1
|
Tarazi D, Maynes JT. Impact of Opioids on Cellular Metabolism: Implications for Metabolic Pathways Involved in Cancer. Pharmaceutics 2023; 15:2225. [PMID: 37765194 PMCID: PMC10534826 DOI: 10.3390/pharmaceutics15092225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Opioid utilization for pain management is prevalent among cancer patients. There is significant evidence describing the many effects of opioids on cancer development. Despite the pivotal role of metabolic reprogramming in facilitating cancer growth and metastasis, the specific impact of opioids on crucial oncogenic metabolic pathways remains inadequately investigated. This review provides an understanding of the current research on opioid-mediated changes to cellular metabolic pathways crucial for oncogenesis, including glycolysis, the tricarboxylic acid cycle, glutaminolysis, and oxidative phosphorylation (OXPHOS). The existing literature suggests that opioids affect energy production pathways via increasing intracellular glucose levels, increasing the production of lactic acid, and reducing ATP levels through impediment of OXPHOS. Opioids modulate pathways involved in redox balance which may allow cancer cells to overcome ROS-mediated apoptotic signaling. The majority of studies have been conducted in healthy tissue with a predominant focus on neuronal cells. To comprehensively understand the impact of opioids on metabolic pathways critical to cancer progression, research must extend beyond healthy tissue and encompass patient-derived cancer tissue, allowing for a better understanding in the context of the metabolic reprogramming already undergone by cancer cells. The current literature is limited by a lack of direct experimentation exploring opioid-induced changes to cancer metabolism as they relate to tumor growth and patient outcome.
Collapse
Affiliation(s)
- Doorsa Tarazi
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1A8, Canada;
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Jason T. Maynes
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1A8, Canada;
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON M5G 1E2, Canada
| |
Collapse
|
2
|
Mobility Coupled with Motivation Promotes Survival: The Evolution of Cognition as an Adaptive Strategy. BIOLOGY 2023; 12:biology12010080. [PMID: 36671772 PMCID: PMC9855669 DOI: 10.3390/biology12010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Morphine plays a critical regulatory role in both simple and complex plant species. Dopamine is a critical chemical intermediate in the morphine biosynthetic pathway and may have served as a primordial agonist in developing catecholamine signaling pathways. While dopamine remains the preeminent catecholamine in invertebrate neural systems, epinephrine is the major product of catecholamine synthetic pathways in vertebrate species. Given that the enzymatic steps leading to the generation of morphine are similar to those constraining the evolutionary adaptation of the biosynthesis of catecholamines, we hypothesize that the emergence of these more advanced signaling pathways was based on conservation and selective "retrofitting" of pre-existing enzyme activities. This is consistent with observations that support the recruitment of enzymatically synthesized tetrahydrobiopterin (BH4), which is a cofactor for tyrosine hydroxylase, the enzyme responsible for dopamine production. BH4 is also an electron donor involved in the production of nitric oxide (NO). The links that coordinate BH4-mediated NO and catecholaminergic-mediated processes provide these systems with the capacity to regulate numerous downstream signaling pathways. We hypothesize that the evolution of catecholamine signaling pathways in animal species depends on the acquisition of a mobile lifestyle and motivationally driven feeding, sexual, and self-protective responses.
Collapse
|
3
|
Akhtar S, Abbas M, Naeem K, Faheem M, Nadeem H, Mehmood A. Benzimidazole Derivative Ameliorates Opioid-Mediated Tolerance during Anticancer- Induced Neuropathic Pain in Mice. Anticancer Agents Med Chem 2021; 21:365-371. [PMID: 32819235 DOI: 10.2174/1871520620999200818155031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is known to be the second significant cause of death worldwide. Chemotherapeutic agents such as platinum-based compounds are frequently used single-handedly or accompanied by additional chemotherapies to treat cancer patients. Chemotherapy-induced peripheral painful neuropathy is seen in around 40% of patients who are treated with platinum-based compounds, including cisplatin. This not only decreases the quality of life of patients but also patients' compliance with cisplatin. OBJECTIVES Nalbuphine, an opioid, is frequently used to treat acute and chronic pain, coupled with cisplatin in cancer patients. However, long term use of nalbuphine induces tolerance to its analgesic effects. We employed the same strategy to induce tolerance in mice. METHODS Here, we investigated analgesic effects of 2-[(pyrrolidin-1-yl) methyl]-1H-benzimidazole (BNZ), a benzimidazole derivative, on nalbuphine-induced tolerance during cisplatin-induced neuropathic pain using hot plate test, tail-flick tests and von Frey filament in mouse models. Furthermore, we investigated the effects of BNZ on the expression of Tumor Necrosis Factor-alpha (TNF-α) in the spinal cord. RESULTS The results showed that BNZ reduced tolerance to analgesic effects of nalbuphine and TNF-α expression in mice. CONCLUSION BNZ could be a potential drug candidate for the management of nalbuphine-induced tolerance in cisplatin-induced neuropathic pain.
Collapse
Affiliation(s)
- Sana Akhtar
- Department of Basic Medical Sciences, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Muzaffar Abbas
- Department of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| | - Komal Naeem
- Department of Basic Medical Sciences, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Muhammad Faheem
- Department of Basic Medical Sciences, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Humaira Nadeem
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Amber Mehmood
- Department of Basic Medical Sciences, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
4
|
Li Z, Jia X, Peng X, Gao F. The Interaction Between Spinal PDGFRβ and μ Opioid Receptor in the Activation of Microglia in Morphine-Tolerant Rats. J Pain Res 2020; 13:1803-1810. [PMID: 32765055 PMCID: PMC7381827 DOI: 10.2147/jpr.s255221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose Opioid tolerance remains a challenging problem, which limits prolonged drug usage in clinics. Previous studies have shown a fundamental role of platelet-derived growth factor receptor β submit (PDGFRβ) in morphine tolerance. The aim of this study was to investigate the mechanisms of spinal PDGFRβ activation in morphine tolerance. Methods Rats were treated with morphine for 7 days and the effect of drug was evaluated by tail-flick latency test. By using Western blot and real-time PCR, the interaction between μ opioid receptor (MOR) and PDGFRβ in microglia activation, as well as related signaling pathways during morphine tolerance were investigated. Results Chronic PDGFRβ agonist could induce microglia activation in spinal cord and decrease the analgesic effect of morphine. PDGFRβ inhibitor suppressed microglia activation during the development of morphine tolerance. Furthermore, antagonizing MOR could effectively inhibit the phosphorylations of PDGFRβ and JNK. Blocking PDGFRβ had no influence on JNK signaling, while JNK inhibitor could decrease the phosphorylation of PDGFRβ. Conclusion These results provide direct evidence that repeatedly activating MOR by morphine could induce the transactivation of PDGFRβ via JNK MAPK in spinal cord, which leads to microglia activation during the development of morphine tolerance.
Collapse
Affiliation(s)
- Zheng Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaoqian Jia
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaoling Peng
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Feng Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
5
|
Woodcock EA, Hillmer AT, Mason GF, Cosgrove KP. Imaging Biomarkers of the Neuroimmune System among Substance Use Disorders: A Systematic Review. MOLECULAR NEUROPSYCHIATRY 2019; 5:125-146. [PMID: 31312635 PMCID: PMC6597912 DOI: 10.1159/000499621] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/13/2019] [Indexed: 12/14/2022]
Abstract
There is tremendous interest in the role of the neuroimmune system and inflammatory processes in substance use disorders (SUDs). Imaging biomarkers of the neuroimmune system in vivo provide a vital translational bridge between preclinical and clinical research. Herein, we examine two imaging techniques that measure putative indices of the neuroimmune system and review their application among SUDs. Positron emission tomography (PET) imaging of 18 kDa translocator protein availability is a marker associated with microglia. Proton magnetic resonance spectroscopy quantification of myo-inositol levels is a putative glial marker found in astrocytes. Neuroinflammatory responses are initiated and maintained by microglia and astrocytes, and thus represent important imaging markers. The goal of this review is to summarize neuroimaging findings from the substance use literature that report data using these markers and discuss possible mechanisms of action. The extant literature indicates abused substances exert diverse and complex neuroimmune effects. Moreover, drug effects may change across addiction stages, i.e. the neuroimmune effects of acute drug administration may differ from chronic use. This burgeoning field has considerable potential to improve our understanding and treatment of SUDs. Future research is needed to determine how targeting the neuroimmune system may improve treatment outcomes.
Collapse
Affiliation(s)
| | | | | | - Kelly P. Cosgrove
- Departments of Psychiatry, and of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
6
|
Cooper ZD, Johnson KW, Vosburg SK, Sullivan MA, Manubay J, Martinez D, Jones JD, Saccone PA, Comer SD. Effects of ibudilast on oxycodone-induced analgesia and subjective effects in opioid-dependent volunteers. Drug Alcohol Depend 2017; 178:340-347. [PMID: 28688296 DOI: 10.1016/j.drugalcdep.2017.04.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 04/24/2017] [Accepted: 04/27/2017] [Indexed: 01/01/2023]
Abstract
Opioid-induced glial activation is hypothesized to contribute to the development of tolerance to opioid-induced analgesia. This inpatient, double-blind, placebo-controlled, within-subject and between-groups pilot study investigated the dose-dependent effects of ibudilast, a glial cell modulator, on oxycodone-induced analgesia. Opioid-dependent volunteers were maintained on morphine (30mg, PO, QID) for two weeks and received placebo ibudilast (0mg, PO, BID) during the 1st week (days 1-7). On day 8, participants (N=10/group) were randomized to receive ibudilast (20 or 40mg, PO, BID) or placebo for the remainder of the study. On days 4 (week 1) and 11 (week 2), the analgesic, subjective, and physiological effects of oxycodone (0, 25, 50mg/70kg, PO) were determined. Analgesia was measured using the cold pressor test; participants immersed their hand in cold water (4°C) and pain threshold and pain tolerability were recorded. Oxycodone decreased pain threshold and tolerability in all groups during week 1. During week 2, the placebo group exhibited a blunted analgesic response to oxycodone for pain threshold and subjective pain ratings, whereas the 40mg BID ibudilast group exhibited greater analgesia as measured by subjective pain ratings (p≤0.05). Oxycodone also increased subjective drug effect ratings associated with abuse liability in all groups during week 1 (p≤0.05); ibudilast did not consistently affect these ratings. These findings suggest that ibudilast may enhance opioid-induced analgesia. Investigating higher ibudilast doses may establish the utility of pharmacological modulation of glial activity to maximize the clinical use of opioids.
Collapse
Affiliation(s)
- Z D Cooper
- Division on Substance Use Disorders, New York Psychiatric State Institute and Department of Psychiatry, Columbia University Medical Center, 1051 Riverside Drive, Unit 120, New York, NY 10032, USA.
| | - K W Johnson
- Division on Substance Use Disorders, New York Psychiatric State Institute and Department of Psychiatry, Columbia University Medical Center, 1051 Riverside Drive, Unit 120, New York, NY 10032, USA
| | - S K Vosburg
- Division on Substance Use Disorders, New York Psychiatric State Institute and Department of Psychiatry, Columbia University Medical Center, 1051 Riverside Drive, Unit 120, New York, NY 10032, USA
| | - M A Sullivan
- Division on Substance Use Disorders, New York Psychiatric State Institute and Department of Psychiatry, Columbia University Medical Center, 1051 Riverside Drive, Unit 120, New York, NY 10032, USA
| | - J Manubay
- Division on Substance Use Disorders, New York Psychiatric State Institute and Department of Psychiatry, Columbia University Medical Center, 1051 Riverside Drive, Unit 120, New York, NY 10032, USA
| | - D Martinez
- Division on Substance Use Disorders, New York Psychiatric State Institute and Department of Psychiatry, Columbia University Medical Center, 1051 Riverside Drive, Unit 120, New York, NY 10032, USA
| | - J D Jones
- Division on Substance Use Disorders, New York Psychiatric State Institute and Department of Psychiatry, Columbia University Medical Center, 1051 Riverside Drive, Unit 120, New York, NY 10032, USA
| | - P A Saccone
- Division on Substance Use Disorders, New York Psychiatric State Institute and Department of Psychiatry, Columbia University Medical Center, 1051 Riverside Drive, Unit 120, New York, NY 10032, USA
| | - S D Comer
- Division on Substance Use Disorders, New York Psychiatric State Institute and Department of Psychiatry, Columbia University Medical Center, 1051 Riverside Drive, Unit 120, New York, NY 10032, USA.
| |
Collapse
|
7
|
Cahill CM, Walwyn W, Taylor AMW, Pradhan AAA, Evans CJ. Allostatic Mechanisms of Opioid Tolerance Beyond Desensitization and Downregulation. Trends Pharmacol Sci 2016; 37:963-976. [PMID: 27670390 DOI: 10.1016/j.tips.2016.08.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 12/20/2022]
Abstract
Mechanisms of opioid tolerance have focused on adaptive modifications within cells containing opioid receptors, defined here as cellular allostasis, emphasizing regulation of the opioid receptor signalosome. We review additional regulatory and opponent processes involved in behavioral tolerance, and include mechanistic differences both between agonists (agonist bias), and between μ- and δ-opioid receptors. In a process we will refer to as pass-forward allostasis, cells modified directly by opioid drugs impute allostatic changes to downstream circuitry. Because of the broad distribution of opioid systems, every brain cell may be touched by pass-forward allostasis in the opioid-dependent/tolerant state. We will implicate neurons and microglia as interactive contributors to the cumulative allostatic processes creating analgesic and hedonic tolerance to opioid drugs.
Collapse
Affiliation(s)
- Catherine M Cahill
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, 837 Health Sciences Road, Irvine, CA 92697, USA
| | - Wendy Walwyn
- Hatos Center for Neuropharmacology, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, 675 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - Anna M W Taylor
- Hatos Center for Neuropharmacology, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, 675 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - Amynah A A Pradhan
- Department of Psychiatry, University of Illinois at Chicago, 1601 West Taylor Street, Chicago, IL 60612, USA
| | - Christopher J Evans
- Hatos Center for Neuropharmacology, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, 675 Charles E. Young Drive South, Los Angeles, CA 90095, USA.
| |
Collapse
|
8
|
Stefano GB, Mantione KJ, Capellan L, Casares FM, Challenger S, Ramin R, Samuel JM, Snyder C, Kream RM. Morphine stimulates nitric oxide release in human mitochondria. J Bioenerg Biomembr 2015; 47:409-17. [PMID: 26350413 DOI: 10.1007/s10863-015-9626-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/03/2015] [Indexed: 10/23/2022]
Abstract
The expression of morphine by plants, invertebrate, and vertebrate cells and organ systems, strongly indicates a high level of evolutionary conservation of morphine and related morphinan alkaloids as required for life. The prototype catecholamine, dopamine, serves as an essential chemical intermediate in morphine biosynthesis, both in plants and animals. We surmise that, before the emergence of specialized plant and animal cells/organ systems, primordial multi-potential cell types required selective mechanisms to limit their responsiveness to environmental cues. Accordingly, cellular systems that emerged with the potential for recruitment of the free radical gas nitric oxide (NO) as a multi-faceted autocrine/paracrine signaling molecule, were provided with extremely positive evolutionary advantages. Endogenous morphinergic signaling, in concert with NO-coupled signaling systems, has evolved as an autocrine/paracrine regulator of metabolic homeostasis, energy metabolism, mitochondrial respiration and energy production. Basic physiological processes involving morphinergic/NO-coupled regulation of mitochondrial function, with special emphasis on the cardiovascular system, are critical to all organismic survival. Key to this concept may be the phenomenon of mitochondrial enslavement in eukaryotic evolution via endogenous morphine.
Collapse
Affiliation(s)
- George B Stefano
- MitoGenetics Research Institute, MitoGenetics LLC, 3 Bioscience Park Drive, Suite 307, Farmingdale, NY, 11735, USA.
| | - Kirk J Mantione
- MitoGenetics Research Institute, MitoGenetics LLC, 3 Bioscience Park Drive, Suite 307, Farmingdale, NY, 11735, USA
| | - Lismary Capellan
- MitoGenetics Research Institute, MitoGenetics LLC, 3 Bioscience Park Drive, Suite 307, Farmingdale, NY, 11735, USA
| | - Federico M Casares
- MitoGenetics Research Institute, MitoGenetics LLC, 3 Bioscience Park Drive, Suite 307, Farmingdale, NY, 11735, USA
| | - Sean Challenger
- MitoGenetics Research Institute, MitoGenetics LLC, 3 Bioscience Park Drive, Suite 307, Farmingdale, NY, 11735, USA
| | - Rohina Ramin
- MitoGenetics Research Institute, MitoGenetics LLC, 3 Bioscience Park Drive, Suite 307, Farmingdale, NY, 11735, USA
| | - Joshua M Samuel
- MitoGenetics Research Institute, MitoGenetics LLC, 3 Bioscience Park Drive, Suite 307, Farmingdale, NY, 11735, USA
| | - Christopher Snyder
- MitoGenetics Research Institute, MitoGenetics LLC, 3 Bioscience Park Drive, Suite 307, Farmingdale, NY, 11735, USA
| | - Richard M Kream
- MitoGenetics Research Institute, MitoGenetics LLC, 3 Bioscience Park Drive, Suite 307, Farmingdale, NY, 11735, USA
| |
Collapse
|
9
|
Ford KA, Ryslik G, Sodhi J, Halladay J, Diaz D, Dambach D, Masuda M. Computational predictions of the site of metabolism of cytochrome P450 2D6 substrates: comparative analysis, molecular docking, bioactivation and toxicological implications. Drug Metab Rev 2015; 47:291-319. [DOI: 10.3109/03602532.2015.1047026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Delay of morphine tolerance by palmitoylethanolamide. BIOMED RESEARCH INTERNATIONAL 2015; 2015:894732. [PMID: 25874232 PMCID: PMC4385605 DOI: 10.1155/2015/894732] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/18/2014] [Indexed: 12/20/2022]
Abstract
In spite of the potency and efficacy of morphine, its clinical application for chronic persistent pain is limited by the development of tolerance to the antinociceptive effect. The cellular and molecular mechanisms underlying morphine tolerance are complex and still unclear. Recently, the activation of glial cells and the release of glia-derived proinflammatory mediators have been suggested to play a role in the phenomenon. N-Palmitoylethanolamine (PEA) is an endogenous compound with antinociceptive effects able to reduce the glial activation. On this basis, 30 mg kg−1 PEA was subcutaneously daily administered in morphine treated rats (10 mg kg−1 intraperitoneally, daily). PEA treatment significantly attenuated the development of tolerance doubling the number of days of morphine antinociceptive efficacy in comparison to the vehicle + morphine group. PEA prevented both microglia and astrocyte cell number increase induced by morphine in the dorsal horn; on the contrary, the morphine-dependent increase of spinal TNF-α levels was not modified by PEA. Nevertheless, the immunohistochemical analysis revealed significantly higher TNF-α immunoreactivity in astrocytes of PEA-protected rats suggesting a PEA-mediated decrease of cytokine release from astrocyte. PEA intervenes in the nervous alterations that lead to the lack of morphine antinociceptive effects; a possible application of this endogenous compound in opioid-based therapies is suggested.
Collapse
|
11
|
Ono H, Nakamura A, Matsumoto K, Horie S, Sakaguchi G, Kanemasa T. Circular muscle contraction in the mice rectum plays a key role in morphine-induced constipation. Neurogastroenterol Motil 2014; 26:1396-407. [PMID: 25041353 DOI: 10.1111/nmo.12387] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 06/06/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND Although opioids induce intestinal muscle contraction and provoke constipation, the intestinal region(s) that contribute to the constipation have remained unclear. We report here a region-specific response of intestinal muscle contraction to morphine and its correlation with in vivo constipation. METHODS Regions of mice small and large intestines were dissected histologically and circular muscle contractile responses were measured using isometric transducers. Bead expulsion assays were performed to assess in vivo constipation. KEY RESULTS The strongest contraction in response to morphine was detected in the rectum. The distal and transverse colon also showed strong contractions, whereas weak responses were detected in the proximal colon, jejunum, and ileum. Regarding the sustainability of muscle contractions during morphine exposure, prolonged waves were detected only in the rectum, while the waves diminished gradually in other regions. To identify the mechanism(s) underlying this difference, we focused on nitric oxide synthase (NOS). In the distal colon, decreased contraction during morphine exposure was recovered by application of a NOS inhibitor (L-NAME), while a NOS substrate (L-arginine) enhanced contractile degradation. In contrast L-NAME and L-arginine modestly affected the sustained contraction in the rectum. To confirm the correlation with constipation, beads were inserted into the transverse colon, distal colon, or rectum after morphine administration and expulsion times were examined. Beads tended to stop at the rectum even when inserted in the deeper colonic regions. CONCLUSIONS & INFERENCES The rectum showed the greatest response to morphine in both in vitro and in vivo analyses, therefore it may play a key role for opioid-induced constipation.
Collapse
Affiliation(s)
- H Ono
- Pain & Neurology, Medicinal Research Laboratories, Shionogi and Co., Ltd., Toyonaka, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Shen CH, Tsai RY, Wong CS. Role of neuroinflammation in morphine tolerance: effect of tumor necrosis factor-α. ACTA ACUST UNITED AC 2013; 50:178-82. [PMID: 23385041 DOI: 10.1016/j.aat.2012.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/30/2012] [Accepted: 12/04/2012] [Indexed: 02/07/2023]
Abstract
Opioids have been used as potent analgesics in clinics for decades; however, their long-term administration leads to tolerance. Two possible mechanisms for drug tolerance are postulated as within-system and between-systems adaptation. The within-system tolerance is involved in the signal transduction of opioid receptors, including downregulation of opioid receptors, uncoupling of G-protein from opioid receptors, and β-arrestin recruitment to opioid receptors, which causes receptor desensitization and internalization/endocytosis. The between-systems tolerance comprehends the glutamatergic receptor system and glial activation with the release of proinflammatory cytokines, and thus the analgesic effect of morphine is reduced. Tumor necrosis factor-α (TNF-α) is a vital proinflammatory cytokine and exerts either a neurotoxic or neuroprotective effect on different diseases of the central nervous system. TNF-α has also been demonstrated to correlate with neuronal plasticity via activation of spinal glial cells and enhancement of glutamatergic transmission. Previous studies had revealed an increased expression of TNF-α in morphine tolerance. This review article focuses on the role of TNF-α in neuroinflammation and the glutamatergic receptor system in morphine tolerance. It may provide another adjuvant therapy for morphine tolerance, which extends the effectiveness of opioids in clinical pain management.
Collapse
Affiliation(s)
- Ching-Hui Shen
- Department of Anesthesiology, Veterans General Hospital, Taichung, Taiwan
| | | | | |
Collapse
|
13
|
Stefano GB, Kream RM. Reciprocal regulation of cellular nitric oxide formation by nitric oxide synthase and nitrite reductases. Med Sci Monit 2012; 17:RA221-6. [PMID: 21959625 PMCID: PMC3539480 DOI: 10.12659/msm.881972] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Our mini-review focuses on dual regulation of cellular nitric oxide (NO) signaling pathways by traditionally characterized enzymatic formation from L-arginine via the actions of NO synthases (NOS) and by enzymatic reduction of available cellular nitrite pools by a diverse class of cytosolic and mitochondrial nitrite reductases. Nitrite is a major metabolic product of NO and is found in all cell and tissue types that utilize NO signaling processes. Xanthine oxidoreductase (XOR) has been previously characterized as a housekeeping enzyme responsible for cellular uric acid formation via enzymatic conversion of hypoxanthine and xanthine. It has become apparent that XOR possesses multi-functional enzymatic activities outside the realm of xanthine metabolism and a small but significant literature also established a compelling functional association between administered sodium nitrite, XOR activation, and pharmacologically characterized NO transductive effects in positive cardiovascular function enhanced pulmonary perfusion, and protection against ischemia/reperfusion injury and hypoxic damage and oxidative stress. Similar positive vascular and cellular effects were observed to be functionally associated with mitochondrial aldehyde dehydrogenase and cytochrome c/cytochrome c oxidase. The profound implications of a reciprocal regulatory mechanism responsible for cytosolic and mitochondrial NO production are discussed below.
Collapse
Affiliation(s)
- George B Stefano
- Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, NY 11568-0210, USA.
| | | |
Collapse
|
14
|
Cooper ZD, Jones JD, Comer SD. Glial modulators: a novel pharmacological approach to altering the behavioral effects of abused substances. Expert Opin Investig Drugs 2012; 21:169-78. [PMID: 22233449 DOI: 10.1517/13543784.2012.651123] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Commonly abused drugs including opioids, stimulants and alcohol activate glia cells, an effect that has been identified across species. Glia, specifically astrocytes and microglia, have been shown to contribute directly to behaviors predictive of the abuse liability of these drugs. Although still in its infancy, research investigating the effects of pharmacological modulation of glial activity on these behaviors has provided encouraging findings suggesting glial cell modulators as potential pharmacotherapies for substance-use disorders. AREAS COVERED This review first explores the evidence establishing glial-mediated modulations of behaviors associated with opioid, stimulant and alcohol exposure, with emphasis placed on the neuroanatomical substrates for these effects. Next, neurobiological and behavioral studies evaluating the ability of glial cell modulators to prevent and reverse the effects of these abused substances will be considered. Finally, the potential clinical efficacy of glial cell modulators as a novel pharmacological approach to treat substance-use disorders in relation to currently available, conventional pharmacotherapies will be discussed. EXPERT OPINION Though the relationship between drug-induced glial activity and behaviors indicative of drug abuse and dependence is not yet fully elucidated, the evidence for the association continues to grow. The use of glial modulators as pharmacological tools to investigate this relationship has also yielded findings supporting their potential clinical efficacy for treating substance-use disorders.
Collapse
Affiliation(s)
- Ziva D Cooper
- College of Physicians and Surgeons of Columbia University, New York State Psychiatric Institute and Department of Psychiatry, Division on Substance Abuse, 1051 Riverside Drive, New York, NY 10032, USA
| | | | | |
Collapse
|
15
|
Shen CH, Tsai RY, Shih MS, Lin SL, Tai YH, Chien CC, Wong CS. Etanercept restores the antinociceptive effect of morphine and suppresses spinal neuroinflammation in morphine-tolerant rats. Anesth Analg 2010; 112:454-9. [PMID: 21081778 DOI: 10.1213/ane.0b013e3182025b15] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND In the present study we examined the effect of the tumor necrosis factor (TNF)-α antagonist etanercept on the antinociceptive effect of morphine in morphine-tolerant rats. METHODS Male Wistar rats were implanted with 2 intrathecal catheters, and 1 was connected to a mini-osmotic pump for either morphine (15 μg/h) or saline (1 μL/h) infusion for 5 days. On day 5, either etanercept (5 μg, 25 μg, and 50 μg/10 μL) or saline (10 μL) was injected via the other catheter after morphine infusion was discontinued. Three hours later, morphine (15 μg/10 μL, intrathecally) was given and tail-flick latency was measured to evaluate the antinociceptive effect of morphine. Rats were then killed and their spinal cords were removed for quantitative real-time polymerase chain reaction and immunohistochemistry to measure proinflammatory cytokines expression. RESULTS We found that acute etanercept (50 μg) treatment preserved a significant antinociceptive effect of morphine in morphine-tolerant rats. In addition, the expression of TNFα mRNA was increased by 2.5-fold, interleukin (IL)-1β mRNA increased by 13-fold and IL-6 mRNA by 111-fold in the dorsal spinal cord of morphine-tolerant rats. The increase in TNFα, IL-1β, and IL-6 mRNA expression was blocked by 50 μg etanercept pretreatment. The immunohistochemistry analysis revealed that 50 μg etanercept suppressed proinflammatory cytokines expression and neuroinflammation in the microglia. CONCLUSIONS The present study demonstrates that etanercept restores the antinociceptive effect of morphine in morphine-tolerant rats by inhibition of proinflammatory cytokine TNF-α, IL-1β, and IL-6 expression and spinal neuroinflammation. The results suggest that etanercept could also be an adjuvant therapy for morphine tolerance, which extends the effectiveness of opioids in clinical pain management.
Collapse
Affiliation(s)
- Ching-Hui Shen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
16
|
Kream RM, Stefano GB. Interactive effects of endogenous morphine, nitric oxide, and ethanol on mitochondrial processes. Arch Med Sci 2010; 6:658-62. [PMID: 22419921 PMCID: PMC3298331 DOI: 10.5114/aoms.2010.17077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 05/10/2010] [Accepted: 05/19/2010] [Indexed: 02/06/2023] Open
Abstract
Positive evolutionary pressure has preserved the ability to synthesize chemically authentic morphine, albeit in homeopathic concentrations, throughout animal phyla. The prototype catecholamine dopamine (DA) serves as an essential chemical intermediate in morphine biosynthesis both in plants and animals, thereby providing considerable insight into the roles reciprocal "morphinergic" and catecholamine regulation of diverse physiological processes. Primordial, multi-potential cell types, before the emergence of specialized plant and animal cells/organ systems, required selective mechanisms to limit their responsiveness to environmental noise. Accordingly, cellular systems that emerged with the potential for recruitment of the free radical gas nitric oxide (NO) as a multi-faceted autocrine/paracrine signaling molecule were provided with extremely positive evolutionary advantages. Endogenous "morphinergic" in concert with NO-coupled signaling systems have evolved as autocrine/paracrine regulators of metabolic homeostasis, energy metabolism, mitochondrial respiration and energy production. Basic physiological processes involving "morphinergic"/NO-coupled regulation of cardiovascular mitochondrial function, with special emphasis on the interactive effects of ethanol, are discussed within the context of our review.
Collapse
Affiliation(s)
- Richard M Kream
- Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, NY, USA
| | | |
Collapse
|
17
|
Agostini S, Eutamene H, Cartier C, Broccardo M, Improta G, Houdeau E, Petrella C, Ferrier L, Theodorou V, Bueno L. Evidence of central and peripheral sensitization in a rat model of narcotic bowel-like syndrome. Gastroenterology 2010; 139:553-63, 563.e1-5. [PMID: 20347820 DOI: 10.1053/j.gastro.2010.03.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/08/2010] [Accepted: 03/15/2010] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Narcotic bowel syndrome (NBS) is a subset of opioid bowel dysfunctions that results from prolonged treatment with narcotics and is characterized by chronic abdominal pain. NBS is under-recognized and its molecular mechanisms are unknown. We aimed to (1) develop a rat model of NBS and (2) to investigate its peripheral and central neurobiological mechanisms. METHODS Male Wistar rats were given a slow-release emulsion that did or did not contain morphine (10 mg/kg) for 8 days. Visceral sensitivity to colorectal distension (CRD) was evaluated during and after multiple administrations of morphine or vehicle (controls). The effects of minocycline (a microglia inhibitor), nor-binaltorphimine (a kappa-opioid antagonist), and doxantrazole (a mast-cell inhibitor) were observed on morphine-induced visceral hyperalgesia. Levels of OX-42, P-p38 mitogen-activated protein kinase, rat mast cell protease II, and protein gene product 9.5 were assessed at different spinal segments (lumbar 6 to sacral 1) or colonic mucosa by immunohistochemistry. RESULTS On day 8 of morphine administration, rats developed visceral hyperalgesia to CRD (incipient response) that lasted for 8 more days (delayed response). Minocycline reduced the incipient morphine-induced hypersensitivity response to CRD whereas nor-binaltorphimine and doxantrazole antagonized the delayed hyperalgesia. Levels of OX-42 and P-p38 increased in the spinal sections, whereas rat mast cell protease II and protein gene product 9.5 increased in the colonic mucosa of rats that were given morphine compared with controls. CONCLUSIONS We developed a rat model of narcotic bowel-like syndrome and showed that spinal microglia activation mediates the development of morphine-induced visceral hyperalgesia; peripheral neuroimmune activation and spinal dynorphin release represent an important mechanism in the delayed and long-lasting morphine-induced colonic hypersensitivity response to CRD.
Collapse
Affiliation(s)
- Simona Agostini
- INRA, EI-Purpan, UMR 1054 Neuro-Gastroenterology and Nutrition, Toulouse, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hutchinson MR, Lewis SS, Coats BD, Rezvani N, Zhang Y, Wieseler JL, Somogyi AA, Yin H, Maier SF, Rice KC, Watkins LR. Possible involvement of toll-like receptor 4/myeloid differentiation factor-2 activity of opioid inactive isomers causes spinal proinflammation and related behavioral consequences. Neuroscience 2010; 167:880-93. [PMID: 20178837 DOI: 10.1016/j.neuroscience.2010.02.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 01/18/2010] [Accepted: 02/06/2010] [Indexed: 01/22/2023]
Abstract
Opioid-induced glial activation and its proinflammatory consequences have been associated with both reduced acute opioid analgesia and the enhanced development of tolerance, hyperalgesia and allodynia following chronic opioid administration. Intriguingly, recent evidence demonstrates that these effects can result independently from the activation of classical, stereoselective opioid receptors. Here, a structurally disparate range of opioids cause activation of signaling by the innate immune receptor toll like receptor 4 (TLR4), resulting in proinflammatory glial activation. In the present series of studies, we demonstrate that the (+)-isomers of methadone and morphine, which bind with negligible affinity to classical opioid receptors, induced upregulation of proinflammatory cytokine and chemokine production in rat isolated dorsal spinal cord. Chronic intrathecal (+)-methadone produced hyperalgesia and allodynia, which were associated with significantly increased spinal glial activation (TLR4 mRNA and protein) and the expression of multiple chemokines and cytokines. Statistical analysis suggests that a cluster of cytokines and chemokines may contribute to these nociceptive behavioral changes. Acute intrathecal (+)-methadone and (+)-morphine were also found to induce microglial, interleukin-1 and TLR4/myeloid differentiation factor-2 (MD-2) dependent enhancement of pain responsivity. In silico docking analysis demonstrated (+)-naloxone sensitive docking of (+)-methadone and (+)-morphine to human MD-2. Collectively, these data provide the first evidence of the pro-nociceptive consequences of small molecule xenobiotic activation of spinal TLR4 signaling independent of classical opioid receptor involvement.
Collapse
Affiliation(s)
- M R Hutchinson
- Department of Psychology, University of Colorado at Boulder, Boulder, CO 80309-0345, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hutchinson MR, Zhang Y, Shridhar M, Evans JH, Buchanan MM, Zhao TX, Slivka PF, Coats BD, Rezvani N, Wieseler J, Hughes TS, Landgraf KE, Chan S, Fong S, Phipps S, Falke JJ, Leinwand LA, Maier SF, Yin H, Rice KC, Watkins LR. Evidence that opioids may have toll-like receptor 4 and MD-2 effects. Brain Behav Immun 2010; 24:83-95. [PMID: 19679181 PMCID: PMC2788078 DOI: 10.1016/j.bbi.2009.08.004] [Citation(s) in RCA: 409] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Revised: 08/07/2009] [Accepted: 08/07/2009] [Indexed: 11/23/2022] Open
Abstract
Opioid-induced proinflammatory glial activation modulates wide-ranging aspects of opioid pharmacology including: opposition of acute and chronic opioid analgesia, opioid analgesic tolerance, opioid-induced hyperalgesia, development of opioid dependence, opioid reward, and opioid respiratory depression. However, the mechanism(s) contributing to opioid-induced proinflammatory actions remains unresolved. The potential involvement of toll-like receptor 4 (TLR4) was examined using in vitro, in vivo, and in silico techniques. Morphine non-stereoselectively induced TLR4 signaling in vitro, blocked by a classical TLR4 antagonist and non-stereoselectively by naloxone. Pharmacological blockade of TLR4 signaling in vivo potentiated acute intrathecal morphine analgesia, attenuated development of analgesic tolerance, hyperalgesia, and opioid withdrawal behaviors. TLR4 opposition to opioid actions was supported by morphine treatment of TLR4 knockout mice, which revealed a significant threefold leftward shift in the analgesia dose response function, versus wildtype mice. A range of structurally diverse clinically-employed opioid analgesics was found to be capable of activating TLR4 signaling in vitro. Selectivity in the response was identified since morphine-3-glucuronide, a morphine metabolite with no opioid receptor activity, displayed significant TLR4 activity, whilst the opioid receptor active metabolite, morphine-6-glucuronide, was devoid of such properties. In silico docking simulations revealed ligands bound preferentially to the LPS binding pocket of MD-2 rather than TLR4. An in silico to in vitro prediction model was built and tested with substantial accuracy. These data provide evidence that select opioids may non-stereoselectively influence TLR4 signaling and have behavioral consequences resulting, in part, via TLR4 signaling.
Collapse
Affiliation(s)
- Mark R. Hutchinson
- Department of Psychology and The Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
- Discipline of Pharmacology, University of Adelaide, Adelaide, South Australia, Australia
| | - Yingning Zhang
- Department of Psychology and The Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Mitesh Shridhar
- Department of Psychology and The Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, USA
| | - John H. Evans
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Madison M. Buchanan
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Tina X. Zhao
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Peter F. Slivka
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Benjamen D. Coats
- Department of Psychology and The Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Niloofar Rezvani
- Department of Psychology and The Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Julie Wieseler
- Department of Psychology and The Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Travis S. Hughes
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Kyle E. Landgraf
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Stefanie Chan
- Discipline of Pharmacology, University of Adelaide, Adelaide, South Australia, Australia
| | - Stephanie Fong
- Discipline of Pharmacology, University of Adelaide, Adelaide, South Australia, Australia
| | - Simon Phipps
- Centre for Asthma and Respiratory Diseases (CARD), Division of Biomedical Sciences, University of Newcastle, New South Wales, Australia
| | - Joseph J. Falke
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Leslie A. Leinwand
- Centre for Asthma and Respiratory Diseases (CARD), Division of Biomedical Sciences, University of Newcastle, New South Wales, Australia
| | - Steven F. Maier
- Department of Psychology and The Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Hang Yin
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Kenner C. Rice
- Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Rockville, Maryland, USA
| | - Linda R. Watkins
- Department of Psychology and The Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| |
Collapse
|
20
|
Interactions between morphine and nitric oxide in various organs. J Anesth 2009; 23:554-68. [DOI: 10.1007/s00540-009-0793-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 05/11/2009] [Indexed: 02/02/2023]
|
21
|
Abstract
Morphine biosynthesis in relatively simple and complex integrated animal systems has been demonstrated. Key enzymes in the biosynthetic pathway have also been identified, that is, CYP2D6 and COMT. Endogenous morphine appears to exert highly selective actions via novel mu opiate receptor subtypes, that is, mu3,-4, which are coupled to constitutive nitric oxide release, exerting general yet specific down regulatory actions in various animal tissues. The pivotal role of dopamine as a chemical intermediate in the morphine biosynthetic pathway in plants establishes a functional basis for its expansion into an essential role as the progenitor catecholamine signaling molecule underlying neural and neuroendocrine transmission across diverse animal phyla. In invertebrate neural systems, dopamine serves as the preeminent catecholamine signaling molecule, with the emergence and limited utilization of norepinephrine in newly defined adaptational chemical circuits required by a rapidly expanding set of physiological demands, that is, motor and motivational networks. In vertebrates epinephrine, emerges as the major end of the catecholamine synthetic pathway consistent with a newly incorporated regulatory modification. Given the striking similarities between the enzymatic steps in the morphine biosynthetic pathway and those driving the evolutionary adaptation of catecholamine chemical species to accommodate an expansion of interactive but distinct signaling systems, it is our overall contention that the evolutionary emergence of catecholamine systems required conservation and selective "retrofit" of specific enzyme activities, that is, COMT, drawn from cellular morphine expression. Our compelling hypothesis promises to initiate the reexamination of clinical studies, adding new information and treatment modalities in biomedicine.
Collapse
|
22
|
Bilir A, Erkasap N, Koken T, Gulec S, Kaygisiz Z, Tanriverdi B, Kurt I. Effects of tramadol on myocardial ischemia-reperfusion injury. SCAND CARDIOVASC J 2009; 41:242-7. [PMID: 17680512 DOI: 10.1080/14017430701227747] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVES The aim of the present study was to evaluate the effect of tramadol on isolated rat hearts subjected to global ischemia-reperfusion injury. DESIGN Langerdorff perfused isolated rat hearts were subjected to 60 min of global ischemia following 60 min of reperfusion. In group I and III hearts were received tramadol before the onset of ischemia. Following the ischemic period, group II and III hearts were received tramadol infusion. Group I and IV hearts were subjected to saline at the same time point. The myocardial postischemic recovery was compared using hemodynamic, coronary flow, biochemical parameters from coronary effluent, and oxidative stress markers from heart tissue homogenates. RESULTS There were significant differences between tramadol and saline used groups in hemodynamic parameters. GPx values of groups I and III were significantly lower than group IV (p<0.05). SOD values of groups I, II and III were higher than group IV (p<0.05). LDH values of groups I and II were significantly lower than groups III and IV (p<0.05). CONCLUSION Tramadol provides a cardioprotective effect against myocardial ischemia-reperfusion in isolated rat heart.
Collapse
Affiliation(s)
- Ayten Bilir
- Department of Anaesthesiology and Reanimation, Osmangazi University, Medical Faculty, Eskisehir, Turkey.
| | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Stefano GB, Cadet P, Kream RM, Zhu W. The presence of endogenous morphine signaling in animals. Neurochem Res 2008; 33:1933-9. [PMID: 18777209 DOI: 10.1007/s11064-008-9674-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 03/13/2008] [Indexed: 11/28/2022]
Abstract
Recent empirical findings have contributed valuable mechanistic information in support of a regulated de novo biosynthetic pathway for chemically authentic morphine and related morphinan alkaloids within animal cells. Importantly, we and others have established that endogenously expressed morphine represents a key regulatory molecule effecting local circuit autocrine/paracrine cellular signaling via a novel mu(3) opiate receptor coupled to constitutive nitric oxide production and release. The present report provides an integrated review of the biochemical, pharmacological, and molecular demonstration of mu(3) opiate receptors in historical linkage to the elucidation of mechanisms of endogenous morphine production by animal cells and organ systems. Ongoing research in this exciting area provides a rare window of opportunity to firmly establish essential biochemical linkages between dopamine, a morphine precursor, and animal biosynthetic pathways involved in morphine biosynthesis that have been conserved throughout evolution.
Collapse
Affiliation(s)
- George B Stefano
- Neuroscience Research Institute, State University of New York-College at Old Westbury, P.O. Box 210, Old Westbury, NY 11568, USA.
| | | | | | | |
Collapse
|
25
|
Endogenous opiates, opioids, and immune function: Evolutionary brokerage of defensive behaviors. Semin Cancer Biol 2008; 18:190-8. [DOI: 10.1016/j.semcancer.2007.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Mantione KJ, Cadet P, Zhu W, Kream RM, Sheehan M, Fricchione GL, Goumon Y, Esch T, Stefano GB. Endogenous morphine signaling via nitric oxide regulates the expression of CYP2D6 and COMT: autocrine/paracrine feedback inhibition. Addict Biol 2008; 13:118-23. [PMID: 17573783 DOI: 10.1111/j.1369-1600.2007.00072.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We determined changes in mRNA expression in specific enzymes involved in the biosynthesis of morphine in human white blood cells via microarray. Leukocyte exposure to morphine down-regulated catechol-O-methyl transferase (COMT) and CYP2D6 by approximately 50% compared with control values. The treatment did not alter DOPA decarboxylase and dopamine beta-hydroxylase expression, demonstrating the specificity of morphine actions. The verification of the microarray data was accomplished via real-time Taqman reverse transcriptase polymerase chain reaction (RT-PCR) focused on CYP2D6 and COMT expression in different blood samples treated with morphine. The analysis showed similar changes in the expression of CYP2D6 and COMT mRNA. The expression was reduced by 47 +/- 7% for CYP2D6, substantiating the microarray finding of a 54% reduction. Furthermore, exposure of white blood cells to 10(-6) M S-nitroso-N-acetyl-DL-penicillamine (SNAP), a nitric oxide (NO) donor, reduced the expression of CYP2D6 and COMT. Prior naloxone (10(-6) M) or N-nitro-L-arginine methyl ester (L-NAME) (10(-4) M) addition abrogated morphine's down-regulating activity, demonstrating morphine was initiating its actions via stimulating constitutive NO synthase derived NO release via the mu3 opiate receptor splice variant. In the past we demonstrated that UDP-glucurosyltransferase is involved in metabolizing morphine to morphine 6-glucuronide in adrenal chromaffin cells. In the present study its expression was not found in controls and morphine-treated cells, suggesting that morphine 6-glucuronide may not be synthesized in white blood cells. Taken together, it appears that morphine has the ability to modulate its own synthesis via autocrine and paracrine signaling.
Collapse
Affiliation(s)
- Kirk J Mantione
- Neuroscience Research Institute, State University of New York-College at Old Westbury, 11568, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Stefano GB, Kream RM, Mantione KJ, Sheehan M, Cadet P, Zhu W, Bilfinger TV, Esch T. Endogenous morphine/nitric oxide-coupled regulation of cellular physiology and gene expression: implications for cancer biology. Semin Cancer Biol 2007; 18:199-210. [PMID: 18203618 DOI: 10.1016/j.semcancer.2007.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 12/05/2007] [Indexed: 12/19/2022]
Abstract
Cancer is a simplistic, yet complicated, process that promotes uncontrolled growth. In this regard, this unconstrained proliferation may represent primitive phenomena whereby cellular regulation is suspended or compromised. Given the new empirical evidence for a morphinergic presence and its profound modulatory actions on several cellular processes it is not an overstatement to hypothesize that morphine may represent a key chemical messenger in the process of modulating proliferation of diverse cells. This has been recently demonstrated by the finding of a novel opiate-alkaloid selective receptor subtype in human multilineage progenitor cells (MLPC). Adding to the significance of morphinergic signaling are the findings of its presence in plant, invertebrate and vertebrate cells, which also have been shown to synthesize this messenger as well. Interestingly, we and others have shown that some cancerous tissues contain morphine. Furthermore, in medullary histolytic reticulosis, which is exemplified by cells having hyperactivity, the mu3 (mu3) opiate select receptor was not present. Thus, it would appear that morphinergic signaling has inserted itself in many processes taking a long time to evolve, including those regulating the proliferation of cells across diverse phyla.
Collapse
Affiliation(s)
- George B Stefano
- Neuroscience Research Institute, State University of New York - SUNY College at Old Westbury, P.O. Box 210, Old Westbury, NY 11568, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Singh PP, Singal P. Morphine-induced neuroimmunomodulation in murine visceral leishmaniasis: the role(s) of cytokines and nitric oxide. J Neuroimmune Pharmacol 2007; 2:338-51. [PMID: 18040852 DOI: 10.1007/s11481-007-9094-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 09/17/2007] [Indexed: 11/30/2022]
Abstract
Opioid modulation of host resistance to infectious diseases is well documented; however, not much is known during visceral leishmaniasis (VL). Low doses of morphine, administered subcutaneously in Leishmania donovani-infected BALB/c mice, on days 0 and +15, significantly (p < 0.05) suppressed (1 mg/kg/day) or even sterile-cleared (2 mg/kg/day) the infection; paradoxically, high doses (10 and 30 mg/kg/day) exacerbated the infection. In vitro, low concentration (1 x 10(-9) and 1 x 10(-11) M) morphine treatment of L. donovani-infected mouse peritoneal macrophages (PM), endowed them with significant (p < 0.05) leishmanicidal activity, whereas a high-concentration (1 x 10(-5) M) treatment augmented intramacrophage parasite growth. Naloxone pre-treatment of infected-mice (4 mg/kg x 2) and of infected-PM (1 x 10(-5) M), blocked only the morphine low dose/concentration-induced protective effect. The splenocytes from protected mice and morphine low concentration-treated infected-PM, elaborated significantly (p < 0.05) enhanced levels of interleukin-12, interferon-gamma, tumor necrosis factor-alpha, granulocyte-macrophage colony-stimulating factor and nitrite in the culture medium; a high dose/concentration suppressed their elaboration. Curiously, only morphine high dose/concentration-treated infected mice splenocytes and infected PM, produced significantly (p < 0.05) increased quantity of transforming growth factor-beta1. Aminoguanidine, significantly (p < 0.05) blocked the morphine low dose/concentration-induced protective effect, in vivo and in vitro. This first study demonstrates dose-dependent biphasic modulatory effects of morphine in L. donovani-infected mice and PM, in vitro, apparently via nitric oxide-dependent mechanisms. These results thus demonstrate the implications of opiate abuse on the efficacy assessment of antileishmanial drugs and vaccines, and on the reactivation of latent VL in areas where both drug abuse and VL are rampant.
Collapse
Affiliation(s)
- Prati Pal Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Phase-X, S. A. S., Nagar 60 062, India.
| | | |
Collapse
|
29
|
Mukhopadhyay S, Tulis DA. Endocannabinoid regulation of matrix metalloproteinases: implications in ischemic stroke. Cardiovasc Hematol Agents Med Chem 2007; 5:311-8. [PMID: 17979695 PMCID: PMC3638791 DOI: 10.2174/187152507782109917] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Stroke is a major cause of morbidity and mortality and follows heart disease and cancer as the third leading cause of death in Western societies [1]. Despite many advances in stroke research and pharmacotherapy, clinical treatment of this debilitating disorder is still inadequate. Recent findings from several laboratories have identified the endocannabinoid signaling pathway, comprised of the endocannabinoid agonist anandamide and its pharmacological targets, CB1 and CB2 cannabinoid receptors and associated anandamide receptors, as a physiological system with capacity to mitigate cardiovascular and cerebrovascular disorders through neuronal and endothelial actions. Variability in experimental stroke models and modes of outcome evaluation, however, have provoked controversy regarding the precise roles of endocannabinoid signals in mediating neural and/or vascular protection versus neurovascular damage. Clinical trials of the CB1 antagonist rimonabant demonstrate that modulation of endocannabinoid signaling during metabolic regulation of vascular disorders can significantly impact clinical outcomes, thus providing strong argument for therapeutic utility of endocannabinoids and/or cannabinoid receptors as targets for therapeutic intervention in cases of stroke and associated vascular disorders. The purpose of this review is to provide updated information from basic science and clinical perspectives on endocannabinoid ligands and their effects in the pathophysiologic genesis of stroke. Particular emphasis will be placed on the endocannabinoids anandamide and 2-arachidonylglycerol and CB1 receptor-mediated mechanisms in the neurovascular unit during stroke pathogenesis. Deficiencies in our knowledge of endocannabinoids in the etiology and pathogenesis of stroke, caveats and limitations of existing studies, and future directions for investigation will be addressed.
Collapse
|
30
|
Protopapas MG, Bundock E, Westmoreland S, Nero C, Graham WA, Nesathurai S. The Complications of Scar Formation Associated With Intrathecal Pump Placement. Arch Phys Med Rehabil 2007; 88:389-90. [PMID: 17321835 DOI: 10.1016/j.apmr.2006.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A 40-year-old man had an intrathecal morphine-baclofen pump inserted for the treatment of severe dystonia affecting all limbs and severe low back pain. The etiology of his dystonic symptoms, despite thorough investigations, was uncertain. At age 45, the patient fell resulting in a cervical spinal cord injury. He underwent C2 through C5 instrumentation and fusion for cervical spine stabilization. Subsequently, an intrathecal morphine-baclofen pump was implanted to control pain and decrease spasticity. The patient ultimately died at age 48 from complications of pneumonia, and an autopsy was performed. Gross pathologic examination revealed that the intrathecal catheter entered the posterior aspect of the lumbar thecal sac, but coursed superiorly in the anterior intradural space. The catheter tip exited the thecal sac in the upper thoracic spine and became embedded in a fibrotic scar. Displacement of the catheter tip of the intrathecal morphine-baclofen pump and subsequent formation of scar tissue resulted in decreased drug delivery, contributing to diminished pain control and functional status. Catheter displacement and epidural scar formation must be considered as a potential cause of ineffective pain control and decreased functional status in patients with intrathecal morphine-baclofen pumps.
Collapse
Affiliation(s)
- Marina G Protopapas
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
31
|
Yahyavi-Firouz-Abadi N, Tahsili-Fahadan P, Ostad SN. Effect of μ and κ opioids on injury-induced microglial accumulation in leech CNS: Involvement of the nitric oxide pathway. Neuroscience 2007; 144:1075-86. [PMID: 17169497 DOI: 10.1016/j.neuroscience.2006.10.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2006] [Revised: 10/22/2006] [Accepted: 10/26/2006] [Indexed: 11/30/2022]
Abstract
Damage to the leech or mammalian CNS increases nitric oxide (NO) production and causes accumulation of phagocytic microglial cells at the injury site. Opioids have been postulated to modulate various parameters of the immune response. Morphine and leech morphine-like substance are shown to release NO and suppress microglial activation. Regarding the known immuno-modulatory effects of selective mu and kappa ligands, we have assessed the effect of these agents on accumulation of microglia at the site of injury in leech CNS. Leech nerve cords were dissected, crushed with fine forceps and maintained in different concentrations of opiates in culture medium for 3 h and then fixed and double stained with Hoechst 33258 and monoclonal antibody to endothelial nitric oxide synthase (NOS). Morphine and naloxone (> or =10(-3) M) but not selective mu agonist, DAMGO [d-Ala2, N-Me-Phe-Gly5(ol)-enkephalin] and antagonist, CTAP [D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2] inhibited the microglial accumulation. The effect of morphine was abrogated by pre-treatment with naloxone and also non-selective NOS inhibitor, l-NAME [N(omega)-nitro-l-arginine-methyl-ester; 10(-3) M] implying an NO-dependent and mu-mediated mechanism. These results are similar to properties of recently found mu-3 receptor in leech, which is sensitive to alkaloids but not peptides. Both selective kappa agonist, U50,488 [3,4-dichloro-N-methyl-N-(2-(1-pyrrolidinyl)cyclohexyl)-benzeneacetamide; > or =10(-3) M], and antagonist, nor-binaltorphimine (nor-BNI; > or =10(-3) M), inhibited the accumulation. The effect of nor-BNI was reversed by l-NAME. Immunohistochemistry showed decreased endothelial NOS expression in naloxone and U50,488-treated cords. Since, NO production at the injury site is hypothesized to act as a stop signal for microglias, opioid agents may exert their effect via changing of NO gradient along the cord resulting in disruption of accumulation. These results suggest an immuno-modulatory role for mu and kappa opioid receptors on injury-induced microglial accumulation which may be mediated via NO.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Enzyme Inhibitors/pharmacology
- Gliosis/metabolism
- Gliosis/physiopathology
- Hirudo medicinalis/cytology
- Hirudo medicinalis/metabolism
- Microglia/cytology
- Microglia/metabolism
- NG-Nitroarginine Methyl Ester/pharmacology
- Narcotic Antagonists/pharmacology
- Nervous System/cytology
- Nervous System/metabolism
- Nitric Oxide/metabolism
- Nitric Oxide Synthase/antagonists & inhibitors
- Nitric Oxide Synthase/metabolism
- Opioid Peptides/metabolism
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Trauma, Nervous System/metabolism
- Trauma, Nervous System/physiopathology
Collapse
Affiliation(s)
- N Yahyavi-Firouz-Abadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Enghelab Avenue, P.O. Box 14155/6451, Tehran, Iran
| | | | | |
Collapse
|
32
|
Pryor SC, Zhu W, Cadet P, Bianchi E, Guarna M, Stefano GB. Endogenous morphine: opening new doors for the treatment of pain and addiction. Expert Opin Biol Ther 2006; 5:893-906. [PMID: 16018736 DOI: 10.1517/14712598.5.7.893] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nitric oxide (NO) signalling is at the forefront of intense research interest because its many effects remain controversial and seemingly contradictory. This paper examines its role as a potential mediator of pain and tolerance. Within this context discussion covers endogenous morphine, documenting its ability to be made in animal tissues, including nervous tissue, and in diverse animal phyla. Supporting morphine as an endogenous signalling molecule is the presence of the newly cloned mu3 opiate receptor subtype found in animal (including human) immune, vascular and neural tissues, which is coupled to NO release. Importantly, this mu opiate receptor subtype is morphine-selective and opioid peptide-insensitive, further highlighting the presence of morphinergic signalling coupled to NO release. These findings provide novel insights into pain and tolerance as morphinergic signalling exhibits many similarities with NO actions. Taken together, a select morphinergic signalling system utilising NO opens the gate for the development of novel pharmaceuticals and/or the use of old pharmaceuticals in new ways.
Collapse
Affiliation(s)
- Stephen C Pryor
- State University of New York--College at Old Westbury, Neuroscience Research Institute, Old Westbury, NY 11568, USA
| | | | | | | | | | | |
Collapse
|
33
|
Han W, Wu L, Chen S, Bao L, Zhang L, Jiang E, Zhao Y, Xu A, Hei TK, Yu Z. Constitutive nitric oxide acting as a possible intercellular signaling molecule in the initiation of radiation-induced DNA double strand breaks in non-irradiated bystander cells. Oncogene 2006; 26:2330-9. [PMID: 17016433 DOI: 10.1038/sj.onc.1210024] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The initiation and propagation of the early processes of bystander signaling induced by low-dose alpha-particle irradiation are very important for understanding the underlying mechanism of the bystander process. Our previous investigation showed that the medium collected from cell culture exposed to low-dose alpha-particle rapidly induced phosphorylated form of H2AX protein foci formation among the non-irradiated medium receptor cells in a time-dependent manner. Using N(G)-methyl-L-arginine, 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate and N(omega)-nitro-L-arginine (L-NNA) treatment before exposure to 1 cGy alpha-particle, we showed in the present study that nitric oxide (NO(*)) produced in the irradiated cells was important and necessary for the DNA double strand break inducing activity (DIA) of conditioned medium and the generation of NO(*) in irradiated confluent AG1522 cells is in a time-dependent manner and that almost all NO(*) was generated within 15 min post-irradiation. Concurrently, the kinetics of NO(*) production in the medium of irradiated cells after irradiation was rapid and in a time-dependent manner as well, with a maximum yield observed at 10 min after irradiation with electron spin resonance analysis. Furthermore, our results that 7-Nitroindazole and L-NNA, but not aminoguanidine hemisulfate, treatment before exposure to 1 cGy alpha-particle significantly decrease the DIA of the conditioned medium suggested that constitutive NO(*) from the irradiated cells possibly acted as an intercellular signaling molecule to initiate and activate the early process (<or=30 min) of bystander response after low-dose irradiation.
Collapse
Affiliation(s)
- W Han
- Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhu W, Mantione KJ, Shen L, Lee B, Stefano GB. Norlaudanosoline and nicotine increase endogenous ganglionic morphine levels: nicotine addiction. Cell Mol Neurobiol 2006; 26:1037-45. [PMID: 16645895 PMCID: PMC11520596 DOI: 10.1007/s10571-006-9021-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 11/11/2005] [Indexed: 11/26/2022]
Abstract
1. Given the presence of morphine, its metabolites and precursors, e.g., norlaudanosoline, in mammalian and invertebrate tissues, it became important to determine if exposing normal excised ganglia to norlaudanosoline would result in increasing endogenous morphine levels. 2. Mytilus edulis pedal ganglia contain 2.2 +/- 0.41 ng/g wet weight morphine as determined by high pressure liquid chromatography coupled to electrochemical detection and radioimmunoassay. 3. Incubation of M. edulis pedal ganglia with norlaudanosoline, a morphine precursor, resulted in a concentration- and time-dependent statistical increase in endogenous morphine levels (6.9 +/- 1.24 ng/g). 4. Injection of animals with nicotine also increased endogenous morphine levels in a manner that was antagonized by atropine, suggesting that nicotine addiction may be related to altering endogenous morphine levels in mammals. 5. We surmise that norlaudanosoline is being converted to morphine, demonstrating that invertebrate neural tissue can synthesize morphine.
Collapse
Affiliation(s)
- Wei Zhu
- Neuroscience Research Institute, State University of New York, College at Old Westbury, P.O. Box 210, Old Westbury, New York 11568 USA
| | - Kirk J. Mantione
- Neuroscience Research Institute, State University of New York, College at Old Westbury, P.O. Box 210, Old Westbury, New York 11568 USA
| | - Lihua Shen
- Neuroscience Research Institute, State University of New York, College at Old Westbury, P.O. Box 210, Old Westbury, New York 11568 USA
| | - Brian Lee
- Neuroscience Research Institute, State University of New York, College at Old Westbury, P.O. Box 210, Old Westbury, New York 11568 USA
| | - George B. Stefano
- Neuroscience Research Institute, State University of New York, College at Old Westbury, P.O. Box 210, Old Westbury, New York 11568 USA
| |
Collapse
|
35
|
Wadhwa RK, Shaya MR, Nanda A. Spinal Cord Compression in a Patient with a Pain Pump for Failed Back Syndrome: A Chalk-Like Precipitate Mimicking a Spinal Cord Neoplasm: Case Report. Neurosurgery 2006; 58:E387; discussion E387. [PMID: 16462469 DOI: 10.1227/01.neu.0000195070.41751.62] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE AND IMPORTANCE The use of intrathecal morphine has been effective with few complications for chronic intractable pain of both benign and malignant origins. A rare but serious problem that exists is the formation of an inflammatory mass at the catheter tip of the pain pump. CLINICAL PRESENTATION We report the case of a 67-year-old female patient with failed back syndrome who presented with sensory complaints and back pain. INTERVENTION Magnetic resonance imaging revealed impingement on the thoracic cord by a mass. The mass was originally thought to be a spinal cord tumor; however, operation and chemical analysis of the mass showed that it was a bupivacaine precipitate at the tip of the catheter of the pain pump. CONCLUSION This is the first such case, to our knowledge, of a bupivacaine precipitate mimicking a spinal cord tumor.
Collapse
Affiliation(s)
- Rishi K Wadhwa
- Department of Neurosurgery, Louisiana State University, Health Sciences Center, Shreveport 71130-3932, USA
| | | | | |
Collapse
|
36
|
Zhu W, Cadet P, Baggerman G, Mantione KJ, Stefano GB. Human white blood cells synthesize morphine: CYP2D6 modulation. THE JOURNAL OF IMMUNOLOGY 2006; 175:7357-62. [PMID: 16301642 DOI: 10.4049/jimmunol.175.11.7357] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human plasma contains low, but physiologically significant, concentrations of morphine that can increase following trauma or exercise. We now demonstrate that normal, human white blood cells (WBC), specifically polymorphonuclear cells, contain and have the ability to synthesize morphine. We also show that WBC express CYP2D6, an enzyme capable of synthesizing morphine from tyramine, norlaudanosoline, and codeine. Significantly, we also show that morphine can be synthesized by another pathway via l-3,4-dihydroxyphenylalanine (L-DOPA). Finally, we show that WBC release morphine into their environment. These studies provide evidence that 1) the synthesis of morphine by various animal tissues is more widespread than previously thought and now includes human immune cells. 2) Moreover, another pathway for morphine synthesis exists, via L-DOPA, demonstrating an intersection between dopamine and morphine pathways. 3) WBC can release morphine into the environment to regulate themselves and other cells, suggesting involvement in autocrine signaling since these cells express the mu3 opiate receptor subtype.
Collapse
Affiliation(s)
- Wei Zhu
- Neuroscience Research Institute, State University of New York College at Old Westbury, Old Westbury, NY 11568, USA
| | | | | | | | | |
Collapse
|
37
|
Watkins LR, Hutchinson MR, Johnston IN, Maier SF. Glia: novel counter-regulators of opioid analgesia. Trends Neurosci 2005; 28:661-9. [PMID: 16246435 DOI: 10.1016/j.tins.2005.10.001] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 08/08/2005] [Accepted: 10/06/2005] [Indexed: 12/23/2022]
Abstract
Development of analgesic tolerance and withdrawal-induced pain enhancement present serious difficulties for the use of opioids for pain control. Although neuronal mechanisms to account for these phenomena have been sought for many decades, their bases remain unresolved. Within the past four years, a novel non-neuronal candidate has been uncovered that opposes acute opioid analgesia and contributes to development of opioid tolerance and tolerance-associated pain enhancement. This novel candidate is spinal cord glia. Glia are important contributors to the creation of enhanced pain states via the release of neuroexcitatory substances. New data suggest that glia also release neuroexcitatory substances in response to morphine, thereby opposing its effects. Controlling glial activation could therefore increase the clinical utility of analgesic drugs.
Collapse
Affiliation(s)
- Linda R Watkins
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, CO 80309-0345, USA.
| | | | | | | |
Collapse
|
38
|
Singal P, Kinhikar AG, Singh S, Singh PP. Neuroimmunomodulatory effects of morphine in Leishmania donovani-infected hamsters. Neuroimmunomodulation 2005; 10:261-9. [PMID: 12759563 DOI: 10.1159/000069970] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2002] [Accepted: 06/17/2002] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The effect of morphine on host defense during Leishmania donovani infection in golden hamsters was studied. METHODS Hamsters were intracardially infected with L. donovani amastigotes and then monitored by spleen touch print microscopic examination. Morphine and naloxone were administered subcutaneously and intraperitoneally, respectively. Leukocytes were counted by a hemocytometer, and ex vivo phagocytosis was determined by the examination of stained adherent macrophages. RESULTS Low doses of morphine, 1.75 and 2.5 mg/kg x 2, administered subcutaneously on day 0 and day 15 significantly (p < 0.05) suppressed the infection, whereas high doses (20.0 and 50.0 mg/kg x 2) exacerbated the infection. On day 30, hamsters treated with low doses of morphine showed a significant (p < 0.05) increase in the number of circulating leukocytes and the pool size and phagocytic activity of peritoneal macrophages ex vivo; in hamsters treated with high doses, all these parameters appeared to be diminished. The bone marrow of morphine-treated hamsters showed a fall in total cellularity and no change in the number of monocytes; however, in those treated with low doses, the infection was completely eliminated by day 30, and paradoxically, a significant (p < 0.05) potentiation of infection was observed in hamsters treated with high doses. The spleens of hamsters treated with both low and high doses of morphine showed a significant (p < 0.05) decrease and increase in weight, respectively; treatment with low doses also caused an almost 2-fold increase in the percentage of monocytes. Morphine apparently exerted its protective effects via naloxone-sensitive opioid receptors; naloxone pretreatment did not affect the potentiation of infection. CONCLUSION Conditional doses of morphine apparently biphasically modulated the course of L. donovani infection in hamsters, at least in part through macrophage-mediated mechanisms.
Collapse
Affiliation(s)
- Priya Singal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, India
| | | | | | | |
Collapse
|
39
|
Kato S, Tsuzuki Y, Hokari R, Okada Y, Miyazaki J, Matsuzaki K, Iwai A, Kawaguchi A, Nagao S, Itoh K, Suzuki H, Nabeshima T, Miura S. Role of nociceptin/orphanin FQ (Noc/oFQ) in murine experimental colitis. J Neuroimmunol 2005; 161:21-8. [PMID: 15748940 DOI: 10.1016/j.jneuroim.2004.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 12/03/2004] [Accepted: 12/06/2004] [Indexed: 11/16/2022]
Abstract
Nociceptin/orphanin (Noc/oFQ), endogenous agonist for nociceptin receptor (NOR), is thought to be a stimulator of neurogenic inflammation. We investigated the possible role of Noc/oFQ in the development of colitis using NOR-deficient mice treated with dextran sulfate sodium (DSS). Colitis was significantly improved in NOR-deficient mice against wild-type mice. Expression level of mucosal addressin cell adhesion molecule-1 (MAdCAM-1) and infiltrating cells also significantly decreased in NOR-deficient mice against wild-type mice. Nociceptin expression increased in wild-type mice after DSS treatment. These results suggest stimulation by Noc/oFQ deteriorates colonic inflammation via up-regulation of adhesion molecule.
Collapse
Affiliation(s)
- Shingo Kato
- Second Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa City, Saitama 359-8513, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Singal P, Singh PP. Leishmania donovani amastigote component-induced colony-stimulating factor production by macrophages: modulation by morphine. Microbes Infect 2005; 7:148-56. [PMID: 15716055 DOI: 10.1016/j.micinf.2004.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 10/09/2004] [Accepted: 10/12/2004] [Indexed: 11/19/2022]
Abstract
The neuroimmunomodulatory effects of opiates during microbial infections are now well known; however, not much is known during leishmaniasis. Here, we report the effects of morphine on purified approximately 12-kDa component of Leishmania donovani amastigote antigen (LDAA-12)-induced colony-stimulating factor (CSF) production by mouse peritoneal macrophages (PMs) in vitro. Low concentrations (1 x 10(-9) and 1 x 10(-11) M) of morphine significantly (P < 0.05) augmented the production of CSFs, whereas high concentrations (1 x 10(-3) and 1 x 10(-5) M) inhibited CSF production. Morphine exerted a similar concentration-dependent biphasic effect on the LDAA-12-induced elaboration of granulocyte (G)-macrophage (M)-CSF (GM-CSF) and M-CSF by PMs in their conditioned medium, as quantified by using enzyme-linked immunosorbent assay. Furthermore, selective agonists of mu-(DAGO) and delta-(DPDPE) opioid receptors also, respectively, augmented and inhibited the production of CSFs. Pretreatment of PMs with naloxone (1 x 10(-5) M) significantly (P < 0.05) blocked the augmenting effect of morphine. In contrast, at 1 x 10(-5) M, naloxone lacked any effect on the inhibitory effect of morphine; however, its 100-fold higher concentration partially blocked it. This study, apparently for the first time, demonstrates that morphine, via surface opioid receptors, biphasically modulates the LDAA-12-induced CSF production by PMs, in vitro. These results thus show the implications of opiate abuse on the outcome of therapeutic interventions in areas where both visceral leishmaniasis and drug abuse are rampant.
Collapse
Affiliation(s)
- Priya Singal
- National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, India
| | | |
Collapse
|
41
|
Kaur A, Kinhikar AG, Singh PP. Bioimmunotherapy of rodent malaria: co-treatment with recombinant mouse granulocyte-macrophage colony-stimulating factor and an enkephalin fragment peptide Tyr-Gly-Gly. Acta Trop 2004; 91:27-41. [PMID: 15158686 DOI: 10.1016/j.actatropica.2004.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2002] [Revised: 10/21/2003] [Accepted: 02/03/2004] [Indexed: 11/19/2022]
Abstract
We have earlier shown that recombinant mouse granulocyte-macrophage colony-stimulating factor (rmGM-CSF) and methionine-enkephalin co-treatment can protect mice from malaria. We now report the bioimmunotherapeutic effect of rmGM-CSF and a synthetic enkephalin fragment peptide Tyr-Gly-Gly (TGG) co-treatment on blood-induced Plasmodium berghei infection in Swiss mice. Mice were completely aparasitimic following co-treatment with rmGM-CSF (10.0 microg/kg) and TGG (2.0 mg/kg x 3 per day, intraperitoneally (i.p.)) starting from day -1 to day +4; however, in monotherapy, neither of these agents showed any detectable bioimmunotherapeutic effect. Curiously, similar co-treatment with rmGM-CSF (10.0 microg/kg) and higher doses of TGG (10.0 mg/kg) did not protect the mice. The combined bioimmunotherapeutic effect of these agents was abrogated by the separate administration each of rabbit neutralizing anti-rmGM-CSF antibody, non-selective opioid receptor antagonist naltrexone (10.0 mg/kg x 6 per day, i.p.), and silica (3.0 mg per mouse, intravenously (i.v.)). The peritoneal and splenic macrophages from the protected mice showed a significant (P<0.05) increase in their pool-size and the phagocytic activity, ex vivo. Furthermore, the protected mice, as compared to the unprotected ones, showed a significant (P<0.05) maximum increase in their serum nitrate and nitrite, interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha) levels in their splenic homogenates, on the day before the beginning of the resolution of parasitaemia. Selective inhibitors of both inducible (aminoguanidine) and all forms (L-N(G)-monomethyl arginine) of nitric oxide (NO) synthase, significantly (P<0.05) augmented the mortality of co-treated mice, suggesting the role of NO in protection. These data show that, in P. berghei-infected mice, co-treatment with rmGM-CSF and conditional doses of TGG can impart protection, apparently through partly NO-dependent and macrophage-mediated mechanism(s).
Collapse
Affiliation(s)
- A Kaur
- National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, India
| | | | | |
Collapse
|
42
|
Shi Y, Devadas S, Greeneltch KM, Yin D, Allan Mufson R, Zhou JN. Stressed to death: implication of lymphocyte apoptosis for psychoneuroimmunology. Brain Behav Immun 2003; 17 Suppl 1:S18-26. [PMID: 12615182 DOI: 10.1016/s0889-1591(02)00062-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Psychological and physical stressors best exemplify the intercommunication of the immune and the nervous systems. It has been shown that stress significantly impacts leukocyte cellularity and immune responses and alters susceptibility to various diseases. While acute stress has been shown to enhance immune responses, chronic stress often leads to immunosuppression. Among many criteria examined upon exposure to chronic stress, the reduction in lymphocyte mitogenic response and lymphocyte cellularity are commonly assessed. We have reported that chronic restraint stress could induce lymphocyte reduction, an effect dependent on endogenous opioids. Interestingly, the effect of endogenous opioids was found to be exerted through increasing the expression of a cell death receptor, Fas, and an increased sensitivity of lymphocytes to apoptosis. Stress-induced lymphocyte reduction was not affected by adrenalectomy. In this review, based on available literature and our recent data, we will discuss the role of the hypothalamic-pituitary-adrenal axis and endogenous opioids and examine the mechanisms by which chronic stress modulates lymphocyte apoptosis.
Collapse
Affiliation(s)
- Yufang Shi
- Department of Molecular Genetics, Microbiology and Immunology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 661 Hoes Lane, Piscataway 08854, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Hassenbusch S, Burchiel K, Coffey RJ, Cousins MJ, Deer T, Hahn MB, Pen SD, Follett KA, Krames E, Rogers JN, Sagher O, Staats PS, Wallace M, Willis KD. Management of Intrathecal Catheter-Tip Inflammatory Masses: A Consensus Statement. PAIN MEDICINE 2002; 3:313-23. [PMID: 15099236 DOI: 10.1046/j.1526-4637.2002.02055.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVES In a companion article, we synthesized current clinical and preclinical data to formulate hypotheses about the etiology of drug administration catheter-tip inflammatory masses. In this article, we communicate our recommendations for the detection, treatment, mitigation, and prevention of such masses. METHODS We reviewed published and unpublished case reports and our own experiences to find methods to diagnose and treat catheter-tip inflammatory masses in a manner that minimized adverse neurological sequelae. We also formulated hypotheses about theoretical ways to mitigate, and possibly, prevent the formation of such masses. RESULTS Human cases have occurred only in patients with chronic pain who received intrathecal opioid drugs, alone or mixed with other drugs, or in patients who received agents that were not labeled for long-term intrathecal use. Most patients had noncancer pain owing to their large representation among the population with implanted pumps. Such patients also had a longer life expectancy and exposure to intrathecal drugs, and they received higher daily doses than patients with cancer pain. Clues to diagnosis included the loss of analgesic drug effects accompanied by new, gradually progressive neurological symptoms and signs. When a mass was diagnosed before it filled the spinal canal or before it caused severe neurological symptoms, open surgery to remove the mass often was not required. Anecdotal reports and the authors' experiences suggest that cessation of drug administration through the affected catheter was followed by shrinkage or disappearance of the mass over a period of 2-5 months. CONCLUSIONS Attentive follow-up and maintenance of an index of suspicion should permit timely diagnosis, minimally invasive treatment, and avoidance of neurological injury from catheter-tip inflammatory masses. Whenever it is feasible, positioning the catheter in the lumbar thecal sac and/or keeping the daily intrathecal opioid dose as low as possible for as long possible may mitigate the seriousness, and perhaps, reduce the incidence of such inflammatory masses.
Collapse
Affiliation(s)
- Samuel Hassenbusch
- Department of Neurological Surgery, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
What is the role of the cannabinoid system in invertebrates and can it tell us something about the human system? We discuss in this review the possible presence of the cannabinoid system in invertebrates. Endocannabinoid processes, i.e., enzymatic hydrolysis, as well as cannabinoid receptors and endocannabinoids, have been identified in various species of invertebrates. These signal molecules appear to have multiple roles in invertebrates; diminishing sensory input, control of reproduction, feeding behavior, neurotransmission and antiinflammatory actions. We propose that since this system worked so well, it was retained during evolution, and that invertebrates can serve as a model to study endogenous cannabinoid signaling.
Collapse
Affiliation(s)
- M Salzet
- Laboratoire de Neuroimmunologie des Annélides, LIMR CNRS 8017, IFR 17 INSERM, Université des Sciences et Technologies de Lille, Villeneuve d' Ascq, France
| | | |
Collapse
|
45
|
Stefano GB, Ottaviani E. The biochemical substrate of nitric oxide signaling is present in primitive non-cognitive organisms. Brain Res 2002; 924:82-9. [PMID: 11743998 DOI: 10.1016/s0006-8993(01)03227-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nitric oxide has been shown to have diverse actions in the mammalian nervous, immune and vascular systems. These include antimicrobial and antiviral activities as well as the modulation of cell adherence. In the nervous system, nitric oxide modulates neurotransmitter release, neurosecretion and behavioral activities such as feeding. In the present review, we discuss the finding that invertebrate organisms also contain nitric oxide and that they appear to use this multidimensional molecule in a similar manner as noted for mammals. Therefore, nitric oxide signaling appears to have emerged first in these primitive non-cognitive organisms. We conclude that basal nitric oxide functioning was established in these organisms and that this molecule was later employed in man, including its involvement in cognitive neural processes.
Collapse
Affiliation(s)
- George B Stefano
- Neuroscience Research Institute, State University of New York College at Old Westbury, Old Westbury, NY 11568-0210, USA.
| | | |
Collapse
|
46
|
de la Torre JC, Stefano GB. Evidence that Alzheimer's disease is a microvascular disorder: the role of constitutive nitric oxide. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 34:119-36. [PMID: 11113503 DOI: 10.1016/s0165-0173(00)00043-6] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Evidence is fast accumulating which indicates that Alzheimer's disease is a vascular disorder with neurodegenerative consequences rather than a neurodegenerative disorder with vascular consequences. It is proposed that two factors need to be present for AD to develop: (1) advanced ageing, (2) presence of a condition that lowers cerebral perfusion, such as a vascular-risk factor. The first factor introduces a normal but potentially insidious process that lowers cerebral blood flow in inverse relation to increased ageing; the second factor adds a crucial burden which further lowers brain perfusion and places vulnerable neurons in a state of high energy compromise leading to a cascade of neuronal metabolic turmoil. Convergence of the two factors above will culminate in a critically attained threshold of cerebral hypoperfusion (CATCH). CATCH is a hemodynamic microcirculatory insufficiency that will destabilize neurons, synapses, neurotransmission and cognitive function, creating in its wake a neurodegenerative state characterized by the formation of senile plaques, neurofibrillary tangles, amyloid angiopathy and in some cases, Lewy bodies. Since any of a considerable number of vascular-related conditions must be present in the ageing individual for cognition to be disturbed, CATCH identifies an important aspect of the heterogeneic disease profile assumed to be present in the AD syndrome. It is proposed that CATCH initiates AD by distorting regional brain capillary structure involving endothelial cell shape changes and impairment of nitric oxide (NO) release which affect signaling between the immune, cardiovascular and nervous systems. Evidence is presented that in many tissues there is a basal level of NO being produced and that the actions of several signaling molecules may initiate increases in basal NO levels. Moreover, these temporary increases in basal NO levels exert inhibitory cellular actions, via cellular conformational changes. Findings indicate that (a) constitutive NO is responsible for a basal or 'tonal' level of NO; (b) this NO keeps particular types of cells in a state of inhibition and (c) activation of these cells occurs through disinhibition. Consequently, tissues not maintaining a basal NO level are more prone to excitatory, immune, vascular and neural influences. Under such circumstances, these tissues cannot be down-regulated to normal basal levels, thus prolonging their excitatory state. Thus, the clinical convergence of advanced ageing in the presence of a chronic, pre-morbid vascular risk factor, can, in time, contribute to an endotheliopathy involving basal NO deficit, to the degree where regional metabolic dysfunction leads to cognitive meltdown and to progressive neurodegeneration characteristic of Alzheimer's disease.
Collapse
Affiliation(s)
- J C de la Torre
- Department of Pathology, University of California, San Diego, 1363 Shinly, Suite 100, Escondido, CA 92026, USA.
| | | |
Collapse
|
47
|
Prevot V, Bouret S, Stefano GB, Beauvillain J. Median eminence nitric oxide signaling. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 34:27-41. [PMID: 11086185 DOI: 10.1016/s0165-0173(00)00035-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It is becoming increasingly clear that nitric oxide (NO), an active free radical formed during the conversion of arginine to citrulline by the enzyme NO synthase (NOS), is a critical neurotransmitter and biological mediator of the neuroendocrine axis. Current evidence suggests that NO modulates the activity of both the hypothalamic-pituitary-gonadal axis and the hypothalamic-pituitary-adrenal axis. Supporting this hypothesis is the finding that the highest expression of neuronal NOS in the brain is found within the hypothalamus in areas where the cell bodies of the neurons from the different neuroendocrine systems are located. In this regard, the influence of neuronal NO on the regulation of the neuroendocrine neural cell body activity has been well-documented whereas little is known about NO signaling that directly modulates neurohormonal release into the pituitary portal vessels from the neuroendocrine terminals within the median eminence, the common termination field of the adenohypophysiotropic systems. Studies in rat suggest that NO is an important factor controlling both gonadotropin-releasing hormone (GnRH) and corticotropin-releasing hormone (CRH) release at the median eminence. The recent use of amperometric NO detection from median eminence fragments coupled to the use of selective NOS inhibitors demonstrated that a major source of NO at the median eminence might be endothelial in origin rather than neuronal. The present article reviews the recent progress in identifying the origin and the role of the NO produced at the median eminence in the control of neurohormonal release. We also discuss the potential implications of the putative involvement of the median eminence endothelial cells in a neurovascular regulatory process for hypothalamic neurohormonal signaling.
Collapse
Affiliation(s)
- V Prevot
- INSERM U 422, IFR 22, Neuroendocrinologie et physiopathologie neuronale, Place de Verdun, 59045 Lille, Cedex, France.
| | | | | | | |
Collapse
|
48
|
Abstract
During the course of evolution, invertebrates and vertebrates have kept in common similar signaling molecules e.g. neuropeptides, opiates etc... Complete hormonal-enzymatic systems such as the opioid-opiate-cannabinoid systems have been found in both nervous central and immune systems of these animals. These signaling molecules can be found free in blood circulation and act as immunomodulators. The present review is focused on peptides derived from the opioid proopiomelanocortin precursor, the opiates and the endocannabinoids, which are very powerful immunosuppressors, and example models of the bidirectional communications between the endocrine and the immune systems. Parasites use these immunosuppressors with magnificence in their crosstalk with their host.
Collapse
Affiliation(s)
- M Salzet
- Laboratoire d'Endocrinologie des Annélides, UPRES-A CNRS 8017, SN3, Université des Sciences et Technologies de Lille, 59655 Cédex, Villeneuve d'Ascq, France.
| |
Collapse
|
49
|
Stefano GB, Bilfinger TV, Rialas CM, Deutsch DG. 2-arachidonyl-glycerol stimulates nitric oxide release from human immune and vascular tissues and invertebrate immunocytes by cannabinoid receptor 1. Pharmacol Res 2000; 42:317-22. [PMID: 10987990 DOI: 10.1006/phrs.2000.0702] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pharmacological physiological effects of the endogenous cannabinomimetic (endocannabinoid) anandamide have been well characterized. Another endocannabinoid, 2-arachidonoyl-glycerol (2-AG), has been less-widely studied. 2-AG occurs in vertebrate and invertebrate tissues and binds to both cannabinoid receptors (CB1 and CB2). In the current study, 2-AG was found to cause human monocytes and immunocytes from Mytilus edulis to become round and immobile, which may correlate with decreased production of cytokines and adhesion molecules, i.e. an immunosuppressive response. In addition, exposure of these cells to 2-AG results in nitric oxide (NO) release, which is blocked by the nitric oxide synthase inhibitor, l-NAME and a CB1 antagonist, but not by a CB2 antagonist. The results obtained in the human vascular system were similar to those obtained in immune cells. Treatment of human saphenous veins and atria with 2-AG stimulated basal NO release, which was antagonized by l-NAME and a CB1 antagonist. Taken together these results indicate that 2-AG exerts immune and vascular actions similar to those observed with anandamide.
Collapse
Affiliation(s)
- G B Stefano
- Multidisciplinary Center for the Study of Aging, Neuroscience Research Institute, State University of New York, College at Old Westbury, Old Westbury, NY 11568, USA.
| | | | | | | |
Collapse
|
50
|
Ni X, Gritman KR, Eisenstein TK, Adler MW, Arfors KE, Tuma RF. Morphine attenuates leukocyte/endothelial interactions. Microvasc Res 2000; 60:121-30. [PMID: 10964586 DOI: 10.1006/mvre.2000.2253] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gram-negative sepsis and subsequent endotoxic shock after surgery remain problematic in the United States and throughout the world. While morphine is widely prescribed for postoperative trauma pain management, there are reports that morphine may compromise the immune system and contribute to postoperative sepsis. The current study tested the hypothesis that morphine attenuates leukocyte rolling and sticking in both arterioles and venules via nitric oxide production. Nude mice implanted with slow-release morphine pellets were used in this study. The dorsal skinfold chamber model for intravital fluorescence microscopy on awake mice was used. Leukocyte/endothelial interactions were evaluated after bolus injection of oxidized low density lipoprotein. Morphine was found to significantly attenuate leukocyte rolling and sticking in both the arterial and venular side of the microcirculation. This attenuation was reversed by simultaneous implantation of naloxone pellets. The mechanisms of this attenuation were further investigated by administration of the nitric oxide synthase inhibitors NG-nitro-l-arginine (NOLA) and aminoguanidine (AG) in drinking water. NOLA was found to significantly reverse this morphine-induced attenuation of leukocyte rolling and sticking in both arterioles and venules. However, AG did not have the same effect. The results indicate that morphine interferes with leukocyte/endothelial cell interactions via stimulation of nitric oxide production.
Collapse
Affiliation(s)
- X Ni
- Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania, 19140, USA
| | | | | | | | | | | |
Collapse
|