1
|
Loers G, Bork U, Schachner M. Functional Relationships between L1CAM, LC3, ATG12, and Aβ. Int J Mol Sci 2024; 25:10829. [PMID: 39409157 PMCID: PMC11476435 DOI: 10.3390/ijms251910829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024] Open
Abstract
Abnormal protein accumulations in the brain are linked to aging and the pathogenesis of dementia of various types, including Alzheimer's disease. These accumulations can be reduced by cell indigenous mechanisms. Among these is autophagy, whereby proteins are transferred to lysosomes for degradation. Autophagic dysfunction hampers the elimination of pathogenic protein aggregations that contribute to cell death. We had observed that the adhesion molecule L1 interacts with microtubule-associated protein 1 light-chain 3 (LC3), which is needed for autophagy substrate selection. L1 increases cell survival in an LC3-dependent manner via its extracellular LC3 interacting region (LIR). L1 also interacts with Aβ and reduces the Aβ plaque load in an AD model mouse. Based on these results, we investigated whether L1 could contribute to autophagy of aggregated Aβ and its clearance. We here show that L1 interacts with autophagy-related protein 12 (ATG12) via its LIR domain, whereas interaction with ubiquitin-binding protein p62/SQSTM1 does not depend on LIR. Aβ, bound to L1, is carried to the autophagosome leading to Aβ elimination. Showing that the mitophagy-related L1-70 fragment is ubiquitinated, we expect that the p62/SQSTM1 pathway also contributes to Aβ elimination. We propose that enhancing L1 functions may contribute to therapy in humans.
Collapse
Affiliation(s)
- Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Ute Bork
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Melitta Schachner
- Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| |
Collapse
|
2
|
Beribisky AV, Huber A, Sarne V, Spittler A, Sukhbaatar N, Seipel T, Laccone F, Steinkellner H. MeCP2 is a naturally supercharged protein with cell membrane transduction capabilities. Protein Sci 2024; 33:e5170. [PMID: 39276009 PMCID: PMC11400631 DOI: 10.1002/pro.5170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024]
Abstract
The intrinsically disordered protein MeCP2 is a global transcriptional regulator encoded by the MECP2 gene. Although the structured domains of MeCP2 have been the subject of multiple studies, its unstructured regions have not been that extensively characterized. In this work, we show that MeCP2 possesses properties akin to those of supercharged proteins. By utilizing its unstructured portions, MeCP2 can successfully transduce across cell membranes and localize to heterochromatic foci in the nuclei, displaying uptake levels a third lower than a MeCP2 construct fused to the cell-penetrating peptide TAT. MeCP2 uptake can further be enhanced by the addition of compounds that promote endosomal escape following cellular trafficking by means of macropinocytosis. Using a combination of in silico prediction algorithms and live-cell imaging experiments, we mapped the sequence in MeCP2 responsible for its cellular incorporation, which bears a striking resemblance to TAT itself. Transduced MeCP2 was shown to interact with HDAC3. These findings provide valuable insight into the properties of MeCP2 and may be beneficial for devising future protein-based treatment strategies.
Collapse
Affiliation(s)
- Alexander V. Beribisky
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of ViennaViennaAustria
| | - Anna Huber
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of ViennaViennaAustria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of ViennaViennaAustria
| | - Victoria Sarne
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of ViennaViennaAustria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of ViennaViennaAustria
| | - Andreas Spittler
- Core Facility Flow Cytometry & Department of Surgery, Research LaboratoriesViennaAustria
| | - Nyamdelger Sukhbaatar
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of ViennaViennaAustria
| | - Teresa Seipel
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of ViennaViennaAustria
| | - Franco Laccone
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of ViennaViennaAustria
| | - Hannes Steinkellner
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of ViennaViennaAustria
| |
Collapse
|
3
|
Su S, Shen X, Shi X, Li X, Chen J, Yang W, Sun M, Tang YD, Wang H, Wang S, Cai X, Lu Y, An T, Yang Y, Meng F. Cell-penetrating peptides TAT and 8R functionalize P22 virus-like particles to enhance tissue distribution and retention in vivo. Front Vet Sci 2024; 11:1460973. [PMID: 39290505 PMCID: PMC11405305 DOI: 10.3389/fvets.2024.1460973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Virus-like particles (VLPs) are used as nanocontainers for targeted drug, protein, and vaccine delivery. The phage P22 VLP is an ideal macromolecule delivery vehicle, as it has a large exterior surface area, which facilitates multivalent genetic and chemical modifications for cell recognition and penetration. Arginine-rich cell-penetrating peptides (CPPs) can increase cargo transport efficiency in vivo. However, studies on the tissue distribution and retention of P22 VLPs mediated by TAT and 8R are lacking. This study aimed to analyze the TAT and 8R effects on the P22 VLPs transport efficiency and tissue distribution both in vitro and in vivo. We used a prokaryotic system to prepare P22 VLP self-assembled particles and expressed TAT-or 8R-conjugated mCherry on the VLP capsid protein as model cargoes and revealed that the level of P22 VLP-mCherry penetrating the cell membrane was low. However, both TAT and 8R significantly promoted the cellular uptake efficiency of P22 VLPs in vitro, as well as enhanced the tissue accumulation and retention of P22 VLPs in vivo. At 24 h postinjection, TAT enhanced the tissue distribution and retention in the lung, whereas 8R could be better accumulation in brain. Thus, TAT was superior in terms of cellular uptake and tissue accumulation in the P22 VLPs delivery system. Understanding CPP biocompatibility and tissue retention will expand their potential applications in macromolecular cargo delivery.
Collapse
Affiliation(s)
- Shibo Su
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuegang Shen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinqi Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xin Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jin Chen
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Wei Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mingxia Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yan-Dong Tang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Haiwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shujie Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuehui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Research Center for Veterinary Biopharmaceutical Technology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yu Lu
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongbo Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Research Center for Veterinary Biopharmaceutical Technology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fandan Meng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
4
|
Feng X, Chang R, Zhu H, Yang Y, Ji Y, Liu D, Qin H, Yin J, Rong H. Engineering Proteins for Cell Entry. Mol Pharm 2023; 20:4868-4882. [PMID: 37708383 DOI: 10.1021/acs.molpharmaceut.3c00467] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Proteins are essential for life, as they participate in all vital processes in the body. In the past decade, delivery of active proteins to specific cells and organs has attracted increasing interest. However, most proteins cannot enter the cytoplasm due to the cell membrane acting as a natural barrier. To overcome this challenge, various proteins have been engineered to acquire cell-penetrating capacity by mimicking or modifying natural shuttling proteins. In this review, we provide an overview of the different types of engineered cell-penetrating proteins such as cell-penetrating peptides, supercharged proteins, receptor-binding proteins, and bacterial toxins. We also discuss some strategies for improving endosomal escape such as pore formation, the proton sponge effect, and hijacking intracellular trafficking pathways. Finally, we introduce some novel methods and technologies for designing and detecting engineered cell-penetrating proteins.
Collapse
Affiliation(s)
- Xiaoyu Feng
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Ruilong Chang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Haichao Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yifan Yang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yue Ji
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, No. 206, Sixian Street, Baiyun District, Guiyang, Guizhou 550014, China
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Haibo Rong
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| |
Collapse
|
5
|
Loers G, Kleene R, Granato V, Bork U, Schachner M. Interaction of L1CAM with LC3 Is Required for L1-Dependent Neurite Outgrowth and Neuronal Survival. Int J Mol Sci 2023; 24:12531. [PMID: 37569906 PMCID: PMC10419456 DOI: 10.3390/ijms241512531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
The neural cell adhesion molecule L1 (also called L1CAM or CD171) functions not only in cell migration, but also in cell survival, differentiation, myelination, neurite outgrowth, and signaling during nervous system development and in adults. The proteolytic cleavage of L1 in its extracellular domain generates soluble fragments which are shed into the extracellular space and transmembrane fragments that are internalized into the cell and transported to various organelles to regulate cellular functions. To identify novel intracellular interaction partners of L1, we searched for protein-protein interaction motifs and found two potential microtubule-associated protein 1 light-chain 3 (LC3)-interacting region (LIR) motifs within L1, one in its extracellular domain and one in its intracellular domain. By ELISA, immunoprecipitation, and proximity ligation assay using L1 mutant mice lacking the 70 kDa L1 fragment (L1-70), we showed that L1-70 interacts with LC3 via the extracellular LIR motif in the fourth fibronectin type III domain, but not by the motif in the intracellular domain. The disruption of the L1-LC3 interaction reduces L1-mediated neurite outgrowth and neuronal survival.
Collapse
Affiliation(s)
- Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Viviana Granato
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Ute Bork
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Melitta Schachner
- Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| |
Collapse
|
6
|
Kleene R, Loers G, Schachner M. The KDET Motif in the Intracellular Domain of the Cell Adhesion Molecule L1 Interacts with Several Nuclear, Cytoplasmic, and Mitochondrial Proteins Essential for Neuronal Functions. Int J Mol Sci 2023; 24:932. [PMID: 36674445 PMCID: PMC9866381 DOI: 10.3390/ijms24020932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Abnormal functions of the cell adhesion molecule L1 are linked to several neural diseases. Proteolytic L1 fragments were reported to interact with nuclear and mitochondrial proteins to regulate events in the developing and the adult nervous system. Recently, we identified a 55 kDa L1 fragment (L1-55) that interacts with methyl CpG binding protein 2 (MeCP2) and heterochromatin protein 1 (HP1) via the KDET motif. We now show that L1-55 also interacts with histone H1.4 (HistH1e) via this motif. Moreover, we show that this motif binds to NADH dehydrogenase ubiquinone flavoprotein 2 (NDUFV2), splicing factor proline/glutamine-rich (SFPQ), the non-POU domain containing octamer-binding protein (NonO), paraspeckle component 1 (PSPC1), WD-repeat protein 5 (WDR5), heat shock cognate protein 71 kDa (Hsc70), and synaptotagmin 1 (SYT1). Furthermore, applications of HistH1e, NDUFV2, SFPQ, NonO, PSPC1, WDR5, Hsc70, or SYT1 siRNAs or a cell-penetrating KDET-carrying peptide decrease L1-dependent neurite outgrowth and the survival of cultured neurons. These findings indicate that L1's KDET motif binds to an unexpectedly large number of molecules that are essential for nervous system-related functions, such as neurite outgrowth and neuronal survival. In summary, L1 interacts with cytoplasmic, nuclear and mitochondrial proteins to regulate development and, in adults, the formation, maintenance, and flexibility of neural functions.
Collapse
Affiliation(s)
- Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| |
Collapse
|
7
|
Strategies for Improving Peptide Stability and Delivery. Pharmaceuticals (Basel) 2022; 15:ph15101283. [PMID: 36297395 PMCID: PMC9610364 DOI: 10.3390/ph15101283] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Peptides play an important role in many fields, including immunology, medical diagnostics, and drug discovery, due to their high specificity and positive safety profile. However, for their delivery as active pharmaceutical ingredients, delivery vectors, or diagnostic imaging molecules, they suffer from two serious shortcomings: their poor metabolic stability and short half-life. Major research efforts are being invested to tackle those drawbacks, where structural modifications and novel delivery tactics have been developed to boost their ability to reach their targets as fully functional species. The benefit of selected technologies for enhancing the resistance of peptides against enzymatic degradation pathways and maximizing their therapeutic impact are also reviewed. Special note of cell-penetrating peptides as delivery vectors, as well as stapled modified peptides, which have demonstrated superior stability from their parent peptides, are reported.
Collapse
|
8
|
Karami Fath M, Babakhaniyan K, Anjomrooz M, Jalalifar M, Alizadeh SD, Pourghasem Z, Abbasi Oshagh P, Azargoonjahromi A, Almasi F, Manzoor HZ, Khalesi B, Pourzardosht N, Khalili S, Payandeh Z. Recent Advances in Glioma Cancer Treatment: Conventional and Epigenetic Realms. Vaccines (Basel) 2022; 10:1448. [PMID: 36146527 PMCID: PMC9501259 DOI: 10.3390/vaccines10091448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/14/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most typical and aggressive form of primary brain tumor in adults, with a poor prognosis. Successful glioma treatment is hampered by ineffective medication distribution across the blood-brain barrier (BBB) and the emergence of drug resistance. Although a few FDA-approved multimodal treatments are available for glioblastoma, most patients still have poor prognoses. Targeting epigenetic variables, immunotherapy, gene therapy, and different vaccine- and peptide-based treatments are some innovative approaches to improve anti-glioma treatment efficacy. Following the identification of lymphatics in the central nervous system, immunotherapy offers a potential method with the potency to permeate the blood-brain barrier. This review will discuss the rationale, tactics, benefits, and drawbacks of current glioma therapy options in clinical and preclinical investigations.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran 1571914911, Iran
| | - Kimiya Babakhaniyan
- Department of Medical Surgical Nursing, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran 1996713883, Iran
| | - Mehran Anjomrooz
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran
| | | | | | - Zeinab Pourghasem
- Department of Microbiology, Islamic Azad University of Lahijan, Gilan 4416939515, Iran
| | - Parisa Abbasi Oshagh
- Department of Biology, Faculty of Basic Sciences, Malayer University, Malayer 6571995863, Iran
| | - Ali Azargoonjahromi
- Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz 7417773539, Iran
| | - Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 1411734115, Iran
| | - Hafza Zahira Manzoor
- Experimental and Translational Medicine, University of Insubria, Via jean Henry Dunant 3, 21100 Varese, Italy
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj 3197619751, Iran
| | - Navid Pourzardosht
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht 4193713111, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran 1678815811, Iran
| | - Zahra Payandeh
- Department of Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, SE-17177 Stockholm, Sweden
| |
Collapse
|
9
|
Negi S, Hamori M, Kawahara-Nakagawa Y, Imanishi M, Kurehara M, Kitada C, Kawahito Y, Kishi K, Manabe T, Kawamura N, Kitagishi H, Mashimo M, Shibata N, Sugiura Y. Importance of two-dimensional cation clusters induced by protein folding in intrinsic intracellular membrane permeability. RSC Chem Biol 2022; 3:1076-1084. [PMID: 35975000 PMCID: PMC9347356 DOI: 10.1039/d2cb00098a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
We investigated the cell penetration of Sp1 zinc finger proteins (Sp1 ZF) and the mechanism via which the total cationic charge and distribution of cationic residues on the protein surface affect intracellular trafficking. Sp1 ZFs showed intrinsic cell membrane permeability. The intracellular transfer of Sp1 ZFs other than 1F3 was dependent on the total cationic charge. Investigation of the effect of cationic residue distribution on intracellular membrane permeability revealed that the cellular uptake of unfolded Zn2+-non-coordinating Ala mutants was lower than that of the wild type. Therefore, the total cationic charge and distribution of cationic residues on the protein played crucial roles in intracellular translocation. Mutational studies revealed that the two-dimensional cation cluster on the protein surface significantly improved their cellular uptake. This study will contribute to the design of artificial cargoes that can efficiently transport target substances into cells.
Collapse
Affiliation(s)
- Shigeru Negi
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo Kyotanabe Kyoto 610-0395 Japan
| | - Mami Hamori
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo Kyotanabe Kyoto 610-0395 Japan
| | - Yuka Kawahara-Nakagawa
- Graduate School of Life Science, University of Hyogo 3-2-1 Kouto, Kamigori-cho Ako-gun Hyogo 678-1297 Japan
| | - Miki Imanishi
- Institute for Chemical Research, Kyoto University Uji Kyoto 611-0011 Japan
| | - Miku Kurehara
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo Kyotanabe Kyoto 610-0395 Japan
| | - Chieri Kitada
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo Kyotanabe Kyoto 610-0395 Japan
| | - Yuri Kawahito
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo Kyotanabe Kyoto 610-0395 Japan
| | - Kanae Kishi
- Graduate School of Biomedical and Health Sciences, Hiroshima University 1-2-3 Kasumi Minami-ku Hiroshima 734-8553 Japan
| | - Takayuki Manabe
- Clinical Research Support Center, Asahikawa Medical University Hospital 2-1-1-1 Midorigaokahigashi Asahikawa 078-8510 Japan
| | - Nobuyuki Kawamura
- Education Center for Pharmacy, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences 265-1 Higashijima, Akiha-ku Niigata City Niigata 956-8603 Japan
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University Kyotanabe Kyoto 610-0321 Japan
| | - Masato Mashimo
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo Kyotanabe Kyoto 610-0395 Japan
| | - Nobuhito Shibata
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo Kyotanabe Kyoto 610-0395 Japan
| | - Yukio Sugiura
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo Kyotanabe Kyoto 610-0395 Japan
| |
Collapse
|
10
|
Mallick AM, Tripathi A, Mishra S, Mukherjee A, Dutta C, Chatterjee A, Sinha Roy R. Emerging Approaches for Enabling RNAi Therapeutics. Chem Asian J 2022; 17:e202200451. [PMID: 35689534 DOI: 10.1002/asia.202200451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/04/2022] [Indexed: 11/07/2022]
Abstract
RNA interference (RNAi) is a primitive evolutionary mechanism developed to escape incorporation of foreign genetic material. siRNA has been instrumental in achieving the therapeutic potential of RNAi by theoretically silencing any gene of interest in a reversible and sequence-specific manner. Extrinsically administered siRNA generally needs a delivery vehicle to span across different physiological barriers and load into the RISC complex in the cytoplasm in its functional form to show its efficacy. This review discusses the designing principles and examples of different classes of delivery vehicles that have proved to be efficient in RNAi therapeutics. We also briefly discuss the role of RNAi therapeutics in genetic and rare diseases, epigenetic modifications, immunomodulation and combination modality to inch closer in creating a personalized therapy for metastatic cancer. At the end, we present, strategies and look into the opportunities to develop efficient delivery vehicles for RNAi which can be translated into clinics.
Collapse
Affiliation(s)
- Argha M Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Archana Tripathi
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Sukumar Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Asmita Mukherjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Chiranjit Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.,Present address:Department of Biological Sciences, NUS Environmental Research Institute (NERI), National University of Singapore (NUS), Block S2 #05-01, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Ananya Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Rituparna Sinha Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India.,Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India
| |
Collapse
|
11
|
Abstract
AbstractBiophysical studies have a very high impact on the understanding of internalization, molecular mechanisms, interactions, and localization of CPPs and CPP/cargo conjugates in live cells or in vivo. Biophysical studies are often first carried out in test-tube set-ups or in vitro, leading to the complicated in vivo systems. This review describes recent studies of CPP internalization, mechanisms, and localization. The multiple methods in these studies reveal different novel and important aspects and define the rules for CPP mechanisms, hopefully leading to their improved applicability to novel and safe therapies.
Collapse
Affiliation(s)
- Matjaž Zorko
- University of Ljubljana, Medical Faculty, Institute of Biochemistry and Molecular Genetics, Vrazov trg 2, 1000Ljubljana, Slovenia,
| | - Ülo Langel
- University of Stockholm, Department of Biochemistry and Biophysics, Svante Arrhenius väg 16, 106 91 Stockholm, Sweden, , and Institute of Technology, University of Tartu, Nooruse 1, Tartu, Estonia, 50411
| |
Collapse
|
12
|
Loers G, Kleene R, Girbes Minguez M, Schachner M. The Cell Adhesion Molecule L1 Interacts with Methyl CpG Binding Protein 2 via Its Intracellular Domain. Int J Mol Sci 2022; 23:ijms23073554. [PMID: 35408913 PMCID: PMC8998178 DOI: 10.3390/ijms23073554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Cell adhesion molecule L1 regulates multiple cell functions, and L1 deficiency is linked to several neural diseases. Recently, we have identified methyl CpG binding protein 2 (MeCP2) as a potential binding partner of the intracellular L1 domain. By ELISA we show here that L1's intracellular domain binds directly to MeCP2 via the sequence motif KDET. Proximity ligation assay with cultured cerebellar and cortical neurons suggests a close association between L1 and MeCP2 in nuclei of neurons. Immunoprecipitation using MeCP2 antibodies and nuclear mouse brain extracts indicates that MeCP2 interacts with an L1 fragment of ~55 kDa (L1-55). Proximity ligation assay indicates that metalloproteases, β-site of amyloid precursor protein cleaving enzyme (BACE1) and ɣ-secretase, are involved in the generation of L1-55. Reduction in MeCP2 expression by siRNA decreases L1-dependent neurite outgrowth from cultured cortical neurons as well as the migration of L1-expressing HEK293 cells. Moreover, L1 siRNA, MeCP2 siRNA, or a cell-penetrating KDET-containing L1 peptide leads to reduced levels of myocyte enhancer factor 2C (Mef2c) mRNA and protein in cortical neurons, suggesting that the MeCP2/L1 interaction regulates Mef2c expression. Altogether, the present findings indicate that the interaction of the novel fragment L1-55 with MeCP2 affects L1-dependent functions, such as neurite outgrowth and neuronal migration.
Collapse
Affiliation(s)
- Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (G.L.); (R.K.); (M.G.M.)
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (G.L.); (R.K.); (M.G.M.)
| | - Maria Girbes Minguez
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (G.L.); (R.K.); (M.G.M.)
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
- Correspondence: ; Tel.: +1-848-445-1780
| |
Collapse
|
13
|
Preetham HD, Umashankara M, Kumar KSS, Rangappa S, Rangappa KS. Pyrrolidine-based cationic γ-peptide: a DNA-binding molecule works as a potent anti-gene agent. Med Chem Res 2022. [DOI: 10.1007/s00044-021-02833-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Zorko M, Jones S, Langel Ü. Cell-penetrating peptides in protein mimicry and cancer therapeutics. Adv Drug Deliv Rev 2022; 180:114044. [PMID: 34774552 DOI: 10.1016/j.addr.2021.114044] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022]
Abstract
Extensive research has been undertaken in the pursuit of anticancer therapeutics. Many anticancer drugs require specificity of delivery to cancer cells, whilst sparing healthy tissue. Cell-penetrating peptides (CPPs), now well established as facilitators of intracellular delivery, have in recent years advanced to incorporate target specificity and thus possess great potential for the targeted delivery of anticancer cargoes. Though none have yet been approved for clinical use, this novel technology has already entered clinical trials. In this review we present CPPs, discuss their classification, mechanisms of cargo internalization and highlight strategies for conjugation to anticancer moieties including their incorporation into therapeutic proteins. As the mainstay of this review, strategies to build specificity into tumor targeting CPP constructs through exploitation of the tumor microenvironment and the use of tumor homing peptides are discussed, whilst acknowledging the extensive contribution made by CPP constructs to target specific protein-protein interactions integral to intracellular signaling pathways associated with tumor cell survival and progression. Finally, antibody/antigen CPP conjugates and their potential roles in cancer immunotherapy and diagnostics are considered. In summary, this review aims to harness the potential of CPP-aided drug delivery for future cancer therapies and diagnostics whilst highlighting some of the most recent achievements in selective delivery of anticancer drugs, including cytostatic drugs, to a range of tumor cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Matjaž Zorko
- University of Ljubljana, Medical Faculty, Institute of Biochemistry and Molecular Genetics, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Sarah Jones
- University of Wolverhampton, School of Pharmacy, Faculty of Science & Engineering, Wulfruna Street, Wolverhampton WV1 1LY, UK.
| | - Ülo Langel
- University of Stockholm, Department of Biochemistry and Biophysics, Svante Arrhenius väg 16, 106 91 Stockholm, Sweden; Institute of Technology, University of Tartu, Nooruse 1, Tartu, Estonia 50411, Estonia.
| |
Collapse
|
15
|
Nunes LGP, Reichert T, Machini MT. His-Rich Peptides, Gly- and His-Rich Peptides: Functionally Versatile Compounds with Potential Multi-Purpose Applications. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10302-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Herrera R, Rosbe K, Tugizov SM. Inactivation of HIV-1 in Polarized Infant Tonsil Epithelial Cells by Human Beta-Defensins 2 and 3 Tagged with the Protein Transduction Domain of HIV-1 Tat. Viruses 2021; 13:2043. [PMID: 34696473 PMCID: PMC8538026 DOI: 10.3390/v13102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Mother-to-child transmission (MTCT) of HIV-1 may occur during pregnancy, labor, and breastfeeding; however, the molecular mechanism of MTCT of virus remains poorly understood. Infant tonsil mucosal epithelium may sequester HIV-1, serving as a transient reservoir, and may play a critical role in MTCT. Innate immune proteins human beta-defensins 2 (hBD-2) and -3 may inactivate intravesicular virions. To establish delivery of hBD-2 and -3 into vesicles containing HIV-1, we tagged hBDs with the protein transduction domain (PTD) of HIV-1 Tat, which facilitates an efficient translocation of proteins across cell membranes. Our new findings showed that hBD-2 and -3 proteins tagged with PTD efficiently penetrated polarized tonsil epithelial cells by endocytosis and direct penetration. PTD-initiated internalization of hBD-2 and -3 proteins into epithelial cells led to their subsequent penetration of multivesicular bodies (MVB) and vacuoles containing HIV-1. Furthermore, PTD played a role in the fusion of vesicles containing HIV-1 with lysosomes, where virus was inactivated. PTD-initiated internalization of hBD-2 and -3 proteins into ex vivo tonsil tissue explants reduced the spread of virus from epithelial cells to CD4+ T lymphocytes, CD68+ macrophages, and CD1c+ dendritic cells, suggesting that this approach may serve as an antiviral strategy for inactivating intraepithelial HIV-1 and reducing viral MTCT.
Collapse
Affiliation(s)
- Rossana Herrera
- Department of Medicine, University of California–San Francisco, 513 Parnassus Ave., San Francisco, CA 94143, USA;
| | - Kristina Rosbe
- Department of Otolaryngology, University of California–San Francisco, San Francisco, CA 94115, USA;
| | - Sharof M. Tugizov
- Department of Medicine, University of California–San Francisco, 513 Parnassus Ave., San Francisco, CA 94143, USA;
| |
Collapse
|
17
|
Alghamri MS, Sharma P, Williamson TL, Readler JM, Yan R, Rider SD, Hostetler HA, Cool DR, Kolawole AO, Excoffon KJDA. MAGI-1 PDZ2 Domain Blockade Averts Adenovirus Infection via Enhanced Proteolysis of the Apical Coxsackievirus and Adenovirus Receptor. J Virol 2021; 95:e0004621. [PMID: 33762416 PMCID: PMC8437357 DOI: 10.1128/jvi.00046-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
Adenoviruses (AdVs) are etiological agents of gastrointestinal, heart, eye, and respiratory tract infections that can be lethal for immunosuppressed people. Many AdVs use the coxsackievirus and adenovirus receptor (CAR) as a primary receptor. The CAR isoform resulting from alternative splicing that includes the eighth exon, CAREx8, localizes to the apical surface of polarized epithelial cells and is responsible for the initiation of AdV infection. We have shown that the membrane level of CAREx8 is tightly regulated by two MAGI-1 PDZ domains, PDZ2 and PDZ4, resulting in increased or decreased AdV transduction, respectively. We hypothesized that targeting the interactions between the MAGI-1 PDZ2 domain and CAREx8 would decrease the apical CAREx8 expression level and prevent AdV infection. Decoy peptides that target MAGI-1 PDZ2 were synthesized (TAT-E6 and TAT-NET1). PDZ2 binding peptides decreased CAREx8 expression and reduced AdV transduction. CAREx8 degradation was triggered by the activation of the regulated intramembrane proteolysis (RIP) pathway through a disintegrin and metalloproteinase (ADAM17) and γ-secretase. Further analysis revealed that ADAM17 interacts directly with the MAGI-1 PDZ3 domain, and blocking the PDZ2 domain enhanced the accessibility of ADAM17 to the substrate (CAREx8). Finally, we validated the efficacy of TAT-PDZ2 peptides in protecting the epithelia from AdV transduction in vivo using a novel transgenic animal model. Our data suggest that TAT-PDZ2 binding peptides are novel anti-AdV molecules that act by enhanced RIP of CAREx8 and decreased AdV entry. This strategy has additional translational potential for targeting other viral receptors that have PDZ binding domains, such as the angiotensin-converting enzyme 2 receptor. IMPORTANCE Adenovirus is a common threat in immunosuppressed populations and military recruits. There are no currently approved treatments/prophylactic agents that protect from most AdV infections. Here, we developed peptide-based small molecules that can suppress AdV infection of polarized epithelia by targeting the AdV receptor, coxsackievirus and adenovirus receptor (CAREx8). The newly discovered peptides target a specific PDZ domain of the CAREx8-interacting protein MAGI-1 and decrease AdV transduction in multiple polarized epithelial models. Peptide-induced CAREx8 degradation is triggered by extracellular domain (ECD) shedding through ADAM17 followed by γ-secretase-mediated nuclear translocation of the C-terminal domain. The enhanced shedding of the CAREx8 ECD further protected the epithelium from AdV infection. Taken together, these novel molecules protect the epithelium from AdV infection. This approach may be applicable to the development of novel antiviral molecules against other viruses that use a receptor with a PDZ binding domain.
Collapse
Affiliation(s)
- Mahmoud S. Alghamri
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Priyanka Sharma
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | | | - James M. Readler
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Ran Yan
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - S. Dean Rider
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - Heather A. Hostetler
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - David R. Cool
- Department of Pharmacology and Toxicology, Wright State University, Dayton, Ohio, USA
| | | | | |
Collapse
|
18
|
Holl NJ, Lee HJ, Huang YW. Evolutionary Timeline of Genetic Delivery and Gene Therapy. Curr Gene Ther 2021; 21:89-111. [PMID: 33292120 DOI: 10.2174/1566523220666201208092517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 11/22/2022]
Abstract
There are more than 3,500 genes that are being linked to hereditary diseases or correlated with an elevated risk of certain illnesses. As an alternative to conventional treatments with small molecule drugs, gene therapy has arisen as an effective treatment with the potential to not just alleviate disease conditions but also cure them completely. In order for these treatment regimens to work, genes or editing tools intended to correct diseased genetic material must be efficiently delivered to target sites. There have been many techniques developed to achieve such a goal. In this article, we systematically review a variety of gene delivery and therapy methods that include physical methods, chemical and biochemical methods, viral methods, and genome editing. We discuss their historical discovery, mechanisms, advantages, limitations, safety, and perspectives.
Collapse
Affiliation(s)
- Natalie J Holl
- Department of Biological Sciences, College of Arts, Sciences, and Business, Missouri University of Science and Technology, Rolla, MO 65409, United States
| | - Han-Jung Lee
- Department of Natural Resources and Environmental Studies, College of Environmental Studies, National Dong Hwa University, Hualien 974301, Taiwan
| | - Yue-Wern Huang
- Department of Biological Sciences, College of Arts, Sciences, and Business, Missouri University of Science and Technology, Rolla, MO 65409, United States
| |
Collapse
|
19
|
Khan AA, Allemailem KS, Almatroudi A, Almatroodi SA, Alsahli MA, Rahmani AH. Novel strategies of third level (Organelle-specific) drug targeting: An innovative approach of modern therapeutics. J Drug Deliv Sci Technol 2021; 61:102315. [DOI: 10.1016/j.jddst.2020.102315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Man KNM, Navedo MF, Horne MC, Hell JW. β 2 Adrenergic Receptor Complexes with the L-Type Ca 2+ Channel Ca V1.2 and AMPA-Type Glutamate Receptors: Paradigms for Pharmacological Targeting of Protein Interactions. Annu Rev Pharmacol Toxicol 2019; 60:155-174. [PMID: 31561738 DOI: 10.1146/annurev-pharmtox-010919-023404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Formation of signaling complexes is crucial for the orchestration of fast, efficient, and specific signal transduction. Pharmacological disruption of defined signaling complexes has the potential for specific intervention in selected regulatory pathways without affecting organism-wide disruption of parallel pathways. Signaling by epinephrine and norepinephrine through α and β adrenergic receptors acts on many signaling pathways in many cell types. Here, we initially provide an overview of the signaling complexes formed between the paradigmatic β2 adrenergic receptor and two of its most important targets, the L-type Ca2+ channel CaV1.2 and the AMPA-type glutamate receptor. Importantly, both complexes contain the trimeric Gs protein, adenylyl cyclase, and the cAMP-dependent protein kinase, PKA. We then discuss the functional implications of the formation of these complexes, how those complexes can be specifically disrupted, and how such disruption could be utilized in the pharmacological treatment of disease.
Collapse
Affiliation(s)
- Kwun Nok Mimi Man
- Department of Pharmacology, University of California, Davis, California 95616, USA;
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, California 95616, USA;
| | - Mary C Horne
- Department of Pharmacology, University of California, Davis, California 95616, USA;
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, California 95616, USA;
| |
Collapse
|
21
|
Zheng XS, Zong C, Wang X, Ren B. Cell-Penetrating Peptide Conjugated SERS Nanosensor for in Situ Intracellular pH Imaging of Single Living Cells during Cell Cycle. Anal Chem 2019; 91:8383-8389. [DOI: 10.1021/acs.analchem.9b01191] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xiao-Shan Zheng
- MOE Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Cheng Zong
- MOE Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin Wang
- School of Aerospace Engineering, Xiamen University, Xiamen 361005, China
| | - Bin Ren
- MOE Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
22
|
Chen SH, Chao A, Tsai CL, Sue SC, Lin CY, Lee YZ, Hung YL, Chao AS, Cheng AJ, Wang HS, Wang TH. Utilization of HEPES for Enhancing Protein Transfection into Mammalian Cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 13:99-111. [PMID: 30740472 PMCID: PMC6357789 DOI: 10.1016/j.omtm.2018.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/13/2018] [Indexed: 01/12/2023]
Abstract
The delivery of active proteins into cells (protein transfection) for biological purposes offers considerable potential for clinical applications. Herein we demonstrate that, with a readily available, inexpensive organic agent, the 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) method can be used for simple and efficient protein transfection. By mixing proteins with a pure HEPES solution before they are applied to live cells, proteins with various molecular weights (including antibodies, recombinant proteins, and peptides) were successfully delivered into the cytoplasm of different cell types. The protein transfection efficiency of the HEPES method was not inferior to that of commercially available systems that are both more expensive and time consuming. Studies using endocytotic inhibitors and endosomal markers have revealed that cells internalize HEPES-protein mixtures through endocytosis. Results that HEPES-protein mixtures exhibited a low diffusion coefficient suggest that HEPES might neutralize the charges of proteins and, thus, facilitate their cellular internalization. Upon internalization, the cytosolic antibodies caused the degradation of targeted proteins in TRIM21-expressing cells. In summary, the HEPES method is efficient for protein transfection and has potential for myriad clinical applications.
Collapse
Affiliation(s)
- Shun-Hua Chen
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan.,Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center and Chang Gung University, Taoyuan, Taiwan
| | - Angel Chao
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center and Chang Gung University, Taoyuan, Taiwan.,Gynecologic Cancer Research Center, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan
| | - Chia-Lung Tsai
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan
| | - Shih-Che Sue
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chiao-Yun Lin
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan
| | - Yi-Zong Lee
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Lin Hung
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - An-Shine Chao
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center and Chang Gung University, Taoyuan, Taiwan
| | - Ann-Joy Cheng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Shih Wang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center and Chang Gung University, Taoyuan, Taiwan
| | - Tzu-Hao Wang
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan.,Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center and Chang Gung University, Taoyuan, Taiwan.,Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan
| |
Collapse
|
23
|
Zhang L, Shi Y, Song Y, Sun X, Zhang X, Sun K, Li Y. The use of low molecular weight protamine to enhance oral absorption of exenatide. Int J Pharm 2018; 547:265-273. [PMID: 29800739 DOI: 10.1016/j.ijpharm.2018.05.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/08/2018] [Accepted: 05/22/2018] [Indexed: 12/19/2022]
Abstract
Although oral delivery of exenatide has significant advantages, its poor permeability through intestinal epithelial membranes and rapid digestion by pepsin and ereptase in the gastrointestinal tract make effective oral delivery of exenatide a formidable challenge. In this study, we constructed a zinc ion (Zn2+) and exenatide complex functionalized nanoparticle (NP) oral delivery system to overcome the above-mentioned issue. Polyethylene glycol-poly(lactic-co-glycolic acid) (PEG-PLGA) was used as a drug carrier to escape enzymatic degradation in the gastrointestinal tract, and low molecular weight protamine (LMWP) was used as a functional group to increase penetration of NPs into the intestinal epithelium. The functionalized NPs exhibited significantly improved penetration across the intestinal epithelium, as shown by cell uptake and transmembrane transport experiments. Moreover, a significant hypoglycemic effect was observed in diabetic rats. The relative bioavailability of the orally administered functionalized NPs vs. subcutaneous injection was 7.44%, 29-fold that of the exenatide-Zn2+ solution group. These findings indicate that our modification could effectively improve exenatide treatment.
Collapse
Affiliation(s)
- Liping Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Yanan Shi
- School of Pharmacy, Binzhou Medical University, Yantai, China.
| | - Yina Song
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Xinfeng Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Xuemei Zhang
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Co., Ltd., Yantai, China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China; State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Co., Ltd., Yantai, China
| | - Youxin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
24
|
Goh Y, Song YH, Lee G, Bae H, Mahata MK, Lee KT. Cellular uptake efficiency of nanoparticles investigated by three-dimensional imaging. Phys Chem Chem Phys 2018; 20:11359-11368. [PMID: 29644351 DOI: 10.1039/c8cp00493e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Understanding the interaction of nanoparticles with living cells on the basis of cellular uptake efficiency is a fundamental requisite in biomedical research. Cellular internalization of nanoparticles takes place by mechanisms like ATP hydrolysis-driven endocytosis that deliver nanoparticles to the cytoplasm, organelles and nuclei. Despite its importance in nanomedicine, this uptake procedure is not understood in-depth because of the complexity of the biochemical mechanisms and the lack of available experimental methods for quantitative analysis. The only breakthrough is likely to be the development of imaging techniques that can visualize, monitor and even count the number of nanoparticles inside the cell. To this end, we report here a new, fast and background-free three-dimensional (3-D) imaging technique with quantitative evaluation of the uptake efficiency for NaYF4:Yb3+,Er3+/NaYF4 core/shell upconversion nanoparticles (UCNPs) functionalized with different chemical and biological groups. Furthermore, the multiple 3-D trajectories of the UCNPs have been analyzed to investigate the cellular dynamics. This study reveals the nuclear uptake of UCNPs to be dependent on the specific chemical groups conjugated to the UCNPs. The developed 3-D imaging technique is of great significance for exploring complex biological systems.
Collapse
Affiliation(s)
- Yeongchang Goh
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Korea.
| | | | | | | | | | | |
Collapse
|
25
|
Zhang Y, Røise JJ, Lee K, Li J, Murthy N. Recent developments in intracellular protein delivery. Curr Opin Biotechnol 2018; 52:25-31. [PMID: 29486392 DOI: 10.1016/j.copbio.2018.02.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 02/11/2018] [Indexed: 12/23/2022]
Abstract
Protein therapeutics based on transcription factors, gene editing enzymes, signaling proteins and protein antigens, have the potential to provide cures for a wide number of untreatable diseases, but cannot be developed into therapeutics due to challenges in delivering them into the cytoplasm. There is therefore great interest in developing strategies that can enable proteins to enter the cytoplasm of cells. In this review article we will discuss recent progress in intracellular protein therapeutics, which are focused on the following four classes of therapeutics, Firstly, vaccine development, secondly, transcription factor therapies, thirdly, gene editing and finally, cancer therapeutics. These exciting new advances raise the prospect of developing cures for several un-treatable diseases.
Collapse
Affiliation(s)
- Yumiao Zhang
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joachim Justad Røise
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Jie Li
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Niren Murthy
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
26
|
Maderna E, Colombo L, Cagnotto A, Di Fede G, Indaco A, Tagliavini F, Salmona M, Giaccone G. In Situ Tissue Labeling of Cerebral Amyloid Using HIV-Related Tat Peptide. Mol Neurobiol 2018; 55:6834-6840. [PMID: 29349578 DOI: 10.1007/s12035-018-0870-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/07/2018] [Indexed: 11/25/2022]
Abstract
Delivering peptide-based drugs to the brain is a major challenge because of the existence of the blood-brain barrier (BBB). To overcome this problem, cell-penetrating peptides derived from proteins that are able to cross biological membranes have been used as cell-permeable and brain-penetrant compounds. An example is the transactivator of transcription protein transduction domain (Tat) of the human immunodeficiency virus. The basic domain of Tat is formed of arginine and lysine amino acid residues. Tat has been used as brain-penetrant carrier also in therapies for Alzheimer disease (AD), the most common form of dementia characterized by extracellular cerebral deposits of amyloid made up of Aβ peptide. The aim of our study was to assess whether Tat bind to amyloid deposits of AD and other amyloidoses. An in situ labeling using biotinylated Tat 48-57 peptide was employed in the brain tissue with amyloid deposits made up of Aβ (patients with AD and transgenic AD mice), of prion protein (patients with Gerstmann-Straussler-Scheinker disease), and other amyloidosis, processed by different fixations and pretreatments of histological sections. Our results showed that Tat peptide binds amyloid deposits made up of Aβ, PrP, and immunoglobulin lambda chains in the brain and other tissues processed by alcoholic fixatives but not in formalin-fixed tissue. The fact that biotinylated Tat peptide stains amyloid of different biochemical composition and the specific charge characteristics of the molecules suggests that Tat may bind to heparan sulfate glicosaminoglicans, that are present in amyloid deposits. Inhibition of the binding by Tat pre-incubation with protamine reinforces this hypothesis. Binding of Tat to amyloid deposits should be kept in mind in interpreting the results of studies employing this molecule as brain-penetrating compound for the treatment of cerebral amyloidoses. Our results also suggest that Tat may be helpful for the analysis of the mechanisms of amyloidogenesis, and in particular, the interactions between specific amyloid peptides and glicosaminoglicans.
Collapse
Affiliation(s)
- E Maderna
- Neuropathology - Neurology V Unit, IRCCS Foundation "Carlo Besta" Neurological Institute, Via Celoria 11, 20133, Milan, Italy.
| | - L Colombo
- Department of Molecular Biochemistry and Pharmacology, IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156, Milan, Italy
| | - A Cagnotto
- Department of Molecular Biochemistry and Pharmacology, IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156, Milan, Italy
| | - G Di Fede
- Neuropathology - Neurology V Unit, IRCCS Foundation "Carlo Besta" Neurological Institute, Via Celoria 11, 20133, Milan, Italy
| | - A Indaco
- Neuropathology - Neurology V Unit, IRCCS Foundation "Carlo Besta" Neurological Institute, Via Celoria 11, 20133, Milan, Italy
| | - F Tagliavini
- Neuropathology - Neurology V Unit, IRCCS Foundation "Carlo Besta" Neurological Institute, Via Celoria 11, 20133, Milan, Italy
| | - M Salmona
- Department of Molecular Biochemistry and Pharmacology, IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156, Milan, Italy
| | - G Giaccone
- Neuropathology - Neurology V Unit, IRCCS Foundation "Carlo Besta" Neurological Institute, Via Celoria 11, 20133, Milan, Italy
| |
Collapse
|
27
|
Kang Q, Sun Z, Zou Z, Wang M, Li Q, Hu X, Li N. Cell-penetrating peptide-driven Cre recombination in porcine primary cells and generation of marker-free pigs. PLoS One 2018; 13:e0190690. [PMID: 29315333 PMCID: PMC5760039 DOI: 10.1371/journal.pone.0190690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022] Open
Abstract
Cell-penetrating peptides (CPPs) have been increasingly used to deliver various molecules, both in vitro and in vivo. However, there are no reports of CPPs being used in porcine fetal fibroblasts (PFFs). The increased use of transgenic pigs for basic research and biomedical applications depends on the availability of technologies for efficient genetic-modification of PFFs. Here, we report that three CPPs (CPP5, TAT, and R9) can efficiently deliver active Cre recombinase protein into PFFs via an energy-dependent endocytosis pathway. The three CPP–Cre proteins can enter PFFs and subsequently perform recombination with different efficiencies. The recombination efficacy of CPP5–Cre was found to be nearly 90%. The rate-limiting step for CPP–Cre-mediated recombination was the step of endosome escape. HA2 and chloroquine were found to improve the recombination efficiency of TAT–Cre. Furthermore, we successfully obtained marker-free transgenic pigs using TAT–Cre and CPP5–Cre. We provide a framework for the development of CPP-based farm animal transgenic technologies that would be beneficial to agriculture and biomedicine.
Collapse
Affiliation(s)
- Qianqian Kang
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhaolin Sun
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhiyuan Zou
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ming Wang
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qiuyan Li
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaoxiang Hu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ning Li
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
28
|
Li Z, Wang X, Teng D, Mao R, Hao Y, Yang N, Chen H, Wang X, Wang J. Improved antibacterial activity of a marine peptide-N2 against intracellular Salmonella typhimurium by conjugating with cell-penetrating peptides-bLFcin 6/Tat 11. Eur J Med Chem 2017; 145:263-272. [PMID: 29329001 DOI: 10.1016/j.ejmech.2017.12.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/24/2017] [Accepted: 12/18/2017] [Indexed: 01/15/2023]
Abstract
Salmonellae, gram-negative bacteria, are facultative intracellular pathogens that cause a number of diseases in animals and humans. The poor penetration ability of antimicrobial agents limits their use in the treatment of intracellular bacterial infections. In this study, the cell-penetrating peptides (CPPs) bLFcin6 and Tat11 were separately conjugated to the antimicrobial peptide N2, and the antibacterial activity and pharmacodynamics of the CPPs-N2 conjugates were first evaluated against Salmonellae typhimurium in vitro and in macrophage cells. The cytotoxicity, cellular uptake and mechanism of cellular internalization of the CPPs-N2 conjugates were also examined in RAW264.7 cells. Similar to N2, CPPs-N2 have two reverse β-sheets and three loops. The minimal inhibitory concentration (MIC) of CPPs-N2 was approximately 2 μM, which was higher than that of N2 (0.8 μM). The dose-time curves and cytotoxicity assay showed that both peptide conjugates were more effective than N2 alone at concentrations ranging from 0.25 to 1 × MIC, and they exhibited low cytotoxicity (9.78%-13.54%) at 100 μM. After 0.5 h incubation, the cell internalization ratio of B6N2 and T11N2 exceeded 28.3% and 93.5%, respectively, which was higher than that of N2. The uptake of B6N2 and T11N2 was reduced by low temperature (82.1%-91.7%), chlorpromazine (35.7%-75.1%), and amiloride (26.0%-52.1%), indicating that macropinocytosis and clathrin-mediated endocytosis may be involved. Approximately 98.85% and 91.35% of bacteria were killed within 3 h by T11N2 and B6N2, respectively, which was higher than the percentage killed by N2 (69.74%). Compared with the bactericidal activity of N2 alone, the bactericidal activity of T11N2 and B6N2 was increased by 53.7%-99.6% and 85.3-85.8%, respectively. Both CPPs-N2 conjugates may be excellent candidates for novel antimicrobial agents to treat infectious diseases caused by intracellular pathogens.
Collapse
Affiliation(s)
- Zhanzhan Li
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, People's Republic of China; Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Xiao Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, People's Republic of China; Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Da Teng
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, People's Republic of China; Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Ruoyu Mao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, People's Republic of China; Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Ya Hao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, People's Republic of China; Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Na Yang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, People's Republic of China; Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Huixian Chen
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, People's Republic of China; Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, People's Republic of China; Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China.
| | - Jianhua Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, People's Republic of China; Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China.
| |
Collapse
|
29
|
Najjar K, Erazo-Oliveras A, Mosior JW, Whitlock MJ, Rostane I, Cinclair JM, Pellois JP. Unlocking Endosomal Entrapment with Supercharged Arginine-Rich Peptides. Bioconjug Chem 2017; 28:2932-2941. [PMID: 29065262 DOI: 10.1021/acs.bioconjchem.7b00560] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Endosomal entrapment is a common bottleneck in various macromolecular delivery approaches. Recently, the polycationic peptide dfTAT was identified as a reagent that induces the efficient leakage of late endosomes and, thereby, enhances the penetration of macromolecules into the cytosol of live human cells. To gain further insights into the features that lead to this activity, the role of peptide sequence was investigated. We establish that the leakage activity of dfTAT can be recapitulated by polyarginine analogs but not by polylysine counterparts. Efficiencies of peptide endocytic uptake increase linearly with the number of arginine residues present. In contrast, peptide cytosolic penetration displays a threshold behavior, indicating that a minimum number of arginines is required to induce endosomal escape. Increasing arginine content above this threshold further augments delivery efficiencies. Yet, it also leads to increasing the toxicity of the delivery agents. Together, these data reveal a relatively narrow arginine-content window for the design of optimally active endosomolytic agents.
Collapse
Affiliation(s)
- Kristina Najjar
- Department of Biochemistry and Biophysics, ⊥Program in Integrative Nutrition & Complex Diseases, Department of Nutrition and Food Science, and §Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | - Alfredo Erazo-Oliveras
- Department of Biochemistry and Biophysics, ⊥Program in Integrative Nutrition & Complex Diseases, Department of Nutrition and Food Science, and §Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | - John W Mosior
- Department of Biochemistry and Biophysics, ⊥Program in Integrative Nutrition & Complex Diseases, Department of Nutrition and Food Science, and §Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | - Megan J Whitlock
- Department of Biochemistry and Biophysics, ⊥Program in Integrative Nutrition & Complex Diseases, Department of Nutrition and Food Science, and §Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | - Ikram Rostane
- Department of Biochemistry and Biophysics, ⊥Program in Integrative Nutrition & Complex Diseases, Department of Nutrition and Food Science, and §Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | - Joseph M Cinclair
- Department of Biochemistry and Biophysics, ⊥Program in Integrative Nutrition & Complex Diseases, Department of Nutrition and Food Science, and §Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | - Jean-Philippe Pellois
- Department of Biochemistry and Biophysics, ⊥Program in Integrative Nutrition & Complex Diseases, Department of Nutrition and Food Science, and §Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| |
Collapse
|
30
|
Intracellular and transdermal protein delivery mediated by non-covalent interactions with a synthetic guanidine-rich molecular carrier. Int J Pharm 2017. [DOI: 10.1016/j.ijpharm.2017.06.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Zhou H, Liu JX, Luo JF, Cheng CS, Leung ELH, Li Y, Su XH, Liu ZQ, Chen TB, Duan FG, Dong Y, Zuo YH, Li C, Lio CK, Li T, Luo P, Xie Y, Yao XJ, Wang PX, Liu L. Suppressing mPGES-1 expression by sinomenine ameliorates inflammation and arthritis. Biochem Pharmacol 2017; 142:133-144. [PMID: 28711625 DOI: 10.1016/j.bcp.2017.07.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/10/2017] [Indexed: 01/26/2023]
Abstract
Recently, microsomal prostaglandin E synthase 1 (mPGES-1) has attracted much attention from pharmacologists as a promising strategy and an attractive target for treating various types of diseases including rheumatoid arthritis (RA), which could preserve the anti-inflammatory effect while reducing the adverse effects often occur during administration of non-steroidal anti-inflammatory drugs (NSAIDs). Here, we report that sinomenine (SIN) decreased prostaglandin (PG)E2 levels without affecting prostacyclin (PG)I2 and thromboxane (TX)A2 synthesis via selective inhibiting mPGES-1 expression, a possible reason of low risk of cardiovascular event compared with NSAIDs. In addition, mPGES-1 protein expression was down-regulated by SIN treatment in the inflamed paw tissues both in carrageenan-induced edema model in rats and the collagen-II induced arthritis (CIA) model in DBA mice. More interestingly, SIN suppressed the last step of mPGES-1 gene expression by decreasing the DNA binding ability of NF-κB, paving a new way for drug discovery.
Collapse
Affiliation(s)
- Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau; Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau; International Institute of Translation Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, PR China
| | - Jian-Xin Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau; College of Pharmacy, Hunan University of Medicine, Huaihua City, Hunan Province, PR China
| | - Jin-Fang Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Chun-Song Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Ying Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Xiao-Hui Su
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau; Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Zhong-Qiu Liu
- International Institute of Translation Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, PR China
| | - Ting-Bo Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Fu-Gang Duan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau; Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Yan Dong
- Department of Immunology, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, PR China
| | - Yi-Han Zuo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau; Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Chong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau; Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Chon Kit Lio
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau; Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Pei Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Xiao-Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Pei-Xun Wang
- Department of Immunology, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, PR China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau; Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau.
| |
Collapse
|
32
|
RCAN-11R peptide provides immunosuppression for fully mismatched islet allografts in mice. Sci Rep 2017; 7:3043. [PMID: 28596584 PMCID: PMC5465209 DOI: 10.1038/s41598-017-02934-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/20/2017] [Indexed: 12/23/2022] Open
Abstract
Calcineurin inhibitors have been used for transplant therapy. However, the inhibition of calcineurin outside the immune system has a number of side effects. We previously developed a cell-permeable inhibitor of NFAT (nuclear factor of activated T cells) using the polyarginine peptide delivery system. This peptide (11R-VIVIT) selectively interferes with calcineurin-NFAT interaction without affecting the activity of calcineurin phosphatase and provides immunosuppression for fully mismatched islet allografts in mice. However, our recent study showed that 11R-VIVIT affected cell viability in vitro when it was used at higher concentration because of the VIVIT sequence. The aim of this study is to develop a safer NFAT inhibitor (RCAN-11R) that does not affect cell viability, and which is less toxic than calcineurin inhibitors. The minimal sequence of the protein family of regulators of calcineurin (RCAN) that is responsible for the inhibition of calcineurin-NFAT signaling was recently characterized. The peptide could selectively interfere with the calcineurin-NFAT interaction without affecting the activity of calcineurin phosphatase, similar to 11R-VIVIT. RCAN-11R did not affect cell viability when it was used at a higher concentration than the toxic concentration of 11R-VIVIT. RCAN-11R could therefore be useful as a therapeutic agent that is less toxic than current drugs or 11R-VIVIT.
Collapse
|
33
|
Lu J, Lin L, Dong H, Meng X, Fang F, Wang Q, Huang L, Tan J. Protein therapy using MafA fused to a polyarginine transduction domain attenuates glucose levels of streptozotocin‑induced diabetic mice. Mol Med Rep 2017; 15:4041-4048. [PMID: 28487936 PMCID: PMC5436157 DOI: 10.3892/mmr.2017.6536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 02/21/2017] [Indexed: 12/02/2022] Open
Abstract
Ectopic expression of musculo aponeurotic fibrosarcoma BZIP transcription factor (Maf) A, has previously been demonstrated to induce insulin expression in non-β-cell lines. Protein transduction domains acting as an alternative delivery strategy may deliver heterogeneous proteins into cells. A sequence of 11 arginine residues (11R) has been demonstrated to act as a particularly efficient vector to introduce proteins into various cell types. The present study constructed 11R-fused MafA to achieve transduction of the protein into cellular membranes and subsequently examined the therapeutic effect of the MafA-11R protein in streptozotocin-induced diabetes. A small animal imaging system was used to demonstrate that 11R introduced proteins into cells. The MafA-11R protein was then injected into the tale vein of healthy male mice, and western blot analysis and immunofluorescence staining was performed to identify the location of the recombinant protein. Ameliorated hyperglycemia in the MafA-11R-treated diabetic mice was demonstrated via the improved intraperitoneal glucose tolerance test (IPGTT) and glucose-stimulated insulin release. Furthermore, insulin producing cells were detected in the jejunum of the MafA-11R treated mice. The results of the present study indicated that MafA-11R delivery may act as a novel and potential therapeutic strategy for the future and will not present adverse effects associated with viral vector-mediated gene therapies.
Collapse
Affiliation(s)
- Jun Lu
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Lingjing Lin
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Huiyue Dong
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Xin Meng
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Fang Fang
- Department of Stomatology, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Qinghua Wang
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Lianghu Huang
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Jianming Tan
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|
34
|
Alaybeyoglu B, Uluocak BG, Akbulut BS, Ozkirimli E. The effect of a beta-lactamase inhibitor peptide on bacterial membrane structure and integrity: a comparative study. J Pept Sci 2017; 23:374-383. [PMID: 28299853 DOI: 10.1002/psc.2986] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 01/31/2017] [Indexed: 12/31/2022]
Abstract
Co-administration of beta-lactam antibiotics and beta-lactamase inhibitors has been a favored treatment strategy against beta-lactamase-mediated bacterial antibiotic resistance, but the emergence of beta-lactamases resistant to current inhibitors necessitates the discovery of novel non-beta-lactam inhibitors. Peptides derived from the Ala46-Tyr51 region of the beta-lactamase inhibitor protein are considered as potent inhibitors of beta-lactamase; unfortunately, peptide delivery into the cell limits their potential. The properties of cell-penetrating peptides could guide the design of beta-lactamase inhibitory peptides. Here, our goal is to modify the peptide with the sequence RRGHYY that possesses beta-lactamase inhibitory activity under in vitro conditions. Inspired by the work on the cell-penetrating peptide pVEC, our approach involved the addition of the N-terminal hydrophobic residues, LLIIL, from pVEC to the inhibitor peptide to build a chimera. These residues have been reported to be critical in the uptake of pVEC. We tested the potential of RRGHYY and its chimeric derivative as a beta-lactamase inhibitory peptide on Escherichia coli cells and compared the results with the action of the antimicrobial peptide melittin, the beta-lactam antibiotic ampicillin, and the beta-lactamase inhibitor potassium clavulanate to get mechanistic details on their action. Our results show that the addition of LLIIL to the N-terminus of the beta-lactamase inhibitory peptide RRGHYY increases its membrane permeabilizing potential. Interestingly, the addition of this short stretch of hydrophobic residues also modified the inhibitory peptide such that it acquired antimicrobial property. We propose that addition of the hydrophobic LLIIL residues to the peptide N-terminus offers a promising strategy to design novel antimicrobial peptides in the battle against antibiotic resistance. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Begum Alaybeyoglu
- Chemical Engineering Department, Bogazici University, Bebek, 34342, Istanbul, Turkey
| | - Bilge Gedik Uluocak
- Advanced Technologies R&D Center, Bogazici University, Bebek, 34342, Istanbul, Turkey
| | | | - Elif Ozkirimli
- Chemical Engineering Department, Bogazici University, Bebek, 34342, Istanbul, Turkey
| |
Collapse
|
35
|
|
36
|
Tai W, Gao X. Functional peptides for siRNA delivery. Adv Drug Deliv Rev 2017; 110-111:157-168. [PMID: 27530388 PMCID: PMC5305781 DOI: 10.1016/j.addr.2016.08.004] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/21/2016] [Accepted: 08/05/2016] [Indexed: 11/19/2022]
Abstract
siRNA is considered as a potent therapeutic agent because of its high specificity and efficiency in suppressing genes that are overexpressed during disease development. For nearly two decades, a significant amount of efforts has been dedicated to bringing the siRNA technology into clinical uses. However, only limited success has been achieved to date, largely due to the lack of a cell type-specific, safe, and efficient delivery technology to carry siRNA into the target cells' cytosol where RNA interference takes place. Among the emerging candidate nanocarriers for siRNA delivery, peptides have gained popularity because of their structural and functional diversity. A variety of peptides have been discovered for their ability to translocate siRNA into living cells via different mechanisms such as direct penetration through the cellular membrane, endocytosis-mediated cell entry followed by endosomolysis, and receptor-mediated uptake. This review is focused on the multiple roles played by peptides in siRNA delivery, such as membrane penetration, endosome disruption, targeting, as well as the combination of these functionalities.
Collapse
Affiliation(s)
- Wanyi Tai
- Department of Bioengineering, University of Washington, William H Foege Building N561, Seattle, WA 98195, USA
| | - Xiaohu Gao
- Department of Bioengineering, University of Washington, William H Foege Building N561, Seattle, WA 98195, USA.
| |
Collapse
|
37
|
Progress in Research and Application of HIV-1 TAT-Derived Cell-Penetrating Peptide. J Membr Biol 2016; 250:115-122. [DOI: 10.1007/s00232-016-9940-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/22/2016] [Indexed: 01/03/2023]
|
38
|
CPP-Assisted Intracellular Drug Delivery, What Is Next? Int J Mol Sci 2016; 17:ijms17111892. [PMID: 27854260 PMCID: PMC5133891 DOI: 10.3390/ijms17111892] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 11/16/2022] Open
Abstract
For the past 20 years, we have witnessed an unprecedented and, indeed, rather miraculous event of how cell-penetrating peptides (CPPs), the naturally originated penetrating enhancers, help overcome the membrane barrier that has hindered the access of bio-macromolecular compounds such as genes and proteins into cells, thereby denying their clinical potential to become potent anti-cancer drugs. By taking the advantage of the unique cell-translocation property of these short peptides, various payloads of proteins, nucleic acids, or even nanoparticle-based carriers were delivered into all cell types with unparalleled efficiency. However, non-specific CPP-mediated cell penetration into normal tissues can lead to widespread organ distribution of the payloads, thereby reducing the therapeutic efficacy of the drug and at the same time increasing the drug-induced toxic effects. In view of these challenges, we present herein a review of the new designs of CPP-linked vehicles and strategies to achieve highly effective yet less toxic chemotherapy in combating tumor oncology.
Collapse
|
39
|
Golan M, Feinshtein V, David A. Conjugates of HA2 with octaarginine-grafted HPMA copolymer offer effective siRNA delivery and gene silencing in cancer cells. Eur J Pharm Biopharm 2016; 109:103-112. [PMID: 27702685 DOI: 10.1016/j.ejpb.2016.09.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 09/19/2016] [Accepted: 09/28/2016] [Indexed: 01/20/2023]
Abstract
The key for successful gene silencing is to design a safe and efficient siRNA delivery system for the transfer of therapeutic nucleic acids into the target cells. Here, we describe the design of hydrophilic N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer displaying multiple copies of octaarginine (R8) and its use in promoting the effective delivery of small interfering RNA (siRNA) molecules intracellularly. Fluorescein-5-isothiocyanate (FITC)-labeled HPMA copolymer-bound R8 (P-R8-FITC) was synthesized with increasing R8 molar ratios (4-9.5mol-%) to define the optimal R8 content that allowed the polymer to serve both as a siRNA-binding domain and as an intracellular transduction moiety mediating improved cellular delivery. A subunit of the influenza virus hemagglutinin (HA2), known for its ability to disrupt endosomal membranes, was further conjugated to P-R8-FITC copolymer to promote endosomal escape. Of the different P-(R8)-FITC conjugates considered, only that polymer containing the highest mol-% of R8 (P-(R8)9.5-FITC) was able to encapsulate siRNA molecules into nano-sized polyion complexes (PICs) presenting positive surface charge, low in vitro cytotoxicity, and high serum stability. P-(R8)9.5-FITC/cy5-siRNA complexes can efficiently deliver siRNA molecules into cells, while naked siRNA or siRNA encapsulated within polymers with lower R8mol-% were unable to transfect the same cells. Conjugation of HA2 fusogenic peptide to P-(R8)-FITC significantly decreased the oncogenic RAC1 mRNA levels in cancer cells. This indicates that P-(R8)-(HA2)-FITC can deliver siRNA into target cells, and that the siRNA can reach the perinuclear region where it interacts with the RNA-induced silencing complex.
Collapse
Affiliation(s)
- Moran Golan
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Valeria Feinshtein
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ayelet David
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
40
|
Cerrato CP, Künnapuu K, Langel Ü. Cell-penetrating peptides with intracellular organelle targeting. Expert Opin Drug Deliv 2016; 14:245-255. [PMID: 27426871 DOI: 10.1080/17425247.2016.1213237] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION One of the major limiting steps in order to have an effective drug is the passage through one or more cell membranes to reach its site of action. To reach the action-site, the specific macromolecules are required to be delivered specifically to the cell compartment/organelle in their (pre)active form. Areas covered: In this review, we will discuss cell-penetrating peptides (CPPs) developed in the last decade to transport small RNA/DNA, plasmids, antibodies, and nanoparticles into specific sites of the cell. The article describes CPPs in complex with cargo molecules that target specific intracellular organelles and their potential for pharmacological or clinical use. Expert opinion: Organelle targeting is the ultimate goal to ensure selective delivery to the site of action in the cells. CPP technologies represent an important strategy to address drug delivery to specific intracellular compartments by covalent conjugation to targeting sequences, potentially enabling strategies to combat genomic diseases as well as infections, cancer, neurodegenerative and hereditary diseases. They have proven to be successful in delivering various therapeutic agents into cells however, further in vivo experiments and clinical trials are required to demonstrate the efficacy of this technology.
Collapse
Affiliation(s)
| | - Kadri Künnapuu
- b Laboratory of Molecular Biotechnology, Institute of Technology , University of Tartu , Tartu , Estonia
| | - Ülo Langel
- a Department of Neurochemistry , Stockholm University , Stockholm , Sweden.,b Laboratory of Molecular Biotechnology, Institute of Technology , University of Tartu , Tartu , Estonia
| |
Collapse
|
41
|
Wang Y, Rajala A, Cao B, Ranjo-Bishop M, Agbaga MP, Mao C, Rajala RV. Cell-Specific Promoters Enable Lipid-Based Nanoparticles to Deliver Genes to Specific Cells of the Retina In Vivo. Theranostics 2016; 6:1514-27. [PMID: 27446487 PMCID: PMC4955052 DOI: 10.7150/thno.15230] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/08/2016] [Indexed: 12/03/2022] Open
Abstract
Non-viral vectors, such as lipid-based nanoparticles (liposome-protamine-DNA complex [LPD]), could be used to deliver a functional gene to the retina to correct visual function and treat blindness. However, one of the limitations of LPD is the lack of cell specificity, as the retina is composed of seven types of cells. If the same gene is expressed in multiple cell types or is absent from one desired cell type, LPD-mediated gene delivery to every cell may have off-target effects. To circumvent this problem, we have tested LPD-mediated gene delivery using various generalized, modified, and retinal cell-specific promoters. We achieved retinal pigment epithelium cell specificity with vitelliform macular dystrophy (VMD2), rod cell specificity with mouse rhodopsin, cone cell specificity with red/green opsin, and ganglion cell specificity with thymocyte antigen promoters. Here we show for the first time that cell-specific promoters enable lipid-based nanoparticles to deliver genes to specific cells of the retina in vivo. This work will inspire investigators in the field of lipid nanotechnology to couple cell-specific promoters to drive expression in a cell- and tissue-specific manner.
Collapse
|
42
|
Kim YR, Hwang J, Koh HJ, Jang K, Lee JD, Choi J, Yang CS. The targeted delivery of the c-Src peptide complexed with schizophyllan to macrophages inhibits polymicrobial sepsis and ulcerative colitis in mice. Biomaterials 2016; 89:1-13. [DOI: 10.1016/j.biomaterials.2016.02.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 02/20/2016] [Accepted: 02/23/2016] [Indexed: 02/07/2023]
|
43
|
Kleene R, Chaudhary H, Karl N, Katic J, Kotarska A, Guitart K, Loers G, Schachner M. Interaction between CHL1 and serotonin receptor 2c regulates signal transduction and behavior in mice. J Cell Sci 2015; 128:4642-52. [PMID: 26527397 DOI: 10.1242/jcs.176941] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/28/2015] [Indexed: 02/05/2023] Open
Abstract
The serotonergic system plays important roles in multiple functions of the nervous system and its malfunctioning leads to neurological and psychiatric disorders. Here, we show that the cell adhesion molecule close homolog of L1 (CHL1), which has been linked to mental disorders, binds to a peptide stretch in the third intracellular loop of the serotonin 2c (5-HT2c) receptor through its intracellular domain. Moreover, we provide evidence that CHL1 deficiency in mice leads to 5-HT2c-receptor-related reduction in locomotor activity and reactivity to novelty, and that CHL1 regulates signaling pathways triggered by constitutively active isoforms of the 5-HT2c receptor. Furthermore, we found that the 5-HT2c receptor and CHL1 colocalize in striatal and hippocampal GABAergic neurons, and that 5-HT2c receptor phosphorylation and its association with phosphatase and tensin homolog (PTEN) and β-arrestin 2 is regulated by CHL1. Our results demonstrate that CHL1 regulates signal transduction pathways through constitutively active 5-HT2c receptor isoforms, thereby altering 5-HT2c receptor functions and implicating CHL1 as a new modulator of the serotonergic system.
Collapse
Affiliation(s)
- Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, Hamburg 20246, Germany
| | - Harshita Chaudhary
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, Hamburg 20246, Germany
| | - Nicole Karl
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, Hamburg 20246, Germany
| | - Jelena Katic
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, Hamburg 20246, Germany
| | - Agnieszka Kotarska
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, Hamburg 20246, Germany
| | - Kathrin Guitart
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, Hamburg 20246, Germany
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, Hamburg 20246, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, China
| |
Collapse
|
44
|
Xu C, Yu M, Noonan O, Zhang J, Song H, Zhang H, Lei C, Niu Y, Huang X, Yang Y, Yu C. Core-Cone Structured Monodispersed Mesoporous Silica Nanoparticles with Ultra-large Cavity for Protein Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5949-55. [PMID: 26426420 DOI: 10.1002/smll.201501449] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/05/2015] [Indexed: 05/07/2023]
Abstract
A new type of monodispersed mesoporous silica nanoparticles with a core-cone structure (MSN-CC) has been synthesized. The large cone-shaped pores are formed by silica lamellae closely packed encircling a spherical core, showing a structure similar to the flower dahlia. MSN-CC has a large pore size of 45 nm and a high pore volume of 2.59 cm(3) g(-1). MSN-CC demonstrates a high loading capacity of large proteins and successfully delivers active β-galactosidase into cells, showing their potential as efficient nanocarriers for the cellular delivery of proteins with large molecular weights.
Collapse
Affiliation(s)
- Chun Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Meihua Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Owen Noonan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jun Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hongwei Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chang Lei
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yuting Niu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xiaodan Huang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
45
|
Sun Y, Hu YH. Cell-penetrating peptide-mediated subunit vaccine generates a potent immune response and protection against Streptococcus iniae in Japanese flounder (Paralichthys olivaceus). Vet Immunol Immunopathol 2015; 167:96-103. [DOI: 10.1016/j.vetimm.2015.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/14/2015] [Accepted: 07/17/2015] [Indexed: 10/23/2022]
|
46
|
Xu C, Zhao H, Chen H, Yao Q. CXCR4 in breast cancer: oncogenic role and therapeutic targeting. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:4953-64. [PMID: 26356032 PMCID: PMC4560524 DOI: 10.2147/dddt.s84932] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Chemokines are 8–12 kDa peptides that function as chemoattractant cytokines and are involved in cell activation, differentiation, and trafficking. Chemokines bind to specific G-protein-coupled seven-span transmembrane receptors. Chemokines play a fundamental role in the regulation of a variety of cellular, physiological, and developmental processes. Their aberrant expression can lead to a variety of human diseases including cancer. C-X-C chemokine receptor type 4 (CXCR4), also known as fusin or CD184, is an alpha-chemokine receptor specific for stromal-derived-factor-1 (SDF-1 also called CXCL12). CXCR4 belongs to the superfamily of the seven transmembrane domain heterotrimeric G protein-coupled receptors and is functionally expressed on the cell surface of various types of cancer cells. CXCR4 also plays a role in the cell proliferation and migration of these cells. Recently, CXCR4 has been reported to play an important role in cell survival, proliferation, migration, as well as metastasis of several cancers including breast cancer. This review is mainly focused on the current knowledge of the oncogenic role and potential drugs that target CXCR4 in breast cancer. Additionally, CXCR4 proangiogenic molecular mechanisms will be reviewed. Strict biunivocal binding affinity and activation of CXCR4/CXCL12 complex make CXCR4 a unique molecular target for prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Chao Xu
- First Clinical College of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Hong Zhao
- First Clinical College of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Haitao Chen
- First Clinical College of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Qinghua Yao
- Department of Integrated Traditional Chinese and Western Medicine, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China ; Key Laboratory of Integrated Traditional Chinese and Western Medicine, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| |
Collapse
|
47
|
Lee JY, Suh JS, Kim JM, Kim JH, Park HJ, Park YJ, Chung CP. Identification of a cell-penetrating peptide domain from human beta-defensin 3 and characterization of its anti-inflammatory activity. Int J Nanomedicine 2015; 10:5423-34. [PMID: 26347021 PMCID: PMC4554392 DOI: 10.2147/ijn.s90014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human beta-defensins (hBDs) are crucial factors of intrinsic immunity that function in the immunologic response to a variety of invading enveloped viruses, bacteria, and fungi. hBDs can cause membrane depolarization and cell lysis due to their highly cationic nature. These molecules participate in antimicrobial defenses and the control of adaptive and innate immunity in every mammalian species and are produced by various cell types. The C-terminal 15-mer peptide within hBD3, designated as hBD3-3, was selected for study due to its cell- and skin-penetrating activity, which can induce anti-inflammatory activity in lipopolysaccharide-treated RAW 264.7 macrophages. hBD3-3 penetrated both the outer membrane of the cells and mouse skin within a short treatment period. Two other peptide fragments showed poorer penetration activity compared to hBD3-3. hBD3-3 inhibited the lipopolysaccharide-induced production of inducible nitric oxide synthase, nitric oxide, and secretory cytokines, such as interleukin-6 and tumor necrosis factor in a concentration-dependent manner. Moreover, hBD3-3 reduced the interstitial infiltration of polymorphonuclear leukocytes in a lung inflammation model. Further investigation also revealed that hBD3-3 downregulated nuclear factor kappa B-dependent inflammation by directly suppressing the degradation of phosphorylated-IκBα and by downregulating active nuclear factor kappa B p65. Our findings indicate that hBD3-3 may be conjugated with drugs of interest to ensure their proper translocation to sites, such as the cytoplasm or nucleus, as hBD3-3 has the ability to be used as a carrier, and suggest a potential approach to effectively treat inflammatory diseases.
Collapse
Affiliation(s)
- Jue Yeon Lee
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Chungcheongbuk-do, Republic of Korea
| | - Jin Sook Suh
- Dental Regenerative Biotechnology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jung Min Kim
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Chungcheongbuk-do, Republic of Korea
| | - Jeong Hwa Kim
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Chungcheongbuk-do, Republic of Korea
| | - Hyun Jung Park
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Chungcheongbuk-do, Republic of Korea
| | - Yoon Jeong Park
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Chungcheongbuk-do, Republic of Korea ; Dental Regenerative Biotechnology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Chong Pyoung Chung
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
48
|
Child HW, Hernandez Y, Conde J, Mullin M, Baptista P, de la Fuente JM, Berry CC. Gold nanoparticle-siRNA mediated oncogene knockdown at RNA and protein level, with associated gene effects. Nanomedicine (Lond) 2015; 10:2513-25. [DOI: 10.2217/nnm.15.95] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aims: RNAi is a powerful tool for gene silencing that can be used to reduce undesirable overexpression of oncogenes as a novel form of cancer treatment. However, when using RNAi as a therapeutic tool there is potential for associated gene effects. This study aimed to utilize gold nanoparticles to deliver siRNA into HeLa cells. Results: Knockdown of the c-myc oncogene by RNAi, at the RNA, protein and cell proliferation level was achieved, while also identifying associated gene responses. Discussion: The gold nanoparticles used in this study present an excellent delivery platform for siRNA, but do note associated gene changes. Conclusion: The study highlights the need to more widely assess the cell physiological response to RNAi treatment, rather than focus on the immediate RNA levels.
Collapse
Affiliation(s)
| | - Yulán Hernandez
- Instituto de Nanociencia de Aragón, University of Zaragoza, C/Mariano Esquillor s/n Zaragoza, Spain
| | - João Conde
- Massachusetts Institute of Technology, Institute for Medical Engineering & Science, Harvard-MIT Division for Health Sciences & Technology, Cambridge, MA 02139-4307, USA
| | - Margaret Mullin
- Integrated Microscopy Facility, Joseph Black Building, Glasgow University, G12 8QQ, UK
| | - Pedro Baptista
- UCIBIO, CIGMH, Departamento de Ciencias da Vida, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Portugal
| | - Jesus Maria de la Fuente
- Instituto de Nanociencia de Aragón, University of Zaragoza, C/Mariano Esquillor s/n Zaragoza, Spain
- Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, c/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | | |
Collapse
|
49
|
The J-domain of heat shock protein 40 can enhance the transduction efficiency of arginine-rich cell-penetrating peptides. BIOMED RESEARCH INTERNATIONAL 2015; 2015:698067. [PMID: 26075258 PMCID: PMC4449882 DOI: 10.1155/2015/698067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/28/2014] [Accepted: 12/16/2014] [Indexed: 11/20/2022]
Abstract
Sense and antisense oligonucleotide pairs encoding cell-penetrating peptides PTD (Tat47–57), DPV3A, E162, pVEC, R11, and TP13 were used to construct two sets of pET22b-CPP-DsRed and pET22b-CPP-J-DsRed vectors for CPP-DsRed and CPP-J-DsRed recombinant proteins expression. PTD-DsRed, DPV3A-DsRed, PTD-J-DsRed, and DPV3A-J-DsRed recombinant proteins were expressed in a soluble form. PTD-J-DsRed and DPV3A-J-DsRed recombinant proteins were able to escape from E. coli host cells into the culture medium. The membrane-penetrating activity of PTD-J-DsRed and DPV3A-J-DsRed recombinant proteins to mammalian cells was more effective than that of PTD-DsRed and DPV3A-DsRed. The route of the cellular membrane translocation of these recombinant proteins is suggested via macropinocytosis followed by an endosomal escape pathway.
Collapse
|
50
|
Wang Y, Rajala A, Rajala RVS. Lipid Nanoparticles for Ocular Gene Delivery. J Funct Biomater 2015; 6:379-94. [PMID: 26062170 PMCID: PMC4493518 DOI: 10.3390/jfb6020379] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 02/07/2023] Open
Abstract
Lipids contain hydrocarbons and are the building blocks of cells. Lipids can naturally form themselves into nano-films and nano-structures, micelles, reverse micelles, and liposomes. Micelles or reverse micelles are monolayer structures, whereas liposomes are bilayer structures. Liposomes have been recognized as carriers for drug delivery. Solid lipid nanoparticles and lipoplex (liposome-polycation-DNA complex), also called lipid nanoparticles, are currently used to deliver drugs and genes to ocular tissues. A solid lipid nanoparticle (SLN) is typically spherical, and possesses a solid lipid core matrix that can solubilize lipophilic molecules. The lipid nanoparticle, called the liposome protamine/DNA lipoplex (LPD), is electrostatically assembled from cationic liposomes and an anionic protamine-DNA complex. The LPD nanoparticles contain a highly condensed DNA core surrounded by lipid bilayers. SLNs are extensively used to deliver drugs to the cornea. LPD nanoparticles are used to target the retina. Age-related macular degeneration, retinitis pigmentosa, and diabetic retinopathy are the most common retinal diseases in humans. There have also been promising results achieved recently with LPD nanoparticles to deliver functional genes and micro RNA to treat retinal diseases. Here, we review recent advances in ocular drug and gene delivery employing lipid nanoparticles.
Collapse
Affiliation(s)
- Yuhong Wang
- Dean A. McGee Eye Institute, Oklahoma City, OK 73104, USA.
- Department of Ophthalmology, College of Medicine, University of Oklahoma, Oklahoma City, OK 73014, USA.
| | - Ammaji Rajala
- Dean A. McGee Eye Institute, Oklahoma City, OK 73104, USA.
- Department of Ophthalmology, College of Medicine, University of Oklahoma, Oklahoma City, OK 73014, USA.
| | - Raju V S Rajala
- Dean A. McGee Eye Institute, Oklahoma City, OK 73104, USA.
- Department of Ophthalmology, College of Medicine, University of Oklahoma, Oklahoma City, OK 73014, USA.
- Department of Physiology and Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73014, USA.
| |
Collapse
|