Research Laboratory, Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | | | - Andreas H Jacobs
- Department of Geriatrics, Johanniter Hospital, Bonn, Germany; European Institute for Molecular Imaging (EIMI) at the Westfalian Wilhelms University (WWU), Münster, Germany
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Javier Vitorica
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Cientificas Universidad de Sevilla, Sevilla, Spain
| | - Richard M Ransohoff
- Department of Neuroscience, Neuroinflammation Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Karl Herrup
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong
| | - Sally A Frautschy
- Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, the Geriatric, Research, and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA
| | - Bente Finsen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, Basque Foundation for Science (IKERBASQUE), Bilbao, Spain; Department of Neurosciences, University of the Basque Country UPV/EHU (Euskal Herriko Unibertsitatea/Universidad del País Vasco) and CIBERNED (Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas), Leioa, Spain
| | - Koji Yamanaka
- Research Institute of Environmental Medicine, Nagoya University/RIKEN Brain Science Institute, Wako-shi, Japan
| | - Jari Koistinaho
- Department of Neurobiology, AI Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Eicke Latz
- German Center for Neurodegnerative Diseases (DZNE), Bonn, Germany; Institute of Innate Immunity, University of Bonn, Bonn, Germany; Department of InfectiousDiseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Annett Halle
- Max-Planck Research Group Neuroimmunology, Center of Advanced European Studies and Research (CAESAR), Bonn, Germany
| | - Gabor C Petzold
- Department of Neurology, University Hospital Bonn, University of Bonn, Bonn, Germany; German Center for Neurodegnerative Diseases (DZNE), Bonn, Germany
| | - Terrence Town
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Dave Morgan
- Department of Molecular Pharmacology and Physiology, Byrd Alzheimer's Institute, University of South Florida College of Medicine, Tampa, FL, USA
| | - Mari L Shinohara
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - V Hugh Perry
- School of Biological Sciences, Southampton General Hospital, Southampton, UK
| | - Clive Holmes
- Clinical and Experimental Science, University of Southampton, Southampton, UK; Memory Assessment and Research Centre, Moorgreen Hospital, Southern Health Foundation Trust, Southampton, UK
| | - Nicolas G Bazan
- Louisiana State University Neuroscience Center of Excellence, Louisiana State University Health Sciences Center School of Medicine in New Orleans, LA, USA
| | - David J Brooks
- Division of Experimental Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Stéphane Hunot
- Centre National de la Recherche Scientifique (CNRS), UMR 7225, Experimental Therapeutics of Neurodegeneration, Paris, France
| | - Bertrand Joseph
- Department of Oncology Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Nikolaus Deigendesch
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Olga Garaschuk
- Institute of Physiology II, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Erik Boddeke
- Department of Neuroscience, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | | | - John C Breitner
- Centre for Studies on Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, and the McGill University Faculty of Medicine, Montreal, Quebec, Canada
| | - Greg M Cole
- Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, the Geriatric, Research, and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA
| | - Douglas T Golenbock
- Department of InfectiousDiseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Markus P Kummer
- Department of Neurology, University Hospital Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
29
|
Langford-Smith A, Day AJ, Bishop PN, Clark SJ. Complementing the Sugar Code: Role of GAGs and Sialic Acid in Complement Regulation. Front Immunol 2015; 6:25. [PMID: 25699044 PMCID: PMC4313701 DOI: 10.3389/fimmu.2015.00025] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/12/2015] [Indexed: 01/15/2023] Open
Abstract
Sugar molecules play a vital role on both microbial and mammalian cells, where they are involved in cellular communication, govern microbial virulence, and modulate host immunity and inflammatory responses. The complement cascade, as part of a host's innate immune system, is a potent weapon against invading bacteria but has to be tightly regulated to prevent inappropriate attack and damage to host tissues. A number of complement regulators, such as factor H and properdin, interact with sugar molecules, such as glycosaminoglycans (GAGs) and sialic acid, on host and pathogen membranes and direct the appropriate complement response by either promoting the binding of complement activators or inhibitors. The binding of these complement regulators to sugar molecules can vary from location to location, due to their different specificities and because distinct structural and functional subpopulations of sugars are found in different human organs, such as the brain, kidney, and eye. This review will cover recent studies that have provided important new insights into the role of GAGs and sialic acid in complement regulation and how sugar recognition may be compromised in disease.
Collapse
Affiliation(s)
- Alex Langford-Smith
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester , Manchester , UK
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester , Manchester , UK
| | - Paul N Bishop
- Centre for Hearing and Vision Research, Institute of Human Development, University of Manchester , Manchester , UK ; Centre for Advanced Discovery and Experimental Therapeutics, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust , Manchester , UK ; Manchester Academic Health Science Centre, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust , Manchester , UK ; Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust , Manchester , UK
| | - Simon J Clark
- Centre for Hearing and Vision Research, Institute of Human Development, University of Manchester , Manchester , UK ; Centre for Advanced Discovery and Experimental Therapeutics, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust , Manchester , UK
| |
Collapse
|
30
|
Nayak A, Salt G, Verma SK, Kishore U. Proteomics Approach to Identify Biomarkers in Neurodegenerative Diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 121:59-86. [DOI: 10.1016/bs.irn.2015.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Clark SJ, Schmidt CQ, White AM, Hakobyan S, Morgan BP, Bishop PN. Identification of factor H-like protein 1 as the predominant complement regulator in Bruch's membrane: implications for age-related macular degeneration. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:4962-70. [PMID: 25305316 PMCID: PMC4225158 DOI: 10.4049/jimmunol.1401613] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The tight regulation of innate immunity on extracellular matrix (ECM) is a vital part of immune homeostasis throughout the human body, and disruption to this regulation in the eye is thought to contribute directly to the progression of age-related macular degeneration (AMD). The plasma complement regulator factor H (FH) is thought to be the main regulator that protects ECM against damaging complement activation. However, in the present study we demonstrate that a truncated form of FH, called FH-like protein 1 (FHL-1), is the main regulatory protein in the layer of ECM under human retina, called Bruch's membrane. Bruch's membrane is a major site of AMD disease pathogenesis and where drusen, the hallmark lesions of AMD, form. We show that FHL-1 can passively diffuse through Bruch's membrane, whereas the full sized, glycosylated, FH cannot. FHL-1 is largely bound to Bruch's membrane through interactions with heparan sulfate, and we show that the common Y402H polymorphism in the CFH gene, associated with an increased risk of AMD, reduces the binding of FHL-1 to this heparan sulfate. We also show that FHL-1 is retained in drusen whereas FH coats the periphery of the lesions, perhaps inhibiting their clearance. Our results identify a novel mechanism of complement regulation in the human eye, which highlights potential new avenues for therapeutic strategies.
Collapse
Affiliation(s)
- Simon J Clark
- Centre for Hearing and Vision Research, Institute of Human Development, University of Manchester, Manchester M13 9PT, United Kingdom; Centre for Advanced Discovery and Experimental Therapeutics, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom;
| | - Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany
| | - Anne M White
- Centre for Hearing and Vision Research, Institute of Human Development, University of Manchester, Manchester M13 9PT, United Kingdom; Centre for Advanced Discovery and Experimental Therapeutics, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom
| | - Svetlana Hakobyan
- Complement Biology Group, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom; and
| | - B Paul Morgan
- Complement Biology Group, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom; and
| | - Paul N Bishop
- Centre for Hearing and Vision Research, Institute of Human Development, University of Manchester, Manchester M13 9PT, United Kingdom; Centre for Advanced Discovery and Experimental Therapeutics, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom; Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, United Kingdom
| |
Collapse
|
32
|
Toledo JB, Korff A, Shaw LM, Trojanowski JQ, Zhang J. Low levels of cerebrospinal fluid complement 3 and factor H predict faster cognitive decline in mild cognitive impairment. ALZHEIMERS RESEARCH & THERAPY 2014; 6:36. [PMID: 25478014 PMCID: PMC4255518 DOI: 10.1186/alzrt266] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/21/2014] [Indexed: 12/11/2022]
Abstract
Introduction Alzheimer’s disease (AD) is characterized by the deposition of tau and amyloid in the brain. Although the core cerebrospinal fluid (CSF) AD biomarkers amyloid β peptide 1–42 (Aβ1–42), total tau (t-tau) and phosphorylated tau 181 (p-tau181) show good diagnostic sensitivity and specificity, additional biomarkers that can aid in preclinical diagnosis or better track disease progression are needed. Activation of the complement system, a pivotal part of inflammation, occurs at very early stages in the AD brain. Therefore, CSF levels of complement proteins that could be linked to cognitive and structural changes in AD may have diagnostic and prognostic value. Methods Using xMAP® technology based assays we measured complement 3 (C3) and factor H (FH) in the CSF of 110 controls (CN), 187 mild cognitive impairment (MCI) and 92 AD subjects of the AD Neuroimaging Initiative (ADNI) at baseline. All ADNI participants underwent clinical follow-up at 12 month intervals and MCI subjects had additional visits at 6 and 18 months. The association between CSF biomarkers and different outcome measures were analyzed using Cox proportional hazard models (conversion from MCI to AD), logistic regression models (classification of clinical groups) and mixed-effects models adjusted for age, gender, education, t-tau/Aβ1–42 and APOE ϵ4 presence (baseline and longitudinal association between biomarkers and cognitive scores). Results Although no association was found between the complement proteins and clinical diagnosis or cognitive measures, lower levels of C3 (β = −0.12, p = 0.041) and FH (β = −0.075, p = 0.041) were associated with faster cognitive decline in MCI subjects as measured by the AD Assessment Scale-cognitive subscale (ADAS-Cog) test. Furthermore, lower FH levels were associated with larger lateral ventricular volume (p = 0.024), which is indicative of brain atrophy. Conclusions Our study confirms a lack of suitability of CSF C3 and FH as diagnostic biomarkers of AD, but points to their modest potential as prognostic biomarkers and therapeutic targets in cognitively impaired patients.
Collapse
Affiliation(s)
- Jon B Toledo
- Pathology & Laboratory Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Ané Korff
- Department of Pathology, University of Washington School of Medicine, HMC Box 359635, 325 9th Avenue, Seattle, WA 98104, USA
| | - Leslie M Shaw
- Pathology & Laboratory Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - John Q Trojanowski
- Pathology & Laboratory Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Jing Zhang
- Department of Pathology, University of Washington School of Medicine, HMC Box 359635, 325 9th Avenue, Seattle, WA 98104, USA
| |
Collapse
|
33
|
Mosher KI, Wyss-Coray T. Microglial dysfunction in brain aging and Alzheimer's disease. Biochem Pharmacol 2014; 88:594-604. [PMID: 24445162 PMCID: PMC3972294 DOI: 10.1016/j.bcp.2014.01.008] [Citation(s) in RCA: 452] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 12/23/2022]
Abstract
Microglia, the immune cells of the central nervous system, have long been a subject of study in the Alzheimer's disease (AD) field due to their dramatic responses to the pathophysiology of the disease. With several large-scale genetic studies in the past year implicating microglial molecules in AD, the potential significance of these cells has become more prominent than ever before. As a disease that is tightly linked to aging, it is perhaps not entirely surprising that microglia of the AD brain share some phenotypes with aging microglia. Yet the relative impacts of both conditions on microglia are less frequently considered in concert. Furthermore, microglial "activation" and "neuroinflammation" are commonly analyzed in studies of neurodegeneration but are somewhat ill-defined concepts that in fact encompass multiple cellular processes. In this review, we have enumerated six distinct functions of microglia and discuss the specific effects of both aging and AD. By calling attention to the commonalities of these two states, we hope to inspire new approaches for dissecting microglial mechanisms.
Collapse
Affiliation(s)
- Kira Irving Mosher
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA; Neuroscience IDP Program, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA; Center for Tissue Regeneration, Repair and Restoration, Veterans Administration Palo Alto Health Care System, Palo Alto, California 94304, USA.
| |
Collapse
|
34
|
Doens D, Fernández PL. Microglia receptors and their implications in the response to amyloid β for Alzheimer's disease pathogenesis. J Neuroinflammation 2014; 11:48. [PMID: 24625061 PMCID: PMC3975152 DOI: 10.1186/1742-2094-11-48] [Citation(s) in RCA: 269] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/24/2014] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a major public health problem with substantial economic and social impacts around the world. The hallmarks of AD pathogenesis include deposition of amyloid β (Aβ), neurofibrillary tangles, and neuroinflammation. For many years, research has been focused on Aβ accumulation in senile plaques, as these aggregations were perceived as the main cause of the neurodegeneration found in AD. However, increasing evidence suggests that inflammation also plays a critical role in the pathogenesis of AD. Microglia cells are the resident macrophages of the brain and act as the first line of defense in the central nervous system. In AD, microglia play a dual role in disease progression, being essential for clearing Aβ deposits and releasing cytotoxic mediators. Aβ activates microglia through a variety of innate immune receptors expressed on these cells. The mechanisms through which amyloid deposits provoke an inflammatory response are not fully understood, but it is believed that these receptors cooperate in the recognition, internalization, and clearance of Aβ and in cell activation. In this review, we discuss the role of several receptors expressed on microglia in Aβ recognition, uptake, and signaling, and their implications for AD pathogenesis.
Collapse
Affiliation(s)
- Deborah Doens
- Centro de Biología Molecular y Celular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Edificio 219, Clayton, Ciudad del Saber, República de Panamá
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Patricia L Fernández
- Centro de Biología Molecular y Celular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Edificio 219, Clayton, Ciudad del Saber, República de Panamá
| |
Collapse
|
35
|
CCAAT-enhancer binding protein-β expression and elevation in Alzheimer's disease and microglial cell cultures. PLoS One 2014; 9:e86617. [PMID: 24466171 PMCID: PMC3899300 DOI: 10.1371/journal.pone.0086617] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 12/16/2013] [Indexed: 01/24/2023] Open
Abstract
CCAAT-enhancer binding proteins are transcription factors that help to regulate a wide range of inflammatory mediators, as well as several key elements of energy metabolism. Because C/EBPs are expressed by rodent astrocytes and microglia, and because they are induced by pro-inflammatory cytokines that are chronically upregulated in the Alzheimer’s disease (AD) cortex, we have investigated whether C/EBPs are expressed and upregulated in the AD cortex. Here, we demonstrate for the first time that C/EBPβ can be detected by Western blots in AD and nondemented elderly (ND) cortex, and that it is significantly increased in AD cortical samples. In situ, C/EBPβ localizes immunohistochemically to microglia. In microglia cultured from rapid autopsies of elderly patient’s brains and in the BV-2 murine microglia cell line, we have shown that C/EBPβ can be upregulated by C/EBP-inducing cytokines or lipopolysaccharide and exhibits nuclear translocation possibly indicating functional activity. Given the known co-regulatory role of C/EBPs in pivotal inflammatory mechanisms, many of which are present in AD, we propose that upregulation of C/EBPs in the AD brain could be an important orchestrator of pathogenic changes.
Collapse
|
36
|
Shastri A, Bonifati DM, Kishore U. Innate immunity and neuroinflammation. Mediators Inflamm 2013; 2013:342931. [PMID: 23843682 PMCID: PMC3697414 DOI: 10.1155/2013/342931] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/15/2013] [Indexed: 01/07/2023] Open
Abstract
Inflammation of central nervous system (CNS) is usually associated with trauma and infection. Neuroinflammation occurs in close relation to trauma, infection, and neurodegenerative diseases. Low-level neuroinflammation is considered to have beneficial effects whereas chronic neuroinflammation can be harmful. Innate immune system consisting of pattern-recognition receptors, macrophages, and complement system plays a key role in CNS homeostasis following injury and infection. Here, we discuss how innate immune components can also contribute to neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Abhishek Shastri
- Centre for Infection, Immunity and Disease Mechanisms, Heinz Wolff Building, Brunel University, London UB8 3PH, UK
| | - Domenico Marco Bonifati
- Unit of Neurology, Department of Neurological Disorders, Santa Chiara Hospital, Largo Medaglie d'oro 1, 38100 Trento, Italy
| | - Uday Kishore
- Centre for Infection, Immunity and Disease Mechanisms, Heinz Wolff Building, Brunel University, London UB8 3PH, UK
| |
Collapse
|
37
|
Lista S, Faltraco F, Prvulovic D, Hampel H. Blood and plasma-based proteomic biomarker research in Alzheimer's disease. Prog Neurobiol 2013; 101-102:1-17. [DOI: 10.1016/j.pneurobio.2012.06.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 03/28/2012] [Accepted: 06/18/2012] [Indexed: 12/14/2022]
|
38
|
Killick R, Hughes TR, Morgan BP, Lovestone S. Deletion of Crry, the murine ortholog of the sporadic Alzheimer's disease risk gene CR1, impacts tau phosphorylation and brain CFH. Neurosci Lett 2012; 533:96-9. [PMID: 23153828 PMCID: PMC3556777 DOI: 10.1016/j.neulet.2012.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/25/2012] [Accepted: 11/05/2012] [Indexed: 01/09/2023]
Abstract
Large-scale genome-wide SNP association studies have identified an association between variants of CR1, the gene encoding complement component receptor 1, and the sporadic form of Alzheimer's disease. The role of CR1 and the complement system in Alzheimer's disease remains far from clear. In rodents the closest ortholog of CR1 is the Crry gene (Cr1-related protein Y). To begin to explore its role in Alzheimer's disease we examined hippocampal lysates from Crry−/− mice and age matched controls by immunoblotting. We measured complement factor H, a component of the complement system and biomarker for Alzheimer's disease progression, and tau phosphorylation at the serine 235 site, hyperphosphorylated forms of tau being a defining neuropathological hallmark of the disease. We found that levels of CFH and of tau phosphorylation at serine 235 were strongly and significantly reduced in Crry−/− samples. These observations provide a starting point for further attempts to determine the role of CR1 in the neuropathological process driving Alzheimer's disease.
Collapse
Affiliation(s)
- R Killick
- King's College London, Institute of Psychiatry, De Crespigny Park, Denmark Hill, London SE5 8AF, UK.
| | | | | | | |
Collapse
|
39
|
Microglia, Alzheimer's disease, and complement. Int J Alzheimers Dis 2012; 2012:983640. [PMID: 22957298 PMCID: PMC3432348 DOI: 10.1155/2012/983640] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 05/01/2012] [Accepted: 05/07/2012] [Indexed: 02/02/2023] Open
Abstract
Microglia, the immune cell of the brain, are implicated in cascades leading to neuronal loss and cognitive decline in Alzheimer's disease (AD). Recent genome-wide association studies have indicated a number of risk factors for the development of late-onset AD. Two of these risk factors are an altered immune response and polymorphisms in complement receptor 1. In view of these findings, we discuss how complement signalling in the AD brain and microglial responses in AD intersect. Dysregulation of the complement cascade, either by changes in receptor expression, enhanced activation of different complement pathways or imbalances between complement factor production and complement cascade inhibitors may all contribute to the involvement of complement in AD. Altered complement signalling may reduce the ability of microglia to phagocytose apoptotic cells and clear amyloid beta peptides, modulate the expression by microglia of complement components and receptors, promote complement factor production by plaque-associated cytokines derived from activated microglia and astrocytes, and disrupt complement inhibitor production. The evidence presented here indicates that microglia in AD are influenced by complement factors to adopt protective or harmful phenotypes and the challenge ahead lies in understanding how this can be manipulated to therapeutic advantage to treat late onset AD.
Collapse
|
40
|
Fu H, Liu B, Frost JL, Hong S, Jin M, Ostaszewski B, Shankar GM, Costantino IM, Carroll MC, Mayadas TN, Lemere CA. Complement component C3 and complement receptor type 3 contribute to the phagocytosis and clearance of fibrillar Aβ by microglia. Glia 2012; 60:993-1003. [PMID: 22438044 PMCID: PMC3325361 DOI: 10.1002/glia.22331] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 02/28/2012] [Indexed: 11/08/2022]
Abstract
Complement components and their receptors are found within and around amyloid β (Aβ) cerebral plaques in Alzheimer's disease (AD). Microglia defend against pathogens through phagocytosis via complement component C3 and/or engagement of C3 cleavage product iC3b with complement receptor type 3 (CR3, Mac-1). Here, we provide direct evidence that C3 and Mac-1 mediate, in part, phagocytosis and clearance of fibrillar amyloid-β (fAβ) by murine microglia in vitro and in vivo. Microglia took up not only synthetic fAβ(42) but also amyloid cores from patients with AD, transporting them to lysosomes in vitro. Fibrillar Aβ(42) uptake was significantly attenuated by the deficiency or knockdown of C3 or Mac-1 and scavenger receptor class A ligands. In addition, C3 or Mac-1 knockdown combined with a scavenger receptor ligand, fucoidan, further attenuated fibrillar Aβ(42) uptake by N9 microglia. Fluorescent fibrillar Aβ(42) microinjected cortically was significantly higher in C3 and Mac-1 knockout mice compared with wild-type mice 5 days after surgery, indicating reduced clearance in vivo. Together, these results demonstrate that C3 and Mac-1 are involved in phagocytosis and clearance of fAβ by microglia, providing support for a potential beneficial role for microglia and the complement system in AD pathogenesis. © 2012 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hongjun Fu
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Bin Liu
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Jeffrey L. Frost
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Soyon Hong
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Ming Jin
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Beth Ostaszewski
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Ganesh M. Shankar
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Isabel M. Costantino
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | | | - Tanya N. Mayadas
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Cynthia A. Lemere
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
41
|
Kopp A, Hebecker M, Svobodová E, Józsi M. Factor h: a complement regulator in health and disease, and a mediator of cellular interactions. Biomolecules 2012; 2:46-75. [PMID: 24970127 PMCID: PMC4030870 DOI: 10.3390/biom2010046] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/23/2012] [Accepted: 01/26/2012] [Indexed: 12/12/2022] Open
Abstract
Complement is an essential part of innate immunity as it participates in host defense against infections, disposal of cellular debris and apoptotic cells, inflammatory processes and modulation of adaptive immune responses. Several soluble and membrane-bound regulators protect the host from the potentially deleterious effects of uncontrolled and misdirected complement activation. Factor H is a major soluble regulator of the alternative complement pathway, but it can also bind to host cells and tissues, protecting them from complement attack. Interactions of factor H with various endogenous ligands, such as pentraxins, extracellular matrix proteins and DNA are important in limiting local complement-mediated inflammation. Impaired regulatory as well as ligand and cell recognition functions of factor H, caused by mutations or autoantibodies, are associated with the kidney diseases: atypical hemolytic uremic syndrome and dense deposit disease and the eye disorder: age-related macular degeneration. In addition, factor H binds to receptors on host cells and is involved in adhesion, phagocytosis and modulation of cell activation. In this review we discuss current concepts on the physiological and pathophysiological roles of factor H in light of new data and recent developments in our understanding of the versatile roles of factor H as an inhibitor of complement activation and inflammation, as well as a mediator of cellular interactions. A detailed knowledge of the functions of factor H in health and disease is expected to unravel novel therapeutic intervention possibilities and to facilitate the development or improvement of therapies.
Collapse
Affiliation(s)
- Anne Kopp
- Junior Research Group Cellular Immunobiology, Leibniz Institute for Natural Product Research and Infection Biology, Jena 07745, Germany.
| | - Mario Hebecker
- Junior Research Group Cellular Immunobiology, Leibniz Institute for Natural Product Research and Infection Biology, Jena 07745, Germany.
| | - Eliška Svobodová
- Junior Research Group Cellular Immunobiology, Leibniz Institute for Natural Product Research and Infection Biology, Jena 07745, Germany.
| | - Mihály Józsi
- Junior Research Group Cellular Immunobiology, Leibniz Institute for Natural Product Research and Infection Biology, Jena 07745, Germany.
| |
Collapse
|
42
|
Proitsi P, Lupton MK, Dudbridge F, Tsolaki M, Hamilton G, Daniilidou M, Pritchard M, Lord K, Martin BM, Johnson J, Craig D, Todd S, McGuinness B, Hollingworth P, Harold D, Kloszewska I, Soininen H, Mecocci P, Velas B, Gill M, Lawlor B, Rubinsztein DC, Brayne C, Passmore PA, Williams J, Lovestone S, Powell JF. Alzheimer's disease and age-related macular degeneration have different genetic models for complement gene variation. Neurobiol Aging 2012; 33:1843.e9-17. [PMID: 22300950 DOI: 10.1016/j.neurobiolaging.2011.12.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 12/12/2011] [Accepted: 12/28/2011] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) and age-related macular degeneration (AMD) are both neurodegenerative disorders which share common pathological and biochemical features of the complement pathway. The aim of this study was to investigate whether there is an association between well replicated AMD genetic risk factors and AD. A large cohort of AD (n = 3898) patients and controls were genotyped for single nucleotide polymorphisms (SNPs) in the complement factor H (CFH), the Age-related maculopathy susceptibility protein 2 (ARMS2) the complement component 2 (C2), the complement factor B (CFB), and the complement component 3 (C3) genes. While significant but modest associations were identified between the complement factor H, the age-related maculopathy susceptibility protein 2, and the complement component 3 single nucleotide polymorphisms and AD, these were different in direction or genetic model to that observed in AMD. In addition the multilocus genetic model that predicts around a half of the sibling risk for AMD does not predict risk for AD. Our study provides further support to the hypothesis that while activation of the alternative complement pathway is central to AMD pathogenesis, it is less involved in AD.
Collapse
Affiliation(s)
- Petroula Proitsi
- King's College London, Institute of Psychiatry, De Crespigny Park, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Fraczek LA, Martin CB, Martin BK. c-Jun and c-Fos regulate the complement factor H promoter in murine astrocytes. Mol Immunol 2011; 49:201-10. [PMID: 21920606 DOI: 10.1016/j.molimm.2011.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/08/2011] [Accepted: 08/18/2011] [Indexed: 11/24/2022]
Abstract
The complement system is a critical component of innate immunity that requires regulation to avoid inappropriate activation. This regulation is provided by many proteins, including complement factor H (CFH), a critical regulator of the alternative pathway of complement activation. Given its regulatory function, mutations in CFH have been implicated in diseases such as age-related macular degeneration and membranoproliferative glomerulonephritis, and central nervous system diseases such as Alzheimer's disease, Parkinson's disease, and a demyelinating murine model, experimental autoimmune encephalomyelitis (EAE). There have been few investigations on the transcriptional regulation of CFH in the brain and CNS. Our studies show that CFH mRNA is present in several CNS cell types. The murine CFH (mCFH) promoter was cloned and examined through truncation constructs and we show that specific regions throughout the promoter contain enhancers and repressors that are positively regulated by inflammatory cytokines in astrocytes. Database mining of these regions indicated transcription factor binding sites conserved between different species, which led to the investigation of specific transcription factor binding interactions in a 241 base pair (bp) region at -416 bp to -175 bp that showed the strongest activity. Through supershift analysis, it was determined that c-Jun and c-Fos interact with the CFH promoter in astrocytes in this region. These results suggest a relationship between cell cycle and complement regulation, and how these transcription factors and CFH affect disease will be a valuable area of investigation.
Collapse
Affiliation(s)
- Laura A Fraczek
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242, United States
| | | | | |
Collapse
|
44
|
Veerhuis R, Nielsen HM, Tenner AJ. Complement in the brain. Mol Immunol 2011; 48:1592-603. [PMID: 21546088 PMCID: PMC3142281 DOI: 10.1016/j.molimm.2011.04.003] [Citation(s) in RCA: 316] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/04/2011] [Accepted: 04/04/2011] [Indexed: 01/24/2023]
Abstract
The brain is considered to be an immune privileged site, because the blood-brain barrier limits entry of blood borne cells and proteins into the central nervous system (CNS). As a result, the detection and clearance of invading microorganisms and senescent cells as well as surplus neurotransmitters, aged and glycated proteins, in order to maintain a healthy environment for neuronal and glial cells, is largely confined to the innate immune system. In recent years it has become clear that many factors of innate immunity are expressed throughout the brain. Neuronal and glial cells express Toll like receptors as well as complement receptors, and virtually all complement components can be locally produced in the brain, often in response to injury or developmental cues. However, as inflammatory reactions could interfere with proper functioning of the brain, tight and fine tuned regulatory mechanisms are warranted. In age related diseases, such as Alzheimer's disease (AD), accumulating amyloid proteins elicit complement activation and a local, chronic inflammatory response that leads to attraction and activation of glial cells that, under such activation conditions, can produce neurotoxic substances, including pro-inflammatory cytokines and oxygen radicals. This process may be exacerbated by a disturbed balance between complement activators and complement regulatory proteins such as occurs in AD, as the local synthesis of these proteins is differentially regulated by pro-inflammatory cytokines. Much knowledge about the role of complement in neurodegenerative diseases has been derived from animal studies with transgenic overexpressing or knockout mice for specific complement factors or receptors. These studies have provided insight into the potential therapeutic use of complement regulators and complement receptor antagonists in chronic neurodegenerative diseases as well as in acute conditions, such as stroke. Interestingly, recent animal studies have also indicated that complement activation products are involved in brain development and synapse formation. Not only are these findings important for the understanding of how brain development and neural network formation is organized, it may also give insights into the role of complement in processes of neurodegeneration and neuroprotection in the injured or aged and diseased adult central nervous system, and thus aid in identifying novel and specific targets for therapeutic intervention.
Collapse
Affiliation(s)
- Robert Veerhuis
- Depts of Clinical Chemistry, Pathology, Psychiatry and Alzheimer Center, VU, University Medical Center, Amsterdam, The Netherlands
| | - Henrietta M. Nielsen
- Dept of Clinical Sciences Malmö, Molecular Memory Research Unit, Lund University, The Wallenberg Lab 2floor, Skåne University Hospital entrance 46, Malmö, Sweden
| | - Andrea J. Tenner
- Depts of Molecular Biology and Biochemistry and Neurobiology and Behavior, Institute for Immunology, UCI MIND, University of California, Irvine, USA
| |
Collapse
|
45
|
Nan R, Farabella I, Schumacher FF, Miller A, Gor J, Martin AC, Jones DT, Lengyel I, Perkins SJ. Zinc binding to the Tyr402 and His402 allotypes of complement factor H: possible implications for age-related macular degeneration. J Mol Biol 2011; 408:714-35. [PMID: 21396937 PMCID: PMC3092982 DOI: 10.1016/j.jmb.2011.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/01/2011] [Indexed: 12/29/2022]
Abstract
The Tyr402His polymorphism of complement factor H (FH) with 20 short complement regulator (SCR) domains is associated with age-related macular degeneration (AMD). How FH contributes to disease pathology is not clear. Both FH and high concentrations of zinc are found in drusen deposits, the key feature of AMD. Heterozygous FH is inhibited by zinc, which causes FH to aggregate. Here, zinc binding to homozygous FH was studied. By analytical ultracentrifugation, large amounts of oligomers were observed with both the native Tyr402 and the AMD-risk His402 homozygous allotypes of FH and both the recombinant SCR-6/8 allotypes with Tyr/His402. X-ray scattering also showed that both FH and SCR-6/8 allotypes strongly aggregated at >10 μM zinc. The SCR-1/5 and SCR-16/20 fragments were less likely to bind zinc. These observations were supported by bioinformatics predictions. Starting from known zinc binding sites in crystal structures, we predicted 202 putative partial surface zinc binding sites in FH, most of which were in SCR-6. Metal site prediction web servers also suggested that SCR-6 and other domains bind zinc. Predicted SCR-6/8 dimer structures showed that zinc binding sites could be formed at the protein-protein interface that would lead to daisy-chained oligomers. It was concluded that zinc binds weakly to FH at multiple surface locations, most probably within the functionally important SCR-6/8 domains, and this explains why zinc inhibits FH activity. Given the high pathophysiological levels of bioavailable zinc present in subretinal deposits, we discuss how zinc binding to FH may contribute to deposit formation and inflammation associated with AMD.
Collapse
Key Words
- amd, age-related macular degeneration
- fh, factor h
- rpe, retinal pigment epithelium
- srped, subretinal pigment epithelial deposit
- scr, short complement regulator
- auc, analytical ultracentrifugation
- areds, age-related eye disease study
- edta, ethylenediaminetetraacetic acid
- pdb, protein data bank
- hsa, human serum albumin
- cm, contact matrix
- x-ray scattering
- ultracentrifugation
- molecular modelling
- age-related macular degeneration
- retinal pigment epithelium
Collapse
Affiliation(s)
- Ruodan Nan
- Department of Structural and Molecular Biology, Division of Biosciences, Darwin Building, University College London, Gower Street, London WC1E 6BT, UK
| | - Irene Farabella
- Department of Structural and Molecular Biology, Division of Biosciences, Darwin Building, University College London, Gower Street, London WC1E 6BT, UK
| | - Felix F. Schumacher
- Department of Structural and Molecular Biology, Division of Biosciences, Darwin Building, University College London, Gower Street, London WC1E 6BT, UK
| | - Ami Miller
- Department of Structural and Molecular Biology, Division of Biosciences, Darwin Building, University College London, Gower Street, London WC1E 6BT, UK
| | - Jayesh Gor
- Department of Structural and Molecular Biology, Division of Biosciences, Darwin Building, University College London, Gower Street, London WC1E 6BT, UK
| | - Andrew C.R. Martin
- Department of Structural and Molecular Biology, Division of Biosciences, Darwin Building, University College London, Gower Street, London WC1E 6BT, UK
| | - David T. Jones
- Department of Structural and Molecular Biology, Division of Biosciences, Darwin Building, University College London, Gower Street, London WC1E 6BT, UK
| | - Imre Lengyel
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Stephen J. Perkins
- Department of Structural and Molecular Biology, Division of Biosciences, Darwin Building, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
46
|
Choucair-Jaafar N, Laporte V, Levy R, Poindron P, Lombard Y, Gies JP. Complement receptor 3 (CD11b/CD18) is implicated in the elimination of β-amyloid peptides. Fundam Clin Pharmacol 2011; 25:115-22. [PMID: 20199584 DOI: 10.1111/j.1472-8206.2010.00811.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Microglia are the professional phagocytes of the brain and express phagocytic receptors such as complement receptor 3 (CR3 or CD11b/CD18). Using mimics of the amyloid deposit made of heat-killed yeasts coated with either Aβ 1-40 or Aβ 1-42, we were able to study how microglia interacted with and ingested these particles in vitro. We have shown previously that the low density lipoprotein receptor-related protein (LRP) is largely implied in the phagocytosis of Aβ 1-42-opsonized heat-killed yeasts and partly in that of Aβ 1-40-opsonized heat-killed yeasts. Here, we report that antibodies against CD11b or CD18 reduced the uptake of the artificial amyloid deposit by microglial cell showing that CR3 is involved in the mechanism. Moreover, a concomitant inhibition of LRP and CR3 completely blocked the ingestion of both kinds of particles suggesting that no other receptors participate to this mechanism.
Collapse
Affiliation(s)
- Nada Choucair-Jaafar
- UMR 7213, Université de Strasbourg, CNRS, 74 route du Rhin, 67401 Illkirch, France.
| | | | | | | | | | | |
Collapse
|
47
|
Zhang D, Hu X, Qian L, Chen SH, Zhou H, Wilson B, Miller DS, Hong JS. Microglial MAC1 receptor and PI3K are essential in mediating β-amyloid peptide-induced microglial activation and subsequent neurotoxicity. J Neuroinflammation 2011; 8:3. [PMID: 21232086 PMCID: PMC3027117 DOI: 10.1186/1742-2094-8-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 01/13/2011] [Indexed: 11/13/2022] Open
Abstract
Background β-Amyloid peptide (Aβ) is a major protein in the brain associated with Alzheimer's and Parkinson's diseases. The purpose of this study was to investigate the role of macrophage antigen-1 (MAC1) receptor, an integrin scavenger receptor in microglia, and subsequent signaling events in mediating Aβ-induced neurotoxicity. We have previously reported that NADPH oxidase (PHOX) on microglia and superoxide produced by PHOX are critical for Aβ-induced loss of dopaminergic neurons. However, the upstream signaling pathway of superoxide production remains unclear. Methods For the in vitro study, mesencephalic neuron-glia cultures and microglia-enriched cultures from mice deficient in the MAC1 receptor (MAC1-/-) and wild type controls were used to investigate the role of MAC1 receptor in Aβ-induced neurotoxicity and the role of phosphoinositide-3 kinase (PI3K) in the signal pathway between MAC1 receptor and PHOX. For the in vivo study, Aβ was injected into the substantia nigra of MAC1-/- mice and wild type mice to confirm the role of MAC1 receptor. Results We found that Aβ-induced activation of microglia, activation of PHOX, generation of superoxide and other reactive oxygen species, and loss of dopaminergic neurons were decreased in MAC1-/- cultures compared to MAC1+/+ cultures. In MAC1-/- mice, dopaminergic neuron loss in response to Aβ injection into the substantia nigra was reduced relative to MAC1+/+ mice. Thus, MAC1 receptor-mediated PHOX activation and increased superoxide production are associated with Aβ-induced neurotoxicity. PI3K activation was one downstream step in MAC1 signaling to PHOX and played an important role in Aβ-induced neurotoxicity. In microglia-enriched cultures from MAC1-/- mice, Aβ-induced activation of PI3K (phosphorylation of target proteins and PIP3 production) was reduced relative to MAC1+/+ cultures. Conclusions Taken together, our data demonstrate that Aβ activates MAC1 receptor to increase the activity of PI3K, which in turn phosphorylates p47phox, triggers the translocation of cytosolic subunits of PHOX to microglia membrane, increases PHOX activation and the subsequent production of superoxide and causes neurotoxicity.
Collapse
Affiliation(s)
- Dan Zhang
- Laboratory of Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Fraczek LA, Martin BK. Transcriptional control of genes for soluble complement cascade regulatory proteins. Mol Immunol 2010; 48:9-13. [PMID: 20869772 DOI: 10.1016/j.molimm.2010.08.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 08/29/2010] [Indexed: 11/17/2022]
Abstract
The complement cascade of the immune system is an important mediator of the inflammatory response to infection; however it is crucial that this pathway is tightly regulated to prevent uncontrolled activation, which can lead to damage to host tissues. The complement system has many regulators that control activation; both membrane-bound and soluble factors. This review will focus on what is currently known about the transcriptional regulation of the soluble complement regulatory genes C1-inhibitor, complement factor I, complement factor H and C4-binding protein. The absence or mutation of these regulators is all associated with specific disease, and yet their contribution to disease is often poorly understood. It is through full understanding of these genes that we can comprehend the diseases with which they are implicated, and thus prove why knowledge of the transcriptional regulation of these genes is valuable.
Collapse
Affiliation(s)
- Laura A Fraczek
- The Iowa Cancer Research Foundation, Urbandale, IA 50322, USA.
| | | |
Collapse
|
49
|
Li P, Waldman SA. Corruption of homeostatic mechanisms in the guanylyl cyclase C signaling pathway underlying colorectal tumorigenesis. Cancer Biol Ther 2010; 10:211-8. [PMID: 20592492 DOI: 10.4161/cbt.10.3.12539] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Colon cancer, the second leading cause of cancer-related mortality worldwide, originates from the malignant transformation of intestinal epithelial cells. The intestinal epithelium undergoes a highly organized process of rapid regeneration along the crypt-villus axis, characterized by proliferation, migration, differentiation and apoptosis, whose coordination is essential to maintaining the mucosal barrier. Disruption of these homeostatic processes predisposes cells to mutations in tumor suppressors or oncogenes, whose dysfunction provides transformed cells an evolutionary growth advantage. While sequences of genetic mutations at different stages along the neoplastic continuum have been established, little is known of the events initiating tumorigenesis prior to adenomatous polyposis coli (APC) mutations. Here, we examine a role for the corruption of homeostasis induced by silencing novel tumor suppressors, including the intestine-specific transcription factor CDX2 and its gene target guanylyl cyclase C (GCC), as early events predisposing cells to mutations in APC and other sequential genes that initiate colorectal cancer. CDX2 and GCC maintain homeostatic regeneration in the intestine by restricting cell proliferation, promoting cell maturation and adhesion, regulating cell migration and defending the intestinal barrier and genomic integrity. Elimination of CDX2 or GCC promotes intestinal tumor initiation and growth in aged mice, mice carrying APC mutations or mice exposed to carcinogens. The roles of CDX2 and GCC in suppressing intestinal tumorigenesis, universal disruption in their signaling through silencing of hormones driving GCC, and the uniform overexpression of GCC by tumors underscore the potential value of oral replacement with GCC ligands as targeted prevention and therapy for colorectal cancer.
Collapse
Affiliation(s)
- Peng Li
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA.
| | | |
Collapse
|
50
|
Anoop A, Singh PK, Jacob RS, Maji SK. CSF Biomarkers for Alzheimer's Disease Diagnosis. Int J Alzheimers Dis 2010; 2010. [PMID: 20721349 PMCID: PMC2915796 DOI: 10.4061/2010/606802] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 04/27/2010] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia that affects several million people worldwide. The major neuropathological hallmarks of AD are the presence of extracellular amyloid plaques that are composed of Aβ40 and Aβ42 and intracellular neurofibrillary tangles (NFT), which is composed of hyperphosphorylated protein Tau. While the amyloid plaques and NFT could define the disease progression involving neuronal loss and dysfunction, significant cognitive decline occurs before their appearance. Although significant advances in neuroimaging techniques provide the structure and physiology of brain of AD cases, the biomarker studies based on cerebrospinal fluid (CSF) and plasma represent the most direct and convenient means to study the disease progression. Biomarkers are useful in detecting the preclinical as well as symptomatic stages of AD. In this paper, we discuss the recent advancements of various biomarkers with particular emphasis on CSF biomarkers for monitoring the early development of AD before significant cognitive dysfunction.
Collapse
Affiliation(s)
- A Anoop
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | | | | | | |
Collapse
|